

Who am I ?

Scope of this presentation

 We present a new class of vulnerabilities,
 Affecting multiple pre-boot authentication

software under x86 and x64 architectures,
 Exploitable without physical access.

Limitations : we will focus on password based
authentication solely.

Contents

 (Technically) defining pre-boot authentication
 Password leakage under Windows
 Password leakage under *nix
 Rebooting in spite of a pre-boot authentication
 Examples of vulnerable software
 Mitigating those vulnerabilities

I - (Technically) defining pre-boot
authentication

 Boot sequence overview
 Taxonomy of pre-boot authentication software
 BIOS API for user inputs
 BIOS internals for keyboard management
 BIOS keyboard buffer Remanence...
 Verifying this bug exists “in real life”
 Password chaining

I-1) Boot sequence overview

I-2) Taxonomy of pre-boot
authentication softwares

 Bios Passwords
 Bootloader Passwords (Vista's Bitlocker, Grub

or Lilo, and most others pre-boot authentication
software : Truecrypt, Diskcryptor...)

 Early kernel stage passwords – typically before
decompression (eg: suspend2 hibernation
patch for GNU/Linux)

I-3) BIOS API for user inputs (1/2)

 Interruption 0x16 invoked via functions :
 ah=0x00 , “Get keystroke” : returns the keystroke

scancode in AH and its ASCII code in AL.
 ah=0x01 , “Check for keystroke” : idem, but the

Zero Flag is set if no keystroke is available in the
Bios keyboard buffer.

I-3) BIOS API for user inputs (2/2)

 eg : lilo password reading
routine :

I-4) BIOS internals for keyboard management

I-5) BIOS keyboard buffer
Remanance... (1/3)

 Filling the BIOS keyboard buffer (with the
keyboard) :

I-5) BIOS keyboard buffer
Remanence... (2/3)

 Reading the BIOS keyboard buffer (using int
0x16, ah=0x00 or 0x01) :

I-5) BIOS keyboard buffer
Remanence... (3/3)

 Who is supposed to clear the keyboard buffer ?

I-6) Verifying this bug exists “in real
life” (1/2) :

 We want to check the authentication routines in
the BIOS themselves (aka: BIOS Passwords)

 We will write a small USB-bootable OS in 16b
asm to read the content of the BIOS keyboard
buffer in Real Mode (sploitOS.S)

I-6) Verifying this bug exists “in real
life” (2/2) :

 Results :
 Most BIOS Passwords are vulnerable (more on

this later).
 ... if the BIOS Programmers themselves do not

clear the BIOS keyboard buffer... just imagine
third party programmers...

I-7) Password chaining :

 Let's now imagine we have two authentication
devices in a raw (asking for pass1 and pass2
respectively)....

 What happens in the BIOS keyboard buffer ?
 The passwords are concatenated ! So we can

retrieve both ;)
 [p][a][s][s][1][Enter][p][a][s][s][2][Enter]

SCOPE :
In the following two sections, we

assume the OS has fully booted and
the attacker is given a local shell,

but no physical access.

II - Password leakage under
Windows

 The Challenge
 Possible attack scenarii
 Reading the password from a guest account

II-1) The Challenge :

How to read the password at 0x40:0x1e ?
(once in protected mode...)

II-2) Possible attack scenarii :

 Get back to real-mode
 Switch to SMM
 Get it from kernel land

 All those scenari require very high privileges :(

II-3) Reading the password from a
guest account :

 The MS-DOS emulation mode :
 built on top of x86 Vmode to emulate 16b

execution
 Windows “feature” : maps physical memory

ranges 0-FFF and C0000-FFFFF into
userland !!!
(http://readlist.com/lists/securityfocus.com/bugtr
aq/1/9422.html)

III – Password leakage under *nix

 Challenge
 Getting the password from user land
 Getting the password from kernel land
 Conclusion

III-1) Challenge :

 Unfortunatly, no goodie like the RAM leakage
under Windows... We will try to retrieve the
password from a privileged (typically root)
account...

III-2) Getting the password from
user land (1/4):

 We know the address of the BIOS keyboard
buffer in Physical Memory.

 under most flavors of Unix, /dev/mem contains
a mapping of the Physical memory...

III-2) Getting the password from
user land (2/4):

 /dev/kmem contains a mapping of kernel
memory :

 /dev/kcore contains the same information in the
form of a core file :

III-2) Getting the password from
user land (3/4):

 We have coded a simple tool that will work
under virtually any x86 based *nix (tested under
OpenSolaris, FreeBSD, OpenBSD and
GNU/Linux) to read the possible passwords
from /dev/mem, but also /dev/kmem, /dev/kcore
etc if available...

III-2) Getting the password from
user land (4/4):

III-3) Getting the password from
kernel land (1/3):

 The BIOS Data Area is copied to a “safe” zone
during kernel early booting (the infamous “Zero
Page”, cf: Setup.S in the Linux kernel).

 If you assume a 3Gb/1Gb kernel split, the
address of the BIOS Keyboard buffer is :
0xC000041e

III-3) Getting the password from
kernel land (2/3):

 Verifying that the password is located at
0xC000041e (using remote kernel debugging...)

III-3) Getting the password from
kernel land (3/3):

 We have coded a simple LKM to automate the
work and display the possible passwords in a
new entry under the /proc pseudo-filesystem :

III-4) Conclusion :

 This bug has been there since the very
beginning of BIOS passwords (25+ years).

 Retrieving the password is as simple as reading
a file at a given location... Open your eyes ;)

IV – Rebooting in spite of a pre-boot
authentication password

 In some cases, it is handy for an attacker to
reboot the computer (to boot a weaker kernel
for instance). But if a pre-boot authentication
device is on the way, this is a non trivial taks...

 In the next section, we assume the attacker can
write to the MBR (ie: typically root access) and
is willing to reboot the computer.

IV – Rebooting in spite of a pre-boot
authentication password

 Agenda :
 The password is not used to decrypt anything
 The password is used to decipher part of the

disk or the whole disk.

IV-1) Rebooting in spite of a preboot
authentication password without

disk encryption (1/2):

 Since the password checking routine doesn't
perform any useful task (from an attacker point
of view), he can simply patch it.

 See phrack article “Hacking deeper in the
system” by Scythale for a deeper analysis of
Grub hacking).

IV-1) Rebooting in spite of a preboot
authentication password without

disk encryption (2/2):

IV-2) Rebooting with a password
used for disk decryption :

 The BIOS keyboard buffer “feature” reloaded
 Attack scenario
 Methodology to install the rogue bootloader
 “Invisible Man” roadmap

IV-2-a) The BIOS keyboard buffer
“feature” reloaded :

 The Problem :
 What happens if the BIOS keyboard buffer is

not initialized ?
 If the attacker can somehow enter the

password before the genuine bootloader
prompts for a password, the authentication
routine will decrypt the disk nicely ;)

IV-2-b) Attack scenario :

 I/O Port
0x60

 I/O Port
0x64

IV-2-c) Methodology to install the
rogue bootloader :

IV-2-d) “Invisible Man” roadmap :

V – Examples of vulnerable
softwares...

V-1) Vulnerable Softwares (1/3):

 BIOS passwords :
 Award BIOS Modular 4.50pg
 Insyde BIOS V190
 Intel Corp

PE94510M.86A.0050.2007.0710.1559
 Hewlett-Packard 68DTT Ver. F.0D (11/22/2005)
 IBM Lenovo 7CETB5WW v2.05 (10/13/2006)

V-1) Vulnerable Softwares (2/3):

 Full disk encryption with pre-boot
authentication capabilities :

 Bitlocker with TPM chip under Microsoft Vista
Ultimate Edition SP0.

 Truecrypt 5.0 for Windows (open source)
 DiskCryptor 0.2.6 for Windows (open source)
 Secu Star DriveCrypt Plus Pack v3.9

V-1) Vulnerable Softwares (3/3):

 Boot loader passwords :
 grub (GNU GRUB 0.97) (latest CVS)
 lilo version 22.6.1 (current under Mandriva

2006)

V-2) Non vulnerable Softwares
(1/2):

 BIOS Passwords :
 Hewlett-Packard F.20 (04/15/2005)
 Hewlett-Packard F.05 (08/14/2006)
 Pheonix BIOS Version F.0B, 7/3/2006
 Phoenix Technologies LTD R0220Q0 (25-05-

2007)

V-2) Non vulnerable Softwares
(2/2):

 Full disk encryption with pre-boot
authentication capabilities :

 SafeGuard 4.40 for Windows
 PGP Desktop Professional 9.8 for Windows

(Trial Version)

VI) Mitigating those vulnerabilities :
 Write correct software : sanitize the BIOS

keyboard buffer (and more generally any
password buffer) before and after use...

 We keep a list of patches on our website : http://
www.ivizindia.com/BIOS-patches/ (contributions
are most welcome).

 For GNU/Linux users, the latest version of
Grsecurity (http://www.openwall.net) sanitizes
the BDA at boot time (thanks to Brad for this).

Greetings :
 My uber elite reviewers (you know who you are)

: many thanks guys :)
 The iViZ Technical Team for your support and

the time spent on testing software.
 http://www.everybody-dies.com/ web site for

letting me use the screenshots of their game
“Defcon : everybody dies !” in my slides ;)

 irc.pulltheplug.org and irc.blacksecurity.org...
 All of you for coming to this presentation.
 The Defcon Staff for the awesome event and

parties...

