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Our application
Estimating the true position of a mobile object (aircraft,
drone, ...) from measured (therefore noisy) raw positions

This may be difficult with a highly maneuvering target
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Our application
Estimating the true position of a mobile object (aircraft,
drone, ...) from measured (therefore noisy) raw positions
Two cases :

From past positions: prediction
Frequently solved with linear / extended / unscented Kalman
filters, or particle filters

From past and future positions: smoothing

What comes next is based on the second case: smoothing
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Our frameworkInstead of considering the trajectory in the state space, the
movement of the mobile object is considered as a sequence of
displacements: rotations and translations in R3

This set is called the Special Euclidean group SE(3)
SE(3) is a Lie group, which is both:

a differentiable manifold

a group in which both the product and inverse maps are
smooth
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Going off on a tangent (space)

At any point p of a manifold M, one may define a tangent
vector v as the derivative of a curve going through p:
v = c ′(0) with c : ] − ϵ, ϵ[→ M, c(0) = p
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Going off on a tangent (space)

At any point p of a manifold M, one may define a tangent
vector v as the derivative of a curve going through p:
v = c ′(0) with c : ] − ϵ, ϵ[→ M, c(0) = p

The set of all tangent vectors at p is a vector space called the
tangent space at p denoted TpM
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Manifolds and geodesics
A geodesic in a manifold is the equivalent of a straight line
A curve γ is a geodesic if it has a "constant" velocity vector

Problem: how can we compare a vector vp ∈ TpM with a
vector vq ∈ TqM?

A connection ∇ is a rule for taking the directional derivative of
a vector field along a tangent vector
A curve γ is called a geodesic if

∇γ′γ′ = D

dt
γ′(t) = 0

(we "parallel-transport" the γ′(t) vector along the curve γ)
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Exponential and logarithm on a manifold
An initial point p = γ(0) and an initial vector v = γ′(0) are
enough to define (at least locally) a unique geodesic
This defines a map from the tangent bundle of M
TM = ∪p TpM to the manifold M called Exp:

Exp: TM → M
(p, v) 7→ q

This is the equivalent of q = p + −→v in Rn
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Exponential and logarithm on a manifold

Likewise, one may define the inverse map called Log:

Logp : M → TpM
q 7→ v

This is the equivalent of −→v = −→pq = q − p in Rn
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How about Lie groups?

The group structure of a Lie group G makes it possible to
bring most operations to the identity e

The tangent space at e of G is called the Lie algebra of G,
denoted g

it "linearises" the group and captures most of its properties
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Lie group: SE(3), Lie algebra: se(3)
An element of SE(3) can be represented by a 4-by-4 matrix(

R T
0 1

)
, R ∈ SO(3), T ∈ R3 :


x1
y1
z1
1

 =
(

R T
0 1

)
x0
y0
z0
1

 =

R

x0
y0
z0

+ T

1


An element of se(3) can be represented by a 4-by-4 matrix:(

Ω U
0 0

)
, Ω skew-symmetric, U ∈ R3
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But where’s the regression in all of this?
In an Euclidean space In a Riemannian manifold

Let X ∈ R a non-random variable Let X ∈ R a non-random variable
and Y ∈ Rn a random variable and Y ∈ M a random variable

Regression model: Y = α + Xβ + ϵ Regression model: Y = Exp
(
Exp(p, Xv), ϵ

)
α is the intercept p is the initial point

β is the slope v is the initial velocity vector
(α̂, β̂) = arg min ||Y − α − Xβ||2 (p̂, v̂) = arg min d

(
Exp(p, Xv), Y

)2

A closed-form solution exists There is usually NO closed-form solution
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But where’s the regression in all of this?
In an Euclidean space In a Riemannian manifold

Regression model: Y = α + Xβ + ϵ Regression model: Y = Exp
(
Exp(p, Xv), ϵ

)
(α̂, β̂) = arg min ||Y − α − Xβ||2 (p̂, v̂) = arg min d

(
Exp(p, Xv), Y

)2
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"Optimal" curve

The "optimal" curve of order k is obtained by computing the
parameters that minimise the least squares criterion:

E(γ) = 1
N

N∑
j=1

d(γ(tj), yj)2 (1)

under the constraint ∇(k)
γ′ γ′(t) = D

dt

(k)
γ′(t) = 0 (2)

1 Cancelling the differential form dE,
2 We take advantage of the Lie group structure by first solving

in g, then "transporting" the solution in G.
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"Any" connection?

There is a unique metric-compatible, torsion-free connection
called the Levi-Civita connection ∇LC

For another connection ∇: the mapping

(t1, . . . , tn) ∈ [0, 1]n 7→ Exp
(

x,
n∑

i=1
tiei

)

with (e1, . . . , en) be a basis of TxM, defines a local
coordinate system in a neighborhood of x
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Goodness of fit

We can use (P.T. Fletcher, 2011) a "Riemannian" coefficient of
determination R2, defined as:

R2 = 1 − SSE

Data Fréchet variance = 1 −
∑

j d(γ(tj), yj)2

miny∈M
∑

j d(y, yj)2
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What’s next?

Local polynomials
Description of the noise: the Gaussian hypothesis holds only if
the noise is "not too large"
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