

Who am I ?

Scope of this presentation

 We present a new class of vulnerabilities,
 Affecting multiple pre-boot authentication

software under x86 and x64 architectures,
 Exploitable without physical access.

Limitations : we will focus on password based
authentication solely.

Contents

 (Technically) defining pre-boot authentication
 Password leakage under Windows
 Password leakage under *nix
 Rebooting in spite of a pre-boot authentication
 Examples of vulnerable software
 Mitigating those vulnerabilities

I - (Technically) defining pre-boot
authentication

 Boot sequence overview
 Taxonomy of pre-boot authentication software
 BIOS API for user inputs
 BIOS internals for keyboard management
 BIOS keyboard buffer Remanence...
 Verifying this bug exists “in real life”
 Password chaining

I-1) Boot sequence overview

I-2) Taxonomy of pre-boot
authentication softwares

 Bios Passwords
 Bootloader Passwords (Vista's Bitlocker, Grub

or Lilo, and most others pre-boot authentication
software : Truecrypt, Diskcryptor...)

 Early kernel stage passwords – typically before
decompression (eg: suspend2 hibernation
patch for GNU/Linux)

I-3) BIOS API for user inputs (1/2)

 Interruption 0x16 invoked via functions :
 ah=0x00 , “Get keystroke” : returns the keystroke

scancode in AH and its ASCII code in AL.
 ah=0x01 , “Check for keystroke” : idem, but the

Zero Flag is set if no keystroke is available in the
Bios keyboard buffer.

I-3) BIOS API for user inputs (2/2)

 eg : lilo password reading
routine :

I-4) BIOS internals for keyboard management

I-5) BIOS keyboard buffer
Remanance... (1/3)

 Filling the BIOS keyboard buffer (with the
keyboard) :

I-5) BIOS keyboard buffer
Remanence... (2/3)

 Reading the BIOS keyboard buffer (using int
0x16, ah=0x00 or 0x01) :

I-5) BIOS keyboard buffer
Remanence... (3/3)

 Who is supposed to clear the keyboard buffer ?

I-6) Verifying this bug exists “in real
life” (1/2) :

 We want to check the authentication routines in
the BIOS themselves (aka: BIOS Passwords)

 We will write a small USB-bootable OS in 16b
asm to read the content of the BIOS keyboard
buffer in Real Mode (sploitOS.S)

I-6) Verifying this bug exists “in real
life” (2/2) :

 Results :
 Most BIOS Passwords are vulnerable (more on

this later).
 ... if the BIOS Programmers themselves do not

clear the BIOS keyboard buffer... just imagine
third party programmers...

I-7) Password chaining :

 Let's now imagine we have two authentication
devices in a raw (asking for pass1 and pass2
respectively)....

 What happens in the BIOS keyboard buffer ?
 The passwords are concatenated ! So we can

retrieve both ;)
 [p][a][s][s][1][Enter][p][a][s][s][2][Enter]

SCOPE :
In the following two sections, we

assume the OS has fully booted and
the attacker is given a local shell,

but no physical access.

II - Password leakage under
Windows

 The Challenge
 Possible attack scenarii
 Reading the password from a guest account

II-1) The Challenge :



How to read the password at 0x40:0x1e ?
(once in protected mode...)

II-2) Possible attack scenarii :

 Get back to real-mode
 Switch to SMM
 Get it from kernel land

 All those scenari require very high privileges :(

II-3) Reading the password from a
guest account :

 The MS-DOS emulation mode :
 built on top of x86 Vmode to emulate 16b

execution
 Windows “feature” : maps physical memory

ranges 0-FFF and C0000-FFFFF into
userland !!!
(http://readlist.com/lists/securityfocus.com/bugtr
aq/1/9422.html)

III – Password leakage under *nix

 Challenge
 Getting the password from user land
 Getting the password from kernel land
 Conclusion

III-1) Challenge :

 Unfortunatly, no goodie like the RAM leakage
under Windows... We will try to retrieve the
password from a privileged (typically root)
account...

III-2) Getting the password from
user land (1/4):

 We know the address of the BIOS keyboard
buffer in Physical Memory.

 under most flavors of Unix, /dev/mem contains
a mapping of the Physical memory...

III-2) Getting the password from
user land (2/4):

 /dev/kmem contains a mapping of kernel
memory :

 /dev/kcore contains the same information in the
form of a core file :

III-2) Getting the password from
user land (3/4):

 We have coded a simple tool that will work
under virtually any x86 based *nix (tested under
OpenSolaris, FreeBSD, OpenBSD and
GNU/Linux) to read the possible passwords
from /dev/mem, but also /dev/kmem, /dev/kcore
etc if available...

III-2) Getting the password from
user land (4/4):

III-3) Getting the password from
kernel land (1/3):

 The BIOS Data Area is copied to a “safe” zone
during kernel early booting (the infamous “Zero
Page”, cf: Setup.S in the Linux kernel).

 If you assume a 3Gb/1Gb kernel split, the
address of the BIOS Keyboard buffer is :
0xC000041e

III-3) Getting the password from
kernel land (2/3):

 Verifying that the password is located at
0xC000041e (using remote kernel debugging...)

III-3) Getting the password from
kernel land (3/3):

 We have coded a simple LKM to automate the
work and display the possible passwords in a
new entry under the /proc pseudo-filesystem :

III-4) Conclusion :

 This bug has been there since the very
beginning of BIOS passwords (25+ years).

 Retrieving the password is as simple as reading
a file at a given location... Open your eyes ;)

IV – Rebooting in spite of a pre-boot
authentication password

 In some cases, it is handy for an attacker to
reboot the computer (to boot a weaker kernel
for instance). But if a pre-boot authentication
device is on the way, this is a non trivial taks...

 In the next section, we assume the attacker can
write to the MBR (ie: typically root access) and
is willing to reboot the computer.

IV – Rebooting in spite of a pre-boot
authentication password

 Agenda :
 The password is not used to decrypt anything
 The password is used to decipher part of the

disk or the whole disk.

IV-1) Rebooting in spite of a preboot
authentication password without

disk encryption (1/2):

 Since the password checking routine doesn't
perform any useful task (from an attacker point
of view), he can simply patch it.

 See phrack article “Hacking deeper in the
system” by Scythale for a deeper analysis of
Grub hacking).

IV-1) Rebooting in spite of a preboot
authentication password without

disk encryption (2/2):

IV-2) Rebooting with a password
used for disk decryption :

 The BIOS keyboard buffer “feature” reloaded
 Attack scenario
 Methodology to install the rogue bootloader
 “Invisible Man” roadmap

IV-2-a) The BIOS keyboard buffer
“feature” reloaded :

 The Problem :
 What happens if the BIOS keyboard buffer is

not initialized ?
 If the attacker can somehow enter the

password before the genuine bootloader
prompts for a password, the authentication
routine will decrypt the disk nicely ;)

IV-2-b) Attack scenario :

 I/O Port
0x60

 I/O Port
0x64

IV-2-c) Methodology to install the
rogue bootloader :

IV-2-d) “Invisible Man” roadmap :

V – Examples of vulnerable
softwares...

V-1) Vulnerable Softwares (1/3):

 BIOS passwords :
 Award BIOS Modular 4.50pg
 Insyde BIOS V190
 Intel Corp

PE94510M.86A.0050.2007.0710.1559
 Hewlett-Packard 68DTT Ver. F.0D (11/22/2005)
 IBM Lenovo 7CETB5WW v2.05 (10/13/2006)

V-1) Vulnerable Softwares (2/3):

 Full disk encryption with pre-boot
authentication capabilities :

 Bitlocker with TPM chip under Microsoft Vista
Ultimate Edition SP0.

 Truecrypt 5.0 for Windows (open source)
 DiskCryptor 0.2.6 for Windows (open source)
 Secu Star DriveCrypt Plus Pack v3.9

V-1) Vulnerable Softwares (3/3):

 Boot loader passwords :
 grub (GNU GRUB 0.97) (latest CVS)
 lilo version 22.6.1 (current under Mandriva

2006)

V-2) Non vulnerable Softwares
(1/2):

 BIOS Passwords :
 Hewlett-Packard F.20 (04/15/2005)
 Hewlett-Packard F.05 (08/14/2006)
 Pheonix BIOS Version F.0B, 7/3/2006
 Phoenix Technologies LTD R0220Q0 (25-05-

2007)

V-2) Non vulnerable Softwares
(2/2):

 Full disk encryption with pre-boot
authentication capabilities :

 SafeGuard 4.40 for Windows
 PGP Desktop Professional 9.8 for Windows

(Trial Version)

VI) Mitigating those vulnerabilities :
 Write correct software : sanitize the BIOS

keyboard buffer (and more generally any
password buffer) before and after use...

 We keep a list of patches on our website : http://
www.ivizindia.com/BIOS-patches/ (contributions
are most welcome).

 For GNU/Linux users, the latest version of
Grsecurity (http://www.openwall.net) sanitizes
the BDA at boot time (thanks to Brad for this).

Greetings :
 My uber elite reviewers (you know who you are)

: many thanks guys :)
 The iViZ Technical Team for your support and

the time spent on testing software.
 http://www.everybody-dies.com/ web site for

letting me use the screenshots of their game
“Defcon : everybody dies !” in my slides ;)

 irc.pulltheplug.org and irc.blacksecurity.org...
 All of you for coming to this presentation.
 The Defcon Staff for the awesome event and

parties...

