
HAL Id: hal-04606158
https://hal.science/hal-04606158

Submitted on 9 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Post Memory Corruption Memory Analysis
Jonathan Brossard

To cite this version:
Jonathan Brossard. Post Memory Corruption Memory Analysis. Blackhat USA, Blackhat, Jul 2011,
Las Vegas, United States. �hal-04606158�

https://hal.science/hal-04606158
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Post Memory Corruption Memory Analysis

Jonathan Brossard - jonathan.brossard�tou
an-system.
om

Se
urity Resear
h Engineer & CEO, Tou
an System, Fran
e

Bla
khat Brie�ngs Conferen
e, Las Vegas, 2011

�Normality is the route to nowhere.� � Ridderstrale and Nordstorm

Abstra
t. In this arti
le, we introdu
e a new exploitation methodology of invalid memory reads and
writes, based on data�ow analysis after a memory
orruption bug has o

urred inside a running pro
ess.

We will expose a methodology whi
h shall help writing a reliable exploit out of a PoC triggering an in-
valid memory write, in presen
e of modern se
urity defense me
hanism su
h as
ompiler enhan
ements
(su
h as SSP...), lib
 prote
tions (eg: safe heap unlinking), linking and dynami
 linking enhan
ements
(full read only GOT and relo
ations) or kernel anti exploitation features (ASLR, NX...).

In parti
ular, we will demonstrate how to : �nd all the fun
tion pointers inside a running pro
ess, how
to determine whi
h ones would have been dereferen
ed after the Segmentation fault if the pro
ess had
kept exe
uting, whi
h ones are trun
atable (in parti
ular with 0x00000000). In
ase all of the above
fail, we will demonstrate how to test for overwrites in spe
i�
 lo
ations in order to indire
tly trigger a
se
ond vulnerability allowing greater
ontrol and eventually full
ontrol �ow hija
king. All of the above
without needing the sour
e
ode of the appli
ation debugged.

In the
ase of invalid memory reads, we will show how to indire
tly in�uen
e the
ontrol �ow of exe-

ution by reading arbitrary values, how to tra
e all the unaligned memory a

ess and how to test if an
invalid read
an be turned into an invalid write or at least used to infer the mapping of the binary.

We will also introdu
e a new debugging te
hnique whi
h allows for very e�e
tive dynami
 testing of
all of the above by for
ing the debugged pro
ess to fork(). All those steps are realized automati
ally
and provide a rating of the best read/write lo
ation based on probabilities of mapping addresses (in
the hope to defeat ASLR).

These te
hniques were implemented in the form of a proof of
on
ept tool running under GNU/Linux
and Intel ar
hite
tures : pm
ma1.

Keywords: Exploit automation, post memory
orruption analysis, debugging, memory prote
tions, in-
valid memory writes.

1 The o�
ial website of the tool is http://www.pm
ma.org

Table of Contents

1 Introdu
tion . 3

2 Related work . 4

3 mk_fork() : writing "weird debuggers" for "weird programs" . 5

3.1 Motivation . 5

3.2 Methodology . 6

3.3 mk_fork() implementation . 7

3.4 Limitations . 9

4 Here be dragons : zombie reaping . 9

4.1 Dealing with SIGCHLD . 9

4.2 Pro
esses grouping . 11

5 Exploiting invalid memory writes . 12

5.1 Finding all the fun
tion pointers dereferen
ed after an invalid write 12

5.2 Over�ows . 12

5.3 Partial overwrites and pointers trun
ations . 12

5.4 Dis
overing unaligned memory reads . 15

6 ASLR and its limits . 18

6.1 E�e
tive testing of ASLR . 18

6.2 Non Position Independant Exe
utables . 21

6.3 Prelinking . 21

6.4 Biased ASLR. 21

6.5 Memory mapping leakage . 22

7 Extending the
apabilities of pm
ma . 26

7.1 Call tables and returns to registers+o�sets . 26

7.2 Sear
hing for pointers to stru
tures (
ontaining fun
tion pointers) 26

7.3 Testing exhaustively arbitrary writes . 28

7.4 Testing invalid reads . 29

8 Sta
k desyn
hronization . 29

9 Performan
e
onsiderations . 30

10 Con
lusion . 30

11 a
knowledgements . 30

1 Introdu
tion

Determining exploitability is hard, and writing exploits is hard. In fa
t, due to theoreti
al limitations
(id est: "Halting Problem"), those two problems are the two sides of the same
oin. Proving unex-
ploitability is infeasible in the general
ase, and pra
ti
ally for the vast majority of
omputer programs
a
tually used nowadays.

In this paper, we will examine exploitability in a systemati
 way, fo
using on what happens in memory
after a bug is triggered, rather than tra
ing or ba
ktra
king what has happened before. To the best of
the author's knowledge, this is a new approa
h.

Our goal is to help exploit (semi)automation by building exploitation models based on
onstraints gath-
ered from the environment (in parti
ular, the presen
e of se
urity
ountermeasures su
h as ALSR[1℄
or non-exe
utable memory[2℄ thanks to kernel[3℄ or hardware[4℄ enhan
ements, as well as
ompiler
enhan
ements su
h as Data Hardening[5℄, FORTIFY SOURCE[6℄ et
), and to allow for the pra
ti
al
testing of those models in order to (in)validate them.

We will primarily fo
us on invalid memory write bugs be
ause of the spe
ial role they play in modern
exploitation. Invalid memory dereferen
es in read mode used for the purposes of information leakage
or indire
t memory exploitation will also be dis
ussed in this arti
le.

The main
ontributions of this arti
le are:
- A methodology to dis
over all the potential fun
tion pointers inside the address spa
e of a pro
ess at
any given point in time.
- A methodology to dis
over all the fun
tion pointers a
tually dereferen
ed by a pro
ess from a given
point in time, given a �xed set of input data.
- A methodology to �nd all the fun
tion pointers exploitable by trun
ation in
ase of an arbitrary write
subje
t to
onditions (su
h as not
ontrolling the value being dereferen
ed).
- A methodology to �nd all the unaligned memory reads from a given point in time during the exe
ution
of a pro
ess.
- A new debugging te
hnique whi
h allows the validation of all of the above, as well as the testing
of arbitrary data modi�
ations inside the address spa
e of a pro
ess in order to a
hieve
ontrol �ow
hija
king from an arbitrary memory write.

All those te
hniques have been implemented in the form of a proof of
on
ept tool for the GNU/Linux
x86 Intel ar
hite
tures. They
ould, without any loss of generality, be extended to any operating system
or ar
hite
ture with the ex
eption of the last debugging te
hnique, whi
h requires the presen
e of the
fork() system
all and is therefore limited to *NIX operating systems2.

This parti
ular debugging te
hnique doesn't require the debugged pro
ess to be restarted using ex-
e
ve(), and therefore preserves most of the mapping of the appli
ation (whi
h may be hard to re-
reate
be
ause of the large entropy used in randomizing a pro
ess' address spa
e under modern OSes). This
te
hnique is also believed to be the most e�e
tive to a
hieve this result (by
onstru
tion) both in terms
of speed and resour
es.

Finally, sin
e overwriting fun
tion pointers doesn't allow dire
t shell
ode exe
ution anymore be
ause of
WˆX mappings, we introdu
e a new exploitation te
hnique whi
h works even under the most se
urity
enhan
ed kernels su
h as grse
urity. We
all it "sta
k desyn
hronization". It allows frame faking inside
the sta
k itself by having a
ontrolled fun
tion pointer return to a
arefully
hosen fun
tion prologue
instead of returning to a shell
ode dire
tly.
It is worth noting that we do not seek full exploit generation in this whitepaper, the output of our tool

2 A
tually, Se
urity Resear
her Mark Dowd made us aware that it may be possible to simulate a fork() under Windows
too... Implementation details would be non trivial though, sin
e the pro
ess
reation me
hanism is entirely di�erent.

3

being a roadmap to exploitation rather than exe
utable (or sour
e)
ode. This roadmap needs to be
implemented using both
ontrol �ow and data �ow analysis of the pro
ess prior to the bug, whi
h is
fortunately what virtually any existing debugging tool is
apable of a

omplishing.

2 Related work

Be
ause of the theori
al limitations invoked previously, earlier resear
h on automati
 exploitation tend
to fo
us on numeri
al rather than analyti
al solutions. It is indeed less intelle
tually satisfying (it
an-
not be proved that a solution will a
tually be found in general), but interresting results have been
a
hieved nonetheless.

More pre
isely, they all share a
ommon underlying methodology : starting from a given program input
leading to a deterministi
 memory
orruption, they express the
onstraints on the input data in order to
have it keep following the very same path (otherwise we're ba
k to the Halting Problem and in pra
ti
e
to path exploration explosion), then turn ea
h instru
tion into a set of
onstraints, express the desired
result (id est: register set when re
eiving a Segmentation fault) in terms of the same
onstraints. Then
they solve the equation numeri
ally. Both taint analysis at assembly level (whether an intermediary
language is used[7℄ or not[8℄) and SAT Solvers[9℄[10℄ used on
onstraints expressed from C sour
e seem
to give satisfying results in pra
ti
e, eventually modifying the input data to lead to the expe
ted set of
registers when triggering the bug, thereby leading to exe
ution of arbitrary
ode.

Unfortunately, in pra
ti
e the exploits
reated using the aforementioned te
hniques often do not work
under realisti
 modern operating systems, in parti
ular be
ause the "
omplete exploits" generated au-
tomati
ally omit to take into a

ount the additional
omplexity brought by se
urity prote
tions su
h
as non-exe
utable memory pages or Address Spa
e Layer Randomization (ASLR).

If those te
hniques seem to give interesting results on simple vulnerabilities su
h as sta
k over�ows
under basi

onditions (no sta
k
anaries, no address spa
e layer randomization and all se
tions being
exe
utable), they
annot
ope with more
omplex vulnerabilities su
h as heap over�ows (overwriting
heap meta-data typi
ally require having multiple memory lo
ations set to appropriate values in order
to pass the various lib

he
ks before a
hieving a proper arbitrary write in memory) nor do they work
with modern Operating Systems, whi
h have enhan
ed kernels and
ompiler tool
hains to prevent triv-
ial exploitation.

In reality, dealing with those se
urity prote
tions is in itself what most se
urity resear
hers and ha
kers
alike a
tually spend their time on when writing exploits. It requires their exploitation methodologies to
be environment-aware, those prote
tions being implemented at di�erent levels, ranging from
ompiler
tool
hains enhan
ements[6℄ to kernel modi�
ations[11℄.

In the rest of this arti
le, we will fo
us on what happens inside a pro
ess after it triggered a Seg-
mentation Fault , assuming that the
ontrol �ow and data �ow analysis of input data leading to this
Segmentation Fault, whi
h are still the mandatory steps to determine exploitability,
an be performed
using
ommonly available tools (gdb, valgrind, dmallo
, ele
tri
fen
e,...).

4

3 mk_fork() : writing "weird debuggers" for "weird programs"

3.1 Motivation

An arbitrary anything/anywhere write allows an atta
ker to overwrite arbitrary data in se
tions mapped
with writable permissions. In order to a
hieve
ontrol �ow modi�
ation to exe
ute arbitrary
ode, the
most straight forward te
hnique is to overwrite a fun
tion pointer that will later be dereferen
ed during
the normal �ow of exe
ution.

Depending on the target binary, a few su
h pointers may be known without further reverse engineering.
In fa
t, appli
ations linked against the GNU lib
 library
ontain de fa
to su
h a pointer : the fun
tion
pointer asso
iated with the .dtors se
tion. This pointer has long been used[12℄ to exe
ute arbitrary
ode
instead of the legitimate glib
 destru
tors in
ase of arbitrary write vulnerabilities, parti
ularly when
exploiting missing format string vulnerabilities lo
ally.

This parti
ular te
hnique, while popular in the early 2000's, has several limitations. First of all, it
assumes the appli
ation will exit
leanly by
alling exit(). If the atta
ker is unable to pursue normal
exe
ution mu
h longer after triggering the vulnerability (fairly
ommon in
ase of heap over�ows, where
heap metadata is irre
overably
orrupted and will sooner or later for
e the appli
ation to quit by
alling
abort() instead of exit(), hen
e not
alling the normal destru
tors), the aforementioned fun
tion pointer
will not even be dereferen
ed.

Se
ondly, a
hieving arbitrary remote exe
ution when the appli
ation is exiting may be a bit late. If the
atta
ker was to atta
k a remote servi
e whi
h typi
ally only
alls exit() when the server shuts down
(whi
h may literally take years), this atta
k ve
tor may not be interesting at all. A
arefully
oded
setuid appli
ation may also
hose to drop privileges before exiting, hen
e wasting the atta
k ve
tor for
a lo
al atta
ker.

Thirdly, guessing the lo
ation of the .dtors se
tion, while easy if the binary wasn't
ompiled as a PIE is
not immediately given in the opposite
ase, be
ause the data se
tion of the binary is then randomized.
Finally, the appli
ation may not be linked with glib
 at all (use of ulib
 for instan
e), in whi
h
ase, this
fun
tion pointer is simply not available. In any
ase, it is possible to modify the linking pro
ess through
a s
ript[?℄ to make the .dtors se
tion non writable, whi
h mitigates this atta
k ve
tor
ompletely. This
is a

eptable for the vast majority of appli
ations sin
e the use of
ustom destru
tors is in fa
t not
widespread.

The se
ond popular te
hnique is to overwrite a pointer in the Global O�set Table (GOT). When
alling
pro
edures whose
ode is stored in separate obje
ts su
h as shared libraries, the lazy dynami
 linking
�rst transfers
ontrol to the Pro
ess Linkage Table (PLT), whi
h is a trampoline to the GOT. Over-
writing the GOT entry to say, printf() would allow an atta
ker to modify the �ow of exe
ution to an
arbitrary lo
ation when printf() would later be
alled anywhere within the appli
ation. This te
hnique
is also attra
tive sin
e binaries not
ompiled as Position Independent Exe
utables (PIE) have their
GOT stored at a �x lo
ation.

Unfortunately for the atta
ker, re
ent[5℄ modi�
ations to the linker and dynami
 linker allow3 for the
relo
ations to be performed entirely during the loading pro
ess. Sin
e the GOT is then fully resolved,
it
an be set read only by a simple
all to mprote
t(). The net result is that an atta
ker
annot write
to the GOT at all anymore, hen
e mitigating this atta
k ve
tor entirely. This early binding
omes
at a performan
e
ost (lazy binding no longer applies, and even referen
es that would not have been
used during a spe
i�
 run of the appli
ation are resolved anyways), and is therefore not applied sys-
temati
ally to all binaries under all Linux distributions. That being said, it is absolutely possible to

3 When
ompiling appli
ations using g

, and zith the following �ags: "-Wl -z relro -z now". Using only "-Wl -z relro
" allows for internal reorganization of the se
tions of the binary, putting the GOT before writable se
tions su
h as
.data and .bss. This prevents GOT overwriting in
ase of user
ontrolled bu�er over�ows in those writable se
tions.
Adding the "-z now" option also for
es relo
ations to be performed at load time, and enfor
e a
all to mprote
t()
to render the GOT unwritable.

5

reate a tool
hain that would enfor
e those linking options to all the binaries in the system, e�e
tively
killing this atta
k ve
tor entirely. The Gentoo Hardened distribution is su
h an instan
e of a distri-
bution that privileged se
urity over performan
e by enfor
ing this new feature by default on all binaries.

An other pointer prior resear
hers used in the past is the array of pointers
alled by at_exit(). While
it has been shown[13℄ that overwriting a double word in this glib
 global data
ould grant arbitrary

ode exe
ution, appli
ations a
tually using at_exit() tend to be fairly rare. The virtue of this example
is generalize the overwrite of fun
tion pointers not only in the mapping of the appli
ation itself, but
also in the writable mappings of the libraries it is linked to. In a way, the present paper
an be seen as
an extreme generalization of this te
hnique.

If deferen
ing a fun
tion pointer is indeed a good idea, publi
ly available debuggers do a poor job at
listing them. This is understandable sin
e what happens inside an appli
ation after a Segmentation
Fault is of little interest to normal software developers, whose fo
us is to �x bugs, not to write exploits.
We will therefore without further due introdu
e a te
hnique to automati
ally dete
t all the fun
tion
pointers possibly dereferen
ed by an appli
ation (in
luding its libraries) after a given memory
orrup-
tion bug has o

urred.

3.2 Methodology

Our methodology is based on the use of ptra
e() to debug a pro
ess. We start by either atta
hing to a
running pro
ess thanks to its pid, or
reate a new pro
ess from the
ommand line of pm
ma.

We then wait for the pro
ess to
rash, emitting a Segmentation Fault
aught by ptra
e(). This indeed
assumes that the user of the pm
ma is able to
reate an input to
reate an invalid memory a

ess inside
the pro
ess.

On any given pro
ess, the amount of mapped memory is limited by ar
hite
ture
onstraints. In order to
verify if overwriting4 a given double word in memory will in fa
t modify the �ow of exe
ution, we start
by listing all the memory lo
ations that are writable (we
annot modify non writable lo
ations anyway).
This preliminary phase is performed on a memory snapshot, but performing it after a Segmentation
Fault allows us to have a binary whi
h looks (in memory) exa
tly like the pro
ess we'd like to exploit
from a mapping point of view.

We then for
e the debugged appli
ation to fork(). This
reates a new pro
ess whi
h only di�ers from the
original debugged pro
ess by its pro
ess id. In parti
ular, all the writable memory lo
ations in
luding
the heap, or even global data from all the mapped libraries remain exa
tly the same.

We then overwrite a given writable lo
ation with a dummy value
orresponding to a lo
ation non-
exe
utable in userland inside the newly
reated pro
ess (therefore leaving the original pro
ess inta
t,
for later use). 0xf1f2f3f4 is a good su
h value5. We then
lear the signals re
eived by the newly spawned
pro
ess and follow its exe
ution as if a Segmentation Fault didn't just happen.

In
ase exe
ution is transfered to memory lo
ation 0xf1f2f3f4 before the appli
ation exits, we have
found a proper fun
tion pointer a
tually dereferen
ed by the appli
ation. This is easily dete
table as it
will trigger a SIGSEGV signal (the Segmentation Fault being due to an attempt to exe
ute
ode in a
lo
ation normally reserved to ring 0).

If su
h is not the
ase, we repeat the pro
ess of for
ing the original debugged pro
ess to fork() and
overwrite an other memory lo
ation with the same dummy pointer.

4 simulating the fa
t that the previous ins
tru
tion triggering the Segmentation Fault had led to an arbitrary memory
write instead of simply triggering a SEGFAULT...

5 It is both always pointing to kernel land, regardless of the kernel split in use, and easy to identify.

6

By iterating this way over all of the possible writable memory lo
ations, we
an �nd all the fun
tion
pointers dereferen
ed by the appli
ation during its normal �ow of exe
ution.

3.3 mk_fork() implementation

Previous works[14℄[15℄ have shown it was possible to use ptra
e to inje
t an arbitrary library inside the
pro
ess' address spa
e. We don't need that mu
h, we'll just inje
t a small shell
ode for
ing the pro
ess
to
all fork, and start ptra
ing the
hild.

Let's see how this
an be a
hieved (ignoring error handling here and unne
essary
omplexity for the
sake of
larity):

/*
*
* for
e a pro
ess to fork()
*
* returns the pid of the offspring
*
*/
int mk_fork(pid_t pid){

void *target_addr;
stru
t user_regs_stru
t regz;
stru
t user_regs_stru
t regs;
stru
t user_regs_stru
t regz_new;
int status;
siginfo_t si;
stru
t w_to_x_ptr *tmp4;
int newpid;
int fork_ok=0,offspring_ok=0;

/*
* prepare
hild to perform a fork
*/

// save registers
ptra
e(PTRACE_GETREGS, pid,NULL, ®z);

mem
py(®z_new,®z,sizeof(regz));

// ba
kup
ontent at addr
getdata(pid, (int)target_addr, ba
kup_buff, 200);

// repla
e with fork_stub shell
ode
write_data(pid,(int)target_addr,fork_stub,10);

// exe
ute fork_stub
regz_new.eip=(int)target_addr+2;
ptra
e(PTRACE_SETREGS, pid,NULL, ®z_new);

/*
* Continue ptra
ing untill we get both a
* SIGTRAP (parent) or SIGSTOP (
hild)

7

*/
fork_ok=0;
offspring_ok=0;
while((!fork_ok)&&(!offspring_ok)){

memset(&si, 0, sizeof(siginfo_t));

ptra
e(PTRACE_GETREGS, pid,NULL, ®s);
ptra
e(PTRACE_SETREGS, pid,NULL, ®s);

ptra
e(PTRACE_CONT, pid, NULL, NULL);
waitpid(-1,&status,P_ALL); // any pid
ptra
e(PTRACE_GETSIGINFO, pid, NULL, &si);

// parent ?
if(si.si_signo == 5){

fork_ok=1;
}
// offspring ?
if (status >> 16 == PTRACE_EVENT_FORK) {

ptra
e(PTRACE_GETEVENTMSG, pid, NULL, (void*) &newpid);
ptra
e(PTRACE_SYSCALL, newpid, NULL, NULL);

}
}

/*
* Clean up the mess
*/
//
lear signals
memset(&si, 0, sizeof(siginfo_t));
ptra
e(PTRACE_SETSIGINFO, pid, NULL, &si);
ptra
e(PTRACE_SETSIGINFO, newpid, NULL, &si);

// restore data
write_data(pid,(int)target_addr,ba
kup_buff,200);
write_data(newpid,(int)target_addr,ba
kup_buff,200);

// restore registers
ptra
e(PTRACE_SETREGS, pid, NULL, ®z);
ptra
e(PTRACE_SETREGS, newpid, NULL, ®z);

return newpid;
}

With fork_stub being a small shell
ode6 :

;forking shell
ode:
00000000 6631C0 xor eax,eax
00000003 B002 mov al,0x2
00000005 CD80 int 0x80

followed by 4 bytes 0x

 whi
h will trigger a signal 5 (SIGTRAP) when exe
uted.

6 The shell
odes in this paper will be given assuming a 32b intel ar
hite
ture for illustrative purpose.

8

The operations performed are therefore the following : �rst of, the state of the registers of the de-
bugged appli
ation are saved. Then, 10 bytes from the debugged pro
ess are ba
ked up, starting from
target_addr (whi
h is the pla
e we will use to write and exe
ute our small shell
ode. This lo
ation
needs to be mapped in an exe
utable lo
ation). Our small shell
ode is then inje
ted inside the running
pro
ess. Registers are then modi�ed in the debugged pro
ess so that the next instru
tion to be exe
uted
will be our shell
ode, and
ontrol is passed to this appli
ation. Upon
orre
t exe
ution of this shell
ode,
we will re
eive two signals : a SIGTRAP emitted by the debugged pro
ess, and a SIGSTOP emitted
by its newly
reated o�spring. We then restore the 10 bytes ba
ked up earlier in both pro
esses and
restore their registers to the their original state.

This way, we obtain an almost perfe
t repli
a of our original pro
ess to experiment with at will.

3.4 Limitations

.

The main limitation is that all of the Inter Pro
ess Communi
ation (IPC) and �le I/O
an be assumed
to be in unpredi
table state in the
ontext of the o�spring. The return of any sys
all is in fa
t un-
predi
table. This may
ause di�eren
es in the exe
ution of the original pro
ess and the o�spring. In
parti
ular, this may
ause the o�spring to exit earlier than the original pro
ess would have be
ause of
IPC or sys
all errors, leading to false negatives in our analysis.

Experimentally, this experimental te
hnique works well enough to provide rea
hable fun
tion pointers

alled, even though it still misses many that would exist mu
h later in the �ow of exe
ution.

The system
alls
ould probably be re
orded in the original pro
ess and faked in o�springs to remove
those problems entirely, thanks fo the ptra
e() method PTRACE_SYSCALL. And a further
ost in
performan
e. This idea is further des
ribed later in this whitepaper under se
tion 6.5.

4 Here be dragons : zombie reaping

The previously des
ribed methodology to
reate pro
esses is indeed powerful, but
reating unexpe
ted

hildren to a pro
ess poses several problems if we intend to debug large appli
ations su
h as network
servi
es or web browsers. In this later
ase, we will need to analyze megabytes of writable data, hen
e

reate millions of
hildren. In order to s
ale under those proportions, dealing with the termination of
the
reated o�springs is mandatory.

4.1 Dealing with SIGCHLD

Sin
e the original appli
ation will be kept sleeping while we will
reate thousands if bot millions of

hildren to test writes in di�erent lo
ations, it won't be able to wait() for the return signal (SIGCHLD)
emitted by ea
h
hild pro
ess
reated when exiting. If we don't solve this situation, all those unre
eived
signals will prevent the
hild pro
esses from a
tually terminating, leaving them in a zombie state.

First of, this is a waste of memory and
pu
y
les be
ause the zombies still have an entry in say,
task_stru
t in kernel land. Those pro
esses will also uselessly keep a pro
ess id, whi
h is a limited
resour
e on a
omputer. On
e all the available pro
ess ids will be attributed to
hildren pro
esses even-
tually ending in zombie states, we will not be able to
reate new ones at all.

The �rst strategy to avoid zombies is to expli
itly have the original pro
ess ask not to be sent SIGCHLD
signals when its o�springs exit. This is fortunately possible under GNU/Linux by using siga
tion() to
ignore SIGCHLD signals. The kernel will then not bother sending signals to our dormant pro
ess.

9

The C
ode to perform this operation is equivalent to:

stru
t siga
tion sa = {.sa_handler = SIG_IGN};
siga
tion(SIGCHLD, &sa, NULL);

This
ode needs to be
alled only on
e by our original pro
ess. To perform this operation, we use the
same inje
tion methodology as with the mk_fork() shell
ode. Our position independent shell
ode stub
to perform this system
all is the following:

; Siga
tion shell
ode: // Zombie reaper
; stru
t siga
tion sa = {.sa_handler = SIG_IGN};
; siga
tion(SIGCHLD, &sa, NULL);

_start:
nop
nop
nop
nop

all fake

fake:
pop e
x
add e
x,0x18 ; delta to siga
tion stru
ture

xor eax,eax
mov al,0x43 ; siga
tion
mov ebx,0x11 ; SIGCHLD
xor edx,edx ; 0x00
int 0x80

db 0x

, 0x

,0x

,0x

; stru
t siga
tion sa = {.sa_handler = SIG_IGN};
db 01, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00

Using this te
hnique, we don't need to
are about pending signals anymore. But sin
e our weird de-
bugger is spawning so many
hildren, we need to ensure that those pro
esses a
tually terminate after a
given period of time. And that any pro
esses that they'd have spawned themselves without our knowl-
edge will also terminate in order to spare
omputer resour
es.

10

4.2 Pro
esses grouping

POSIX o�ers a great and little known way to solve this problem. Instead of systra
ing every
reated

hildren and hook grand
hildren
reation, we
an
reate pro
ess groups. Those groups are
reated for
instan
e using a
all to the sys
all setpgid() to
reate a new group. All the o�springs of the pro
ess will
then belong to this same group. Instead of killing pro
esses one by one, we then kill the whole group
using kill(-groupnumber).

There is a non POSIX but very e�
ient version of this sys
all under Linux7. The prototype of this
fun
tion is:

int setpgid(pid_t pid, pid_t pgid);

The des
ription of this fun
tion, taken from the Linux man page gives:

setpgid() sets the PGID of the pro
ess spe
ified by pid to pgid. If
pid is zero, then the pro
ess ID of the
alling pro
ess is used. If
pgid is zero, then the PGID of the pro
ess spe
ified by pid is made the
same as its pro
ess ID. If setpgid() is used to move a pro
ess from
one pro
ess group to another (as is done by some shells when
reating
pipelines), both pro
ess groups must be part of the same session (see
setsid(2) and
redentials(7)). In this
ase, the pgid spe
ifies an
existing pro
ess group to be joined and the session ID of that group
must mat
h the session ID of the joining pro
ess.

By inje
ting the following setpgid_stub inside a pro
ess, we
an for
e it to
reate a new group:

;
; setpgid(0,0); shell
ode
;

_start:
nop
nop
nop
nop
mov eax,0x39 ; setpgid
xor ebx,ebx
xor e
x,e
x
int 0x80

db 0x

, 0x

When
alled with 0 as a "pgid" group parameter, the pro
ess of the
alling pro
ess is used as a group
id, whi
h is pretty handy as it avoids us to keep tra
k of pids to groups asso
iations.

Using this te
hnique in addition to the previous zombie reaping one, we manage to keep the number
of running pro
esses arbitrary low even when debugging large appli
ations su
h as web browsers. The
Opera web browser (whi
h is
losed sour
e) was for instan
e debugged this way to analyze CVE-2011-
1824[16℄.

7 Confere "man 2 setpgid" for di�eren
es.

11

5 Exploiting invalid memory writes

In this
hapter, we will des
ribe how pm
ma
an be used to help exploit di�erent sub
lasses of invalid
memory writes. We will start with the study of fully
ontrolled invalid memory writes, where an
atta
ker
ontrols both the destination where to write to, and the
ontent being written fully. We will
then envisage other
lasses of bugs, where the atta
ker has less degrees of liberty : the
ase of over�ows
in di�erent writable se
tions, then the one where the atta
ker doesn't
ontrol the data being written,
and the spe
ial sub
ase of aligned memory writes.

5.1 Finding all the fun
tion pointers dereferen
ed after an invalid write

Pm
ma
an be run in two fashions in order to perform an analysis. The �rst one is to atta
h to a running
pro
ess by providing its pid at the
ommand line. It is parti
ularly suited when auditing pro
esses like
network daemons. The se
ond one is by providing pm
ma the path of an ELF binary and a
ommand
line arguments to provide it. In both
ases, in its default mode, pm
ma will then wait for a segmentation
fault to start its analysis.

5.2 Over�ows

Over�ows
an be seen as a sub
lass of arbitrary writes where the write operation is performed sequen-
tially over a given number of bytes (the size of the over�ow). As opposed to the previous sub
lass of
bugs, the atta
ker doesn't get to
hose where the overwrite is performed. They may though, be able to

ontrol the size of the over�ow and the
ontent being overwritten.

Assuming the atta
ker has
ontrol on both the length of the over�ow and the data overwritten, limiting
the s
ope of the previous audit to the one se
tion being overwritten will �nd all the relevant fun
tion
pointers potentially overwritten.

More exploitation strategies are mentioned later in this paper in
ase su
h a pointer
ould not be found.

5.3 Partial overwrites and pointers trun
ations

Another
ommon
ase happens when an atta
ker
ontrols fully the lo
ation of the write, but has no

ontrol over the values being written. The ta
ti
 then used in order to a
hieve
ontrol �ow hija
king is
to attempt to overwrite a fun
tion pointer only partially. This te
hnique is referred in the literature as
pointer trun
ation.

Depending on the (un
ontrolled, hopefully repeatable) value of the data being written, an atta
ker
an
attempt to perform either a lower bytes overwrite or a upper bytes overwrite. The goal is that on
e
modi�ed, the new fun
tion pointer still points to a memory se
tion mapped as exe
utable.

In
ase the trun
ated fun
tion pointer points to the same se
tion as the original one (typi
ally several
bytes before or after), this de fa
to implies that the se
tion is both writable and exe
utable8. Obtaining
arbitrary
ode exe
ution is then a matter of having an appropriate shell
ode, possibly pre
eded by a
nop sled, mapped at the destination address of the modi�ed pointer.

In
ase the trun
ated pointer points to a di�erent se
tion, and parti
ularly when it is modi�ed to point
to a se
tion whi
h is exe
utable but not writable (su
h as the .text of a library or of the main binary
itself),
ontrol will be transfered to a lo
ation whi
h has very little
han
es to hold user
ontrolled
op
odes. In other words, the behavior of the binary from this point is totally not predi
table. That
being said, as a last resort strategy, it may be a good option to an atta
ker in the hope of triggering
almost immediately an other invalid memory a

ess (whi
h is very likely), and that this se
ond indire
t

8 Su
h mappings still do exist on a
tual distributions, but the more hardened ones, having a better kernel in terms
of se
urity,
an prevent su
h mappings entirely.

12

vulnerability will give him more
ontrol over the data being possibly written (this is not granted and
is largely unpredi
table). For this to happen in a deterministi
 fashion though, the return address has
to remain un
hanged between di�erent mappings due to ASLR. This is quite possible in theory, for
instan
e by returning to a �x .text lo
ation in a non PIE binary.

It is worth noting that being able to write only the value 0x00000000 is a very
ommon su
h s
enario. In
parti
ular, integer over�ows o

urring in iteration
ounters of
opy loops typi
ally allow an atta
ker to
write passed the intended limits of a write, possibly to arbitrary lo
ations. But the data being written
then often
omes from se
tion paddings be
ause a given
opy is taking bytes passed the last mapped
bu�er of a se
tion to re-write them at another lo
ation.

Pm
ma allows for automati
 testing of the above sub-
ases, taking into a

ount both lower bytes and
higher bytes trun
ations. After
olle
ting informations over the mapping of ea
h se
tion of the binary,
in
luding its permissions, and listing the existing fun
tion pointers, it is able to determine whi
h ones
are trun
able to point to mapped memory, even a
ross se
tions :

--[Validating fun
tion pointers (relaxed mode):

<*> Dereferen
ed fun
tion ptr at 0xbfb7ef4
 (full
ontrol flow hija
k)
0xbfb7ef4
 --> 0x080e5e58 // repeatability:0/100

<*> Dereferen
ed fun
tion ptr at 0xbfb80fe
 (full
ontrol flow hija
k)
0xbfb80fe
 --> 0x080e5fa2 // repeatability:0/100

<*> Dereferen
ed fun
tion ptr at 0xbfb8101
 (full
ontrol flow hija
k)
0xbfb8101
 --> 0x0804f94d // repeatability:0/100

...

<*> Dereferen
ed fun
tion ptr at 0xbfb7ef4
 (full
ontrol flow hija
k)
0xbfb7ef4
 --> 0x080e5e58 // repeatability:0/100

<*> Dereferen
ed fun
tion ptr at 0xbfb80fe
 (full
ontrol flow hija
k)
0xbfb80fe
 --> 0x080e5ea2 // repeatability:0/100

--> total : 186 validated fun
tion pointers
(and found 8 additional
ontrol flow errors)

--[Fun
tion pointers exploitable by trun
ation with 0x41424344:
At 0xb70
e070 : 0xb70
63
2 will be
ome 0xb70
4142 (lower trun
ated by 16 bits, dest perms:RW)
At 0xb70e40a4 : 0xb70
a8f2 will be
ome 0xb70
4142 (lower trun
ated by 16 bits, dest perms:RW)
At 0xb70e
080 : 0xb70e5e02 will be
ome 0xb70e4142 (lower trun
ated by 16 bits, dest perms:RW)
At 0xb731a030 : 0xb7315da2 will be
ome 0xb7314142 (lower trun
ated by 16 bits, dest perms:RW)
At 0xb73230a4 : 0xb732003a will be
ome 0xb7324142 (lower trun
ated by 16 bits, dest perms:RW)
At 0xb732803
 : 0xb7325a36 will be
ome 0xb7324142 (lower trun
ated by 16 bits, dest perms:RW)
At 0xb76a80d8 : 0xb7325bf0 will be
ome 0xb7324142 (lower trun
ated by 16 bits, dest perms:RW)

In the previous example taken from an analysis on the text editor nedit under Ubuntu 10.10, 186
fun
tion pointers a
tually dereferen
ed were found, after the starting point of the analysis. Assuming
that the value being written is not
ontrolled and is (0x41424344)9, 7 of them
an be trun
ated to point
to valid memory. In this run, the destination permission was always reported as "RW", that is both

9 This value is
on�gurable from the
ommand line, and pm
ma
an also use the value a
tually being written during
the invalid memory a

ess leading to the �rst segmentation fault - this is the default.

13

Readable and Writable. In
ase the
urrent kernel allowed exe
ution of se
tions mapped as writable
but not expli
itly �agged as writable (id est: the kernel doesn't support the NX feature and doesn't
emulate for this appli
ation), having a shell
ode stored at either 0xb70e4142 or 0xb7324142 will result
in arbitrary
ode exe
ution.
For the seek of
ompleteness, here is an other example, performed this time with a trun
ation by
0x00000000 on 4b aligned addresses, on /bin/sudo:

--[Fun
tion pointers possibly exploitable by 4 byte aligned trun
ation with 0x00000000:
At 0x08067135 : 0x4008039e will be
ome 0x40000000 (lower trun
ated by 24 bits, dest perms:RX)
At 0x08067b29 : 0x40080637 will be
ome 0x40000000 (lower trun
ated by 24 bits, dest perms:RX)
At 0x08067b69 : 0x40080639 will be
ome 0x40000000 (lower trun
ated by 24 bits, dest perms:RX)
At 0x08067d89 : 0x4007a933 will be
ome 0x40000000 (lower trun
ated by 24 bits, dest perms:RX)
At 0x08a8a03d : 0x4007a7a2 will be
ome 0x40000000 (lower trun
ated by 24 bits, dest perms:RX)
At 0x08a8a059 : 0x4007a7a5 will be
ome 0x40000000 (lower trun
ated by 24 bits, dest perms:RX)
At 0x08a8a241 : 0x4007a7a0 will be
ome 0x40000000 (lower trun
ated by 24 bits, dest perms:RX)
At 0x08a8a581 : 0x4007a7a0 will be
ome 0x40000000 (lower trun
ated by 24 bits, dest perms:RX)
At 0x08a8b351 : 0x4000013e will be
ome 0x40000000 (lower trun
ated by 24 bits, dest perms:RX)
At 0x08a8b90a : 0x40004042 will be
ome 0x40000000 (lower trun
ated by 16 bits, dest perms:RX)
At 0x08a8
361 : 0x4007a7
3 will be
ome 0x40000000 (lower trun
ated by 24 bits, dest perms:RX)
At 0x08a8
761 : 0x4007a7
7 will be
ome 0x40000000 (lower trun
ated by 24 bits, dest perms:RX)
At 0x08a8
861 : 0x4007a7
8 will be
ome 0x40000000 (lower trun
ated by 24 bits, dest perms:RX)
At 0x08a8
aa1 : 0x4007a7bd will be
ome 0x40000000 (lower trun
ated by 24 bits, dest perms:RX)
At 0x08a8d00a : 0x400007a8 will be
ome 0x40000000 (lower trun
ated by 16 bits, dest perms:RX)
At 0x08a8d1b9 : 0x4007a7d1 will be
ome 0x40000000 (lower trun
ated by 24 bits, dest perms:RX)
At 0x08a8d245 : 0x4000006f will be
ome 0x40000000 (lower trun
ated by 24 bits, dest perms:RX)
At 0x08a8d2a2 : 0x400a0001 will be
ome 0x400a0000 (lower trun
ated by 16 bits, dest perms:RX)
At 0x08a8d2
5 : 0x4007a7d2 will be
ome 0x40000000 (lower trun
ated by 24 bits, dest perms:RX)
At 0x08a8d2
d : 0x404e1
d5 will be
ome 0x40000000 (lower trun
ated by 24 bits, dest perms:RX)
At 0x08a944e1 : 0x4007a952 will be
ome 0x40000000 (lower trun
ated by 24 bits, dest perms:RX)
At 0x08a949e5 : 0x40403fbf will be
ome 0x40000000 (lower trun
ated by 24 bits, dest perms:RX)
At 0x08a94b03 : 0x40449040 will be
ome 0x40449000 (lower trun
ated by 8 bits, dest perms:RX)
At 0x08a94e02 : 0x4000404a will be
ome 0x40000000 (lower trun
ated by 16 bits, dest perms:RX)
At 0x08a95067 : 0x40415
40 will be
ome 0x40415
00 (lower trun
ated by 8 bits, dest perms:RX)
At 0x08a95077 : 0x40415040 will be
ome 0x40415000 (lower trun
ated by 8 bits, dest perms:RX)
At 0x08a95087 : 0x40414640 will be
ome 0x40414600 (lower trun
ated by 8 bits, dest perms:RX)
...

We
an verify that this time, trun
ations of di�erent sizes are possible, and that the destination address
would be readable and exe
utable. It
orresponds to the .text of shared libraries, and returning there,
while almost10 guaranteed to lead to exe
ution of exe
utable
ode. But the result of returning savagely
to an unexpe
ted lo
ation is entirely non predi
table and needs be tested, for instan
e using an other
iteration of pm
ma.

10 It is in fa
t possible in theory to return to the middle of an op
ode, hen
e
orresponding to an invalid instru
tion

14

5.4 Dis
overing unaligned memory reads

Last but not least, an extreme sub-
ase of overwrites o

urs when an atta
ker has not only no or little

ontrol over the data being written, but has additional
onstraints over where the write lo
ation is
being performed. The author found himself in su
h a situation where only the value 0x00000000
ould
be written, and only on 4 byte aligned lo
ations. This atypi
al
ase was due to a
opy loop where the
destination was user
ontrolled be
ause of an integer over�ow, but where the destination would always
be a multiple of 4 (many su
h memory initialization or
opy loops pro
ess 4byte aligned memory zones,
be
ause
ompilers try to keep the data aligned in order to maximize
pu e�
ien
y, and be
ause the
size of an atomi

opy is also a multiple of 4).

Most fun
tion pointers inside an appli
ation are aligned on 4 byte boundaries. In this
ase, in�uen
ing
the �ow of exe
ution by trun
ating a fun
tion pointer like previously is not possible, due to the ad-
ditional
onstraints on the destination. In
ase we found an unaligned fun
tion pointer, this
ould be
pra
ti
al. Therefore, whenever an unaligned fun
tion pointer is found, pm
ma �ags it as remarkable
(but this is honestly quite rare on Intel ar
hite
tures).

In
ase no su
h unaligned fun
tion pointers
ould be found, those highly
hallenging memory
orruption
bugs would probably be regarded as never exploitable by most exploit writters. In fa
t, we believe they
may still be used to in�uen
e the
ontrol �ow of exe
ution, but indire
tly.

Sin
e an atta
ker
an under those
onditions only alter data 4b aligned to be 0x00000000, whi
h has
little
han
es of being interesting, the idea is to manage to overwrite partially a given double word in
memory that will later be read using an unaligned read by the
pu. Su
h unaligned reads are fairly
rare, but
an be listed using a unique te
hnique we developped for pm
ma.

The following
ode performs those operations:

int monitor_unaligned(int pid){
stru
t user_regs_stru
t regz;

keepexe
:
// Set align flag
ptra
e(PTRACE_GETREGS, pid,NULL, ®z);
regz.eflags |=0x40000;
ptra
e(PTRACE_SETREGS, pid,NULL, ®z);

while(1){
siginfo_t si;
memset(&si, 0, sizeof(siginfo_t));

//
ontinue tra
ing
ptra
e(PTRACE_CONT, pid, NULL, NULL);
wait(NULL);

// display re
eived signals
ptra
e(PTRACE_GETSIGINFO, pid, NULL, &si);
last_signal=si.si_signo;

siginfo_t si;
memset(&si, 0, sizeof(siginfo_t));

// void error
memset(&si, 0, sizeof(siginfo_t));
ptra
e(PTRACE_SETSIGINFO, pid, NULL, &si);

15

// disassemble at
urrent eip

har raw[40℄;
memset(raw,0x00,40);

getdata(pid, regz.eip, raw, 40);

har line[400℄;
x86_insn_t insn;/* instru
tion */

memset(line,0x00,400);

x86_disasm((unsigned
har*)raw, 40, 40, 0x00, &insn);
x86_format_insn(&insn, line, sizeof line,intel_syntax);

if(strlen(line)>1){
printf("%08X: %s\n",(unsigned int)regz.eip,line);

}

// display registers
display_regs(line,regz);

// set eip to next instru
tion
ptra
e(PTRACE_GETREGS, pid,NULL, ®z);
regz.eip+=insn.size;
ptra
e(PTRACE_SETREGS, pid,NULL, ®z);

// void error
memset(&si, 0, sizeof(siginfo_t));
ptra
e(PTRACE_SETSIGINFO, pid, NULL, &si);

goto keepexe
;
}

return 0;
}

The idea is to set the unaligned �ag in the EFLAGS register so that any subsequent unaligned memory
a

ess triggers a signal 7 (Bus Error), as per the intel manuals[17℄. By then disassembing the latest
instru
tion exe
uted, parsing it to retrieve the registers used and performing a
all to ptra
e() using
the PTRACE_GETREGS request, pm
ma is able to retrieve the address of all unaligned reads and
writes.

The following example shows how determining all the unaligned memory read and write a

ess
ould
be performed against the OpenSSH daemon running on a Fedora 15
omputer.

[root�fedora-box pm
ma℄# netstat -atnp|grep ssh
t
p 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 7619/sshd
t
p 0 0 :::22 :::* LISTEN 7619/sshd
[root�fedora-box pm
ma℄#

16

In a se
ond terminal, the auditor initiates a ssh
onne
tion :

[endrazine�fedora-box ~℄$ ssh lo
alhost

On the �rst terminal are then listed all the unaligned memory a

esses, along with the relevant infor-
mation regarding the instru
tion exe
uted and the value of registers during ea
h a

ess:

signo: 7 errno: 0
ode: 1
00BD9FDF: mov [edx-0x4℄, e
x
e
x= 00000000
edx= 214e57b6

signo: 7 errno: 0
ode: 1
00BDA336: mov e
x, [eax+0x6℄
eax= bfb3
b08
e
x= 0000000a

signo: 7 errno: 0
ode: 1
00BDA339: mov [edx+0x6℄, e
x
e
x=
ae03591
edx= 214e20

signo: 7 errno: 0
ode: 1
00BDA33C: mov e
x, [eax+0x2℄
eax= bfb3
b08
e
x=
ae03591

signo: 7 errno: 0
ode: 1
00BDA33F: mov [edx+0x2℄, e
x
e
x= 60000000
edx= 214e20

signo: 7 errno: 0
ode: 1
00BDA336: mov e
x, [eax+0x6℄
eax= 002beb49
e
x= 0000000a

signo: 7 errno: 0
ode: 1
00BDA33C: mov e
x, [eax+0x2℄
eax= 002beb49
e
x= b09f2035

signo: 7 errno: 0
ode: 1
00BDA342: movzx e
x, [eax℄
eax= 002beb49
e
x= 4a33dae7

signo: 7 errno: 0
ode: 1
00BD5A55: mov [edx-0x3℄, ax
edx= 214e20e4
signo: 7 errno: 0
ode: 1
00BDA339: mov [edx+0x6℄, e
x
e
x= 00
34ff4
edx= 214e20
8

signo: 7 errno: 0
ode: 1
00BDA33F: mov [edx+0x2℄, e
x
e
x= 00002d58
edx= 214e20
8

signo: 7 errno: 0
ode: 1
00BDA336: mov e
x, [eax+0x6℄
eax= 002beb53

17

e
x= 0000000a
signo: 7 errno: 0
ode: 1
00BDA33C: mov e
x, [eax+0x2℄
eax= 002beb53
e
x= 382b
34a

signo: 7 errno: 0
ode: 1
00BDA342: movzx e
x, [eax℄
eax= 002beb53
e
x= 5b802b3e

signo: 7 errno: 0
ode: 1
00BD5A52: mov [edx-0x7℄, eax
eax= 00000000
edx= 214e20e4

signo: 7 errno: 0
ode: 1
00BD5A55: mov [edx-0x3℄, ax
edx= 214e20e4
signo: 7 errno: 0
ode: 1
00BD5A52: mov [edx-0x7℄, eax
eax= 00000000
edx= 214e20e4

signo: 7 errno: 0
ode: 1
00BD5A55: mov [edx-0x3℄, ax
edx= 214e20e4

Even if su
h unaligned memory a

esses are rare, writing 0x00000000 to partially modify a 32 bits
value that will then be read using an unaligned read
an trigger se
ondary bugs inside the appli
ations,
possibly giving more
ontrol over the registers used in this se
ond operation to an atta
ker.

6 ASLR and its limits

ASLR is a pretty e�e
tive way to prevent exploitation, based on statisti
s. If an atta
ker
an make only
a single try, for instan
e when exploiting a
lient side vulnerability, and if ASLR is fully enfor
ed, then
it may a
t as a very e�e
tive mitigation. The publi
ly available debugging tools usually la
k se
tion
based ASLR testing,and when they have this feature, su
h as paxtest, they la
k the
apability to test
the ASLR of a given binary in its entirety. In this
hapter, we indent to outline a few limits of ASLR
as well as des
ribe how ASLR testing has been implemented in pm
ma.

6.1 E�e
tive testing of ASLR

As the astute reader may have noti
ed from previous examples, when reporting a �nding, pm
ma
systemati
ally appends a metri
 of repeatability, su
h as:

<*> Dereferen
ed fun
tion ptr at 0xbfb7ef4
 (full
ontrol flow hija
k)
0xbfb7ef4
 --> 0x080e5e58 // repeatability:0/100

...
<*> Dereferen
ed fun
tion ptr at 0xb76f
4b
 (full
ontrol flow hija
k)

0xb76f
4b
 --> 0xb76
3e20 // repeatability:0/100

This metri
 a
tually re�e
ts the probability of a given mapping to reo

ur at the very same lo
ation.

In order to
ompute those probabilities, pm
ma starts by relaun
hing the target binary a great number
of times (100 by default). For ea
h exe
ution, it re
ords the base address of the mapping of ea
h se
tion.
The metri
 displayed along with �ndings is then the highest probability to �nd a given se
tion at a
parti
ular address:

18

--[Performing ASLR tests:
[se
tion:001℄ /bin/su
most probable address:0x08048000, proba=100/100

[se
tion:002℄ /bin/su
most probable address:0x0804f000, proba=100/100

[se
tion:003℄ /bin/su
most probable address:0x08050000, proba=100/100

[se
tion:004℄
most probable address:0x08051000, proba=100/100

[se
tion:005℄ [heap℄
most probable address:0x0805e000, proba<001/100

[se
tion:006℄ /lib/ld-2.12.1.so
most probable address:0xb7583000, proba<002/100

[se
tion:007℄ /lib/ld-2.12.1.so
most probable address:0xb7584000, proba<002/100

[se
tion:008℄ /lib/ld-2.12.1.so
most probable address:0xb758d000, proba<002/100

[se
tion:009℄ [vdso℄
most probable address:0xb758e000, proba<002/100

[se
tion:010℄
most probable address:0xb758f000, proba<002/100

[se
tion:011℄ /usr/lib/lo
ale/lo
ale-ar
hive
most probable address:0xb75b6000, proba<002/100

[se
tion:012℄ /lib/libnss_
ompat-2.12.1.so
most probable address:0xb75b8000, proba<002/100

[se
tion:013℄ /lib/libnss_
ompat-2.12.1.so
most probable address:0xb75b9000, proba<002/100

[se
tion:014℄ /lib/libnss_
ompat-2.12.1.so
most probable address:0xb75ba000, proba<002/100

[se
tion:015℄ /lib/libnsl-2.12.1.so
most probable address:0xb7711000, proba<002/100

[se
tion:016℄ /lib/libnsl-2.12.1.so
most probable address:0xb7713000, proba<002/100

[se
tion:017℄ /lib/libnsl-2.12.1.so
most probable address:0xb7714000, proba<002/100

[se
tion:018℄
most probable address:0xb7718000, proba<002/100

[se
tion:019℄ /lib/se
urity/pam_rootok.so
most probable address:0xb771a000, proba<002/100

[se
tion:020℄ /lib/se
urity/pam_rootok.so
most probable address:0xb771b000, proba<002/100

[se
tion:021℄ /lib/se
urity/pam_rootok.so
most probable address:0xb771
000, proba<002/100

[se
tion:022℄ /lib/libpam.so.0.82.2
most probable address:0xb7727000, proba<002/100

[se
tion:023℄ /lib/libpam.so.0.82.2
most probable address:0xb7728000, proba<002/100

[se
tion:024℄ /lib/libpam.so.0.82.2
most probable address:0xb774f000, proba<002/100

[se
tion:025℄ /lib/libpam_mis
.so.0.82.0
most probable address:0xb7751000, proba<002/100

[se
tion:026℄ /lib/libpam_mis
.so.0.82.0
most probable address:0xb7752000, proba<002/100

[se
tion:027℄ /lib/libpam_mis
.so.0.82.0
most probable address:0xb776e000, proba<002/100

[se
tion:028℄

19

most probable address:0xb776f000, proba<002/100
[se
tion:029℄ /lib/lib
-2.12.1.so
most probable address:0xbf7e4000, proba<002/100

Computing those probabilities in an e�e
tive way is in itself quite a
hallenge : when should one stop
the pro
ess and assume it is fully mapped ? The te
hnique should also
ope with network daemon that
bind ports and may pose an additional problem. If we exe
ute say OpenSSH and wait for it to be fully
loaded, re
ord its mapping and shut it down, the port 22 will not be available immediately for rebinding.

To
ope with those problems, pm
ma attempts to re
ord mappings right after the proper loading of
the main binary and its asso
iated shared libraries. To a
hieve this aim, pm
ma runs the appli
ation
while debugging it using the PTRACE_SYSCALL request of ptra
e(). This allows pm
ma to be made
aware of any system
all performed by the debugged pro
ess. It then maintains a list of system
alls
used during the loading of an appli
ation:

int allowed_sys
alls[℄={3,5,6,11,33,45,91,125,192,197,243};
/*Those sys
alls are used during exe
ve() and loading :

read 3
open 5

lose 6
exe
ve 11
a

ess 33
brk 45
munmap 91
mprote
t 125
mmap2 192
fstat64 197
set_thread_area 243*/

Whenever a system
all performed by the debugged pro
ess doesn't belong to this white list, pm
ma
assumes that exe
ution has already been transfered to the entry point of the appli
ation, and that
the loading has therefore entirely been done. It then re
ords the base address of ea
h se
tion of the
mapping and kills the debugged pro
ess.

The net bene�t of this te
hnique is to allow for a very e�e
tive re
ording of mappings. The only map-
pings pm
ma would a
tually missed are those performed mu
h later during exe
ution su
h as pluggings
or shared libraries mapped by the appli
ation itself.

Finally, that the same aim
an be rea
hed in a simpler way by putting a breakpoint on the entry point
of the binary11.

11 Thanks to Ivanlef0u for this idea.

20

6.2 Non Position Independant Exe
utables

As mentioned before in this arti
le, binaries not expli
itly
ompiled as position independent exe
utables
do not have their se
tions randomised (only their share libraries if any, their heap and sta
k are).

If Linux distributions biased towards se
urity instead of performan
e su
h as Gentoo Hardened with
grse
urity kernels enfor
e PIE
ompilation on every single binary of the system, this is hardly the
ase
for the vast majority of the Linux distributions.

Mainstream distributions su
h as Fedora or Ubuntu only impose PIE
ompilation on a
arefully
hosen
set of binaries. Typi
ally only network deamons.

It means that even setuid binaries su
h as /bin/su or network
lients su
h as web browsers are not

ompiled as position independent exe
utables, and have therefore some se
tions not randomized. This
may not seem too bad at �rst sight, but it really means that when looking for a �x pivoting address
inside the appli
ation, an atta
ker is guaranteed to �nd some. This may be used not only to write 100%
reliable ret2plt bootstrap shell
ode in
ase of sta
k over�ows, but also sometimes return to the .text of
the binary as explained earlier in
ase of pointer trun
ations. We will see that this weakness
an also be
used to infere the mapping of the whole appli
ation when attempting to leak the layout of the binary
towards the end of this
hapter.

6.3 Prelinking

Prelinking is a time saving feature, employed notably by default on Fedora. It allows for faster loading
of appli
ations by pre
omputing the lo
ation of the shared libraries inside a pro
ess, and hard
oding
those lo
ations on disk.

The Fedora prelinking is renewed every two weeks thanks to a
ron job. It means that during 14 days,
the mapping of the shared libraries of a given pro
ess are entirely deterministi
. Under pm
ma, this
means that the probability asso
iated with the mappings of a given se
tion fo a shared library will be
of 100%.

Fedora's do
umentation expli
itly mentioned this behavior[18℄ and
on
ludes that the risk is a

eptable
sin
e the mapping of shared library is
hosen randomly every two weeks. In parti
ular it will di�er from
ma
hine to ma
hine. We will see later in this
hapter the limits of those assumptions : if an atta
ker

ould somehow retrieve the mapping of a given pro
ess at a given point in time, he would then know
the mapping of subsequent exe
utions of this same binary for some time.

6.4 Biased ASLR

Finally, it is worth mentioning that some distributions have very biased ASLR, due to improper kernels.
This allows for probabilisti
 exploitation of binaries.
Here is an example of an analysis performed by pm
ma on Ubuntu 10.10 with a kernel 2.6.32-26-generi
:

--[Performing ASLR tests:
[se
tion:001℄ /bin/ping
most probable address:0x08048000, proba=100/100

[se
tion:002℄ /bin/ping
most probable address:0x08050000, proba=100/100

[se
tion:003℄ /bin/ping
most probable address:0x08051000, proba=100/100

[se
tion:004℄
most probable address:0x08052000, proba=100/100

[se
tion:005℄ [heap℄
most probable address:0xb76a7000, proba<003/100

21

[se
tion:006℄ /lib/tls/i686/
mov/libnss_files-2.10.1.so
most probable address:0xb76a9000, proba<003/100

[se
tion:007℄ /lib/tls/i686/
mov/libnss_files-2.10.1.so
most probable address:0xb77e7000, proba<003/100

[se
tion:008℄ /lib/tls/i686/
mov/libnss_files-2.10.1.so
most probable address:0xb77e8000, proba<003/100

[se
tion:009℄
most probable address:0xb77ea000, proba<003/100

[se
tion:010℄ /lib/tls/i686/
mov/lib
-2.10.1.so
most probable address:0xb77eb000, proba<013/100

[se
tion:011℄ /lib/tls/i686/
mov/lib
-2.10.1.so
most probable address:0xb77ee000, proba<014/100

[se
tion:012℄ /lib/tls/i686/
mov/lib
-2.10.1.so
most probable address:0xb77fe000, proba<013/100

[se
tion:013℄ /lib/tls/i686/
mov/lib
-2.10.1.so
most probable address:0xb77ff000, proba<013/100

[se
tion:014℄
most probable address:0xb7800000, proba<003/100

[se
tion:015℄ /lib/tls/i686/
mov/libresolv-2.10.1.so
most probable address:0xb7810000, proba<003/100

[se
tion:016℄ /lib/tls/i686/
mov/libresolv-2.10.1.so
most probable address:0xb7812000, proba<003/100

[se
tion:017℄ /lib/tls/i686/
mov/libresolv-2.10.1.so
most probable address:0xb7813000, proba<003/100

[se
tion:018℄
most probable address:0xb782e000, proba<003/100

[se
tion:019℄
most probable address:0xb782f000, proba<003/100

[se
tion:020℄ [vdso℄
most probable address:0xbfa7d000, proba<002/100

In this analysis, pm
ma was able to report that some shared libraries su
h as the lib
 a
tually have a
given base address for their mapping mu
h more probable (up to 13% of the time) than expe
ted.12.
If upgrading to a more re
ent kernel shipped by Ubuntu �xes this parti
ular problem, it fundamentally
means that
ustom kernels
ompiled by system administrators not su�
iently knowledgeable about
se
urity
an lead to weak ASLR.

6.5 Memory mapping leakage

Previous resear
hes[19℄[20℄, and in parti
ular the 2010 WTFuzz exploit against IE8 under Windows
7[21℄ whi
h won the pwn2own
ontest have shown that using JavaS
ript and a heap over�ow to over-
write the NULL terminator of a Javas
ript string, it was possible for an atta
ker to be given more
information than he should have a

essed (when reading from the string in question). If the leaked
bytes (whi
h may be in random quantity, up to the next NULL byte)
ontained a pointer to data in
other se
tions, then the atta
ker
ould infer the lo
ation of a mapping of a given se
tion inside the
running pro
ess (from JavaS
ript itself) and trigger a very pre
ise se
ond write to obtain arbitrary
ode
exe
ution.

To further generalise this te
hnique, let's take a step ba
k and look at the problem from a kernel's
stand point. Essentially, all the information sent to an atta
ker use only a few system
alls. Namely
sys_write() and sys_so
ketsys
all(). The later o�ers a few di�erent requests and now handles what
used to be all the other so
ket related system
alls, su
h as sys_
onne
t(), or sys_send(). Let's have a
look at the
ode of this system
all in kernel 2.6.39 sour
e
ode13:

12 The analysis also shows that the
ode, data and read only data segments of ping are not randomized at all, but
this was a
tually expe
ted given that this binary isn't
ompiled as PIE.

13 Sample
ode taken from net/so
ket.

22

2234 SYSCALL_DEFINE2(so
ket
all, int,
all, unsigned long __user *, args)
2235 {
2236 unsigned long a[6℄;
2237 unsigned long a0, a1;
2238 int err;
2239 unsigned int len;
2240
...
2247
2248 /*
opy_from_user should be SMP safe. */
2249 if (
opy_from_user(a, args, len))
2250 return -EFAULT;
2251
2252 audit_so
ket
all(nargs[
all℄ / sizeof(unsigned long), a);
2253
2254 a0 = a[0℄;
2255 a1 = a[1℄;
2256
2257 swit
h (
all) {
2258
ase SYS_SOCKET:
2259 err = sys_so
ket(a0, a1, a[2℄);
2260 break;
2261
ase SYS_BIND:
2262 err = sys_bind(a0, (stru
t so
kaddr __user *)a1, a[2℄);
2263 break;
2264
ase SYS_CONNECT:
2265 err = sys_
onne
t(a0, (stru
t so
kaddr __user *)a1, a[2℄);
2266 break;
2267
ase SYS_LISTEN:
2268 err = sys_listen(a0, a1);
2269 break;
2270
ase SYS_ACCEPT:
2271 err = sys_a

ept4(a0, (stru
t so
kaddr __user *)a1,
2272 (int __user *)a[2℄, 0);
...
2287
ase SYS_SEND:
2288 err = sys_send(a0, (void __user *)a1, a[2℄, a[3℄);
2289 break;
2290
ase SYS_SENDTO:
2291 err = sys_sendto(a0, (void __user *)a1, a[2℄, a[3℄,
2292 (stru
t so
kaddr __user *)a[4℄, a[5℄);
...
2327 default:
2328 err = -EINVAL;
2329 break;
2330 }
2331 return err;
2332 }

23

In a nutshell, to
all sys_so
ket
all, eax has to worth 102, then ebx spe
i�es whi
h parti
ular
all is to
be performed, a

ording to the following requests, de�ned in in
lude/linux/net.h:

26 #define SYS_SOCKET 1 /* sys_so
ket(2) */
27 #define SYS_BIND 2 /* sys_bind(2) */
28 #define SYS_CONNECT 3 /* sys_
onne
t(2) */
29 #define SYS_LISTEN 4 /* sys_listen(2) */
30 #define SYS_ACCEPT 5 /* sys_a

ept(2) */
31 #define SYS_GETSOCKNAME 6 /* sys_getso
kname(2) */
32 #define SYS_GETPEERNAME 7 /* sys_getpeername(2) */
33 #define SYS_SOCKETPAIR 8 /* sys_so
ketpair(2) */
34 #define SYS_SEND 9 /* sys_send(2) */
35 #define SYS_RECV 10 /* sys_re
v(2) */
36 #define SYS_SENDTO 11 /* sys_sendto(2) */
37 #define SYS_RECVFROM 12 /* sys_re
vfrom(2) */
38 #define SYS_SHUTDOWN 13 /* sys_shutdown(2) */
39 #define SYS_SETSOCKOPT 14 /* sys_setso
kopt(2) */
40 #define SYS_GETSOCKOPT 15 /* sys_getso
kopt(2) */
41 #define SYS_SENDMSG 16 /* sys_sendmsg(2) */
42 #define SYS_RECVMSG 17 /* sys_re
vmsg(2) */
43 #define SYS_ACCEPT4 18 /* sys_a

ept4(2) */
44 #define SYS_RECVMMSG 19 /* sys_re
vmmsg(2) */

So, to monitor all the data leaving the pro
ess and possibly rea
hing an atta
ker, being it over so
kets,
�les, ttys or any other mean, all we need to pay attention to is sys_write() (sys
all 4 under Intel
x86 ar
hite
tures), and sys_so
ket
all() (sys
all 102 under Intel x86 ar
hite
tures) for a few
arefully

hosen sub-
alls: sys_send(), sys_sendto(), sys_sendmsg().

The main idea is to pro
eed as following: �rst of, make the original pro
ess fork() on
e. Unlike
with previous te
hniques, we then let the original pro
ess run, and monitor it using the ptra
e()
PTRACE_SYSCALL request, whi
h allows us to break every time the pro
ess will perform a sys-
tem
all. We re
ord all the system
alls exe
uted, as well as their return data and values. We now have
a referen
e run to
ompare subsequent experiments with.

Then, we make the saved o�spring and make it fork(). We overwrite the �rst writable lo
ation in mem-
ory with dummy data. We then tra
e its exe
ution thanks to the same ptra
e() PTRACE_SYSCALL
request. Everytime this pro
essattempts to exe
ute a system
all, we
ompare it's input registers with
the one of the original pro
ess. If the sys
all to be exe
uted is either sys_write(), or sys_so
ket
all()
with a relevant sub-
all, we verify if the data to be pro
essed di�ers from the one of the original pro
ess.

Three
ases may arise : the amount of data sent may di�er. If it is now larger, we have found a lo
ation
in memory, whi
h, when overwritten, for
es the appli
ation to send more data than expe
ted ba
k to
the atta
ker. This would be the
ase when overwritting for instan
e a variable stored in a read/write
se
tion, and used as the length argument in the following statement:

write(3,&buff,length);

The se
ond
ase happens when the data is entirely di�erent, be
ause for instan
e we would have
overwritten a pointer to the bu� variable in the previous
ase.
The third
ase is when both the data and the length di�er entirely, for instan
e when overwritting
a pointer to bu� and then
alling the pointer to data and then
alling the following system
all via
sys_so
ket
all():

sendto(so
kfd,&buff,sizeof(buff),0);

24

In all of those
ases, we
an a
tually with a pretty high a

ura
y verify if an interresting memory leak
o

ured, whi
h will allow an atta
ker to dedu
e the mappings of the binary. For this
ondition to o

ur,
the leaked data (either new trailing bytes, or entirely di�erent data sent ba
k to the atta
ker) needs to

ontain a pointer to any se
tion in the binary. Be
ause of the way ASLR is performed under Linux (all
the se
tions but heap and sta
k being translated by a
onstant o�set), knowing a single pointer to the
main binary or to a shared library will result in knowledge of the almost whole mapping. To dis
over
the lo
ation of the heap or sta
k, we would need in addition to �nd a pointer to the heap (possible)
and the sta
k (less realisti
) in the data sent to the atta
ker. This is really only a matter of parsing
the new data sent by the pro
ess, and mat
h potential pointers against the memory addresses of ea
h
se
tion in its address spa
e.

We mentioned earlier that one of the biggest limitation of pm
ma is the fa
t that system
alls performed
by o�springs
ould provide a di�erent result than in the original pro
ess provided the same inputs
(be
ause so
kets will now be
losed, �le des
riptors in unde�ned states...). Sin
e we have now des
ribed
a method to re
ord the system
alls performed by the original pro
ess, it is possible to fake them in the
o�springs (by using the ptra
e() PTRACE_SYSCALL until a system
all is to be
alled, and modify
the ouput registers and optionally their asso
iated data before adjusting eip : we don't even need to
a
tually perform a real system
all). The main in
onvenient of this te
hnique is the fa
t that some
system
alls pass data in non standard ways (eg: sys_so
ket
all()). We
ould extend pm
ma to know
how ea
h sys
all expe
ts and modi�es data, but there are about 300 of them in a modern Linux kernel,
and they are ar
hite
ture spe
i�
. Also, using PTRACE_SYSCALL has a non negligeable overhead in
terms of performan
e.

25

7 Extending the
apabilities of pm
ma

We have so far fo
used on exploitation of invalid memory writes through the use of fun
tion pointer.
Pm
ma is
apable of mu
h more, and the
apabilities o�ered in terms of exploitation modeling by the
mk_fork() te
hnique haven't been fully explored yet. In this
hapter, we will des
ribe a few distin
tive
features of pm
ma.

7.1 Call tables and returns to registers+o�sets

Pure fun
tion pointers are not the only way to dire
tly modify the �ow of exe
ution of an appli
ation
given an arbitary write bug. For exemple, redire
tion of the
ontrol �ow via
all tables and dire
t
modi�
ations of the
ontrol �ow based on the value of a register, su
h as jmp [eax+0xdeadbeef℄ or

all [ebx+0x
0f33babe℄
ould be in�uen
ed in
ase an atta
ker
ould perform a
ontrolled write when
exploiting an invalid write vulnerability.

Pm
ma is also able to dete
t the o

urren
e of su
h s
enarios when attempting to write to di�erent
lo
ations in the writable se
tions of an appli
ation. When reporting
ontrol �ow modi�
ations, it
will di�erentiate the
ase where the value it has written to memory is the exa
t address later being
dereferen
ed (labeled as "dire
t
ontrol �ow hija
k"). and the
ase where the it di�ers ("indire
t
ontrol
�ow bug"):

...
<*> Dereferen
ed fun
tion ptr at 0xb73
e08
 (full
ontrol flow hija
k)

0xb73
e08
 --> 0xb734e54e // repeatability:2/100

<*> Dereferen
ed fun
tion ptr at 0xb73de0a4 (full
ontrol flow hija
k)
0xb73de0a4 --> 0xb73d19aa // repeatability:2/100

<-> Triggered an indire
t
ontrol flow bug when writing at 0xb73df000
(ret value=0xf1f3
38
 is unmapped)
0xb73df000 --> 0xb73bf000 // repeatability:2/100

<-> Triggered an indire
t
ontrol flow bug when writing at 0xb73df2b0
(ret value=0xf1f8ef7
 is unmapped)
0xb73df2b0 --> 0xb7348000 // repeatability:2/100

...
--> total : 186 validated fun
tion pointers

(and found 8 additional
ontrol flow errors)

In the previous example, the addresses where exe
ution was attempted by the appli
ation (0xf1f3
38

and 0xf1f8ef7
) be
ause of an indire
t
ontrol �ow bug are very
lose to the remarkable test value used
(0xf1f2f3f4), whi
h is a string indi
ator that the appli
ation in fa
t added an o�set to this base value
inside a register before attempting to jump (or
all) the
orresponding address.

7.2 Sear
hing for pointers to stru
tures (
ontaining fun
tion pointers)

Sin
e all se
tions do not always share the same amount of entropy, in parti
ular when biased ASLR
has been dete
ted, it is tempting to atta
k the worst prote
ted se
tions �rst. In
ase fun
tion pointers
were found only in the best randomized se
tions, pm
ma is able to perform yet an other analysis in
order to maximize the e�e
tiveness of exploitation.

Instead of atta
king fun
tion pointers dire
tly, it may be worth sear
hing for pointers to data stru
tures
in other se
tions (the more heavily randomized ones)
ontaining fun
tion pointers.

26

The atta
k s
enario would then be the following : instead of overwriting a fun
tion pointer dire
tly,
overwrite the pointer (whose address is less randomized) to the stru
ture to point to a user
ontroled,
writable lo
ation. Then fake the stru
ture in this lo
ation, and eventually dereferen
e the fun
tion
pointer.

The
onditions for this atta
k to work are quite realisti
 in many
ases. For instan
e, data stru
tures

ontaining fun
tion pointers
reated by the appli
ation itself are typi
ally stored on the heap, whi
h
is always heavily randomized, and not a good target for a blind overwrite in terms of probability. But
if those fun
tion pointers are in fa
t stored in a linked list, that the �rst pointer of the liked list is
stored on the proper data se
tion of the appli
ation, and that the lo
ation of this �rst pointer
an be
guessed (for example be
ause the binary isn't PIE), then overwriting the �rst pointer to point into a
user
ontrolled bu�er in the data se
tion itself would do the tri
k.

In order to dete
t pointers to stru
tures
ontaining fun
tion pointers, pm
ma �rst parses the writable
se
tions of the binary and sear
h for possible pointers to other writable se
tions. Those will be the

andidate pointers.

Then, it
reates a new mapping inside o�springs
reated by mk_fork(). Those mapping should never
be read or written to under normal
onditions sin
e they have been arti�
ially
reated. Then pm
ma
modi�es one pointer
andidate per o�spring to point to the beginning of the new mapping.

In
ase this modi�
ation triggers an invalid memory a

ess in exe
ution, pm
ma dedu
es it has in fa
t
overwriten a pointer to a stru
ture
ontaining a pointer a
tually dereferen
ed.

The
reated mappings also
ontain a parti
ular pattern of bytes, whi
h helps in identifying at whi
h
o�set inside the mapping a fun
tion pointer is being dereferen
ed.

The algorithm to
reate a new mapping inside an o�spring relies on the inje
tion of a small stub
shell
ode to allo
ate memory via mmap(). The main idea of inje
ting a shell
ode in a debugged pro
ess
should be pretty familiar to the reader by now. The
reation of the mapping then only requires to read
the return address of mmap(), whi
h is indeed stored into eax.
The shell
ode used to a
hieve a proper memory allo
ation is given below:

;
; old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_SHARED|MAP_ANONYMOUS, 0, 0) shell
ode:
;

_start:
nop
nop
nop
nop

xor eax, eax
xor ebx, ebx
xor e
x, e
x
xor edx, edx
xor esi, esi
xor edi, edi

mov bx, 0x1000 ; 1 page
mov
l, 0x3 ; PROT_READ|PROT_WRITE
mov dl, 0x21 ; MAP_SHARED|MAP_ANON

push eax
push eax

27

push edx
push e
x
push ebx
push eax

mov ebx, esp
mov al, 0x5a ; sys_mmap
int 0x80

; eax
ontains address of new mapping

db 0x

, 0x

, 0x

, 0x

A typi
al analysis by pm
ma would then look like:

--[Sear
hing pointers to datastru
tures with fun
tion pointers

** Pointers to +W se
tions: 15928

<*> Dereferen
ed a fun
tion pointer inside a stru
ture when writing at 0x094568e4
(ret value=0xffffffff) // repeatability:1/100

<*> Dereferen
ed a fun
tion pointer inside a stru
ture when writing at 0x094616f

(ret value=0xffffffff) // repeatability:1/100

<*> Dereferen
ed a fun
tion pointer inside a stru
ture when writing at 0x094a
960
(ret value=0xffffffff) // repeatability:1/100

<*> Dereferen
ed a fun
tion pointer inside a stru
ture when writing at 0x094a
a10
(ret value=0xffffffff) // repeatability:1/100

<*> Dereferen
ed a fun
tion pointer inside a stru
ture when writing at 0x094a
ab8
(ret value=0xffffffff) // repeatability:1/100

<*> Dereferen
ed a fun
tion pointer inside a stru
ture when writing at 0xbfb81098
(ret value=0xffffffff) // repeatability:0/100

--> total : 6 fun
tion pointers identified inside stru
tures

In this example, the return value is 0x����, whi
h
orresponds to the padding of our newly
reated
mapping. It is therefore not possible to immediately dedu
e from the mapping pattern at whi
h o�set
inside this new mapping, the fun
tion pointer was lo
ated.

7.3 Testing exhaustively arbitrary writes

Sin
e pm
ma has the
apabilities to make the debugged pro
ess fork() at will, it
an exhaustively
attempt to overwrite all the writable addresses mapped inside a given pro
ess, in the hope to trigger
invalid memory a

ess in exe
ution mode. This pro
ess is not only slow and resour
e
onsuming, but
pm
ma
annot attempt to overwrite all those lo
ations with all of the more than 4 billion possible
values a 32b register allows. In
onsequen
e, this option is kept as a last resort in
ase all of the other
strategies failed. It is nonetheless pra
ti
al to overwrite all the possible lo
ations inside a given pro
ess
with a prede�ned remarkable value.

28

This feature may seem ane
dotal at �rst sight. But it is
urrently the only way for pm
ma to �nd the
pointers asso
iated with unresolved pro
edure relo
ations. The alternative would be to run all audits
with an LD_BINDNOW environment variable set in order to for
e resolution by the dynami
 linker
at load time. Unfortunately, this isn't pra
ti
al for analysis of network daemon, at least not without
restarting them. In addition, the use of LD_BINDNOW would indu
e modi�
ations inside the writable
mappings of the binary and would no longer re�e
t its a
tual state in real exploitation
onditions.

7.4 Testing invalid reads

Invalid reads by themselves do not allow dire
t modi�
ation of the
ontrol �ow. They
an nonetheless
be interesting, depending on how this parti
ular memory read is handled inside the appli
ation. If the
value read by the faulting instru
tion is user
ontrolled (meaning : the appli
ation
an be for
ed to
read from a given address in memory whi
h is user
ontrolled), it may trigger indire
t invalid memory
a

esses either in exe
ution or write modes. A trivial example would be an appli
ation using the value
just read as a
ounter in e
x to perform a memory
opy. By setting this register to a very large value,
an atta
ker would indire
tly
ause an invalid memory a

ess in this loop.

Testing for su
h indire
t problems
aused by an invalid read is fairly straight forward : by setting the
register in whi
h the value is read to multiple values in di�erent o�springs of the debugged pro
ess, it is
possible to dete
t if they would eventually result in an invalid memory a

ess more interesting (either
in write or exe
ution mode) later one, simply by ptra
ing the o�spring and disassembling the faulting
address in
ase a Segmentation Fault was dete
ted.

There again, testing the 22ˆ32 possible values o�ered by modest 32b pro
essors is most probably a
bit overkill. Testing on a thousand of evenly spa
ed values a
ross the sear
h spa
e is mu
h more time
saving and would spot most indire
t vulnerabilities anyways.

8 Sta
k desyn
hronization

For the most part, we have fo
used so far on where to write in memory in order to a
hieve a modi�
a-
tion of the
ontrol �ow. It is about time we also
onsider the question of what to write. In other word,
to
onsider what an hija
ked fun
tion pointer should be modi�ed to point to.

In
ase writable se
tions are found to be exe
utable, and at least one is both reasonably
ontrolled and
not too randomized, the answer is quite simple :
opying a nop sled and shell
ode in at this position
would grant an atta
ker arbitrary
ode exe
ution. This is how exploitation has been a
hieve for about
15 years.

But this s
enario is be
oming less and less likely, in parti
ular be
ause writable se
tions are not exe-

utable anymore thanks either to PaX or
pu NX-like bits. In parti
ular, the heap, whi
h is the only
se
tion that
an be made almost arbitrary big (whi
h would help in making the exploit probabilisti
ally
better thanks to a
lassi
 heap spray) is not
ommonly exe
utable anymore under GNU/Linux.

In order to over
ome those problems, we suggest to return, not to a writable se
tion, but to a
arefully

hosen fun
tion prologue. This indeed requires that su
h a prologue is either available in a non ran-
domized se
tion (.text of the binary if
ompiled without PIE14), or at an address we
an predi
t (for
instan
e thanks to a memory leak indu
ed by a previous memory write, like explained earlier in this
paper).

By returning to a
hosen fun
tion prologue, an atta
ker will get to
hose by how mu
h he will modi�ed
the sta
k pointer. If they
ontrol a large bu�er in the sta
k and
an
reate fake sta
k frames in it,
then he
an default ba
k to more standard sta
k-smashing-like exploitation (ret2lib
, ret2plt or ROP
depending on randomization and
ompilation options).

To the best of our knowledge, this methodology has never been publi
ly dis
ussed.

14 We saw earlier PIE doesn't apply to non network daemons on most distributions yet, for performan
e reasons

29

9 Performan
e
onsiderations

Pm
ma starts its analysis by dumping to disk all the mapped se
tion of the analysed binary for easier
study. This preliminary phase is parti
ularly
ostly.

The other phase whi
h is really
ostly in terms of performan
e is parsing all se
tions mapped as writable,
list their potential pointers to other se
tions, and verify if they point to valid assembly instru
tions
by disassembling the destination bytes. The
ost of this phase is O(n), where n is the size of writable
memory inside the pro
ess.

Finally, for ea
h potential fun
tion pointer dis
overed, pm
ma will
reate a new pro
ess, overwrite the
test pointer with a known value and run the pro
ess. This phase is in O(p), where p is the number of
potential fun
tion pointers dis
overed.

Experimentally when looking for fun
tion pointers, an analysis performed by pm
ma ranges from a
few se
onds when analysing /bin/ping to about one hour when analysing the Opera web browser when

rashing after performing a
ertain amount of heap sparying (resulting in a total of 1.3Gb or memory
mapped, among whi
h more than 1.2Gb is writable memory). The average analysis is of several minutes
for most network daemons.

It is worth noting that
urrently, the tests on o�springs are run sequentially one after the other. But in
fa
t, this is not ne
essary, wether sys
all faking is in use or not. In the near future, we hope to modify
pm
ma to run those tests in parallel instead of running them sequentially.

10 Con
lusion

We have brie�y presented in this arti
le new exploitation te
hniques, or sometimes extension of existing
ones, and detailed how they
ould be tested automati
ally against a target binary vulnerable to invalid
memory a

esses.

We have exposed how to
reate exploitation models thanks to a new debugging te
hnique post memory

orruption, in order to automati
ally study the exploity of sub
lasses of the invalid memory write bug

lass.

Our proof of
on
ept tool, pm
ma, doesn't write exploits itself. Instead, its goal is to analyze all the en-
vironment
onstraints of a given system and provide its user with the best possible atta
k methodology
for a given vulnerability, generalizing many atta
k ve
tors and taking into a

ount all the small details
(kernel behavior,
ompiler versions and �ags, stati
 and dynami
 liking options, set of shared libraries
used...) that need be taken into a

ount to write an e�e
tive exploit for a given target nowadays. Given
the number of ta
ti
s available in the literature that work only on very spe
i�
 o

asions (su
h as
spe
i�
 distributions), the exploitation strategies o�ered by this tool shall prove valuable to atta
kers
(exploit writers) and software developers or system administrators alike ("is this vulnerability a�e
ting
my system or software exploitable by the state of the art of exploitation theory on my parti
ular setup
?").

11 a
knowledgements

The author would like to thank in no parti
ular order #busti
ati, #so
ial, #grse
urity, #rux
on,
#bla
kse
, THC/TESO, pipa
s, spender, twiz, bliss, silvio, andrewg, mer
y, gamma, bsdeamon,
addis,
izik, xort, redsand, sbz, deadbyte, the grugq, phil, emmanuel, msui
he, the Ha
kito Ergo Sum (HES)
team, the HES Programming
omitee, the HES speakers and friends, the /tmp/lab ha
kerspa
e, Mark
Dowd, Meder Kydyraliev, the CBACert for their te
hni
al
ontributions, ideas and peer reviews. The
Tou
an System team, his family and his girlfriend, for their en
ouragements, and their patien
e.

30

Referen
es

1. PaXTeam: (http://pax.grse
urity.net/do
s/aslr.txt)
2. PaXTeam: (http://pax.grse
urity.net/do
s/noexe
.txt)
3. PaXTeam: (http://pax.grse
urity.net/)
4. AMD: (http://support.amd.
om/us/pro
essor_te
hdo
s/24593.pdf)
5. Drepper, U.: (Se
urity enhan
ements in red hat enterprise linux)
6. Jelinek, J.: (http://g

.gnu.org/ml/g

-pat
hes/2004-09/msg02055.html)
7. BBSDaemon: Dynami
 program analysis and software exploitation, from the
rash to the exploit

ode. (Phra
k magazine)
8. Bania, P.: Spiderpig. Te
hni
al report (2008)
9. Cristian Cadar, Daniel Dunbar, D.E.: Klee: Unassisted and automati
 generation of high-
overage

tests for
omplex systems programs. Te
hni
al report (2008)
10. Thanassis Avgerinos, Sang Kil Cha, B.L.T.H., Brumley, D.: (Aeg: Automati
 exploit generation)
11. Henderson, R.: (http://g

.gnu.org/ml/g

-pat
hes/2005-05/msg01193.html)
12. lo
al
ore, D..: (/bin/su exploit : http://www.exploit-db.
om/exploits/209/)
13. Hertz: (at_exit() lo
al exploit)
14. Anonymous: Runtime pro
ess infe
tion. (Phra
k magazine)
15. Stealth: (http://stealth.openwall.net/lo
al/inje
tso-0.52.tgz)
16. Brossard, J.: Opera : Sele
t size arbitrary null write, tssa-2011-02,
ve-2011-1824 (2011)
17. Intel: Intel 64 and ia-32 ar
hite
tures software developer's manual. In: Volume 3A: System Pro-

gramming Guide. (2008)
18. van de Ven, A.: (Limiting bu�er over�ows with exe
shield)
19. Mark Daniel, Jake Honoro�, C.M.: (Engineering heap over�ow exploits with javas
ript)
20. Chen, Y.: (Using information leakage to avoid aslr+dep)
21. Vreugdenhil, P.: (Internet explorer 8 on windows 7 exploit form the pown2own
ontest 2010)

31

	Post Memory Corruption Memory Analysis
	Jonathan Brossard - jonathan.brossard@toucan-system.com
	Introduction
	Related work
	mk_fork() : writing "weird debuggers" for "weird programs"
	Motivation
	Methodology
	mk_fork() implementation
	Limitations

	Here be dragons : zombie reaping
	Dealing with SIGCHLD
	Processes grouping

	Exploiting invalid memory writes
	Finding all the function pointers dereferenced after an invalid write
	Overflows
	Partial overwrites and pointers truncations
	Discovering unaligned memory reads

	ASLR and its limits
	Effective testing of ASLR
	Non Position Independant Executables
	Prelinking
	Biased ASLR
	Memory mapping leakage

	Extending the capabilities of pmcma
	Call tables and returns to registers+offsets
	Searching for pointers to structures (containing function pointers)
	Testing exhaustively arbitrary writes
	Testing invalid reads

	Stack desynchronization
	Performance considerations
	Conclusion
	acknowledgements

