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Abstract

A contextual bandit is a popular framework for on-
line learning to act under uncertainty. In practice,
the number of actions is huge and their expected
rewards are correlated. In this work, we introduce
a general framework for capturing such correla-
tions through a mixed-effect model where actions
are related through multiple shared effect param-
eters. To explore efficiently using this structure,
we propose Mixed-Effect Thompson Sampling
(meTS) and bound its Bayes regret. The regret
bound has two terms, one for learning the action
parameters and the other for learning the shared
effect parameters. The terms reflect the structure
of our model and the quality of priors. Our the-
oretical findings are validated empirically using
both synthetic and real-world problems. We also
propose numerous extensions of practical interest.
While they do not come with guarantees, they per-
form well empirically and show the generality of
the proposed framework.

1 INTRODUCTION

A contextual bandit (Slivkins, 2019; Lattimore and Szepes-
vari, 2019; Li et al., 2010; Chu et al., 2011) is a popular
sequential decision-making framework where an agent in-
teracts with an environment over n rounds. In each round,
the agent observes a context, takes an action, and receives a
reward that depends on both the context and the taken action.
The goal of the agent is to maximize the expected cumu-
lative reward over n rounds. Since the expected rewards
of actions are unknown, the agent must balance between
taking the action that maximizes the estimated reward using
collected data (exploitation), and exploring other actions to
improve their estimates (exploration). This trade-off is of-
ten addressed using either upper confidence bounds (UCBs)

Proceedings of the 26th International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

(Auer et al., 2002) or Thompson sampling (TS) (Thompson,
1933). As an example, in online advertising, contexts can be
features of users, actions can be products, and the expected
reward can be the click-through rate (CTR).

Efficient exploration in contextual bandits (Langford and
Zhang, 2008; Dani et al., 2008; Li et al., 2010; Abbasi-
Yadkori et al., 2011; Agrawal and Goyal, 2013) is an im-
portant research direction, as their action space is usually
huge and naive exploration may lead to suboptimal perfor-
mance. In this work, we start from the basic observation
that the expected rewards of actions in real-world problems
are often correlated. To model this phenomenon, we study
a structured mixed-effect bandit environment where each
action parameter depends on one or multiple effect parame-
ters. The actions are related through the effect parameters.
Therefore, taking an action teaches the agent about its ef-
fect parameters, which consequently teaches it about other
actions that share the same effect parameters. We present
three motivating examples next.

Movie recommendation: Here we want to recommend a
movie to a user with the highest expected rating. User j
and movie i are represented by vectors xj (context) and θi
(action parameter), respectively. The expected rating that
user j gives to movie i is x⊤j θi. We assume that the vector
xj is observed. Then the most natural idea is to learn all θi
individually using classic bandit methods (Li et al., 2010;
Chu et al., 2011). This is statistically inefficient since the
number of movies is often high. Fortunately, the movies
could be organized into L categories and such information
can be leveraged to explore efficiently. We present three
approaches (A), (B) and (C) that do this next.

(A) For each category ℓ ∈ [L], a parameter ψℓ is learned
online using all interactions with the movies in category ℓ.
The parameter ψℓ represents all the movies in category ℓ
and is used instead of their individual θi. Therefore, this
approach has a high bias, as all movies in the same category
are assumed to have the same expected rating. This issue
can be addressed by a better model. (B) We model each
movie parameter θi as a random variable centered in its cat-
egory parameter ψℓ. Now movies in the same category no
longer have the same expected rating due to the additional
uncertainty. Both the category parameters ψℓ and movie
parameters θi are learned online. The former is learned
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using all interactions with the movies in category ℓ, while
the latter is learned using all interactions with movie i con-
ditioned on ψℓ. The category parameter ψℓ is learned using
more data, which helps to learn θi more efficiently. This
is a special case of our setting and can also be viewed as
extending hierarchical Bayesian bandits (Hong et al., 2022b)
to multiple hierarchies. (C) The shortcoming of (B) is that
each movie belongs to a single category, which is unreal-
istic. To address this issue, we allow movies to belong to
multiple categories and then proceed as in (B). To make the
connection with our terminology, the categories ℓ ∈ [L] are
the effects, their parameters ψℓ are the effect parameters,
and the movie parameters θi are the action parameters.

Ad placement: Here the agent selects a list (or slate) of
M items from a catalog of L items with the objective of
maximizing the CTR. We assume that the agent only re-
ceives binary bandit feedback that indicates whether the
user clicked on one of the items in the slate (Dimakopoulou
et al., 2019; Rejwan and Mansour, 2020). Again, user j
and slate i are represented by xj (context) and θi (action pa-
rameter), respectively. The corresponding CTR is f(x⊤j θi),
where f is the sigmoid function. The set of slates (of size
K ≈ LM ) is exponentially large, which makes learning
θi individually difficult. Fortunately, the slates are related
through a much smaller set of items (of size L). Therefore,
the slates with common items can teach the agent about
each other, which can be used to explore efficiently.

Efficient exploration is achieved by decomposing the param-
eter of slate i as θi =

∑
ℓ∈[L] bi,ℓψℓ + ϵi. Here ψℓ ∈ Rd is

the parameter of item ℓ and bi,ℓ ∈ R is a mixing weight that
captures position biases. That is, bi,ℓ = 0 if item ℓ is not
in slate i, and bi,ℓ is high if item ℓ is ranked high in slate
i. This captures the fact that the probability of a click on
an item is biased by its position in the slate, and such bias
can be estimated offline. Finally, ϵi is a random noise that
can incorporate uncertainty due to model misspecification,
for instance due to an estimation error of bi,ℓ. The benefit
of this decomposition is that the parameter of item ℓ, ψℓ,
is learned using all interactions with the slates with item
ℓ. The slate parameter θi is learned using all interactions
with slate i conditioned on ψℓ. This is more statistically
efficient than learning θi individually, which only uses the
interactions with slate i.

Drug design: Here the goal is to find the optimal drug de-
sign in clinical trials (Durand et al., 2018). Subject j and
drug i are represented by vectors xj and θi, respectively,
and the expected efficacy of drug i for subject j is x⊤j θi.
Again, the most natural idea is to learn all drug parameters
θi individually. This leads to a statistical inefficiency though
when the number of candidate drugs is high. Fortunately,
we can leverage the fact that drug candidates in the same
trial often share components to explore efficiently. Precisely,
a drug is a combination of multiple components, each with
a specific dosage. Each component ℓ is represented by a

parameter ψℓ, and the drug parameter θi is a known combi-
nation of the component parameters ψℓ weighted by their
dosage. That is, θi =

∑
ℓ∈[L] bi,ℓψℓ + ϵi, where bi,ℓ is the

dosage of component ℓ in drug i and ϵi is a random noise
to incorporate uncertainty due to model misspecification.
The efficacy of each component has an effect on the overall
efficacy of the drug and is boosted by the dosage.

In all examples, we assume an underlying structure among
the actions, that they are affected by multiple effects. In
some problems, it is known how the effect arises. For in-
stance, in the drug design, the actions are the drugs and the
effects are their components. The mixing weight that relates
an action (drug) to an effect (component) is the dosage of
that component in the drug. In other problems, it may not
be apparent how the effect arises and this has to be learned.
We discuss this in detail in Section 2.6.

We make the following contributions. 1) We formalize a
general mixed-effect bandit framework represented by a
two-level graphical model where each action is associated
with a d-dimensional parameter that depends on one or mul-
tiple effect parameters. 2) We design mixed-effect Thomp-
son sampling (meTS), which leverages this structure to be
both statistically and computationally efficient. Despite the
complex structure, we show that closed-form posteriors can
be derived for Gaussian instances and efficient approxima-
tions exist in more general cases. 3) We prove that the Bayes
regret of meTS is bounded by a sum of two terms: one is
associated with learning the action parameters and the other
quantifies the cost of learning the effect parameters. Both
terms reflect the structure of the environment and the qual-
ity of priors. 4) We show empirically that meTS and its
variants perform extremely well, and are computationally
efficient in both synthetic and real-world problems. 5) Sev-
eral extensions of practical interest are given in Appendix E.
While they are not analyzed, they enjoy very good empirical
performance.

Our setting is more general than previously studied hier-
archical models (Section 6) where action parameters are
centered at a single latent variable. Thus meTS has a wider
range of applications, for which we gave three examples.
Our algorithm is general and we provide posterior deriva-
tions that are valid for any distribution class. To showcase
the generality, we also experiment with meTS on bandit
problems with non-linear rewards. This also goes beyond
prior works (Section 6) that often considered closed-form
Gaussian posteriors only.

2 SETTING

For any positive integer n, we define [n] = {1, . . . , n}. The
i-th coordinate of vector v is vi. If the vector is already
indexed, such as vj , we write vj,i. Let a1, . . . , an ∈ Rd be
n vectors. We denote by a = (ai)i∈[n] ∈ Rnd a vector of
length nd obtained by concatenating a1, . . . , an. We use
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⊗ to denote the Kronecker product. The derivative of a
univariate function f is denoted by ḟ .

2.1 Mixed-Effect Bandit

We study a setting where an agent interacts with a contextual
bandit over n rounds. In round t ∈ [n], the agent observes
context Xt ∈ X , where X ⊆ Rd is a d-dimensional context
space. After that, it takes an action At from an action set
[K], and then observes a stochastic reward Yt ∈ R that de-
pends on bothXt andAt. We consider a structured problem
where the expected rewards of actions are correlated. Specif-
ically, each action i ∈ [K] is associated with an unknown
d-dimensional action parameter θ∗,i ∈ Rd. The correla-
tions between the action parameters arise because they are
derived from L shared unknown d-dimensional effect pa-
rameters, ψ∗,ℓ ∈ Rd for ℓ ∈ [L]. Specifically, we assume
that the action parameter θ∗,i is sampled from the action
prior distribution P0,i as θ∗,i | Ψ∗ ∼ P0,i(· | Ψ∗), where
Ψ∗ = (ψ∗,ℓ)ℓ∈[L] ∈ RLd is a concatenation of the effect
parameters. The distribution P0,i can capture sparsity, when
θ∗,i depends only on a subset of Ψ∗; and also incorporate
uncertainty due to model misspecification, when θ∗,i is not a
deterministic function of Ψ∗. Finally, the effect parameters
Ψ∗ are sampled from a joint effect prior Q0, which is known
by the agent and represents its initial uncertainty about Ψ∗.
In summary, all variables in our environment are generated
as

Ψ∗ ∼ Q0 , (1)
θ∗,i | Ψ∗ ∼ P0,i(· | Ψ∗) , ∀i ∈ [K] ,

Yt | Xt, θ∗,At
∼ P (· | Xt; θ∗,At

) , ∀t ∈ [n] ,

where P (· | x; θ∗,i) is the reward distribution of action i in
context x, which only depends on parameter θ∗,i and the
context x. The terminology of effect parameters arises from
the fact that ψ∗,ℓ affect the model parameters θ∗,i, which
in turn define Yt. The effects are mixed through the action
prior P0,i and hence the name mixed-effect.

Our setting can be viewed as a two-level graphical model,
where ψ∗,1, . . . , ψ∗,L are parent nodes and θ∗,1, . . . , θ∗,K
are child nodes (Figure 1). The structure is represented
by missing arrows from parent (effect parameters) to child
(action parameters) nodes. A missing arrow from parent
ψ∗,ℓ to child θ∗,i means that action i is independent of the
ℓ-th effect. Such models are common in offline learning, for
instance QMR-DT (Jaakkola and Jordan, 1999).

All examples in Section 1 can be captured by our model. In
movie recommendation, the categories ℓ ∈ [L] and movies
i ∈ [K] would be represented by the effect parameters ψ∗,ℓ
and action parameters θ∗,i, respectively. The weight bi,ℓ is
the relevance of movie i to category ℓ.

: taken action  
at round 

Figure 1: Example of a graphical model induced by (1).

2.2 Notion of Optimality

Let Θ∗ = (θ∗,i)i∈[K] ∈ RKd be the concatenation of all
action parameters. The expected reward of action i ∈ [K] in
context x ∈ X is r(x, i; Θ∗) = EY∼P (·|x;θ∗,i) [Y ], where r
is the reward function. Our setting is Bayesian and thus a
natural goal for the agent is to minimize its Bayes regret

BR(n) = E

[
n∑
t=1

r(Xt, At,∗; Θ∗)− r(Xt, At; Θ∗)

]
,

where At,∗ = argmaxi∈[K] r(Xt, i; Θ∗) is the optimal ac-
tion in round t. The above expectation is over all random
variables in (1). While the Bayes regret is weaker than the
frequentist regret, it is a reasonable metric for average per-
formance across multiple instances (Russo and Van Roy,
2014). We present a special case of our setting next.

2.3 Linearity in Effects

A simple yet powerful assumption is that the action prior
P0,i is parametrized by a weighted sum of effect parameters

θ∗,i | Ψ∗ ∼ P0,i

(
·
∣∣∣ L∑
ℓ=1

bi,ℓψ∗,ℓ

)
, ∀i ∈ [K] ,

where bi = (bi,ℓ)ℓ∈[L] ∈ RL are L known mixing weights
for action i. The effect ℓ on action i is determined by bi,ℓ.
As an example, bi,ℓ = 0 when action i is independent of ef-
fect ℓ. This is an important special case of our setting since
additive models are widely used in both theory and practice
(McCullagh and Nelder, 1989), as they often lead to closed-
form posteriors that are computationally tractable. Next we
present two instances of this setting, where P0,i is a multi-
variate Gaussian with mean

∑L
ℓ=1 bi,ℓψ∗,ℓ and covariance

Σ0,i. We defer non-linear effects to Appendix E.3.

2.4 Mixed-Effect Linear Bandit

A natural joint effect prior Q0 for d-dimensional effect pa-
rameters ψ∗,ℓ is a multivariate Gaussian with mean µΨ ∈
RLd and covariance ΣΨ ∈ RLd×Ld. The action prior P0,i is
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a Gaussian with mean
∑L
ℓ=1 bi,ℓψ∗,ℓ ∈ Rd and covariance

Σ0,i ∈ Rd×d. This model is a variant of a linear Gaussian
model (Koller and Friedman, 2009) and is given by

Ψ∗ ∼ N (µΨ,ΣΨ) , (2)

θ∗,i | Ψ∗ ∼ N
( L∑
ℓ=1

bi,ℓψ∗,ℓ, Σ0,i

)
, ∀i ∈ [K] ,

Yt | Xt, θ∗,At
∼ N (X⊤

t θ∗,At
, σ2) , ∀t ∈ [n] ,

where σ > 0 is an observation noise. This model reduces
to a multi-armed bandit (Appendix B) when Xt = 1 for all
t ∈ [n] and ψ∗,ℓ ∈ R for all ℓ ∈ [L].

2.5 Mixed-Effect Generalized Linear Bandit

Here the effect and action parameters are generated as in
(2) but the reward Yt is sampled from a generalized linear
model (GLM) (McCullagh and Nelder, 1989), which is non-
linear. In particular, P (· | Xt; θ) is an exponential-family
distribution with mean f(X⊤

t θ) and the whole model is

Ψ∗ ∼ N (µΨ,ΣΨ) , (3)

θ∗,i | Ψ∗ ∼ N
( L∑
ℓ=1

bi,ℓψ∗,ℓ, Σ0,i

)
, ∀i ∈ [K] ,

Yt | Xt, θ∗,At ∼ P (· | Xt; θ∗,At) , ∀t ∈ [n] .

Let Ber(p) be a Bernoulli distribution with mean p. One
particular choice of a GLM is f(u) = 1/(1 + exp(−u))
and P (· | Xt; θ) = Ber(f(X⊤

t θ)), which corresponds to a
logistic bandit (Filippi et al., 2010).

2.6 Structure Learning

As discussed in Section 1, the structures in (2) and (3) may
be intrinsic in some problems, such as drug design. When
this is not the case, we propose the following approach to
learning a proxy structure. For any i ∈ [K], let θ̂i represent
an offline estimate of action parameter θi. To learn, we fit
a Gaussian mixture model (GMM) (Reynolds et al., 2009)
with L clusters to θ̂i. Each cluster ℓ ∈ [L] is represented
by its center µψℓ

∈ Rd and covariance Σψℓ
∈ Rd×d. These

correspond to the mean of the effect parameter ψℓ and its
uncertainty. The GMM also outputs the probability that θ̂i
belongs to cluster ℓ, for all combinations of i ∈ [K] and
ℓ ∈ [L]. This probability is the mixing weight bi,ℓ.

The above procedure is general and can be adapted to any
use case. The main challenge is to obtain the offline esti-
mates θ̂i. This is an offline representation learning problem
(Tripuraneni et al., 2021), for which numerous techniques
exist. For instance, in our MovieLens experiments in Sec-
tion 5.2, we use a low-rank factorization of the rating matrix
to obtain these offline estimates. This is a strength of our
approach. It is highly flexible and can be easily integrated
with popular and practical offline learning tools. This can

Algorithm 1 meTS: Mixed-Effect Thompson Sampling.
Input: Joint effect prior Q0, action priors P0,·
Initialize Q1 ← Q0 and P1,· ← P0,·
for t = 1, . . . , n do

Sample Ψt ∼ Qt
for i = 1, . . . ,K do

Sample θt,i ∼ Pt,i(· | Ψt)
Θt ← (θt,i)i∈[K]

At ← argmaxi∈[K] r(Xt, i; Θt)
Receive reward Yt ∼ P (· | Xt; θ∗,At)
Compute new posteriors Qt+1 and Pt+1,·

be seen as a step towards bridging the gap between offline
and online learning.

3 ALGORITHM

We propose a Thompson sampling algorithm (Thompson,
1933; Russo and Van Roy, 2014; Scott, 2010), which is a
natural Bayesian solution to our problem. The algorithm is
based on hierarchical sampling (Lindley and Smith, 1972),
which reflects the structure in our model. Before we present
it, we need to introduce additional notation. We denote by
Ht = (Xℓ, Aℓ, Yℓ)ℓ∈[t−1] the history of all interactions of
the agent up to round t, by St,i = {ℓ ∈ [t − 1] : Aℓ = i}
the rounds where the agent takes action i up to round t, and
by Ht,i = (Xℓ, Aℓ, Yℓ)ℓ∈St,i

the corresponding history.

Our algorithm meTS is presented in Algorithm 1. Because
the effect parameters are shared by all actions, their poste-
riors are not independent. For this reason, we maintain a
single joint effect posterior

Qt(Ψ) = P (Ψ∗ = Ψ |Ht)

for all effect parameters Ψ∗ in round t. Moreover, we main-
tain an action posterior

Pt,i(θ | Ψ) = P (θ∗,i = θ |Ht,i,Ψ∗ = Ψ)

for each action i ∈ [K] given Ψ∗ = Ψ. meTS samples hier-
archically as follows. In round t, we first sample effect pa-
rameters Ψt ∼ Qt. Then we sample each action parameter
θt,i ∼ Pt,i(· | Ψt) individually. Note that this is equivalent
to sampling from the exact posterior P (θ∗,i = θ |Ht), since

P (θ∗,i = θ |Ht) =

∫
Ψ

P (θi,∗ = θ,Ψ∗ = Ψ |Ht) dΨ ,

=

∫
Ψ

Pt,i(θ | Ψ)Qt(Ψ) dΨ . (4)

Finally, we behave optimistically and take the action with
the highest expected reward under the posterior-sampled
action parameters Θt = (θt,i)i∈[K].
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3.1 Posterior Derivations

The posteriors are computed as follows. We first express the
joint effect posterior Qt as

Qt(Ψ) ∝
K∏
i=1

∫
θ

Lt,i(θ)P0,i (θ | Ψ)dθ Q0(Ψ) , (5)

where Lt,i(θ) = P (Ht,i | θ∗,i = θ) =
∏

(x,a,y)∈Ht,i
P (y |

x; θ) is the likelihood of all observations of action i up to
round t given θ∗,i = θ. Next, for any action i ∈ [K], the
action posterior Pt,i is defined as

Pt,i(θ | Ψ) ∝ Lt,i(θ)P0,i(θ | Ψ) . (6)

Pt,i is similarly sparse to P0,i. Specifically, in any round t,
Pt,i and P0,i are parameterized by the same subset of effect
parameters Ψ∗, since Lt,i(θ) does not depend on Ψ∗.

The joint effect posterior Qt and action posteriors Pt,i have
closed forms in Gaussian models, which allows efficient
sampling and theoretical analysis. Beyond these, MCMC
and variational inference (Doucet et al., 2001) can be used
to approximate Qt and Pt,i. Next we derive closed-form
posteriors for the mixed-effect model with linear rewards
in (2) and provide an efficient approximation for the mixed-
effect model with non-linear rewards in (3).

3.2 Mixed-Effect Linear Bandit

Let the outer product of contexts corresponding to action i
up to round t be Gt,i = σ−2

∑
ℓ∈St,i

XℓX
⊤
ℓ and their sum

weighted by rewards be Bt,i = σ−2
∑
ℓ∈St,i

YℓXℓ. Both
Gt,i and Bt,i are scaled by the observation noise σ. Using
these quantities, the effect posterior is defined as follows.

Proposition 1. For any round t ∈ [n], the joint effect poste-
rior is a multivariate Gaussian Qt = N (µ̄t, Σ̄t), where

Σ̄−1
t = Σ−1

Ψ +

K∑
i=1

bib
⊤
i ⊗

(
Σ0,i +G−1

t,i

)−1
, (7)

µ̄t = Σ̄t

(
Σ−1

Ψ µΨ +

K∑
i=1

bi ⊗ ((Σ0,i +G−1
t,i )

−1G−1
t,i Bt,i)

)
.

The effect posterior is additive in individual actions and can
be interpreted as follows. Each action is a single noisy ob-
servation in its estimate. The maximum likelihood estimate
(MLE) of the parameter of action i, G−1

t,i Bt,i, contributes
to (7) proportionally to its precision, (Σ0,i +G−1

t,i )
−1. The

contribution to the ℓ-th effect parameter is weighted by bi,ℓ,
which is the mixture weight for θ∗,i in (2). Proposition 1 is
proved in Appendix C.1.

Note that Gt,i in Proposition 1 may not be invertible. We
want to stress that the formulas with it are for the ease of
exposition only. The reason is that G−1

t,i appears after using

the Woodbury matrix identity to invert Σ−1
0,i +Gt,i, which

is well defined. Precisely, we use that

Σ−1
0,i − Σ−1

0,i (Gt,i +Σ−1
0,i )

−1Σ−1
0,i =

(
Σ0,i +G−1

t,i

)−1
,

Σ−1
0,i (Gt,i +Σ−1

0,i )
−1Bt,i = (Σ0 +G−1

t,i )
−1G−1

t,i Bt,i .

For consistency, the formulas in Proposition 1 are also used
in our experiments, where (Gt,i+10−3Id)

−1 replaces G−1
t,i

for numerical stability. We note that this results in a similar
regret to using the correct formulas.

Now we present the action posterior.

Proposition 2. For any round t ∈ [n], action i ∈ [K], and
effect parameters Ψt, the action posterior is a multivariate
Gaussian Pt,i(· | Ψt) = N (·; µ̃t,i, Σ̃t,i), where

Σ̃−1
t,i = Σ−1

0,i +Gt,i , (8)

µ̃t,i = Σ̃t,i

(
Σ−1

0,i

L∑
ℓ=1

bi,ℓψt,ℓ +Bt,i

)
.

The action posterior in (8) is a standard multivariate Gaus-
sian posterior whose prior depends on Ψt, which is sampled
by meTS. Proposition 2 is proved in Appendix C.2.

3.3 Mixed-Effect Generalized Linear Bandit

Closed-form posteriors do not exist in this setting and ap-
proximations are needed. We opt for a simple scheme that
approximates the likelihood Lt,i(·) by a multivariate Gaus-
sian using the Laplace approximation. In particular, since
P (· | Xt; θ) is an exponential-family reward distribution,
the log-likelihood for any action i ∈ [K] is

logLt,i(θ) =
∑
ℓ∈St,i

YℓX
⊤
ℓ θ −A(X⊤

ℓ θ) + C(Yℓ) ,

where C denotes a real function, and A is a twice continu-
ously differentiable function whose derivative is the mean
function f , Ȧ = f . Let µLAP

t,i and GLAP
t,i be the MLE and the

Hessian of − logLt,i(·), respectively, defined as

µLAP
t,i = argmax

θ∈Rd

logLt,i(θ) , (9)

GLAP
t,i =

∑
ℓ∈St,i

ḟ
(
X⊤
ℓ µ

LAP
t,i

)
XℓX

⊤
ℓ .

Then the Laplace approximation is

Lt,i(·) ≈ N (·;µLAP
t,i , (G

LAP
t,i )

−1) . (10)

Now we plug (10) into (5) and have Qt(·) ≈ N (·; µ̄t, Σ̄t),
where µ̄t and Σ̄t are computed as in Proposition 1, except
that GLAP

t,i and µLAP
t,i replace Gt,i and G−1

t,i Bt,i, respectively.
We plug (10) into (6) and get Pt,i(· | Ψ) ≈ N (·; µ̃t,i, Σ̃t,i),
where µ̃t,i and Σ̃t,i are computed as in Proposition 2, except



Mixed-Effect Thompson Sampling

that GLAP
t,i and GLAP

t,i µ
LAP
t,i replace Gt,i and Bt,i, respectively.

While these results are a direct consequence of plugging
the Laplace approximation (10) into (5) and (6), there is a
clear intuition behind them. First, Gt,i ← GLAP

t,i captures
the change of curvature due to the non-linearity of the mean
function f . Moreover, G−1

t,i Bt,i ← µLAP
t,i follows from the

fact that the MLE of the action parameter θ∗,i in the linear
case (Section 2.4) is G−1

t,i Bt,i, and it corresponds to µLAP
t,i in

the generalized linear case. As discussed before, GLAP
t,i may

not be invertible. Therefore, we approximate its inverse in
our experiments by (GLAP

t,i + 10−3Id)
−1.

3.4 Computational Complexity

The Bayes regret in Section 2.2 does not directly depend on
Ψ∗. Thus the benefit of modeling the effect parameters is
not immediately clear. It is tempting to marginalize them
out, and only maintain a single joint posterior of all action
parameters Θ∗ ∈ RKd. Although this is feasible, posterior
updates would be complex and computationally inefficient
when K ≫ L, which is common in practice.

The main advantage of meTS is that the sampling of effect
parameters Ψt ∼ Qt allows us to use the conditional inde-
pendence of actions given Ψ∗, and model θ∗,i | Ht,i,Ψ∗ =
Ψt individually. This is more computationally efficient than
modeling Θ∗ | Ht when K ≫ L. To see this, suppose that
all posteriors are multivariate Gaussians (Section 3.2). In
this case, Θ∗ | Ht requires O(K2d2) space, due to storing
a Kd×Kd covariance matrix; while meTS requires only
O((L2 +K)d2) space, due to storing the covariances of Qt
and Pt,i. Since the sampling relies on covariance inverses,
the time complexity also improves. For the joint posterior,
it is O(K3d3), while it is only O((L3 +K)d3) for meTS.

One can also marginalize out the effect parameters Ψ∗ and
have K separate posteriors, one for each action parameter
θ∗,i. While this improves computational efficiency, it does
not model that the actions are correlated, since θ∗,i | Ht,i

is modeled instead of θ∗,i | Ht. This leads to a statistical
inefficiency due to the loss of information as the histories of
other actions Ht,j are discarded. We validate this through
theory (Section 4.2) and experiments (Section 5).

4 ANALYSIS

This section is organized as follows. First, we state our re-
gret bound. Second, we discuss how it captures the structure
of our problem. Finally, we sketch its proof. We use Õ for
the big O notation up to polylogarithmic factors.

4.1 Main Result

We analyze meTS in the linear setting in Section 2.4. To
ease exposition, we assume that there exist σ0, σΨ, κx > 0
such that Σ0,i = σ2

0Id for all i ∈ [K] , ΣΨ = σ2
ΨILd , and

∥Xt∥22 ≤ κx for all t ∈ [n]. The last assumption is standard
and we relax the remaining two in Appendix D.

Theorem 1. For any δ ∈ (0, 1), the Bayes regret of meTS
in the mixed-effect model in Section 2.4 is bounded as

BR(n) ≤
√
2n (RA(n) +RE(n)) log(1/δ) + cnδ , (11)

where c =
√

2
πκx(σ

2
0 + κbσ2

Ψ)K , κb = maxi∈[K] ∥bi∥22 ,

RA(n) = dKcA log
(
1 +

nκxσ
2
0

dσ2

)
, cA =

κxσ
2
0

log
(
1+

κxσ2
0

σ2

) ,
RE(n) = dLcE log

(
1 +

Kκbσ
2
Ψ

σ2
0+

σ2

nκx

)
, cE =

κxκbσ
2
Ψ

(
1+

κxσ2
0

σ2

)
log
(
1+

κxκbσ
2
Ψ

σ2

) .

The second term in (11) is constant for δ = 1/n, in which
case the above bound is Õ(

√
n) and optimal in the horizon

n. The main quantities of interest are RA(n) and RE(n),
and they have natural interpretations. RA(n) corresponds to
the action regression problem: with K parameters of dimen-
sion d, prior width σ0, maximum context length

√
κx, and

n observations with noise σ. The dependence ofRA(n) on
these quantities is identical to a corresponding linear bandit
(Lu and Van Roy, 2019). On the other hand, RE(n) corre-
sponds to the effect regression problem: with L parameters
of dimension d, prior width σΨ, maximum mixing-weight
length

√
κb, and K actions that can be viewed as observa-

tions with noise σ0 (Section 3.2). The dependence ofRE(n)
on these quantities mimics those inRA(n).

To simplify exposition, let κx = κb = σ = 1. Then

BR(n) = Õ
(√

nd(Kσ2
0 + Lσ2

Ψ(1 + σ2
0))
)
. (12)

Note that BR(n) decreases when the initial uncertainties
σ0 and σΨ are lower. Also smaller K, L, or d mean fewer
parameters to learn and lead to a lower regret. We observe
these trends empirically in Appendix F.

Our analysis is under the assumption that the covariances
and mixing weights are known. This is typical in Bayesian
analyses and represents prior knowledge that reduces regret.
Parameter misspecification can be analyzed similarly to Sim-
chowitz et al. (2021). Roughly speaking, if it was Õ(1/nα),
the additional regret would be Õ(n1−α); and thus Õ(

√
n)

when α = 0.5.

4.2 Benefits of Structure

Note that we do not provide a matching lower bound. The
only Bayesian lower bound that we know of is O(log2 n)
for a K-armed bandit (Theorem 3 of Lai (1987)). Seminal
works on Bayes regret minimization (Russo and Van Roy,
2014, 2016) do not match it. Therefore, to argue that our
bound reflects the problem structure, we compare meTS
to agents that have access to more information or use less
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structure. We start with those with more information. Take
meTS with known effect parameters Ψ∗. Then σΨ = 0 in
(12) and we obtain a lower regret BR(n) = Õ(

√
ndKσ2

0)
that does not depend on L. Similarly, take meTS with a
perfect linear model, θ∗,i =

∑
ℓ∈[L] bi,ℓψ∗,ℓ for all i ∈ [K].

Then σ0 = 0 in (12) and we get a lower regret BR(n) =
Õ(
√
ndLσ2

Ψ) that does not depend on K. This shows that
K in our bound arises due to modeling the stochasticity
of action parameters with respect to the effect parameters,
incorporated in Σ0,i.

Next we consider an agent that does not know Ψ∗ and also
does not model it. Here only Θ∗ is learned (Section 3.4)
and this is achieved by marginalizing out Ψ∗ in (2) as

θ∗,i ∼ N
(∑L

ℓ=1 bi,ℓµψℓ
, Σ̆0,i

)
, ∀i ∈ [K] ,

Yt | Xt, θ∗,At
∼ N (X⊤

t θ∗,At
, σ2) , ∀t ∈ [n] ,

where Σ̆0,i = (σ2
0 + ∥bi∥22σ2

Ψ)Id is the marginal prior co-
variance of action i and µψℓ

∈ Rd is the prior mean of the
ℓ-th effect, which satisfies µΨ = (µψℓ

)ℓ∈[L] (Section 2.4).
The marginal prior covariance Σ̆0,i accounts for the uncer-
tainty of the not-modeled Ψ∗ weighted by ∥bi∥22. The regret
of this agent scales as in (12) with σΨ = 0, except that the
maximum prior variance σ2

0 is replaced with the maximum
marginal prior variance σ2

0 + σ2
Ψ. This can be proved using

the definition of Σ̆0,i and κb = maxi∈[K] ∥bi∥22 = 1. The
resulting regret bound is BR(n) = Õ(

√
ndK(σ2

0 + σ2
Ψ)).

When K > L up to constants, it can be significantly higher
than the regret bound of meTS in (12). The improvement is
on the order of

√
K/L when the effect parameters are much

more uncertain than the action ones, σΨ ≫ σ0, which is ex-
pected. For instance, in our ad placement example, L is the
number of items in the catalog and K ≈ LM is the number
of slates of size M . Hence K/L ≈ LM−1, where we can
have L ≈ 106 and M ≈ 10. This claim is also supported
empirically in Section 5.1 and Appendix F, where meTS
outperforms classic methods when the effect parameters are
more uncertain than the action ones.

4.3 Sketch of the Regret Proof

Now we outline the key technical challenges and novel in-
sights in our proof. Our hierarchical sampling is equivalent
to sampling from the exact posterior, which is also a mul-
tivariate Gaussian P (θ∗,i = θ |Ht) = N (θ; µ̂t,i, Σ̂t,i) for
some µ̂t,i and Σ̂t,i. This is because the action posterior Pt,i
and effect posterior Qt are Gaussians, and Gaussianity is
preserved after marginalization (Koller and Friedman, 2009).
Next notice that the context Xt in round t is known, and
thus we include it in the history Ht. Now let At ∈ {0, 1}K
and At,∗ ∈ {0, 1}K be the indicator vectors of the taken
action At and optimal action At,∗, respectively. Moreover,
let θ̂t = (X⊤

t µ̂t,i)i∈[K] and θt,∗ = (X⊤
t θ∗,i)i∈[K]. Then

the Bayes regret can be decomposed following Russo and

Van Roy (2014) as

BR(n) = E
[ n∑

t=1

A⊤
t,∗θt,∗ −A⊤

t θt,∗
]
, (13)

= E
[
E
[
A⊤

t,∗(θt,∗ − θ̂t)
∣∣∣Ht

]]
+ E

[
E
[
A⊤

t (θ̂t − θt,∗)
∣∣∣Ht

]]
.

The identity (13) holds because θ̂t is deterministic given Ht

(which now includes Xt), and the actions At,∗ and At are
i.i.d. given Ht. Conditioned on Ht, θ̂t− θt,∗ is a zero-mean
Gaussian random vector independent of At, and therefore
E[A⊤

t (θ̂t − θt,∗) | Ht] = 0. Thus we only need to bound
the first term in (13), which can be further bounded as

BR(n) ≤
√

2n log(1/δ)

√√√√E

[
n∑

t=1

∥Xt∥2
Σ̂t,At

]
+ cnδ . (14)

To bound (14), we need to bound a Σ̂t,At-norm, while we
only know closed forms of Σ̄t and Σ̃t,At

(Section 3.2). We
relate these norms by generalizing the total covariance de-
composition in Hong et al. (2022b) to incorporate multiple
effect parameters and their mixing weights bi,ℓ. To account
for multiple effects, we represent all effects using a single
Ld-dimensional vector Ψ∗ = (ψ∗,ℓ)ℓ∈[L]. Moreover, we let
Γi = b⊤i ⊗ Id ∈ Rd×Ld and observe that∑L

ℓ=1 bi,ℓψ∗,ℓ = ΓiΨ∗ , ∀i ∈ [K] . (15)

The key insight here is that we rewrite
∑L
ℓ=1 bi,ℓψ∗,ℓ as a

linear function of Ψ∗, ΓiΨ∗, and encode the dependencies
between the action parameter θ∗,i and all effect parameters
Ψ∗ in Γi. This reformulation allows us to extend the total
covariance decomposition (Lemma 3 in Appendix D.2) as

Σ̂t,i = Σ̃t,i + Σ̃t,iΣ
−1
0,iΓiΣ̄tΓ

⊤
i Σ

−1
0 Σ̃t,i , ∀i ∈ [K] . (16)

The first term in (16) captures uncertainty in θ∗,i | Ψ∗. The
second captures uncertainty in Ψ∗, weighted by Σ̃t,i, Σ0,i,
and the mixing weights Γi for action i. The term ΓiΣ̄tΓ

⊤
i is

controlled using the maximum eigenvalue of ΓiΓ⊤
i , which

is at most maxi∈[K] ∥bi∥22. Finally, we use the identities in
(15) and (16) to bound the Σ̂t,At

-norm in (14). By careful
analysis, our regret bound still reflects the structure and
captures potential sparsity.

5 EXPERIMENTS

We evaluate meTS on both synthetic and real-world prob-
lems. In each plot, we report the average values and their
standard errors. Additional experiments are conducted in
Appendix F. The code is provided in this Github repository.

5.1 Synthetic Experiments

We start with two synthetic problems: the linear and logistic
bandit settings in (2) and (3), respectively. The effect prior

https://github.com/imadaouali/Mixed-Effect-Thompson-Sampling
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Figure 2: Evaluation on synthetic problems.

is parameterized by µΨ = 0Ld and ΣΨ = 3ILd, the action
covariance is Σ0,i = Id for all i ∈ [K], and the observation
noise is σ = 1. We use this setting since modeling of the
effect parameters is the most beneficial when they are more
uncertain than the action ones (Section 4.2). The context Xt

is sampled uniformly from [−1, 1]d. We run 50 simulations
and sample the mixing weights bi,ℓ from [−1, 1] in each run.

We consider the following baselines. For the linear setting,
we compare meTS-Lin (Section 3.2), LinUCB (Abbasi-
Yadkori et al., 2011), LinTS (Agrawal and Goyal, 2013)
and HierTS (Hong et al., 2022b). For the logistic setting,
we compare meTS-GLM (Section 3.3), meTS-Lin (Sec-
tion 3.2), UCB-GLM (Li et al., 2017), GLM-TS (Chapelle
and Li, 2012) and HierTS (Hong et al., 2022b). GLM-UCB
(Filippi et al., 2010) is not included because it has a very
high regret. We also include factored approximations of
meTS (meTS-Lin-Fa and meTS-GLM-Fa), where the
effect parameters are sampled individually (Appendix E.1).
This improves the time and space complexities of meTS by
L2 and L, respectively.

All baselines but HierTS ignore the structure. HierTS
incorporates the structure similarly to meTS-Lin but only
has a single effect parameter with prior N (0d, 3Id), with
the same mean and covariance as the effect parameters of
meTS. To compare fairly with LinTS and GLM-TS, their
marginal prior mean and covariance are chosen as 0d and
Σ̆0,i = Σ0,i + ΓiΣΨΓ

⊤
i , where Γi = b⊤i ⊗ Id. This is to

account for the uncertainty of the effect parameters despite
marginalizing them out.

In Figure 2, we plot the regret in both problems for n =
5000,K = 100, L = 3, and d = 2. meTS and its factored
variant outperform all baselines that ignore the structure or
incorporate it partially. Moreover, meTS-GLM outperforms
meTS-Lin in the logistic bandit, which shows the benefit
of the approximation in Section 3.3. This attests to the gen-
erality and flexibility of meTS and the posterior derivations
in Section 3. We also show in Appendix F.1 that a higher
K,L, or d leads to a higher regret due to learning more
parameters, which is captured by our regret bounds.

5.2 MovieLens Experiments

We study the problem of movie recommendation using the
MovieLens 1M dataset (Lam and Herlocker, 2016). This
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Figure 3: Evaluation on MovieLens problems.

dataset contains one million ratings given by 6040 users to
3952 movies. We apply low-rank factorization to the rating
matrix to obtain 5-dimensional representations: xj ∈ R5

for user j ∈ [6040] and θi ∈ R5 for movie i ∈ [3952]. We
use the movies as actions and the context Xt is sampled
uniformly from user vectors xj . We consider both linear
and logistic rewards. Given a user xj , the linear reward
for movie θi is sampled from N (x⊤j θi, σ

2) while the logis-
tic reward is sampled from Ber(f(x⊤j θi)), where f is the
sigmoid function. We run 50 simulations withK = 100 ran-
domly sampled movies in each run. We compare meTS to
most baselines in Section 5.1. We do not include UCB-GLM
and GLM-UCB because their regret is very high. In LinTS
and GLM-TS, the prior mean of action i is µ and its covari-
ance is Σ̆0 = diag(v) ∈ Rd×d, where µ ∈ Rd and v ∈ Rd
are the mean and variance of the movie vectors along all
dimensions, respectively.

The mixed-effect structure in (2) and (3) is not available
in this problem. Therefore, we use the approach in Sec-
tion 2.6 to learn it. More precisely, we cluster the movies
into L = 5 mixture components by training a GMM on the
offline action vectors θi (Section 2.6). Each cluster center
corresponds to an effect parameter mean µψℓ

∈ Rd and the
mixing weight bi,ℓ is the probability that movie i belongs
to cluster ℓ, as given by the GMM. We set the effect prior
covariance as ΣΨ = 0.75 diag((Σ̆0)ℓ∈[L]) ∈ RLd×Ld and
the prior covariance of action i as Σ0,i = 0.25 Σ̆0 ∈ Rd×d,
where Σ̆0 is the same as in both LinTS and GLM-TS. This
means that the marginal covariance of action i in meTS is
0.25 Σ̆0 + 0.75ΓiΣΨΓ

⊤
i , where Γi = b⊤i ⊗ Id. Therefore,

it is on the same order as Σ̆0,i when ∥bi∥22 ≈ 1, and meTS
is parameterized comparably to LinTS and GLM-TS. At
the same time, we also model that the effect parameters are
more uncertain than the action ones, since Σ0,i = 0.25 Σ̆0

while ΣΨ = 0.75 diag((Σ̆0)ℓ∈[L]).

In Figure 3, we plot the regret for n = 5000 rounds. We
observe that meTS has the lowest regret, even if the true
rewards are not generated from a mixed-effect model. This
shows the robustness of meTS to model misspecification,
which we further validate in Appendix F.3. It also highlights
the flexibility of our framework, where a proxy structure is
learned from offline data.
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6 RELATED WORK

Thompson sampling (TS) (Thompson, 1933) is a popular
exploration algorithm in practice (Chapelle and Li, 2012;
Russo et al., 2018). Its first Bayes regret bound was proved
by Russo and Van Roy (2014). We apply TS to two-level
graphical models with multiple parents. Many recent works
(Bastani et al., 2019; Kveton et al., 2021; Basu et al., 2021;
Simchowitz et al., 2021; Wan et al., 2021; Hong et al.,
2022b; Peleg et al., 2022; Wan et al., 2022; Tomkins et al.,
2021) applied TS to the two-level models with a single par-
ent. The main difference in our work is that we consider a
mixed-effect model with multiple parents in the contextual
setting. Urteaga and Wiggins (2018) proposed TS with a
mixture reward distribution. This is very different from the
parameter mixtures in our work.

Our analysis (Section 4.3) extends Hong et al. (2022b) to
multiple effects in the contextual bandit setting. The main
technical challenges are generalizing the regret decomposi-
tion in Hong et al. (2022b) to include context and extending
their total covariance decomposition to multiple effect pa-
rameters with mixing weights. This extension is non-trivial
since Hong et al. (2022b) assumed that all action parameters
are centered at a single variable. In our setting, this is not
true even if we treated all effect parameters as a single vec-
tor. Moreover, the action parameters can depend on a small
subset of effect parameters, resulting in sparsity that is not
captured by their analysis. Although information theory can
be used to derive Bayes regret bounds (Russo and Van Roy,
2016; Lu and Van Roy, 2019), we are unaware of any for
multiple effects.

We also assume that there exists an underlying structure
among the actions. Many such structures have been studied
and we review some below. In latent bandits (Maillard and
Mannor, 2014; Hong et al., 2020), a single latent variable in-
dexes multiple candidate models. In structured finite-armed
bandits (Lattimore and Munos, 2014; Gupta et al., 2018),
each arm is associated with a known mean function. The
mean functions are parameterized by a shared latent param-
eter, which is learned. TS was also applied to more complex
models, such as graphical models (Yu et al., 2020) and a
discretized parameter space (Gopalan et al., 2014). While
these frameworks are general, the computational and statis-
tical efficiencies are not guaranteed simultaneously. Meta-
and mutli-task learning with UCBs have a long history in
bandits (Azar et al., 2013; Gentile et al., 2014; Deshmukh
et al., 2017; Cella et al., 2020). These works are frequentist,
analyze a stronger notion of regret, and often lead to con-
servative algorithms. In contrast, our approach is Bayesian,
we analyze its Bayes regret, and meTS performs well as
analyzed without any additional tuning.

Our work is also related to representation learning in multi-
task linear bandits (Cella et al., 2022; Hu et al., 2021; Yang
et al., 2020). We refer to these works collectively as repre-

sentation learning bandits. Representation learning bandits
can be viewed in our notation as learning Θ∗ = Ψ∗Γ, where
Θ∗ ∈ Rd×K is a matrix of action parameters, Ψ∗ ∈ Rd×L
is a matrix of effect parameters, and Γ ∈ RL×K is a matrix
of mixing weights. Therefore, representation learning ban-
dits assume that the action parameters are a perfect linear
combination of effect parameters, Σ0,i = 0d,d, where 0d,d
denotes a d× d zero matrix. This shows that our setting is
more general, since we consider Σ0,i ̸= 0d,d due to action
parameter uncertainty. Consequently, representation learn-
ing bandits can have linear regret when Σ0,i ̸= 0d,d, due to
model misspecification.

On the other hand, representation learning bandits learn Γ
while we assume that it is given. So they can be viewed as
more general. Note that the factorization Θ∗ = Ψ∗Γ is only
beneficial when d ≫ L. In this case, Ψ∗Γ has dL +KL
parameters while Θ∗ would have dK ≫ dL+KL. We do
not assume that d ≫ L. In fact, in all of our experiments,
dL+KL > dK and thus learning of Θ∗ directly is more
practical. This is what Lin-TS and GLM-TS already do,
and meTS outperforms them in all experiments. Thus rep-
resentation learning bandits would not be competitive in
our setting. This highlights another major difference from
representation learning bandits: their L is the number of
latent dimensions while ours is the number of effects or
clusters. These are two different approaches to modeling,
although coinciding algebraically when Σ0,i = 0d,d.

meTS can be extended to unknown mixing weights. How-
ever, this would require solving a matrix factorization prob-
lem online, which is expensive and representation learning
bandits suffer from the same computational challenge. Since
our goal is to design practical and efficient algorithms, we
focus on known mixing weights. They are either given or
learned offline using off-the-shelf techniques (Section 2.6).

7 CONCLUSIONS

We propose a mixed-effect bandit framework represented by
a two-level graphical model where actions can depend on
multiple effects. This structure can be used to explore more
efficiently, and we design an exploration algorithm meTS
that leverages it. meTS performs well on both synthetic and
real-world problems when implemented as analyzed. Our
algorithmic ideas apply to the general mixed-effect model
in (1), although we focus on models in (2) and (3). Our
algorithmic and theory foundations open the door to richer
models, which we discuss in great detail in Appendix E.
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Mixed-Effect Thompson Sampling:
Supplementary Materials

ORGANIZATION

The supplementary material is organized as follows. In Appendix A, we include a more visual notation and present some
preliminary results that we use in our analysis. In Appendix B, we introduce the mixed-effect multi-armed bandit setting
and provide a closed-form solution for the corresponding effect posterior and action posteriors. In Appendix C, we give
the derivations of the effect posterior and action posteriors for the mixed-effect linear bandit setting. These proofs can be
easily extended to the generalized linear case. In Appendix D, we prove an upper bound for Bayes regret of meTS. In
Appendix E, we discuss in details possible extensions of this work. In Appendix F, we present additional experiments.

A PRELIMINARIES

In this section, we include additional notation and provide some basic properties of matrix operations.

A.1 Notation

For any positive integer n, we define [n] = {1, 2, ..., n}. We use Id to denote the identity matrix of dimension d× d. Unless
specified, the i-th coordinate of a vector v is vi. When the vector is already indexed, such as vj , we write vj,i. Similarly,
the (i, j)-th entry of a matrix A is Ai,j . Let a1 ∈ Rd, . . . , an ∈ Rd be n vectors. We use A = [a1, a2, . . . , an] ∈ Rd×n to
denote the d× n matrix obtained by horizontal concatenation of vectors a1, . . . , an such that the j-th column of A is aj and
its (i, j)-th entry is Ai,j = aj,i. We also denote by a = (ai)i∈[n] ∈ Rnd a vector of length nd obtained by concatenation of
vectors a1, . . . , an. Vec(·) denotes the vectorization operator. For instance, we have that Vec([a1, . . . , an]) = (ai)i∈[n]. For
any matrix A ∈ Rd×d, we use λ1(A) and λd(A) to denote the maximum and minimum eigenvalue of A, respectively. Let
A1, . . . ,An be n matrices of dimension d× d. Then diag((Ai)i∈[n]) ∈ Rnd×nd denotes the block diagonal matrix where
A1, . . . ,An are the main-diagonal blocks. Similarly, (Ai)i∈[n] ∈ Rnd×d is the nd× d matrix obtained by concatenation of
A1, . . . ,An. We use ⊗ to denote the Kronecker product. Now we provide a more visual presentation of the notation above.
Let a1 ∈ Rd, . . . , an ∈ Rd be n vectors of dimension d, and let A1 ∈ Rd×d, . . . ,An ∈ Rd×d be n matrices of dimension
d× d. We have that

[a1, . . . , an] =

 | | |
a1 a2 · · · an
| | |

 ∈ Rd×n , (ai)i∈[n] =


a1
a2
...
an

 ∈ Rnd ,

diag((Ai)i∈[n]) =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An

 ∈ Rnd×nd , (Ai)i∈[n] =


A1

A2

...
An

 ∈ Rnd×d .

Finally, let Ai,j ∈ Rd×d, for i ∈ [n] and j ∈ [m] be nm matrices of dimensions d× d. We use (Ai,j)(i,j)∈[n]×[m] to denote
the nd×md block matrix where Ai,j is the (i, j)-th block. We also provide a more visual presentation for this notation.

(Ai,j)(i,j)∈[n]×[m] =


A1,1 A1,2 · · · A1,m

A2,1 A2,2 · · · A2,m

...
...

. . .
...

An,1 An,1 · · · An,m

 ∈ Rnd×md .
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A.2 Preliminary Results

In this section, we recall some basic properties of matrix operations.

(a) The mixed-product property. We have that (A⊗ B)(C⊗D) = AC⊗ BD for any matrices A,B,C,D such that the
products AC and BD exist.

(b) Transpose. We have that (A⊗ B)
⊤
= A⊤ ⊗ B⊤ for any matrices A,B.

(c) Vectorization. Let A ∈ Rn×m,B ∈ Rm×p, then Vec(AB) = (Ip ⊗A)Vec(B) = (B⊤ ⊗ In)Vec(A).

(d) For any matrix A, we have that I1 ⊗A = A.

(e) For any matrices A and B, we have that λ1(A⊗ B) = λ1(A)λ1(B).

(f) For any matrix A and any positive semi-definite matrix B such that the product A⊤BA exists, the following inequality
holds λ1(A⊤BA) ≤ λ1(B)λ1(A⊤A).

B MIXED-EFFECT MULTI-ARMED BANDIT

We introduce the mixed-effect multi-armed bandit setting. We then provide the effect posterior and action posteriors for this
setting. The results below can be derived from Propositions 1 and 2 by setting d = 1 and Xt = 1 for all t ∈ [n].

B.1 Mixed-Effect Multi-Armed Bandit

For scalar effect parameters, ψ∗,ℓ ∈ R holds for all ℓ ∈ [L], a natural effect prior Q0 is a multivariate Gaussian with mean
µΨ ∈ RL and covariance ΣΨ ∈ RL×L. The action prior P0,i is a univariate Gaussian with mean

∑L
ℓ=1 bi,ℓψ∗,ℓ = b⊤i Ψ∗ ∈ R

and variance σ2
0,i > 0. This is a non-contextual setting (Xt = 1 for any t ∈ [n]) and thus the whole model reads

Ψ∗ ∼ N (µΨ,ΣΨ) , (17)

θ∗,i | Ψ∗ ∼ N
(
b⊤i Ψ∗, σ

2
0,i

)
, ∀i ∈ [K] ,

Yt | At, θ∗ ∼ N (θ∗,At , σ
2) , ∀t ∈ [n] .

B.2 Posteriors for Mixed-Effect Multi-Armed Bandit

Fix round t ∈ [n], and recall that St,i are the rounds where action i is taken up to round t. We introduce Nt,i = |St,i| as the
number of times that action i is taken up to round t and Bt,i =

∑
ℓ∈St,i

Yℓ as the total reward of action i up to round t. Note
that Bt,i and weight vectors bi are unrelated. We derive in (18) and (19) the effect posterior Qt and the action posteriors
Pt,i for the model in (17).

Proposition 3. For any round t ∈ [n], the joint effect posterior is a multivariate Gaussian Qt = N (µ̄t, Σ̄t), where

Σ̄−1
t = Σ−1

Ψ +
∑
i∈[K]

Nt,i
Nt,iσ2

0,i + σ2
bib

⊤
i , µ̄t = Σ̄t

Σ−1
Ψ µΨ +

∑
i∈[K]

Bt,i
Nt,iσ2

0,i + σ2
bi

 . (18)

Moreover, for any action i ∈ [K], and effect parameters Ψt, the action posterior is a univariate Gaussian Pt,i(· | Ψt) =
N (·; µ̃t,i, σ̃2

t,i), where

σ̃−2
t,i =

1

σ2
0,i

+
Nt,i
σ2

, µ̃t,i = σ̃2
t,i

(
Ψ⊤
t bi
σ2
0,i

+
Bt,i
σ2

)
. (19)

The effect posterior is additive in actions and can be interpreted as follows. Each action is a single noisy observation in
its estimate. The maximum likelihood estimate (MLE) of the expected reward of action i, Bt,i/Nt,i, contributes to (18)
proportionally to its precision, Nt,i/(Nt,iσ2

0,i + σ2). The contribution is weighted by bi, which are the weights used to
generate θ∗,i. The action posterior in (19) has a standard form. Note that its prior mean depends on effect parameters Ψt,
which are sampled.
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C POSTERIOR DERIVATIONS FOR MIXED-EFFECT LINEAR BANDIT

Here we provide the derivations of the effect posterior and action posteriors for the setting introduced in Section 2.4 and
summarized in (2). Precisely, we present the proof for Proposition 1 in Appendix C.1 and the proof of Proposition 2 in
Appendix C.2.

C.1 Effect Posterior Derivation

Proof of Proposition 1 (derivation of Qt). First, from basic properties of matrix operations in Appendix A.2, we have that∑
ℓ∈[L] bi,ℓψ∗,ℓ = ΓiΨ∗ where Ψ∗ = (ψ∗,ℓ)ℓ∈[L] ∈ RLd and Γi = b⊤i ⊗ Id (refer to Appendix D.1 for derivation detail).

Thus our model can be written as

Ψ∗ ∼ N (µΨ,ΣΨ) ,

θ∗,i | Ψ∗ ∼ N (ΓiΨ∗,Σ0,i) , ∀i ∈ [K] ,

Yℓ | Xℓ, θ∗,Aℓ
∼ N (X⊤

ℓ θ∗,Aℓ
, σ2) , ∀ℓ ∈ [t] . (20)

It follows that the joint effect posterior in round t reads

Qt(Ψ) ∝ P (Ht |Ψ∗ = Ψ)Q0(Ψ)
(i)
=
∏
i∈[K]

P (Ht,i |Ψ∗ = Ψ)Q0(Ψ) , (21)

=
∏
i∈[K]

∫
θi

P (Ht,i, θ∗,i = θi |Ψ∗ = Ψ)dθiQ0(Ψ) =
∏
i∈[K]

∫
θi

Lt,i(θi)P0,i (θi | Ψ)dθiQ0(Ψ) , (22)

∝
∏
i∈[K]

∫
θi

Lt,i(θi)N (θi; ΓiΨ,Σ0,i) dθiN (Ψ;µΨ,ΣΨ) ,

=
∏
i∈[K]

∫
θi

 ∏
ℓ∈St,i

N (Yℓ;X
⊤
ℓ θi, σ

2)

N (θi; ΓiΨ,Σ0,i) dθiN (Ψ;µΨ,ΣΨ) . (23)

Here (i) follows from the fact that θ∗,i for i ∈ [K] are conditionally independent given Ψ∗ = Ψ and that Ht,i depends on

Ψ∗ only through θ∗,i. Now we compute the quantity
∫
θi

(∏
ℓ∈St,i

N (Yℓ;X
⊤
ℓ θi, σ

2)
)
N (θi; ΓiΨ,Σ0,i) dθi using Lemma 1.

Precisely, we obtain that it is proportional to N (Ψ; µ̄t,i, Σ̄t,i) where

Σ̄−1
t,i = Γ⊤

i

(
Σ0,i +G−1

t,i

)−1
Γi,

µ̄t,i = Σ̄t,i
(
Γ⊤
i (Σ0,i +G−1

t,i )
−1G−1

t,i Bt,i
)
,

and

Gt,i = σ−2
∑
ℓ∈St,i

XℓX
⊤
ℓ , Bt,i = σ−2

∑
ℓ∈St,i

YℓXℓ .

This means that the effect posterior Qt is the product of K + 1 multivariate Gaussian distributions
N (µΨ,ΣΨ),N (µ̄t,1, Σ̄t,1), . . . ,N (µ̄t,K , Σ̄t,K). Thus, the effect posterior Qt is also a multivariate Gaussian distribu-
tion N (µ̄t, Σ̄

−1
t ), where

Σ̄−1
t = Σ−1

Ψ +

K∑
i=1

Σ̄−1
t,i = Σ−1

Ψ +

K∑
i=1

Γ⊤
i

(
Σ0,i +G−1

t,i

)−1
Γi ,

µ̄t = Σ̄t

(
Σ−1

Ψ µΨ +

K∑
i=1

Σ̄−1
t,i µ̄t,i

)
= Σ̄t

(
Σ−1

Ψ µΨ +

K∑
i=1

Γ⊤
i (Σ0,i +G−1

t,i )
−1G−1

t,i Bt,i

)
.

Moreover, we use the properties in Appendix A.2 and that Γi = b⊤i ⊗ Id to rewrite the terms as

Γ⊤
i

(
Σ0,i +G−1

t,i

)−1
Γi = bib

⊤
i ⊗

(
Σ0,i +G−1

t,i

)−1
,

Γ⊤
i (Σ0,i +G−1

t,i )
−1G−1

t,i Bt,i = bi ⊗
(
(Σ0,i +G−1

t,i )
−1G−1

t,i Bt,i
)
.

This concludes the proof.
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To reduce clutter, we fix an action i ∈ [K] and a round t ∈ [n] and drop subindexing by i and t in the following lemma. In
summary, there exist i ∈ [K] and t ∈ [n] such that we have the following correspondences:

Γ← Γi , Σ0 ← Σ0,i , N ← Nt,i , θ ← θi , (Xℓ, Yℓ)ℓ∈[N ] ← (Xℓ, Yℓ)ℓ∈St,i
,

Lemma 1 (Gaussian posterior update). Let Γ ∈ Rd×Ld , Σ0 ∈ Rd×d , and σ > 0 then we have that∫
θ

(
N∏
ℓ=1

N (Yℓ;X
⊤
ℓ θ, σ

2)

)
N (θ; ΓΨ,Σ0) dθ ∝ N (Ψ;µN ,ΣN ) .

where

Σ−1
N = Γ⊤ (Σ0 +G−1

N

)−1
Γ ,

µN = ΣN
(
Γ⊤(Σ0 +G−1

N )−1G−1
N BN

)
,

and

GN = σ−2
N∑
k=1

XkX
⊤
k , BN = σ−2

N∑
k=1

YkXk .

Proof. Let v = σ−2 , Λ0 = Σ−1
0 . We denote the integral in the lemma by f(Ψ). It follows that

f(Ψ) =

∫
θ

(
N∏
ℓ=1

N (Yℓ;X
⊤
ℓ θ, σ

2)

)
N (θ; ΓΨ,Σ0) dθ ,

∝
∫
θ

exp

[
−1

2
v

N∑
ℓ=1

(Yℓ −X⊤
ℓ θ)

2 − 1

2
(θ − ΓΨ)⊤Λ0(θ − ΓΨ)

]
dθ ,

=

∫
θ

exp

[
−1

2

(
v

N∑
ℓ=1

(Y 2
ℓ − 2Yℓθ

⊤Xℓ + (θ⊤Xℓ)
2) + θ⊤Λ0θ − 2θ⊤Λ0ΓΨ + (ΓΨ)⊤Λ0(ΓΨ)

)]
dθ ,

∝
∫
θ

exp

[
−1

2

(
θ⊤

(
v

N∑
ℓ=1

XℓX
⊤
ℓ + Λ0

)
θ − 2θ⊤

(
v

N∑
ℓ=1

YℓXℓ + Λ0ΓΨ

)
+ (ΓΨ)⊤Λ0(ΓΨ)

)]
dθ .

To reduce clutter, let

GN = v

N∑
ℓ=1

XℓX
⊤
ℓ , VN = (GN + Λ0)

−1
, UN = V −1

N ,

BN = v

N∑
ℓ=1

YℓXℓ and βN = VN (BN + Λ0ΓΨ) .

We have that UNVN = VNUN = Id , and thus

f(Ψ) ∝
∫
θ

exp

[
−1

2

(
θ⊤UNθ − 2θ⊤UNVN (BN + Λ0ΓΨ) + (ΓΨ)⊤Λ0(ΓΨ)

)]
dθ ,

=

∫
θ

exp

[
−1

2

(
θ⊤UNθ − 2θ⊤UNβN + (ΓΨ)⊤Λ0(ΓΨ)

)]
dθ ,

=

∫
θ

exp

[
−1

2

(
(θ − βN )⊤UN (θ − βN )− β⊤

NUNβN + (ΓΨ)⊤Λ0(ΓΨ)
)]

dθ ,

∝ exp

[
−1

2

(
−β⊤

NUNβN + (ΓΨ)⊤Λ0(ΓΨ)
)]

,

= exp

[
−1

2

(
− (BN + Λ0ΓΨ)

⊤
VN (BN + Λ0ΓΨ) + (ΓΨ)⊤Λ0(ΓΨ)

)]
,

∝ exp

[
−1

2

(
Ψ⊤Γ⊤ (Λ0 − Λ0VNΛ0) ΓΨ− 2Ψ⊤ (Γ⊤Λ0VNBN

))]
,

= exp

[
−1

2
Ψ⊤Σ−1

N Ψ+Ψ⊤Σ−1
N µN

]
,
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where

Σ−1
N = Γ⊤ (Λ0 − Λ0VNΛ0) Γ = Γ⊤ (Λ−1

0 +G−1
N

)−1
Γ ,

Σ−1
N µN =

(
Γ⊤Λ0VNBN

)
= Γ⊤(Σ0 +G−1

N )−1G−1
N BN . (24)

We use the Woodbury matrix identity to get the second equalities which concludes the proof.

C.2 Action Posterior Derivation for Mixed-Effect Linear Bandit

Proof of Proposition 2 (Derivation of Pt,i). This proposition is a direct application Lemma 2; in which case we get that the
posterior Pt,i is a multivariate Gaussian distribution N (µ̃t,i, Σ̃t,i), where

Σ̃−1
t,i = Gt,i +Σ−1

0,i ,

µ̃t,i = Σ̃t,i

(
Bt,i +Σ−1

0,i

L∑
ℓ=1

bi,ℓψt,ℓ

)
.

To reduce clutter, we consider a fixed action i ∈ [K] and round t ∈ [n], and drop subindexing by t and i in Lemma 2. In
summary, there exist i ∈ [K] and t ∈ [n] such that we have the following correspondences:

bℓ ← bi,ℓ , Σ0 ← Σ0,i , N ← Nt,i , θ∗ ← θ∗,i , (Xℓ, Yℓ)ℓ∈[N ] ← (Xℓ, Yℓ)ℓ∈St,i .

Lemma 2. Consider the following model

θ∗ | Ψ∗ ∼ N

(
L∑
ℓ=1

bℓψ∗,ℓ,Σ0

)
,

Yℓ | Xℓ, θ∗ ∼ N
(
X⊤
ℓ θ∗, σ

2
)
, ∀ℓ ∈ [N ] .

Let H = {X1, Y1, . . . , XN , YN} then we have that P (θ∗ = θ |Ψ∗ = Ψ, H) = N
(
θ; µ̃N , Σ̃N

)
, where

Σ̃−1
N = σ−2

N∑
ℓ=1

XℓX
⊤
ℓ +Σ−1

0 ,

µ̃N = Σ̃N

(
σ−2

N∑
ℓ=1

XℓYℓ +Σ−1
0

L∑
ℓ=1

bℓψℓ

)
.

Proof. Let v = σ−2 , Λ0 = Σ−1
0 . Then the action posterior decomposes as

P (θ∗ = θ |Ψ∗ = Ψ, H) ,

∝ P (H |Ψ∗ = Ψ, θ∗ = θ)P (θ∗ = θ |Ψ∗ = Ψ) ,

= P (H | θ∗ = θ)P (θ∗ = θ |Ψ∗ = Ψ) , (H depends on Ψ∗ only through θ∗) ,

=

N∏
ℓ=1

N (Yℓ;X
⊤
ℓ θ, σ

2)N (θ;

L∑
ℓ=1

bℓψℓ,Σ0) ,

= exp

−1

2

v N∑
ℓ=1

(Y 2
ℓ − 2YℓX

⊤
ℓ θ + (X⊤

ℓ θ)
2) + θ⊤Λ0θ − 2θ⊤Λ0

L∑
ℓ=1

bℓψℓ +

(
L∑
ℓ=1

bℓψℓ

)⊤

Λ0

(
L∑
ℓ=1

bℓψℓ

) ,
∝ exp

[
−1

2

(
θ⊤(v

N∑
ℓ=1

XℓX
⊤
ℓ + Λ0)θ − 2θ⊤

(
v

N∑
ℓ=1

XℓYℓ + Λ0

L∑
ℓ=1

bℓψℓ

))]
,

∝ N
(
θ; µ̃N ,

(
Λ̃N

)−1
)
,

where Λ̃N = v
∑N
ℓ=1XℓX

⊤
ℓ + Λ0 , and Λ̃N µ̃N = v

∑N
ℓ=1XℓYℓ + Λ0

∑L
ℓ=1 bℓψℓ .
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D REGRET PROOFS

In this section, we prove a more general version of Theorem 1. First, we provide a compact formulation of our problem in
Appendix D.1. Next, we use the total covariance decomposition to derive the covariance of P (θ∗,i = θ |Ht) in Appendix D.2.
Finally, we provide preliminary eigenvalue results in Appendix D.3 to proceed with the regret proof in Appendix D.4.

D.1 Problem Reformulation for Regret Analysis

Here, we aim at rewriting our model in a compact form to simplify regret analysis. We first introduce K i.i.d. multivariate
Gaussian variables Zi ∼ N (0,Σ0,i) for i ∈ [K], and the following matrix

Ψmat,∗ = [ψ∗,1, . . . , ψ∗,L] ∈ Rd×L .

First, we have that Vec(Ψmat,∗) = Ψ∗ where Ψ∗ is defined in Section 2. Moreover notice that
∑L
ℓ=1 bi,ℓψ∗,ℓ = Ψmat,∗bi

and thus given matrix Ψmat,∗ we have that

θ∗,i = Ψmat,∗bi + Zi , ∀i ∈ [K] . (25)

We vectorize (25) to obtain

θ∗,i = Vec(θ∗,i) = Vec(Ψmat,∗bi + Zi) = Vec(Ψmat,∗bi) + Zi , (26)

where we used that if X ∈ Rd (a column vector), then X = Vec(X) and that Vec(·) is a linear transformation. Also, we
know from (c) in Appendix A.2 that Vec(AB) = (B⊤ ⊗ In)Vec(A) for any A ∈ Rn×m,B ∈ Rm×p. Therefore,

θ∗,i = ΓiΨ∗ + Zi , (27)

where Γi = b⊤i ⊗ Id and we used that Vec(Ψmat,∗) = Ψ∗. It follows that

θ∗,i | Ψ∗ ∼ N (ΓiΨ∗,Σ0,i) , (28)

This allows us to rewrite our model as a single-parent hierarchical model

Ψ∗ ∼ N (µΨ,ΣΨ) , (29)
θ∗,i | Ψ∗ ∼ N (ΓiΨ∗,Σ0,i) , ∀i ∈ [K] ,

Yt | Xt, θ∗,At
∼ N (X⊤

t θ∗,At
, σ2) , ∀t ∈ [n] .

D.2 Derivation of P (θ∗,i = θ |Ht)

Let

Gt,i = σ−2
∑
ℓ∈St,i

XℓX
⊤
ℓ , Bt,i = σ−2

∑
ℓ∈St,i

YℓXℓ .

Lemma 3 (Covariance of P (θ∗,i = θ |Ht)). Consider the model in (2) and let Ψ∗ | Ht ∼ N (µ̄t, Σ̄t), then we have

Σ̂t,i = cov [θ∗,i |Ht] = Σ̃t,i + Σ̃t,iΣ
−1
0,iΓiΣ̄tΓ

⊤
i Σ

−1
0,i Σ̃t,i , ∀i ∈ [K] .

where Σ̃t,i = cov [θ∗,i |Ψ∗, Ht] =
(
Gt,i +Σ−1

0,i

)−1
.

Proof. Proposition 2 and the fact that
∑
ℓ∈[L] bi,ℓψ∗,ℓ = ΓiΨ∗ where Γi = b⊤i ⊗ Id (Appendix D.1) yield

cov [θ∗,i |Ψ∗, Ht] = (Gt,i + Λ0,i)
−1

E [θ∗,i |Ψ∗, Ht] = cov [θ∗,i |Ψ∗, Ht] (Bt,i + Λ0,iΓiΨ∗)

First, given Ht, cov [θ∗,i |Ψ∗, Ht] = (Gt,i + Λ0,i)
−1 is constant (does not depend on Ψ∗). Thus

E [cov [θ∗,i |Ψ∗, Ht] |Ht] = cov [θ∗,i |Ψ∗, Ht] = (Gt,i + Λ0,i)
−1

.
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In addition, given Ht, both (Gt,i + Λ0,i)
−1 and Bt,i are constant. Thus

cov [E [θ∗,i |Ψ∗, Ht] |Ht] = cov [cov [θ∗,i |Ψ∗, Ht] Λ0,iΓiΨ∗ |Ht]

= (Gt,i + Λ0,i)
−1

Λ0,iΓicov [Ψ∗ |Ht] Γ
⊤
i Λ0,i (Gt,i + Λ0,i)

−1

= (Gt,i + Λ0,i)
−1

Λ0,iΓiΣ̄tΓ
⊤
i Λ0,i (Gt,i + Λ0,i)

−1
.

Finally, total covariance decomposition (Weiss, 2005) concludes the proof.

D.3 Preliminary Eigenvalues Results

Next we present some preliminary upper bounds on the maximum eigenvalues of our covariance matrices.

• Definitions: Let λ1,0 = maxi∈[K] λ1(Σ0,i) , λd,0 = mini∈[K] λd(Σ0,i) , λ1,Ψ = λ1(ΣΨ) , and κb = maxi∈[K] ∥bi∥22.
• upper bound of λ1(ΓiΓ⊤

i ):

λ1(ΓiΓ
⊤
i ) ≤ κb , ∀i ∈ [K] . (30)

Similarly, we have that

λ1(Γ
⊤
i Γi) ≤ κb , ∀i ∈ [K] . (31)

• upper bound of λ1(Σ̂t,i):

λ1(Σ̂t,i) ≤ λ1,0 +
λ21,0λ1,Ψκb

λ2d,0
, ∀i ∈ [K] . (32)

• upper bound of λ1(Σ̄−1
n+1):

λ1(Σ̄
−1
n+1) ≤

1

λ1,Ψ
+Kκb

( 1

λd,0
− 1

λ21,0
(
κxn
σ2 + 1

λd,0

)) . (33)

Proof. We start with (30), we obtain the last inequality as follows. First, recall that Γi = b⊤i ⊗ Id for any i ∈ [K]. Thus
ΓiΓ

⊤
i = (b⊤i ⊗ Id)(bi ⊗ Id) = ∥bi∥22Id for any i ∈ [K]. Then λ1(ΓiΓ⊤

i ) = ∥bi∥22 ≤ κb . The second result follows from
the fact that λ1(ΓiΓ⊤

i ) = λ1(Γ
⊤
i Γi).

Now we prove the result in (32). This follows from the expression of Σ̂t,i in Lemma 3. Precisely, we have that

Σ̂t,i = Σ̃t,i + Σ̃t,iΣ
−1
0,iΓiΣ̄tΓ

⊤
i Σ

−1
0,i Σ̃t,i , ∀i ∈ [K] .

where Σ̃t,i =
(
Gt,i +Σ−1

0,i

)−1
. Thus Weyl’s inequality combined with the properties in Appendix A.2 yields that

λ1(Σ̂t,i) ≤ λ1(Σ̃t,i) + λ1(Σ̃t,i)λ1(Σ
−1
0,i )λ1(ΓiΣ̄tΓ

⊤
i )λ1(Σ

−1
0,i )λ1(Σ̃t,i) ≤ λ1,0 +

λ21,0λ1,Ψκb

λ2d,0

In the last inequality, we used that λ1(ΓiΣ̄tΓ⊤
i ) ≤ λ1(Σ̄t)λ(ΓiΓ

⊤
i ), ((f) in Appendix A.2), λ1(Σ−1

0,i ) ≤ 1
λd,0

, and

λ1(Σ̃t,i) ≤ λ1,0.

Finally, we prove the result in (33). First, we rewrite the precision matrix of the effect posterior Σ̄−1
t using the compact

notation introduced in Appendix D.1. Precisely, it follows from (24) that

Σ̄−1
t

(i)
= Σ−1

Ψ +

K∑
i=1

Γ⊤
i

(
Σ0,i +G−1

t,i

)−1
Γi

(ii)
= Σ−1

Ψ +

K∑
i=1

Γ⊤
i

(
Σ−1

0,i − Σ−1
0,i (Gt,i +Σ−1

0,i )
−1Σ−1

0,i

)
Γi ,

(iii)
= Σ−1

Ψ +

K∑
i=1

Γ⊤
i

(
Σ−1

0,i − Σ−1
0,i Σ̃t,iΣ

−1
0,i

)
Γi .
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The equality (i) requires Gt,i to be invertible and was only given in the main manuscript to ease the exposition. Note that (i)
is obtained by applying the Woodbury matrix identity on (ii). In our proof, we use (ii) and (iii) which are the same; (iii)
follows from plugging Σ̃t,i = (Gt,i +Σ−1

0,i )
−1 in (ii). Then we have that

λ1(Σ̄
−1
n+1) = λ1

(
Σ−1

Ψ +

K∑
i=1

Γ⊤
i

(
Σ−1

0,i − Σ−1
0,i Σ̃n+1,iΣ

−1
0,i

)
Γi

)
≤ 1

λ1,Ψ
+

K∑
i=1

λ1

(
Γ⊤
i

(
Σ−1

0,i − Σ−1
0,i Σ̃n+1,iΣ

−1
0,i

)
Γi

)
,

≤ 1

λ1,Ψ
+

K∑
i=1

λ1(Γ
⊤
i Γi)λ1

(
Σ−1

0,i − Σ−1
0,i Σ̃n+1,iΣ

−1
0,i

)
≤ 1

λ1,Ψ
+

K∑
i=1

κb

(
λ1
(
Σ−1

0,i

)
+ λ1

(
−Σ−1

0,i Σ̃n+1,iΣ
−1
0,i

))
,

≤ 1

λ1,Ψ
+

K∑
i=1

κb

(
1

λd,0
− λd

(
Σ−1

0,i Σ̃n+1,iΣ
−1
0,i

))
≤ 1

λ1,Ψ
+

K∑
i=1

κb

(
1

λd,0
− λd

(
Σ−1

0,i

)
λd

(
Σ̃n+1,i

)
λd
(
Σ−1

0,i

))
,

≤ 1

λ1,Ψ
+

K∑
i=1

κb

(
1

λd,0
− 1

λ21,0
λd

(
Σ̃n+1,i

))
=

1

λ1,Ψ
+

K∑
i=1

κb

(
1

λd,0
− 1

λ21,0λ1
(
Gn+1,i +Σ−1

0,i

)) ,

≤ 1

λ1,Ψ
+

K∑
i=1

κb

 1

λd,0
− 1

λ21,0

(
κxn
σ2 + 1

λd,0

)
 =

1

λ1,Ψ
+Kκb

 1

λd,0
− 1

λ21,0

(
κxn
σ2 + 1

λd,0

)
 .

This concludes the proof.

D.4 Regret Proof

Here we prove a more general version of Theorem 1 where we do not assume that the covariance matrices Σ0,i and ΣΨ are
diagonal. We still assume that there exists κx > 0 such that ∥Xt∥22 ≤ κx for any t ∈ [n].
Theorem 2 (General version of Theorem 1). For any δ ∈ (0, 1), the Bayes regret of meTS in the mixed-effect model in
Section 2.4 is bounded as

BR(n) ≤
√
2n (RA(n) +RE(n)) log(1/δ) + cnδ , (34)

with c =
√

2
πκx

(
λ1,0 +

λ2
1,0λ1,Ψκb

λ2
d,0

)
K , κb = maxi∈[K] ∥bi∥22 , λ1,0 = maxi∈[K] λ1(Σ0,i) , λd,0 = mini∈[K] λd(Σ0,i) ,

λ1,Ψ = λ1(ΣΨ) and

RA(n) = dKcA log
(
1 +

nκxλ1,0

σ2d

)
, cA =

κxλ1,0

log(1+
κxλ1,0

σ2 )
,

RE(n) = dLcE log
(
1 +Kκbλ1,Ψ

(
1

λd,0
− 1

λ2
1,0

(
κxn

σ2 + 1
λd,0

))) , cE =
κxκbλ

2
1,0λ1,Ψ

(
1+

κxλ1,0

σ2

)
λ2
d,0 log

(
1+

κxκbλ
2
1,0λ1,Ψ

σ2λ2
d,0

) .
In particular, the result in Theorem 1 is retrieved when λ1,0 = λd,0 = σ2

0 , and λΨ = σ2
Ψ .

Proof. Consider our model rewritten in (29). As we explained in Section 4.3, the posterior distribution of the action
parameter θ∗,i | Ht is a multivariate Gaussian distribution N (µ̂t,i, Σ̂t,i) for some µ̂t,i ∈ Rd and Σ̂t,i ∈ Rd×d (Lemma 3).
Now we let θt,∗ = (X⊤

t θ∗,i)i∈[K] ∈ RK be the concatenation of the expected rewards of actions in round t. Notice that
the context Xt is known in round t, and thus we include it in the history Ht. Then, the joint posterior of the expected
rewards, θt,∗ | Ht, is also a multivariate Gaussian N (θ̌t, Σ̌t) for θ̌t = (X⊤

t µ̂t,i)i∈[K] ∈ RK and Σ̌t ∈ RK×K . This follows
from the properties of Gaussian distributions (Koller and Friedman, 2009) and the fact that Xt is now included in Ht. Let
At ∈ {0, 1}K and At,∗ ∈ {0, 1}K be indicator vectors of the taken action At and optimal action At,∗, respectively (The
vector representations are in bold letters while the integer representations are in regular letters). Then the Bayes regret can
be rewritten and consequently decomposed following standard analysis (Russo and Van Roy, 2014) as

BR(n) = E

[
n∑
t=1

X⊤
t θ∗,At,∗ −X⊤

t θ∗,At

]
, (35)

= E
[ n∑
t=1

A⊤
t,∗θt,∗ −A⊤

t θt,∗

]
= E

[
E
[
A⊤
t,∗(θt,∗ − θ̌t)

∣∣Ht

]]
+ E

[
E
[
A⊤
t (θ̌t − θt,∗)

∣∣Ht

]]
.
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This follows from the fact that θ̌t = (X⊤
t µ̂t,i)i∈[K] is deterministic given Ht (since Ht now includes Xt), and that At,∗ and

At are i.i.d. given Ht. Moreover, given Ht, θ̌t − θt,∗ is a zero-mean multivariate random variable independent of At and
thus E[A⊤

t (θ̌t − θt,∗) | Ht] = 0. Therefore, we only need to bound the first term in (35). With slight abuse of notation,
let A be the set of all possible indicator vectors of actions a ∈ [K]. Precisely, an action a ∈ [K] is also represented by an
indicator vector a ∈ A ⊂ {0, 1}K (in bold letter). Then we define the following events

Et,a(δ) =
{
|a⊤(θt,∗ − θ̌t)| ≤

√
2 log(1/δ)∥a∥Σ̌t

}
, ∀δ ∈ (0, 1) , ∀a ∈ A .

Fix history Ht, we split the expectation over the two complementary events Et,At,∗(δ) and Ēt,At,∗(δ), and use the
Cauchy-Schwarz inequality to obtain

E
[
A⊤
t,∗(θt,∗ − θ̌t)

∣∣Ht

]
≤
√
2 log(1/δ)E

[
∥At,∗∥Σ̌t

∣∣Ht

]
+ E

[
A⊤
t,∗(θt,∗ − θ̌t)1

{
Ēt,At,∗(δ)

} ∣∣Ht

]
. (36)

Now the second term in (36) can be bounded as follows. For any a ∈ A , let Za = a⊤(θt,∗ − θ̌t). Then we have that

E
[
A⊤
t,∗(θt,∗ − θ̌t)1

{
Ēt,At,∗(δ)

} ∣∣Ht

] (i)
= E

[
ZAt,∗1

{
|ZAt,∗ | >

√
2 log(1/δ)∥At,∗∥Σ̌t

} ∣∣∣Ht

]
,

(ii)

≤ E
[
|ZAt,∗ |1

{
|ZAt,∗ | >

√
2 log(1/δ)∥At,∗∥Σ̌t

} ∣∣∣Ht

]
,

(iii)

≤
∑
a∈A

E
[
|Za|1

{
|Za| >

√
2 log(1/δ)∥a∥Σ̌t

} ∣∣∣Ht

]
,

(iv)

≤
∑
a∈A

2

∥a∥Σ̌t

√
2π

∫ ∞

u=
√

2 log(1/δ)∥a∥Σ̌t

u exp

[
− u2

2∥a∥2
Σ̌t

]
du ,

(v)

≤
∑
a∈A
∥a∥Σ̌t

2√
2π

∫ ∞

u=
√

2 log(1/δ)

u exp

[
−u

2

2

]
du

(vi)

≤
√

2

π
λmax,tKδ . (37)

In (i), we simply rewrite the terms using the random variable ZAt,∗ . In (ii), we use the fact that ZAt,∗ ≤ |ZAt,∗ |. In

(iii), we upper bound the expectation over |ZAt,∗ |1
{
|ZAt,∗ | >

√
2 log(1/δ)∥At,∗∥Σ̌t

}
with the sum of the expectations

over |Za|1
{
|Za| >

√
2 log(1/δ)∥a∥Σ̌t

}
for a ∈ A since all these random variables are non-negative. Moreover, (iv)

follows from the facts that given Ht , Za ∼ N (0, ∥a∥2
Σ̌t
), and that if Z ∼ N (0, σ2), then for any ϵ ≥ 0 , P(|Z| > ϵ) ≤

2P(Z > ϵ). In (v), we use the change of variables u ← u/∥a∥Σ̌t
. Finally, in (vi), we compute the integral and set

λmax,t = maxa∈A ∥a∥Σ̌t
. We combine (36) and (37) with the fact that At and At,∗ are i.i.d. given Ht to obtain that

E
[
A⊤
t,∗(θt,∗ − θ̌t)

∣∣Ht

]
≤
√
2 log(1/δ)E

[
∥At∥Σ̌t

∣∣Ht

]
+

√
2

π
λmax,tKδ . (38)

The bound in (38) holds for any history Ht and thus we take an additional expectation and get that

BR(n) = E

[
n∑
t=1

A⊤
t,∗θt,∗ −A⊤

t θt,∗

]
≤
√
2 log(1/δ)E

[
n∑
t=1

∥At∥Σ̌t

]
+

√
2

π
λmax,tKnδ ,

(i)

≤
√
2n log(1/δ)E

√√√√ n∑
t=1

∥At∥2Σ̌t

+

√
2

π
λmax,tKnδ ,

(ii)

≤
√
2n log(1/δ)

√√√√E

[
n∑
t=1

∥At∥2Σ̌t

]
+

√
2

π
λmax,tKnδ ,

where we use the Cauchy-Schwarz inequality in (i), and (ii) follows from the concavity of the square root. Now note that any
a ∈ A is an indicator vector and that Σ̌t is the covariance of the joint posterior of the expected rewards (X⊤

t θ∗,a)a∈[K] | Ht.
Therefore, for any a ∈ A, ∥a∥2

Σ̌t
= σ̌2

a is the variance of X⊤
t θ∗,a | Ht. But we know that θ∗,a | Ht is a multivariate

Gaussian and its covariance is Σ̂t,a (Lemma 3). Thus the variance of X⊤θ∗,a | Ht is σ̌2
a = X⊤

t Σ̂t,aXt. It follows that for
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any a ∈ A , ∥a∥2
Σ̌t

= X⊤
t Σ̂t,aXt = ∥Xt∥2Σ̂t,a

. In particular, ∥At∥2Σ̌t
= X⊤

t Σ̂t,AtXt. Combining this with (32) yields

that λmax,t = maxa∈A ∥a∥Σ̌t
= maxa∈A ∥Xt∥Σ̂t,a

≤ maxa∈A

√
λ1(Σ̂t,a)κx ≤

√(
λ1,0 +

λ2
1,0λ1,Ψκb

λ2
d,0

)
κx. Then we let

c =

√
2
π

(
λ1,0 +

λ2
1,0λ1,Ψκb

λ2
d,0

)
κxK which allows us to write

BR(n) ≤
√
2n log(1/δ)

√√√√E

[
n∑
t=1

∥Xt∥2Σ̂t,At

]
+ cnδ . (39)

Now we focus on the the term
√
E
[∑n

t=1 ∥Xt∥2Σ̂t,At

]
that we decompose and bound as

∥Xt∥2Σ̂t,At

= σ2X
⊤
t Σ̂t,At

Xt

σ2

(i)
= σ2

(
σ−2X⊤

t Σ̃t,At
Xt + σ−2X⊤

t Σ̃t,At
Σ−1

0,At
ΓAt

Σ̄tΓ
⊤
At
Σ−1

0,At
Σ̃t,At

Xt

)
,

(ii)

≤ cA log(1 + σ−2X⊤
t Σ̃t,At

Xt) + c1 log(1 + σ−2X⊤
t Σ̃t,At

Σ−1
0,At

ΓAt
Σ̄tΓ

⊤
At
Σ−1

0,At
Σ̃t,At

Xt) , (40)

where (i) follows from Σ̂t,At = Σ̃t,At + Σ̃t,AtΣ
−1
0,At

ΓAtΣ̄tΓ
⊤
At
Σ−1

0,At
Σ̃t,At , and we use the following inequality in (ii)

x =
x

log(1 + x)
log(1 + x) ≤

(
max
x∈[0,u]

x

log(1 + x)

)
log(1 + x) =

u

log(1 + u)
log(1 + x) ,

which holds for any x ∈ [0, u], where constants cA and c1 are derived as

cA =
κxλ1,0

log(1 + σ−2κxλ1,0)
, c1 =

cΨ
log(1 + σ−2cΨ)

, cΨ =
κxκbλ

2
1,0λ1,Ψ

λ2d,0
,

The derivation of cA uses that

X⊤
t Σ̃t,AtXt ≤ λ1(Σ̃t,At)∥Xt∥2 ≤ λ−1

d (Σ−1
0,At

+Gt,At)κx ≤ λ−1
d (Σ−1

0,At
)κx = λ1(Σ0,At)κx ≤ λ1,0κx .

The derivation of c1 follows from

X⊤
t Σ̃t,At

Σ−1
0,At

ΓAt
Σ̄tΓ

⊤
At
Σ−1

0,At
Σ̃t,At

Xt ≤ λ21(Σ̃t,At
)λ21(Σ

−1
0,At

)λ1(ΓAt
Σ̄tΓ

⊤
At
)κx ≤

λ21(Σ0,At
)λ1,Ψλ1(ΓAt

Γ⊤
At
)κx

λ2d(Σ0,At)
,

≤
λ21,0λ1,Ψκbκx

λ2d,0
.

The first inequality follows from Weyl’s inequality and the fact that λ1(Σ̄t) ≤ λ1(ΣΨ) = λ1,Ψ and λ1(Σ̃t,At
) ≤ λ1(Σ0,At

).
Now we focus on bounding the logarithmic terms in (40).

First Term in (40) We first rewrite this term as

log(1 + σ−2X⊤
t Σ̃t,At

Xt)
(i)
= log det(Id + σ−2Σ̃

1
2

t,At
XtX

⊤
t Σ̃

1
2

t,At
) ,

= log det(Σ̃−1
t,At

+ σ−2XtX
⊤
t )− log det(Σ̃−1

t,At
) = log det(Σ̃−1

t+1,At
)− log det(Σ̃−1

t,At
) ,

where (i) follows from the Weinstein–Aronszajn identity. Then we sum over all rounds t ∈ [n], and get a telescoping that
leads to

n∑
t=1

log det(Id + σ−2Σ̃
1
2

t,At
XtX

⊤
t Σ̃

1
2

t,At
) =

n∑
t=1

log det(Σ̃−1
t+1,At

)− log det(Σ̃−1
t,At

) ,

=

n∑
t=1

K∑
i=1

log det(Σ̃−1
t+1,i)− log det(Σ̃−1

t,i ) =

K∑
i=1

n∑
t=1

log det(Σ̃−1
t+1,i)− log det(Σ̃−1

t,i ) ,

=

K∑
i=1

log det(Σ̃−1
n+1,i)− log det(Σ̃−1

1,i )
(i)
=

K∑
i=1

log det(Σ
1
2
0,iΣ̃

−1
n+1,iΣ

1
2
0,i)

(ii)

≤
K∑
i=1

d log

(
1

d
Tr(Σ

1
2
0,iΣ̃

−1
n+1,iΣ

1
2
0,i)

)

≤
K∑
i=1

d log

(
1 +

κxλ1(Σ0,i)n

σ2d

)
≤ Kd log

(
1 +

κxλ1,0n

σ2d

)
.
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where (i) follows from the fact that Σ̃1,i = Σ0,i and we use the inequality of arithmetic and geometric means in (ii).

Second Term in (40) First, we rewrite the covariance matrix of the effect posterior Σ̄t using the compact notation introduced
in Appendix D.1. Precisely, it follows from (24) that

Σ̄−1
t

(i)
= Σ−1

Ψ +

K∑
i=1

Γ⊤
i

(
Σ0,i +G−1

t,i

)−1
Γi

(ii)
= Σ−1

Ψ +

K∑
i=1

Γ⊤
i

(
Σ−1

0,i − Σ−1
0,i (Gt,i +Σ−1

0,i )
−1Σ−1

0,i

)
Γi ,

(iii)
= Σ−1

Ψ +

K∑
i=1

Γ⊤
i

(
Σ−1

0,i − Σ−1
0,i Σ̃t,iΣ

−1
0,i

)
Γi . (41)

The equality (i) requires Gt,i to be invertible and was only given in the main manuscript to ease the exposition. In our
proof, we use (ii) and (iii) which are the same; (iii) follows from plugging Σ̃t,i = (Gt,i + Σ−1

0,i )
−1 in (ii). Now let

u = σ−1Σ̃
1
2

t,At
Xt. Then it follows from (iii) in (41) that

Σ̄−1
t+1 − Σ̄−1

t = Γ⊤
At

(
Σ−1

0,At
− Σ−1

0,At
(Σ̃−1

t,At
+ σ−2XtX

⊤
t )

−1Σ−1
0,At
− (Σ−1

0,At
− Σ−1

0,At
Σ̃t,At

Σ−1
0,At

)
)
ΓAt

,

= Γ⊤
At

(
Σ−1

0,At
(Σ̃t,At

− (Σ̃−1
t,At

+ σ−2XtX
⊤
t )

−1)Σ−1
0,At

)
ΓAt

,

= Γ⊤
At

(
Σ−1

0,At
Σ̃

1
2

t,At
(Id − (Id + σ−2Σ̃

1
2

t,At
XtX

⊤
t Σ̃

1
2

t,At
)−1)Σ̃

1
2

t,At
Σ−1

0,At

)
ΓAt

,

= Γ⊤
At

(
Σ−1

0,At
Σ̃

1
2

t,At
(Id − (Id + uu⊤)−1)Σ̃

1
2

t,At
Σ−1

0,At

)
ΓAt

,

(i)
= Γ⊤

At

(
Σ−1

0,At
Σ̃

1
2

t,At

uu⊤

1 + u⊤u
Σ̃

1
2

t,At
Σ−1

0,At

)
ΓAt = σ−2Γ⊤

At

(
Σ−1

0,At
Σ̃t,At

XtX
⊤
t

1 + u⊤u
Σ̃t,AtΣ

−1
0,At

)
ΓAt . (42)

In (i) we use the Sherman-Morrison formula. Moreover, we have that ∥Xt∥2 ≤ κx. Therefore,

1 + u⊤u = 1 + σ−2X⊤
t Σ̃t,At

Xt ≤ 1 + σ−2κxλ1(Σ0,At
) ≤ 1 + σ−2κxλ1,0 = c2 .

This allows us to bound the second logarithmic term in (40) as

log(1 + σ−2X⊤
t Σ̃t,AtΣ

−1
0,At

ΓAtΣ̄tΓ
⊤
At
Σ−1

0,At
Σ̃t,AtXt) ,

(i)

≤ c2 log(1 + c−1
2 σ−2X⊤

t Σ̃t,AtΣ
−1
0,At

ΓAtΣ̄tΓ
⊤
At
Σ−1

0,At
Σ̃t,AtXt) ,

(ii)
= c2 log det(ILd + c−1

2 σ−2Σ̄
1
2
t Γ

⊤
At
Σ−1

0,At
Σ̃t,AtXtX

⊤
t Σ̃t,AtΣ

−1
0,At

Σ̄
1
2
t ΓAt) ,

(iii)
= c2

[
log det(Σ̄−1

t + c−1
2 σ−2Γ⊤

At
Σ−1

0,At
Σ̃t,AtXtX

⊤
t Σ̃t,AtΣ

−1
0,At

ΓAt)− log det(Σ̄−1
t )
]
,

(iv)

≤ c2

[
log det(Σ̄−1

t + σ−2Γ⊤
At
Σ−1

0,At
Σ̃t,At

XtX
⊤
t

1 + u⊤u
Σ̃t,AtΣ

−1
0,At

ΓAt)− log det(Σ̄−1
t )

]
,

(v)
= c2

[
log det(Σ̄−1

t+1)− log det(Σ̄−1
t )
]
.

Here (i) follows from the fact that log(1 + x) ≤ c2 log(1 + c−1
2 x) for any x ≥ 0 and c2 ≥ 1. In (ii), we use the

Weinstein–Aronszajn identity. In (iii), we use the log product formula and the fact that the det is a multiplicative map. In
(iv), we use that c−1

2 ≤ 1/(1 + u⊤u). Finally, (v) follows from (42). Now we sum over all rounds and get telescoping

n∑
t=1

log det(ILd + σ−2Σ̄
1
2
t Γ

⊤
At
Σ−1

0,At
Σ̃t,At

XtX
⊤
t Σ̃t,At

Σ−1
0,At

Σ̄
1
2
t ΓAt

) ,

≤ c2
[
log det(Σ̄−1

n+1)− log det(Σ̄−1
1 )
]
= c2 log det(Σ

1
2

ΨΣ̄
−1
n+1Σ

1
2

Ψ)
(i)

≤ c2Ld log

(
1

Ld
Tr(Σ

1
2

ΨΣ̄
−1
n+1Σ

1
2

Ψ)

)
,

(ii)

≤ c2Ld log(λ1(Σ
1
2

ΨΣ̄
−1
n+1Σ

1
2

Ψ)) ≤ c2Ld log(λ1,Ψλ1(Σ̄
−1
n+1)) ,

(iii)

≤ c2Ld log
(
1 +Kκbλ1,Ψ

( 1

λd,0
− 1

λ21,0
(
κxn
σ2 + 1

λd,0

))) ,
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In (i) we use the inequality of arithmetic and geometric means. In (ii) we bound all eigenvalues in the trace by the maximum
eigenvalue. In (iii) we use the result in (33). We combine the upper bounds for both logarithmic terms and get

E

[
n∑
t=1

∥Xt∥2Σ̂t,At

]
≤ KdcA log

(
1 +

κxλ1,0n

σ2d

)
+ Ldc1c2 log

(
1 +Kκbλ1,Ψ

( 1

λd,0
− 1

λ21,0
(
κxn
σ2 + 1

λd,0

))) .
Finally, we set cE = c1c2, which concludes the proof for the general case. To retrieve the result in Theorem 1, we only need
to set λ1,0 = λd,0 = σ2

0 and λ1,Ψ = σ2
Ψ since we assumed that ΣΨ = σ2

ΨILd and that Σ0,i = σ2
0Id for any i ∈ [K]. In that

case, the second term simplifies as

log
(
1 +Kκbλ1,Ψ

( 1

λd,0
− 1

λ21,0
(
κxn
σ2 + 1

λd,0

))) = log
(
1 +Kκbσ

2
Ψ

( 1

σ2
0

− 1

σ4
0

(
κxn
σ2 + 1

σ2
0

))) ,
= log

(
1 +Kκbσ

2
Ψ

nκx
nκxσ2

0 + σ2

)
.

E EXTENSIONS

Here we present and discuss in detail possible extensions of meTS. We start with the factored approximation of the effect
posteriors (Appendix E.1) which improves computational efficiency with minimal impact on the empirical regret (Section 5
and Appendix F). We provide closed-form solutions for the factored effect posteriors in all the settings that we consider
in this paper. While Algorithm 1 can be applied to the general two-level hierarchical setting introduced in Section 2, we
only focused on cases where the dependencies of action parameters with effect parameters are captured through a linear
combination in the theoretical analysis and experiments. In Appendix E.2, we provide an extension of our analysis to
the case where the weights bi,ℓ are replaced by matrices Ci,ℓ. Moreover, in Appendix E.3, we present a way to introduce
non-linearity in effects. In Appendix E.4, we motivate deeper hierarchies, and provide intuition on the corresponding regret.

E.1 Factored Effect Posteriors

As discussed earlier, the number of actions K is often much larger than the number of effect parameters L. However,
L can also be large. In this section, we show how to improve the computational efficiency of meTS using factored
distributions (Bishop, 2006). Consider the practical models in (2) and (3) where the effect posterior is a multivariate
Gaussian Qt = N (µ̄t, Σ̄t) (Sections 3.2 and 3.3). Now suppose that it factorizes, that is Qt(Ψ) =

∏L
ℓ=1Qt,ℓ(ψℓ), where

Qt,ℓ is the effect posterior of the ℓ-th effect parameter ψ∗,ℓ. Then for any round t ∈ [n], the effect posterior Qt,ℓ is also
a multivariate Gaussian Qt,ℓ = N (µ̄t,ℓ, Σ̄t,ℓ), where Σ̄t,ℓ is the ℓ-th d × d diagonal block of Σ̄t, and µ̄t,ℓ ∈ Rd are such
that µ̄t = (µ̄t,ℓ)ℓ∈[L]. This allows for individual sampling of the effect parameters, which improves the space and time
complexity. Next we provide the factored effect posterior for the mixed-effect bandit settings considered in our paper.

Mixed-Effect Linear Bandit Consider the model in (2), we have that for any round t ∈ [n], the effect posterior Qt,ℓ is also
a multivariate Gaussian Qt,ℓ = N (µ̄t,ℓ, Σ̄t,ℓ), where

Σ̄−1
t,ℓ = Σ−1

ψℓ
+
∑
i∈[K] b

2
i,ℓ

(
Σ0,i +G−1

t,i

)−1
,

µ̄t,ℓ = Σ̄t,ℓ

(
Σ−1
ψℓ
µψℓ

+
∑
i∈[K] bi,ℓ

(
(Σ0,i +G−1

t,i )
−1G−1

t,i Bt,i
))

. (43)

Σψℓ
is the ℓ-th d× d diagonal block of ΣΨ, and µψℓ

∈ Rd are such that µΨ = (µψℓ
)ℓ∈[L].

Mixed-Effect Generalized Linear Bandit Consider the model in (3), we have that for any round t ∈ [n], the effect posterior
Qt,ℓ is also a multivariate Gaussian Qt,ℓ = N (µ̄t,ℓ, Σ̄t,ℓ), where

Σ̄−1
t,ℓ = Σ−1

ψℓ
+
∑
i∈[K] b

2
i,ℓ

(
Σ0,i +G−1

t,i

)−1
,

µ̄t,ℓ = Σ̄t,ℓ

(
Σ−1
ψℓ
µψℓ

+
∑
i∈[K] bi,ℓ

(
(Σ0,i +G−1

t,i )
−1G−1

t,i Bt,i
))

. (44)

Σψℓ
is the ℓ-th d× d diagonal block of ΣΨ, and µψℓ

∈ Rd are such that µΨ = (µψℓ
)ℓ∈[L].
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Mixed-Effect Multi-Armed Bandit Consider the model in (17), we have that for any round t ∈ [n], the effect posterior
Qt,ℓ is a univariate Gaussian Qt,ℓ = N (µ̄t,ℓ, Σ̄t,ℓ), where

σ̄−2
t,ℓ = σ−2

ψℓ
+
∑
i∈[K]

b2i,ℓ
Nt,i

Nt,iσ2
0,i + σ2

,

µ̄t,ℓ = σ̄2
t,ℓ

σ−2
ψℓ
µψℓ

+
∑
i∈[K]

bi,ℓ
Bt,i

Nt,iσ2
0,i + σ2

 . (45)

σ2
ψℓ
> 0 is the ℓ-th diagonal entry of ΣΨ, and µψℓ

∈ R is the ℓ-th entry of µΨ.

Proof. To reduce clutter, we consider a fixed round t ∈ [n], and drop subindexing by t. It follows that Q = N (µ̄, Σ̄)
corresponds to the effect posterior Qt = N (µ̄t, Σ̄t) for some round t. Here we restrict the family of effect posteriors Q to
factored distributions. Precisely, we first partition the elements of Ψ∗ = (ψ∗,ℓ)ℓ∈[L] into L disjoint d-dimensional groups
where each group corresponds to a effect parameter ψ∗,ℓ. We then suppose that Q factorizes across the L effect parameters,
that is Q(Ψ) =

∏
ℓ∈[L]Qℓ(ψℓ), where Qℓ are obtained using variational inference techniques (Bishop, 2006) as we show

next. First, we know that Q(Ψ) = N (µ̄, Σ̄), where µ̄ ∈ RLd and Σ̄ ∈ RLd×Ld. We write the mean and covariance by
blocks as µ̄ = (µ̄ℓ)ℓ∈[L] and Σ̄ = (Σ̄i,j)(i,j)∈[L]×[L], such that µ̄ℓ ∈ Rd and Σ̄i,j ∈ Rd×d. Now fix ℓ ∈ [L], from know
results (Bishop, 2006) the optimal factor Qℓ that optimizes the Kullback-Leibler divergence satisfies

Qℓ(ψℓ) ∝ exp (Ej ̸=ℓ [logQ(Ψ)]) , (46)

where Ej ̸=ℓ [·] denotes an expectation with respect to the distributions Qj such that j ̸= ℓ. Let Λ̄ = Σ̄−1 =
(Λ̄i,j)(i,j)∈[L]×[L], the expectation can be computed as

Qℓ(ψℓ) ∝ exp

Ej ̸=ℓ

−1

2
(ψℓ − µ̄ℓ)⊤Λ̄ℓ,ℓ(ψℓ − µ̄ℓ) +

∑
j ̸=ℓ

(ψℓ − µ̄ℓ)⊤Λ̄ℓ,j(ψj − µ̄j)

 ,

∝ exp

Ej ̸=ℓ

−1

2
ψ⊤
ℓ Λ̄ℓ,ℓψℓ + ψ⊤

ℓ Λ̄ℓ,ℓµ̄ℓ − ψ⊤
ℓ

∑
j ̸=ℓ

Λ̄ℓ,j(E [ψj ]− µ̄j)

 ,

∝ exp

Ej ̸=ℓ

−1

2
ψ⊤
ℓ Λ̄ℓ,ℓψℓ + ψ⊤

ℓ

Λ̄ℓ,ℓµ̄ℓ −
∑
j ̸=ℓ

Λ̄ℓ,j(E [ψj ]− µ̄j)

 . (47)

Thus, we have that

Qℓ(ψℓ) = N
(
ψℓ;mℓ, Σ̄ℓ,ℓ

)
, (48)

where mℓ = µ̄ℓ − Σ̄ℓ,ℓ
∑
j ̸=ℓ Λ̄ℓ,j(E [ψj ] − µ̄j). These solutions are coupled since the optimal factor Qℓ depends on

the other optimal factors Qj for j ̸= ℓ. However, we can provide a closed-form solution in this Gaussian case if we set
mℓ = E [ψℓ] = µ̄ℓ for all ℓ ∈ [L]; in which case we get that Qℓ(ψℓ) = N

(
ψℓ; µ̄ℓ, Σ̄ℓ,ℓ

)
for all ℓ ∈ [L]. To summarize, we

showed that if we suppose that the effect posterior factorizes, that is Q(Ψ) =
∏
ℓ∈[L]Qℓ(ψℓ), and that Q = N (µ̄, Σ̄), then

the optimal factorsQℓ are also GaussiansQℓ = N
(
µ̄ℓ, Λ̄

−1
ℓ,ℓ

)
, where µ̄ℓ ∈ Rd and Λ̄ℓ,ℓ ∈ Rd×d are such that µ̄ = (µ̄ℓ)ℓ∈[L]

and Λ̄ = (Λ̄i,j)(i,j)∈[L]×[L]. Finally, to get the desired results, we simply retrieve the respective µ̄ℓ ∈ Rd and Λ̄ℓ,ℓ ∈ Rd×d
from the mean and covariance of the exact posterior of either the model in (2), (3) or (17).

E.2 Finer Linear Effects

An effective way to capture fine-grained dependencies is to assume that the parameter of action i depends on effect
parameters through L known matrices Ci,ℓ ∈ Rd×d as

θ∗,i | Ψ∗ ∼ P0,i

(
· |

L∑
ℓ=1

Ci,ℓψ∗,ℓ

)
.
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This generalizes the setting considered in our analysis, which corresponds to the case where Ci,ℓ = bi,ℓId. We first make the
observation that

∑L
ℓ=1 Ci,ℓψ∗,ℓ = CiΨ∗, where Ci = [Ci,1, . . . ,Ci,L] ∈ Rd×Ld. It follows that for any round t ∈ [n], the

joint effect posterior is a multivariate Gaussian Qt = N (µ̄t, Σ̄t), where

Σ̄−1
t = Σ−1

Ψ +

K∑
i=1

C⊤
i

(
Σ0,i +G−1

t,i

)−1
Ci ,

µ̄t = Σ̄t

(
Σ−1

Ψ µΨ +

K∑
i=1

C⊤
i

(
(Σ0,i +G−1

t,i )
−1G−1

t,i Bt,i
) )

. (49)

Moreover, for any round t ∈ [n] and action i ∈ [K], the action posterior is a multivariate Gaussian Pt,i(· | Ψt) =

N (·; µ̃t,i, Σ̃t,i), where

Σ̃−1
t,i = Gt,i +Σ−1

0,i , µ̃t,i = Σ̃t,i

(
Bt,i +Σ−1

0,i

( L∑
ℓ=1

Ci,ℓψt,ℓ

))
. (50)

Finally, our regret proof extends smoothly leading to a Bayes regret upper bound similar to the one we derived in Theorem 1.
The corresponding Bayes regret is given in the following proposition.

Proposition 4. For any δ ∈ (0, 1), the Bayes regret of meTS, for the mixed-effect model in Appendix E.2, is bounded as

BR(n) ≤
√
2n (RA(n) +RE(n)) log(1/δ) + cnδ ,

where c =
√

2
πκx(σ

2
0 + κcσ2

Ψ)K , κc = maxi∈[K] λ1(C
⊤
i Ci) ,

RA(n) = dKcA log
(
1 +

nκxσ
2
0

dσ2

)
, cA =

κxσ
2
0

log
(
1+

κxσ2
0

σ2

) ,
RE(n) = dLcE log

(
1 +

Kκcσ
2
Ψ

σ2
0+

σ2

nκx

)
, cE =

κxκcσ
2
Ψ

(
1+

κxσ2
0

σ2

)
log
(
1+

κxκcσ
2
Ψ

σ2

) .

The interpretation of this result is similar to Theorem 1. The only difference is that sparsity is now captured through κc.

E.3 Non-Linear Effects

Here the dependence of effect and action parameters are generated as in (2), except that a non-linear function g(·) is applied
to the linear combination

∑L
ℓ=1 bi,ℓψ∗,ℓ. An example of g is the sigmoid function, and the whole model is

Ψ∗ ∼ N (µΨ,ΣΨ) , (51)

θ∗,i | Ψ∗ ∼ N
(
g
( L∑
ℓ=1

bi,ℓψ∗,ℓ

)
, Σ0,i

)
, ∀i ∈ [K] ,

Yt | Xt, θ∗,At
∼ N (X⊤

t θ∗,At
, σ2) , ∀t ∈ [n] .

The action posteriors has closed-form solution. Precisely, for any round t ∈ [n], action i ∈ [K], and effect parameters Ψt,
the action posterior is a multivariate Gaussian Pt,i(· | Ψt) = N (·; µ̃t,i, Σ̃t,i), where

Σ̃−1
t,i = Σ−1

0,i +Gt,i , (52)

µ̃t,i = Σ̃t,i

(
Σ−1

0,i g
( L∑
ℓ=1

bi,ℓψt,ℓ

)
+Bt,i

)
.

The action posterior is the same as in Proposition 2 except that the prior term
∑L
ℓ=1 bi,ℓψt,ℓ is now replaced by

g
(∑L

ℓ=1 bi,ℓψt,ℓ
)
. The effect posterior does not have a closed-form solution and can be approximated using the Laplace

approximation similarly to Section 3.3.
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E.4 Beyond Two-Level Hierarchies

To motivate deeper hierarchies (Hong et al., 2022a), consider the problem of page construction in movie streaming services
where J movies are organized into L categories. First, a category ℓ ∈ [L] is associated with a parameter ψ∗,ℓ ∈ Rd.
Moreover, each movie j ∈ [J ] is associated with a parameter ϕ∗,j ∈ Rd, which is a combination of category parameters
ψ∗,ℓ weighted by scalars that quantify how related is the movie j to each category. Finally, page layouts are actions and they
are seen as lists (or slates) of movies. Each page layout i ∈ [K] is associated with an action parameter θ∗,i which is also a
combination of movies parameters ϕ∗,j weighted by a scalar that quantifies position bias. Precisely, this scalar is set to 0
if the corresponding movie is not present in the page, and it has high value if the movie is placed in a position with high
visibility. This setting induces a three-level hierarchical model, for which we give a Gaussian example below.

Ψ∗ ∼ N (µΨ,ΣΨ) ,

ϕ∗,j | Ψ∗ ∼ N

(
L∑
ℓ=1

bj,ℓψ∗,ℓ, Σϕ,j

)
, ∀j ∈ [J ] ,

θ∗,i | Φ∗ ∼ N

 J∑
j=1

wi,jϕ∗,j , Σ0,i

 , ∀i ∈ [K] ,

Yt | Xt, θ∗,At
∼ N (X⊤

t θ∗,At
, σ2) , ∀t ∈ [n] , (53)

where Ψ∗ = (ψ∗,ℓ)ℓ∈[L] ∈ RLd and Φ∗ = (ϕ∗,j)j∈[J] ∈ RJd. meTS samples hierarchically as follows. First, we sample Ψt
from the posterior of Ψ∗ | Ht. We then sample Φt from the posterior of Φ∗ | Ψ∗, Ht. Finally, we sample θt,i individually
from the posterior of θ∗,i | Φ∗, Ht,i. We expect the upper bound of the Bayes regret of (53) following our analysis to be

decomposed in three terms Õ
(√

n(RA(n) +RE
1 +RE

2)
)
, whereRA(n) = Õ(Kd),RE

1 = Õ(Jd), andRE
2 = Õ(Ld).

F ADDITIONAL EXPERIMENTS

We provide additional experiments where we evaluate meTS using synthetic and real-world problems, and compare it to
baselines that either ignore or partially use effect parameters. In each plot, we report the averages and standard errors of the
quantities. Both settings are described in Section 5.

F.1 Synthetic Experiments

In Figures 4 and 5, we report regret from 12 experiments with horizon n = 5000, where we vary K and d and use both linear
and logistic rewards. For the linear setting, we compare meTS-Lin (Section 3.2), LinUCB (Abbasi-Yadkori et al., 2011),
LinTS (Agrawal and Goyal, 2013) and HierTS (Hong et al., 2022b). For the logistic setting, we compare meTS-GLM
(Section 3.3), meTS-Lin (Section 3.2), UCB-GLM (Li et al., 2017), GLM-TS (Chapelle and Li, 2012) and HierTS
(Hong et al., 2022b). We also include the factored approximation of meTS (meTS-Lin-Fa and meTS-GLM-Fa). In all
experiments, we observe that meTS-Lin and meTS-Fa outperform other baselines that ignore the effect parameters or
incorporate them partially. We also notice that the gain in performance becomes smaller when K/L decreases.

F.2 MovieLens Experiments

We plot the regret of meTS and the baselines up to n = 5000 rounds in Figures 6 and 7. We observe that meTS outperforms
the other baselines. This is despite the fact that we did not fine-tune the mixing weights, which attests to the robustness
of our approach to model misspecification. Similarly to the synthetic problems, we observe that the gap in performance
between meTS and other baselines is less significant when K/L is small.

F.3 Robustness to Model Misspecification

We conduct additional synthetic experiments where the hyper-parameters do not match the parameters of the bandit
environment to assess the robustness of our approach to misspecification. We provide results for this experiment in Figure 8.
Here we consider the setting described in Section 5.1 except that the true hyper-parameters are misspecified as follows.
At each run, we sample uniformly 4 misspecification constants c1, c2, c3, and c4 from (0, 2) and set the hyper-parameters
of meTS-Lin as c1ΣΨ, c2µΨ, c3Σ0,i, and c4bi for any i ∈ [K]; where ΣΨ, µΨ, Σ0,i, and bi for i ∈ [K] are the true
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Figure 4: Regret of meTS-Lin on synthetic linear bandit problems with varying feature dimension d ∈ {2, 5} and number
of actions K ∈ {20, 50, 100}.
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Figure 5: Regret of meTS-GLM on synthetic logistic bandit problems with varying feature dimension d ∈ {2, 5} and number
of actions K ∈ {20, 50, 100}.

hyper-parameters. Model misspecification is only applied to meTS-Lin and we refer to it as meTS-Lin-mis. We
compare it to meTS-Lin and the other baselines, all with the true hyper-parameters. Although the baselines are not
misspecified, meTS-Lin-mis still performs better. meTS-Lin-mis also performs similarly to meTS-Lin (with true
hyper-parameters).
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Figure 6: Regret of meTS-Lin on the MovieLens dataset with linear rewards and varying feature dimension d ∈ {2, 5}
and number of actions K ∈ {20, 50, 100}.
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Figure 7: Regret of meTS-GLM on the MovieLens dataset with logistic rewards and varying feature dimension d ∈ {2, 5}
and number of actions K ∈ {20, 50, 100}.

F.4 Effect of Action Uncertainty

As we mentioned in Section 5.1, learning the effect parameters is most beneficial when they are more uncertain than the
action parameters. In this section, we support this claim by conducting an experiment where the initial uncertainty of action
parameters is greater than the initial uncertainty of the effect parameters. Precisely, we consider the setting described in
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Figure 8: Regret of misspecified meTS-Lin on synthetic bandit problems with a varying number of actions K. Here, the
misspecified meTS, meTS-Lin-mis, is compared to baselines with true hyper-parameters.
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Figure 9: Regret of meTS-Lin on synthetic bandit problems with a varying number of actions K, where the action
parameters are more uncertain than the effect parameters.

Section 5.1 except that we set ΣΨ = ILd and Σ0,i = 3Id for all i ∈ [K]. We report the results in Figure 9. By comparing
Figure 9 to Figure 2, we observe that meTS-Lin still outperforms the baselines but the gap in performance shrinks when
the action parameters are more uncertain than the effect parameters.

G SOCIETAL IMPACT

The goal of this work is to develop and analyze practical algorithms for contextual bandits with correlated actions. We are
not aware of any potential negative societal impacts of our work since we did not propose any new applications of bandit
algorithms than existing ones. A typical application of bandit algorithms is recommendation where the preferred items are
shown to users. However, by doing this, the recommender system tends to restrain the user to these preferences which may
raise concerns regarding the corresponding societal impact.


