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ABSTRACT
How can we build and optimize a recommender system that must
rapidly fill slates (i.e. banners) of personalized recommendations?
The combination of deep learning stacks with fast maximum in-
ner product search (MIPS) algorithms have shown it is possible to
deploy flexible models in production that can rapidly deliver person-
alized recommendations to users. Albeit promising, this methodol-
ogy is unfortunately not sufficient to build a recommender system
which maximizes the reward, e.g. the probability of click. Usually
instead a proxy loss is optimized and A/B testing is used to test if the
system actually improved performance. This tutorial takes partici-
pants through the necessary steps to model the reward and directly
optimize the reward of recommendation engines built upon fast
search algorithms to produce high-performance reward-optimizing
recommender systems.

CCS CONCEPTS
• Computing methodologies → Maximum likelihood modeling;
Neural networks; • Information systems → Recommender sys-
tems.
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1 TARGET AUDIENCE AND PREREQUISITES
FOR THE TUTORIAL

The intended audience is recommender systems researchers and
practitioners who are familiar with supervised learning, offline
experimentation and A/B testing.

2 TUTORS
2.1 Tutors’ short bio and expertise
Flavian Vasile is part of the Criteo AI Lab where he works as the
ML Recommendations Solutions Architect, with his main focus be-
ing on the development of Deep Learning-based Recommendation
Systems and on introducing aspects of Causal Inference to Recom-
mendation. Before joining Criteo, he worked as a Senior Researcher
in the Twitter Advertising Science team; before that, in the Yahoo!
Research Lab where he mostly focused on Content Understanding
problems. His current research interests include Deep Sequential
Models for Recommendation and understanding Recommendation
as a decision-making system with reward uncertainty. Among his
recent research publications, the work on Causal Embeddings for
Recommendation [4] received the best paper award at RecSys 2018
and he is the co-organizer of the REVEAL Workshop series on Of-
fline Evaluation and Bandit Learning for Recommender Systems
in conjunction with the ACM RecSys. conference [12–14]. He also
presented several tutorials on RecSys topics [22, 26, 29] Video ACM
RecSys 2020, Video ACM UMAP 2020.

David Rohde is a research scientist at Criteo. His research inter-
ests are around Bayesian machine learning, offline evaluation and
causal inference. He is known for RecoGym [21], the BLOB model
[23] and promoting the idea that probability theory is sufficient for
causal inference [16]. He co-organises the Laplace’s Demonwebinar
series on Bayesian machine learning at scale. He was co-organiser
of the Bayesian Causal Inference from Real World Interactive Sys-
tems at KDD 2021 [7] he also was co-organiser of SimURec at
RecSys 2021 [9] and Laplace’s Causal Demon webinar series. He
also presented several tutorials on RecSys topics [22, 26, 29] Video
ACM RecSys 2020, Video ACM UMAP 2020.
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Amine Benhalloum is the lead of the DeepKNN Engineering team
at Criteo, working on building large scale representation learning
and retrieval systems for recommendation, applying Deep learning
to personalize billions of daily display ads, reaching billions of
users and connecting them with millions of products. His areas
of expertise are: large scale machine learning, natural language
processing, information retrieval and data intensive systems. Before
joining Criteo, Amine worked on a variety of topics ranging from
Natural Language processing to fraud detection. He holds amaster’s
degree in Applied Mathematics.

Martin Bompaire is the lead of the Reco ML team at Criteo. His
team handles the recommendation models design, scheduling and
serving to select in real time the products chosen for each banner
displayed by Criteo (4B a day). Before joining Criteo he defended a
PhD on machine learning applied to point processes with a strong
focus on Hawkes processes.

Otmane Sakhi is a PhD Student at ENSAE/Criteo. Prior to that,
he obtained M.Sc degrees from both CentraleSupelec and ENS Paris
Saclay in Applied Mathematics. He specialises in statistical ap-
proaches to recommendation including Bayesian value based ap-
proaches and counterfactual approaches.

Maxime Vono is a Senior Research Scientist at Criteo, working
within the Recommendation research team. Before joining Criteo,
he was a researcher at Huawei working with Eric Moulines and
held a research visiting position at the Department of Statistics of
the University of Oxford where he worked with Arnaud Doucet.
His research interests include Bayesian statistics, federated and
privacy-preserving learning, and recommender systems. He pub-
lished papers in top-tier machine learning conferences (ICML, AIS-
TATS) [19] and journals (JMLR) [28] and wrote a review paper on
high-dimensional Gaussian sampling published in the prestigious
SIAM Review journal [27]. He co-organises the Laplace’s Demon
webinar series on Bayesian machine learning at scale.

Imad Aouali is a recent graduate student from ENS Paris-Saclay
in Applied Mathematics. He also holds an MEng degree in Data
Science from Ecole Centrale de Lille, and an MRes degree in Math-
ematics from Lille University. He has gained experience in applied
machine learning and learning theory through his internships at
Amazon Science, Criteo AI Lab and Inria and his scholarship pro-
gram at DeepMind. His research interests include Learning Theory,
Bandits, Bayesian Statistics and Recommender Systems.

Achraf Ait Sidi Hammou is an undergraduate student from EN-
STA Paris in Applied Mathematics. In his previous internships, he
worked on image captioning with domain expertise at ENSTA Paris
and Graph Neural Networks at Polytechnique.

Benjamin Heymann is a Senior Researcher at Criteo with exper-
tise in marketplace design and e-commerce. He is a graduate from
the Ecole polytechnique (Paris) and Columbia University (New
York). He holds a PhD in applied mathematics. He is a recipient of
the Siebel scholarship.

2.2 List of in-person presenters
At time of writingwe expect the tutorial to be delivered in person by:
Imad Aouali, Amine Benhalloum, Martin Bompaire, Sergey Ivanov,
Benjamin Heymann, David Rohde, Otmane Sakhi, Flavian Vasile,
Maxime Vono.

The large team will allow us to give individual attention to
participants. We have also proposed to present this tutorial at ECML
2022.

2.3 List of contributors
The content is created by: Imad Aouali, Amine Benhalloum, Mar-
tin Bompaire, Achraf Ait Sidi Hammoua, Sergey Ivanov, Benjamin
Heymann, David Rohde, Otmane Sakhi, Flavian Vasile, Maxime Vono.

2.4 Corresponding tutor
David Rohde: d.rohde@criteo.com.

3 TUTORIAL OUTLINE
Real world recommender systems identify interesting items to users
from massive catalogues at very high speed. This tutorial covers
state of the art methods for building recommender systems specifi-
cally building on the following technologies:

• Deep learning for flexible definitions of the objective to be
optimized.

• Fast (approximate) maximum inner product search to allow
very rapid large scale recommendation.

• Reward optimizing recommendation methods that align the
optimization problem and the metrics of interest at A/B test
time. This is either done using state of the art modelling ap-
proaches or the Horvitz-Thompson estimator. We are acutely
aware that in real world settings multiple recommendations
(i.e. slates) are typically shown simultaneously.

The task of recommendation involves finding a small number
of relevant items for a user from a massive catalogue often at high
speed. This tutorial covers how we can combine three new tech-
nologies in order to improve recommendation quality.

3.1 Deep Learning Combined with MIPS - A
Winning Combination

In this sectionwe outline the capability of combining Deep Learning
with Maximum Inner Product Search in a production environment
[15].

The recommendation engine relies on learning both a query
function and 𝑃 embeddings, one per item in the catalogue, which
will later be indexed by the maximum inner product search. Ran-
domized Singular Value Decomposition [18] can be used to produce
embeddings of dimension 𝑑 that can be used for further training
just like NLP tasks often rely on pre-trained embeddings such as
Word2Vec [17] or BERT [8]. Ranking loss’s are shown to allow for
extremely efficient training [20] and may be considered reward
optimizing under strong assumptions, methods that are reward
optimizing under more relaxed assumptions are considered in the
later sections.

3.2 A Slate-Level Reward Model that Combines
Reward and Rank

This module presents how we can leverage reward-optimizing rec-
ommendation to build an efficient and scalable slate recommender
system that combines both reward information i.e. whether the
user interacted with the banner, and rank signal i.e. the position of

https://scholar.google.fr/citations?user=_XE1LvQAAAAJ&hl=fr
https://www.stats.ox.ac.uk/~doucet/
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the selected item in the banner [1, 2]. The benefits of the proposed
methodology, e.g. recommendation performance and speed, in large-
scale scenarios are illustrated by running A/B tests in a simulated
environment. We compare our method with common and recently-
proposed policy-learning approaches, such as inverse propensity
scoring [25] and the top−𝐾 heuristic proposed in [6]. We show that
these baselines suffer from important caveats such as high variance,
over-simplifying assumptions on the parametrised policy and poor
scaling when the catalogue size becomes large. In contrast, by both
combining reward and rank signals and by leveraging fast (approx-
imate) MIPS techniques, the proposed framework shows promising
recommendation results while meeting low-latency requirements.

3.3 Estimating Reward with the
Horvitz-Thompson Estimator

The syllabus will be drawn from [3, 5, 11, 24, 25].
The direct way to use the Horvitz Thompson estimator embodies

the assumptions of maximum inner product search but is extremely
high variance:

𝐸 [𝑐 |Ξ, 𝜷] ≈
𝑁∑︁
𝑛=0

𝑐𝑛𝜋Ξ,𝛽,𝐾 (𝑎1, . . . , 𝑎𝐾 |𝛀)
𝜋0 (𝑎1, . . . , 𝑎𝐾 |𝛀)

where 𝑁 is the number of data points, 𝑐𝑛 is the reward,
𝜋Ξ,𝛽,𝐾 (𝑎1, . . . , 𝑎𝐾 |𝛀) is the policy parameterized to bemaximum in-
ner product search friendly and 𝜋0 (𝑎1, . . . , 𝑎𝐾 |𝛀) is the propensity
score of the slate.

We investigate several proposals in the slate setting that re-
duce the variance at the expense of introducing bias to become
managable in the recommender setting. We further show that by re-
stricting the policy we are able to optimize maximum inner product
search based algorithms.

3.4 Scaling REINFORCE to large catalogs with
MIPS

Given a reward estimator 𝑅 (a Reward model, Horwitz-Thompson
estimator, Doubly Robust estimator..), Offline Policy based methods
aim at learning a parametrised policy 𝜋𝜃 that maximizes the average
reward on the logged data𝑅(𝜃 ) = 1

𝑁

∑𝑁
𝑖=1 E𝑎∼𝜋𝜃 (. |𝑥𝑖 ) [𝑅(𝑎, 𝑥𝑖 )]. We

can achieve this by leveraging the REINFORCE gradient ∇𝜃𝑅(𝜃 ) =
1
𝑁

∑𝑁
𝑖=1 E𝑎∼𝜋𝜃 (. |𝑥𝑖 ) [𝑅(𝑎, 𝑥𝑖 )∇𝜃 log𝜋𝜃 (𝑎 |𝑥𝑖 )] that enables us to op-

timize our objective function to obtain reward maximizing policies.
In the context of large scale recommender systems, this objective
can be computationally demanding as it scales linearly with the
size of the catalog. In this module, we want to shed light on a
newly proposed method scaling logarithmically on the catalog size
by leveraging Maximum Inner Product Search algorithms, allow-
ing faster training time without losing in the quality of the policy
learned. We will cover the intuition behind the approach and pro-
vide notebooks with toy and real world examples. We will also talk
about how to naturally extend the method to slate recommendation
with Plackett-Luce and the problems that can be faced when using
such algorithms [10].

4 STRATEGIES TO ENCOURAGE AUDIENCE
PARTICIPATION AND INTERACTIVITY

Our tutorial builds on Google Colaboratory to allow rapid explo-
ration of ideas. We have a large number of in person tutors who can
assist with people running the examples. Our team has extensive
experience delivering these types of tutorials and is very much
looking forward to doing them in person!

5 SOCIETAL IMPACTS
The goal of this work is to improve recommender systems and have
more positive A/B tests of new recommendation algorithms. Achiev-
ing this is far from trivial, to the extent this work makes this task
easier there may be positive and negative societal impacts. Firstly
not everything of value can be measured even at A/B test time, this
may result in reduced performance due to a miss-alignment in mea-
surable metrics and those actually representing societal value. A
further consideration is that the owner of the recommender system
may have different values to the users of the system and society
at large. This work prioritizes the concerns of the recommender
system operator, in many situations the recommender systems op-
erator has incentives to satisfy the users’ interests but this may not
always be the case and as a consequence there may be negative
societal impacts.
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