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Abstract

Efficient exploration in contextual bandits is crucial due to their large action space,
where uninformed exploration can lead to computational and statistical inefficien-
cies. However, the rewards of actions are often correlated, which can be leveraged
for more efficient exploration. In this work, we use pre-trained diffusion model pri-
ors to capture these correlations and develop diffusion Thompson sampling (dTS).
We establish both theoretical and algorithmic foundations for dTS. Specifically,
we derive efficient posterior approximations (required by dTS) under a diffusion
model prior, which are of independent interest beyond bandits and reinforcement
learning. We analyze dTS in linear instances and provide a Bayes regret bound
highlighting the benefits of using diffusion models as priors. Our experiments
validate our theory and demonstrate dTS’s favorable performance.

1 Introduction

A contextual bandit is a popular and practical framework for online learning under uncertainty [Li
et al., 2010]. In each round, an agent observes a context, takes an action, and receives a reward based
on the context and action. The goal is to maximize the expected cumulative reward over n rounds,
striking a balance between exploiting actions with high estimated rewards from available data and
exploring other actions to improve current estimates. This trade-off is often addressed using either
upper confidence bound (UCB) [Auer et al., 2002] or Thompson sampling (TS) [Scott, 2010].

The action space in contextual bandits is often large, resulting in less-than-optimal performance
with standard exploration strategies. Luckily, actions usually exhibit correlations, making efficient
exploration possible as one action may inform the agent about other actions. In particular, Thompson
sampling offers remarkable flexibility, allowing its integration with informative priors [Hong et al.,
2022b] that capture these correlations. Inspired by the achievements of diffusion models [Sohl-
Dickstein et al., 2015, Ho et al., 2020], which effectively approximate complex distributions [Dhariwal
and Nichol, 2021, Rombach et al., 2022], this work captures action correlations by employing
diffusion models as priors in contextual Thompson sampling.

We illustrate the idea using video streaming. The objective is to optimize watch time for a user j
by selecting a video i from a catalog of K videos. Users j and videos i are associated with context
vectors xj and unknown video parameters θi, respectively. User j’s expected watch time for video i
is linear as x⊤j θi. Then, a natural strategy is to independently learn video parameters θi using LinTS
or LinUCB [Agrawal and Goyal, 2013a, Abbasi-Yadkori et al., 2011], but this proves statistically
inefficient for largerK. Fortunately, the reward when recommending a movie can provide informative
insights into other movies. To capture this, we leverage offline estimates of video parameters denoted
by θ̂i and build a diffusion model on them. This diffusion model approximates the video parameter
distribution, capturing their dependencies. This model enriches contextual Thompson sampling as a
prior, effectively capturing complex video dependencies while ensuring computational efficiency.
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We introduce a framework for contextual bandits with diffusion model priors, upon which we develop
diffusion Thompson sampling (dTS) that is both computationally and statistically efficient. dTS
requires fast updates of the posterior and fast sampling from the posterior, both of which are achieved
through our novel efficient posterior approximations. These approximations become exact when
both the diffusion model and likelihood are linear. We establish a bound on dTS’s Bayes regret for
this specific case, highlighting the advantages of using diffusion models as priors. Our empirical
evaluations validate our theory and demonstrate dTS’s strong performance across various settings.

Diffusion models were applied in offline decision-making [Ajay et al., 2022, Janner et al., 2022, Wang
et al., 2022], but their use in online learning was only recently explored by Hsieh et al. [2023], who
focused on multi-armed bandits without theoretical guarantees. Our work extends Hsieh et al. [2023]
in two ways. First, we apply the concept to the broader contextual bandit, which is more practical and
realistic. Second, we demonstrate that with diffusion models parametrized by linear score functions
and linear rewards, we can derive exact closed-form posteriors without approximations. These exact
posteriors are valuable as they enable theoretical analysis (unlike Hsieh et al. [2023], who did not
provide theoretical guarantees) and motivate efficient approximations for non-linear score functions
in contextual bandits, addressing gaps in Hsieh et al. [2023]’s focus on multi-armed bandits.

A key contribution, beyond applying diffusion models in contextual bandits, is the efficient com-
putation and sampling of the posterior distribution of a d-dimensional parameter θ | Ht, with Ht

representing the data, when using a diffusion model prior on θ. This is relevant not only to bandits
and reinforcement learning but also to a broader range of applications [Chung et al., 2022]. To
motivate our approximations, we start with exact closed-form solutions for cases where both the
score functions of the diffusion model and the likelihood are linear. These solutions form the basis for
our approximations for non-linear score functions, demonstrating both strong empirical performance
and computational efficiency. Our approach avoids the computational burden of heavy approximate
sampling algorithms required for each latent parameter. For a detailed comparison with existing
studies, see Appendix A, where we discuss diffusion models in decision-making, structured bandits,
approximate posteriors, and more.

2 Setting

The agent interacts with a contextual bandit over n rounds. In round t ∈ [n], the agent observes a
context Xt ∈ X , where X ⊆ Rd is a context space, it takes an action At ∈ [K], and then receives a
stochastic reward Yt ∈ R that depends on both the context Xt and the taken action At. Each action
i ∈ [K] is associated with an unknown action parameter θ∗,i ∈ Rd, so that the reward received in
round t is Yt ∼ P (· | Xt; θ∗,At

), where P (· | x; θ∗,i) is the reward distribution of action i in context
x. Throughout the paper, we assume that the reward distribution is parametrized as a generalized
linear model (GLM) [McCullagh and Nelder, 1989]. That is, for any x ∈ X , P (· | x; θ∗,i) is an
exponential-family distribution with mean g(x⊤θ∗,i), where g is the mean function. For example, we
recover linear bandits when P (· | x; θ∗,i) = N (·;x⊤θ∗,i, σ2) where σ > 0 is the observation noise.
Similarly, we recover logistic bandits [Filippi et al., 2010] if we let g(u) = (1 + exp(−u))−1 and
P (· | x; θ∗,i) = Ber(g(x⊤θ∗,i)), where Ber(p) be the Bernoulli distribution with mean p.

We consider the Bayesian bandit setting [Russo and Van Roy, 2014, Hong et al., 2022b], where the
action parameters θ∗,i are assumed to be sampled from a known prior distribution. We proceed to
define this prior distribution using a diffusion model. The correlations between the action parameters
θ∗,i are captured through a diffusion model, where they share a set of L consecutive unknown latent
parameters ψ∗,ℓ ∈ Rd for ℓ ∈ [L]. Precisely, the action parameter θ∗,i depends on the L-th latent
parameter ψ∗,L as θ∗,i | ψ∗,1 ∼ N (f1(ψ∗,1),Σ1), where the score function f1 : Rd → Rd is known.
Also, the ℓ−1-th latent parameter ψ∗,ℓ−1 depends on the ℓ-th latent parameter ψ∗,ℓ as ψ∗,ℓ−1 | ψ∗,ℓ ∼
N (fℓ(ψ∗,ℓ),Σℓ), where the score function fℓ : Rd → Rd is known. Finally, the L-th latent parameter
ψ∗,L is sampled as ψ∗,L ∼ N (0,ΣL+1). We summarize this model in (1) and its graph in Fig. 1.

: taken action
in round 

Figure 1: Graphical model of (1).

ψ∗,L ∼ N (0,ΣL+1) , (1)
ψ∗,ℓ−1 | ψ∗,ℓ ∼ N (fℓ(ψ∗,ℓ),Σℓ) , ∀ℓ ∈ [L]/{1} ,
θ∗,i | ψ∗,1 ∼ N (f1(ψ∗,1),Σ1) , ∀i ∈ [K] ,

Yt | Xt, θ∗,At
∼ P (· | Xt; θ∗,At

) , ∀t ∈ [n] .
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The model in (1) represents a Bayesian bandit, where the agent interacts with a bandit instance
defined by θ∗,i over n rounds (4-th line in (1)). These action parameters θ∗,i are drawn from the
generative process in the first 3 lines of (1). In practice, (1) can be built by pre-training a diffusion
model on offline estimates of the action parameters θ∗,i [Hsieh et al., 2023].

A natural goal for the agent in this Bayesian framework is to minimize its Bayes regret [Russo and Van
Roy, 2014] that measures the expected performance across multiple bandit instances θ∗ = (θ∗,i)i∈[K],

BR(n) = E
[ n∑
t=1

r(Xt, At,∗; θ∗)− r(Xt, At; θ∗)
]
, (2)

where the expectation in (2) is taken over all random variables in (1). Here
r(x, i; θ∗) = EY∼P (·|x;θ∗,i) [Y ] is the expected reward of action i in context x and At,∗ =
argmaxi∈[K] r(Xt, i; θ∗) is the optimal action in round t. The Bayes regret is known to capture the
benefits of using informative priors, and hence it is suitable for our problem.

3 Diffusion contextual Thompson sampling

We design Thompson sampling that samples the latent and action parameters hierarchically [Lindley
and Smith, 1972]. Precisely, let Ht = (Xk, Ak, Yk)k∈[t−1] be the history of all interactions up to
round t and let Ht,i = (Xk, Ak, Yk){k∈[t−1];Ak=i} be the history of interactions with action i up to
round t. To motivate our algorithm, we decompose the posterior P (θ∗,i = θ |Ht) recursively as

P (θ∗,i = θ |Ht) =

∫
ψ1:L

Qt,L(ψL)

L∏
ℓ=2

Qt,ℓ−1(ψℓ−1 | ψℓ)Pt,i(θ | ψ1) dψ1:L , where (3)

Qt,L(ψL) = P (ψ∗,L = ψL |Ht) is the latent-posterior density of ψ∗,L | Ht. Moreover, for any
ℓ ∈ [2 : L], Qt,ℓ−1(ψℓ−1 | ψℓ) = P (ψ∗,ℓ−1 = ψℓ−1 |Ht, ψ∗,ℓ = ψℓ) is the conditional latent-
posterior density of ψ∗,ℓ−1 | Ht, ψ∗,ℓ = ψℓ. Finally, for any action i ∈ [K], Pt,i(θ | ψ1) =
P (θ∗,i = θ |Ht,i, ψ∗,1 = ψ1) is the conditional action-posterior density of θ∗,i | Ht,i, ψ∗,1 = ψ1.

The decomposition in (3) inspires hierarchical sampling. In round t, we initially sample the L-th
latent parameter as ψt,L ∼ Qt,L(·). Then, for ℓ ∈ [L]/{1}, we sample the ℓ− 1-th latent parameter
given that ψ∗,ℓ = ψt,ℓ, as ψt,ℓ−1 ∼ Qt,ℓ−1(· | ψt,ℓ). Lastly, given that ψ∗,1 = ψt,1, each action
parameter is sampled individually as θt,i ∼ Pt,i(θ | ψt,1). This is possible because action parameters
θ∗,i are conditionally independent given ψ∗,1. This leads to Algorithm 1, named diffusion Thompson
Sampling (dTS). dTS requires sampling from the K + L posteriors Pt,i and Qt,ℓ. Thus we start by
providing an efficient recursive scheme to express these posteriors using known quantities. We note
that these expressions do not necessarily lead to closed-form posteriors and approximation might be
needed. First, the conditional action-posterior Pt,i(· | ψ1) can be written as

Pt,i(θ | ψ1) ∝
∏
k∈St,i

P (Yk | Xk; θ)N (θ; f1(ψ1),Σ1) , (4)

where St,i = {ℓ ∈ [t − 1], Aℓ = i} are the rounds where the agent takes action i up to round t.
Moreover, let Lℓ(ψℓ) = P (Ht |ψ∗,ℓ = ψℓ) be the likelihood of observations up to round t given that
ψ∗,ℓ = ψℓ. Then, for any ℓ ∈ [L]/{1}, the ℓ− 1-th conditional latent-posterior Qt,ℓ−1(· | ψℓ) is

Qt,ℓ−1(ψℓ−1 | ψℓ) ∝ Lℓ−1(ψℓ−1)N (ψℓ−1, fℓ(ψℓ),Σℓ) , (5)
and Qt,L(ψL) ∝ LL(ψL)N (ψL, 0,ΣL+1). All the terms above are known, except the likelihoods
Lℓ(ψℓ) for ℓ ∈ [L]. These are computed recursively as follows. First, the basis of the recursion is

L1(ψ1) =

K∏
i=1

∫
θi

∏
k∈St,i

P (Yk | Xk; θi)N (θi; f1(ψ1),Σ1) dθi. (6)

Then for ℓ ∈ [L]/{1}, the recursive step is Lℓ(ψℓ) =
∫
ψℓ−1

Lℓ−1(ψℓ−1)N (ψℓ−1; fℓ(ψℓ),Σℓ) dψℓ−1.

All posterior expressions above use known quantities (fℓ,Σℓ, P (y | x; θ)). However, these expres-
sions typically need to be approximated, except when the score functions fℓ are linear and the reward
distribution P (· | x; θ) is linear-Gaussian, where closed-form solutions can be obtained with careful
derivations. These approximations are not trivial, and prior studies often rely on computationally
intensive approximate sampling algorithms. In the following sections, we explain how we derive our
efficient approximations which are motivated by the closed-form solutions of linear instances.
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Algorithm 1 dTS: diffusion Thompson Sampling
Input: Prior: fℓ, ℓ ∈ [L], Σℓ, ℓ ∈ [L+ 1], and P .
for t = 1, . . . , n do

Sample ψt,L ∼ Qt,L (requires fast approximate posterior update and sampling)
for ℓ = L, . . . , 2 do

Sample ψt,ℓ−1 ∼ Qt,ℓ−1(· | ψt,ℓ) (requires fast approximate posterior update and sampling)
for i = 1, . . . ,K do

Sample θt,i ∼ Pt,i(· | ψt,1) (requires fast approximate posterior update and sampling)
Take action At = argmaxi∈[K]r(Xt, i; θt), where θt = (θt,i)i∈[K]

Receive reward Yt ∼ P (· | Xt; θ∗,At
) and update posteriors Qt+1,ℓ and Pt+1,i.

3.1 Linear diffusion model

Assume the score functions fℓ are linear such as fℓ(ψ∗,ℓ) = Wℓψ∗,ℓ for ℓ ∈ [L], where Wℓ ∈ Rd×d
are known mixing matrices. Then, (1) becomes a linear Gaussian system (LGS) [Bishop, 2006] in
this case. This model is important, both in theory and practice. For theory, it leads to closed-form
posteriors when the reward distribution is linear-Gaussian as P (· | x; θ∗,i) = N (·;x⊤θ∗,i, σ2). This
allows bounding the Bayes regret of dTS. For practice, the posterior expressions are used to motivate
efficient approximations for the general case in (1) as we show in Section 3.2.

The reward distribution is parameterized as a generalized linear model (GLM) [McCullagh and
Nelder, 1989], allowing for non-linear rewards. Thus, we need posterior approximation despite
linearity in score functions. Since this non-linearity arises solely from the reward distribution, we
approximate it by a Gaussian and propagate this approximation to the latent parameters. This results
in efficient posterior approximations that are exact when the reward function is Gaussian (a special
case of the GLM model). Specifically, the reward distribution P (· | x; θ) is an exponential family
distribution with a mean function denoted by g. Then, we approximate the corresponding likelihood
as P (Ht,i | θ∗,i = θ) ≈ N

(
θ; B̂t,i, Ĝ

−1
t,i

)
, where B̂t,i and Ĝt,i are the maximum likelihood estimate

(MLE) and the Hessian of the negative log-likelihood, respectively, and they are defined as

B̂t,i = argmax
θ∈Rd

logP (Ht,i | θ∗,i = θ) , Ĝt,i =
∑
k∈St,i

ġ
(
X⊤
k B̂t,i

)
XkX

⊤
k . (7)

where St,i = {ℓ ∈ [t − 1] : Aℓ = i} represents the rounds where the agent takes action i up to
round t. This simple approximation makes all posteriors Gaussian. Specifically, the conditional
action-posterior is Gaussian and is given by Pt,i(· | ψ1) = N (·; µ̂t,i, Σ̂t,i), where µ̂t,i and Σ̂t,i are
computed using B̂t,i and Ĝt,i in (7). Moreover, for ℓ ∈ [L−1], the ℓ-th conditional latent-posterior is
also Gaussian, Qt,ℓ(· | ψℓ+1) = N (·; µ̄t,ℓ, Σ̄t,ℓ), where µ̄t,ℓ and Σ̄t,ℓ are computed recursively. The
recursion starts with µ̄t,1 and Σ̄t,1, which are calculated using B̂t,i and Ĝt,i in (7). Full expressions are
provided in Appendix B.1. The only approximation made is P (Ht,i | θ∗,i = θ) ≈ N

(
θ; B̂t,i, Ĝ

−1
t,i

)
,

and we propagated it to latent posteriors. Thus, these posterior approximations become exact when
the reward distribution follows a linear-Gaussian model, P (· | x; θ∗,a) = N (·;x⊤θ∗,a, σ2).

3.2 Non-linear diffusion model

After deriving the posteriors for linear score functions, we return to the general model in (1).
Approximation is needed since both the score functions and rewards can be non-linear. To avoid
computational challenges, we use a simple and intuitive approximation, where all posteriors Pt,i
and Qt,ℓ are approximated by Gaussians that are computed recursively. First, the conditional action-
posterior is approximated by a Gaussian distribution as Pt,i(· | ψ1) = N (·; µ̂t,i, Σ̂t,i), where

Σ̂−1
t,i = Σ−1

1 + Ĝt,i µ̂t,i = Σ̂t,i
(
Σ−1

1 f1(ψ1) + Ĝt,iB̂t,i
)
. (8)

In the absence of samples, Gt,i = 0d×d. Thus, the approximate action posterior in (8) matches
precisely the term N (f1(ψ1),Σ1) in the diffusion prior (1). Moreover, as more data is accumulated,
Gt,i increases, and the influence of the prior diminishes as Ĝt,iB̂t,i will dominate the prior term
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Σ−1
1 f1(ψ1). Similarly, for ℓ ∈ [L]/{1}, the ℓ− 1-th conditional latent-posterior is approximated by

a Gaussian distribution as Qt,ℓ−1(· | ψℓ) = N (µ̄t,ℓ−1, Σ̄t,ℓ−1), where

Σ̄−1
t,ℓ−1 = Σ−1

ℓ + Ḡt,ℓ−1 , µ̄t,ℓ−1 = Σ̄t,ℓ−1

(
Σ−1
ℓ fℓ(ψℓ) + B̄t,ℓ−1

)
, (9)

and the L-th latent-posterior is Qt,L(·) = N (µ̄t,L, Σ̄t,L),

Σ̄−1
t,L = Σ−1

L+1 + Ḡt,L , µ̄t,L = Σ̄t,LB̄t,L . (10)

Here, Ḡt,ℓ and B̄t,ℓ for ℓ ∈ [L] are computed recursively. The basis of the recursion are

Ḡt,1 =

K∑
i=1

(
Σ−1

1 − Σ−1
1 Σ̂t,iΣ

−1
1

)
, B̄t,1 = Σ−1

1

K∑
i=1

Σ̂t,iĜt,iB̂t,i . (11)

Then, the recursive step for ℓ ∈ [L]/{1} is,

Ḡt,ℓ = Σ−1
ℓ − Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ , B̄t,ℓ = Σ−1

ℓ Σ̄t,ℓ−1B̄t,ℓ−1 . (12)

Similarly, in the absence of samples, Qt,ℓ−1 in (9) precisely matches the term N (fℓ(ψ1),Σℓ) in the
diffusion prior (1). As more data is accumulated, the influence of this prior diminishes. Therefore,
this approximation retains a key attribute of exact posteriors: they match the prior when there is no
data, and the prior’s effect diminishes as data accumulates.

4 Analysis

We analyze dTS under the linear diffusion model in Section 3.1 with linear rewards P (· | x; θ∗,a) =
N (·;x⊤θ∗,a, σ2). This assumption leads to a structure with L layers of linear Gaussian relationships,
allowing for theory inspired by linear bandits [Agrawal and Goyal, 2013a, Abbasi-Yadkori et al.,
2011]. However, proofs are not the same, and technical challenges remain (explained in Appendix D).

Although our result holds for milder assumptions, we make some simplifications for clarity and
interpretability. We assume that (A1) Contexts satisfy ∥Xt∥22 = 1 for any t ∈ [n]. (A2) Mixing
matrices and covariances satisfy λ1(W⊤

ℓ Wℓ) = 1 for any ℓ ∈ [L] and Σℓ = σ2
ℓ Id for any ℓ ∈ [L+1].

Note that (A1) can be relaxed to any contexts Xt with bounded norms ∥Xt∥2. Also, (A2) can be
relaxed to positive definite covariances Σℓ and arbitrary mixing matrices Wℓ. In this section, we
write Õ for the big-O notation up to polylogarithmic factors. We start by stating our bound for dTS.

Theorem 4.1. Let σ2
MAX = maxℓ∈[L+1] 1 +

σ2
ℓ

σ2 . For any δ ∈ (0, 1), the Bayes regret of dTS under
Section 3.1 with linear rewards, (A1) and (A2) is bounded as

BR(n) ≤
√

2n
(
RACT(n) +

∑L
ℓ=1 RLAT

ℓ

)
log(1/δ)

)
+ cnδ , with c > 0 is constant and, (13)

RACT(n) = c0dK log
(
1 +

nσ2
1

d

)
, c0 =

σ2
1

log(1+σ2
1)
, RLAT

ℓ = cℓd log
(
1 +

σ2
ℓ+1

σ2
ℓ

)
, cℓ =

σ2
ℓ+1σ

2ℓ
MAX

log(1+σ2
ℓ+1)

,

(13) holds for any δ ∈ (0, 1). In particular, the term cnδ is constant when δ = 1/n. Then, the
bound is Õ(

√
n), and this dependence on the horizon n aligns with prior Bayes regret bounds. The

bound comprises L+ 1 main terms, RACT(n) and RLAT
ℓ for ℓ ∈ [L]. First, RACT(n) relates to action

parameters learning, conforming to a standard form [Lu and Van Roy, 2019]. Similarly, RLAT
ℓ is

associated with learning the ℓ-th latent parameter. Roughly speaking, our bound captures that our
problem can be seen as L+ 1 sequential linear bandit instances stacked upon each other.

Technical contributions. dTS uses hierarchical sampling. Thus the marginal posterior distribution of
θ∗,i | Ht is not explicitly defined. The first contribution is deriving θ∗,i | Ht using the total covariance
decomposition combined with an induction proof, as our posteriors in Section 3.1 were derived
recursively. Unlike standard analyses where the posterior distribution of θ∗,i | Ht is predetermined
due to the absence of latent parameters, our method necessitates this recursive total covariance
decomposition. Moreover, in standard proofs, we need to quantify the increase in posterior precision
for the action taken At in each round t ∈ [n]. However, in dTS, our analysis extends beyond this.
We not only quantify the posterior information gain for the taken action but also for every latent
parameter, since they are also learned. To elaborate, we use the recursive formulas in Section 3.1 that
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connect the posterior covariance of each latent parameter ψ∗,ℓ with the covariance of the posterior
action parameters θ∗,i. This allows us to propagate the information gain associated with the action
taken in round At to all latent parameters ψ∗,ℓ, for ℓ ∈ [L] by induction. Finally, we carefully bound
the resulting terms so that the constants reflect the parameters of the linear diffusion model. More
technical details are provided in Appendix D.

To include more structure, we propose the sparsity assumption (A3) Wℓ = (W̄ℓ, 0d,d−dℓ), where
W̄ℓ ∈ Rd×dℓ for any ℓ ∈ [L]. Note that (A3) is not an assumption when dℓ = d for any ℓ ∈ [L].
Notably, (A3) incorporates a plausible structural characteristic that a diffusion model could capture.

Proposition 4.2 (Sparsity). Let σ2
MAX = maxℓ∈[L+1] 1 +

σ2
ℓ

σ2 . For any δ ∈ (0, 1), the Bayes regret of
dTS under Section 3.1 with linear rewards, (A1), (A2) and (A3) is bounded as

BR(n) ≤
√

2n
(
RACT(n) +

∑L
ℓ=1 R̃LAT

ℓ

)
log(1/δ)

)
+ cnδ , with c > 0 is constant, (14)

RACT(n) = c0dK log
(
1 +

nσ2
1

d

)
, c0 =

σ2
1

log(1+σ2
1)
, R̃LAT

ℓ = cℓdℓ log
(
1 +

σ2
ℓ+1

σ2
ℓ

)
, cℓ =

σ2
ℓ+1σ

2ℓ
MAX

log(1+σ2
ℓ+1)

.

From Proposition 4.2, our bounds scales as BR(n) = Õ
(√

n(dKσ2
1 +

∑L
ℓ=1 dℓσ

2
ℓ+1σ

2ℓ
MAX)

)
. The

Bayes regret bound has a clear interpretation: if the true environment parameters are drawn from
the prior, then the expected regret of an algorithm stays below that bound. Consequently, a less
informative prior (such as high variance) leads to a more challenging problem and thus a higher
bound. Then, smaller values of K, L, d or dℓ translate to fewer parameters to learn, leading to lower
regret. The regret also decreases when the initial variances σ2

ℓ decrease. These dependencies are
common in Bayesian analysis, and empirical results match them. The reader might question the
dependence of our bound on both L and K. We will address this next.

Why the bound increases with K? This arises due to our conditional learning of θ∗,i given
ψ∗,1. Rather than assuming deterministic linearity, θ∗,i = W1ψ∗,1, we account for stochasticity by
modeling θ∗,i ∼ N (W1ψ∗,1, σ

2
1Id). This makes dTS robust to misspecification scenarios where θ∗,i

is not perfectly linear with respect to ψ∗,1, at the cost of additional learning of θ∗,i | ψ∗,1. If we were
to assume deterministic linearity (σ1 = 0), our regret bound would scale with L only.

Why the bound increases with L? This is because increasing the number of layers L adds more
initial uncertainty due to the additional covariance introduced by the extra layers. However, this does
not imply that we should always use L = 1 (the minimum possible L). While a higher L complicates
online learning and increases regret bound, it also enables the capture of a more complex prior
distribution through offline pre-training of the diffusion model. Thus, a trade-off exists in practice.
A smaller L results in faster computation and easier learning for dTS, but the learned prior might
deviate from reality, potentially violating the "true prior assumption" used to derive the regret bound.
On the other hand, a larger L allows for better modeling of complex action distributions, producing a
prior that more accurately reflects reality and strengthens the validity of the bound.

4.1 Discussion

Computational benefits. Action correlations prompt an intuitive approach: marginalize all latent
parameters and maintain a joint posterior of (θ∗,i)i∈[K] | Ht. Unfortunately, this is computationally
inefficient for large action spaces. To illustrate, suppose that all posteriors are multivariate Gaussians
(Section 3.1). Then maintaining the joint posterior (θ∗,i)i∈[K] | Ht necessitates converting and
storing its dK × dK-dimensional covariance matrix. Then the time and space complexities are
O(K3d3) and O(K2d2). In contrast, the time and space complexities of dTS are O

((
L +K

)
d3
)

and O
((
L+K

)
d2
)
. This is because dTS requires converting and storing L+K covariance matrices,

each being d × d-dimensional. The improvement is huge when K ≫ L, which is common in
practice. Certainly, a more straightforward way to enhance computational efficiency is to discard
latent parameters and maintainK individual posteriors, each relating to an action parameter θ∗,i ∈ Rd
(LinTS). This improves time and space complexity to O

(
Kd3

)
and O

(
Kd2

)
, respectively. However,

LinTS maintains independent posteriors and fails to capture the correlations among actions; it only
models θ∗,i | Ht,i rather than θ∗,i | Ht as done by dTS. Consequently, LinTS incurs higher regret
due to the information loss caused by unused interactions of similar actions. Our regret bound and
empirical results reflect this aspect.
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Statistical benefits. We do not provide a matching lower bound. The only Bayesian lower bound
that we know of is Ω(log2(n)) for a much simpler K-armed bandit [Lai, 1987, Theorem 3]. All
seminal works on Bayesian bandits do not match it and providing such lower bounds on Bayes regret
is still relatively unexplored (even in standard settings) compared to the frequentist one. Therefore,
we argue that our bound reflects the overall structure of the problem by comparing dTS to algorithms
that only partially use the structure or do not use it at all as follows.

The linear diffusion model in Section 3.1 can be transformed into a Bayesian linear model (LinTS)
by marginalizing out the latent parameters; in which case the prior on action parameters becomes
θ∗,i ∼ N (0, Σ), with the θ∗,i being not necessarily independent, and Σ is the marginal initial
covariance of action parameters and it writes Σ = σ2

1Id +
∑L
ℓ=1 σ

2
ℓ+1BℓB

⊤
ℓ with Bℓ =

∏ℓ
k=1 Wk.

Then, it is tempting to directly apply LinTS to solve our problem. This approach will induce
higher regret because the additional uncertainty of the latent parameters is accounted for in Σ
despite integrating them. This causes the marginal action uncertainty Σ to be much higher than the
conditional action uncertainty σ2

1Id in (3.1), since we have Σ = σ2
1Id +

∑L
ℓ=1 σ

2
ℓ+1BℓB

⊤
ℓ ≽ σ2

1Id.
This discrepancy leads to higher regret, especially when K is large. This is due to LinTS needing to
learn K independent d-dimensional parameters, each with a considerably higher initial covariance Σ.
This is also reflected by our regret bound. To simply comparisons, suppose that σ ≥ maxℓ∈[L+1] σℓ
so that σ2

MAX ≤ 2. Then the regret bounds of dTS (where we bound σ2ℓ
MAX by 2ℓ) and LinTS read

dTS : Õ
(√

n(dKσ2
1 +

∑L
ℓ=1 dℓσ

2
ℓ+12

ℓ)
)
, LinTS : Õ

(√
ndK(σ2

1 +
∑L
ℓ=1 σ

2
ℓ+1)

)
.

Then regret improvements are captured by the variances σℓ and the sparsity dimensions dℓ, and we
proceed to illustrate this through the following scenarios.

(I) Decreasing variances. Assume that σℓ = 2ℓ for any ℓ ∈ [L+ 1]. Then, the regrets become

dTS : Õ
(√

n(dK +
∑L
ℓ=1 dℓ4

ℓ))
)
, LinTS : Õ

(√
ndK2L)

)
Now to see the order of gain, assume the problem is high-dimensional (d≫ 1), and set L = log2(d)

and dℓ = ⌊ d
2ℓ
⌋. Then the regret of dTS becomes Õ

(√
nd(K + L))

)
, and hence the multiplicative

factor 2L in LinTS is removed and replaced with a smaller additive factor L.

(II) Constant variances. Assume that σℓ = 1 for any ℓ ∈ [L+ 1]. Then, the regrets become

dTS : Õ
(√

n(dK +
∑L
ℓ=1 dℓ2

ℓ))
)
, LinTS : Õ

(√
ndKL)

)
Similarly, let L = log2(d), and dℓ = ⌊ d

2ℓ
⌋. Then dTS’s regret is Õ

(√
nd(K + L)

)
. Thus the

multiplicative factor L in LinTS is removed and replaced with the additive factor L. By comparing
this to (I), the gain with decreasing variances is greater than with constant ones. In general, diffusion
models use decreasing variances [Ho et al., 2020] and hence we expect great gains in practice.
All observed improvements in this section could become even more pronounced when employing
non-linear diffusion models. In our current analysis, we used linear diffusion models, and yet we can
already discern substantial differences. Moreover, under non-linear diffusion (1), the latent parameters
cannot be analytically marginalized, making LinTS with exact marginalization inapplicable. Finally,
Appendix D.7 provide an additional comparison and connection to hierarchies with two levels.

Large action space aspect. dTS’s regret bound scales with Kσ2
1 instead of K

∑
ℓ σ

2
ℓ , particularly

beneficial when σ1 is small, as often seen in diffusion models. Our regret bound and experiments
show that dTS outperforms LinTS more distinctly when the action space becomes larger. Prior
studies [Foster et al., 2020, Xu and Zeevi, 2020, Zhu et al., 2022] proposed bandit algorithms that
do not scale with K. However, our setting differs significantly from theirs, explaining our inherent
dependency onK when σ1 > 0. Precisely, they assume a reward function of r(x, i; θ∗) = ϕ(x, i)⊤θ∗,
with a shared θ∗ ∈ Rd and a known mapping ϕ. In contrast, we consider r(x, i; θ∗) = x⊤θ∗,i, with
θ∗ = (θ∗,i)i∈[K] ∈ RdK , requiring the learning of K separate d-dimensional action parameters.
In their setting, with the availability of ϕ, the regret of dTS would similarly be independent of
K. However, obtaining such a mapping ϕ can be challenging as it needs to encapsulate complex
context-action dependencies. Notably, our setting reflects a common practical scenario, such as in
recommendation systems where each product is often represented by its unique embedding.
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Figure 2: Regret of dTS with varying diffusion and reward models and varying parameters d, K, L.

5 Experiments

We evaluate dTS using synthetic data, to validate our theory and test dTS in large action spaces. We
omit semi-synthetic data [Riquelme et al., 2018] as they often result in small action spaces. This
choice is further justified by the fact that Hsieh et al. [2023] has already demonstrated the advantages
of diffusion models in multi-armed bandits using such data, without theoretical guarantees.

5.1 Settings and baselines

We run 50 random simulations and plot the average regret with its standard error. We consider both
linear and non-linear rewards. The distribution of linear rewards is P (· | x; θa) = N (x⊤θa, σ

2) with
σ = 1. The non-linear rewards are binary and generated from P (· | x; θa) = Ber(g(x⊤θa))), where
g is the sigmoid function. The covariances are Σℓ = Id, and the context Xt is uniformly drawn from
[−1, 1]d. We vary d ∈ {5, 20}, L ∈ {2, 4} and K ∈ {102, 104}. We set the horizon n = 5000.

Linear diffusion. We consider the linear diffusion model in (3.1) where score functions are linear as
fℓ(ψ) = Wℓψ where Wℓ are uniformly drawn from [−1, 1]d×d. To introduce sparsity, we zero out
the last dℓ columns of Wℓ, resulting in Wℓ = (W̄ℓ, 0d,d−dℓ), where (d1, d2) = (5, 2) when d = 5
and L = 2 and (d1, d2, d3, d4) = (20, 10, 5, 2) when d = 20 and L = 4.

Non-linear diffusion. We consider the general diffusion model in (1) with score functions fℓ defined
by two-layer neural networks with random weights in [−1, 1], ReLU activation, and a hidden layer
dimension of h = 20 when d = 5 and h = 60 when d = 20.

Baselines. When rewards are linear, we use LinUCB [Abbasi-Yadkori et al., 2011], LinTS [Agrawal
and Goyal, 2013a], and HierTS [Hong et al., 2022b] that marginalizes out all latent parameters
except ψ∗,L. This corresponds to HierTS-1 in Appendix D.7. When rewards are non-linear, we
include UCB-GLM [Li et al., 2017], and GLM-TS [Chapelle and Li, 2012]. GLM-UCB [Filippi et al.,
2010] induced high regret while HierTS was designed for linear rewards only and thus both are not
included. We name dTS for each setting as dTS-dr, where the suffix d indicates the type of diffusion;
L for linear and N for non-linear. The suffix r indicates the type of rewards; L for linear and N for
non-linear. For instance, dTS-LL signifies dTS in linear diffusion (Section 3.1) with linear rewards.

5.2 Results and interpretations

Results are shown in Fig. 2 and we make the following observations:

1) dTS has better performance. dTS outperforms the baselines. First, when both the diffusion and
rewards are linear, dTS-LL consistently outperforms all baselines that disregard the latent structure
(LinTS and LinUCB) or incorporate it only partially (HierTS). Second, when the diffusion is linear
and rewards are non-linear, dTS-LN surpasses all baselines. Third, when the diffusion is non-linear
and rewards are linear, dTS-NL demonstrates significant performance gains compared to both LinTS
and LinUCB. With non-linear diffusion and rewards, dTS-NN surpasses both GLM-TS and UCB-GLM.

2) Latent diffusion structure may be more important than the reward distribution. When
rewards are non-linear (second and fourth columns in Fig. 2), we included variants of dTS that use
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the correct diffusion prior but the wrong reward distribution, employing linear-Gaussian instead of
logistic-Bernoulli (dTS-LL in the second column and dTS-NL in the fourth column). In both cases,
despite the misspecification of the reward distribution, these variants outperform models that use the
correct reward distribution but neglect the latent diffusion structure, such as GLM-TS and UCB-GLM.
This underscores the significance of accounting for the latent structure, which can sometimes be more
crucial than having an accurate reward distribution. Also, the performance gap between dTS-NL
(non-linear diffusion) and GLM-TS and UCB-GLM is even more pronounced compared to the gap
between dTS-LL (linear diffusion) and these baselines, possibly due to the increased complexity of
the latent structure, in the non-linear diffusion, overshadowing the impact of the reward model itself.
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Figure 3: Prior misspecification effect.

3) Prior misspecification (Fig. 3). We consider a scenario
where the prior used by dTS does not match the true prior.
To simulate this, we use our setting with linear diffusion
and rewards above, but the true parameters Wℓ and Σℓ are
replaced by misspecified parameters Wℓ+ ϵ1 and Σℓ+ ϵ2.
Here, ϵ1 and ϵ2 are sampled uniformly from [v, v+0.5]d×d,
with v controlling the level of misspecification. The higher
the value of v, the greater the misspecification. We vary
v ∈ {0.5, 1, 1.5} and analyze its impact on dTS’s perfor-
mance. For comparison, we include the well-specified
dTS-LL and the most competitive baseline, HierTS. Re-
sults are shown in Fig. 3. As expected, dTS’s performance
decreases with increasing misspecification. However, even
with misspecification, dTS outperforms the most competitive baseline, except when v = 1.5, where
their performances are comparable. Note that the entries of the true parameters Wℓ and Σℓ are smaller
than 1, so values of v ∈ {0.5, 1, 1.5} can lead to significant parameter misspecification. Yet, the
performance of dTS with misspecified prior parameters remains favorable, suggesting that even an
imperfect pre-trained diffusion model can be beneficial when used as prior.
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Figure 4: dTS-LL’s regret scaling.

4) Regret scaling with K, d and L matches our theory
(Fig. 4). We verify the impact of the number of actions
K, the context dimension d, and the diffusion depth L
on the regret of dTS. We maintain the same experimental
setup with linear diffusion and rewards, for which we have
derived a Bayes regret upper bound. In Fig. 4, we plot
the regret of dTS-LL across varying values of these pa-
rameters: K ∈ {10, 100, 500, 1000}, d ∈ {5, 10, 15, 20},
and L ∈ {2, 4, 5, 6}. As anticipated and aligned with our
theory, the empirical regret increases as the values of K, d,
or L grow. This trend arises because larger values of K, d,
or L result in problem instances that are more challenging
to learn, consequently leading to higher regret.
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Figure 5: Regret of dTS-LL and LinTS
with varying K.

5) Performance gap between dTS and LinTS widens
as K increases (Fig. 5). To showcase dTS’s improved
scalability to larger action spaces, we examine its perfor-
mance across a range of K values, from 10 to 50, 000,
in our setting with linear diffusion and rewards. Fig. 5
reports the final cumulative regret for varying values of K
for both dTS-LL and LinTS, observing that the gap in the
performance becomes larger as K increases.

6 Conclusion

Grappling with large action spaces in contextual bandits is challenging. Recognizing this, we focused
on structured problems where action parameters are sampled from a diffusion model; upon which we
built diffusion Thompson sampling (dTS). We developed both theoretical and algorithmic foundations
for dTS in numerous practical settings. We identified several directions for future work. Exploring
other approximations for non-linear diffusion models, both empirically and theoretically. From a
theoretical perspective, future research could explore the advantages of non-linear diffusion models
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by deriving their Bayes regret bounds, akin to our analysis in Section 4. Empirically, investigating
our and other approximations in complex tasks would be interesting. Additionally, exploring the
extension of this work to offline (or off-policy) learning in contextual bandits [Swaminathan and
Joachims, 2015, Aouali et al., 2023a] represents a promising avenue for future research.
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Supplementary materials

Notation. For any positive integer n, we define [n] = {1, 2, ..., n}. Let v1, . . . , vn ∈ Rd be n vectors,
(vi)i∈[n] ∈ Rnd is the nd-dimensional vector obtained by concatenating v1, . . . , vn. For any matrix
A ∈ Rd×d, λ1(A) and λd(A) denote the maximum and minimum eigenvalues of A, respectively.
Finally, we write Õ for the big-O notation up to polylogarithmic factors.

A Extended related work

Thompson sampling (TS) operates within the Bayesian framework and it involves specifying a
prior/likelihood model. In each round, the agent samples unknown model parameters from the
current posterior distribution. The chosen action is the one that maximizes the resulting reward. TS
is naturally randomized, particularly simple to implement, and has highly competitive empirical
performance in both simulated and real-world problems [Russo and Van Roy, 2014, Chapelle and Li,
2012]. Regret guarantees for the TS heuristic remained open for decades even for simple models.
Recently, however, significant progress has been made. For standard multi-armed bandits, TS is
optimal in the Beta-Bernoulli model [Kaufmann et al., 2012, Agrawal and Goyal, 2013b], Gaussian-
Gaussian model [Agrawal and Goyal, 2013b], and in the exponential family using Jeffrey’s prior
[Korda et al., 2013]. For linear bandits, TS is nearly-optimal [Russo and Van Roy, 2014, Agrawal and
Goyal, 2017, Abeille and Lazaric, 2017]. In this work, we build TS upon complex diffusion priors
and analyze the resulting Bayes regret [Russo and Van Roy, 2014] in the linear contextual bandit
setting.

Decision-making with diffusion models gained attention recently, especially in offline learning
[Ajay et al., 2022, Janner et al., 2022, Wang et al., 2022]. However, their application in online
learning was only examined by Hsieh et al. [2023], which focused on meta-learning in multi-armed
bandits without theoretical guarantees. In this work, we expand the scope of Hsieh et al. [2023] to
encompass the broader contextual bandit framework. In particular, we provide theoretical analysis for
linear instances, effectively capturing the advantages of using diffusion models as priors in contextual
Thompson sampling. These linear cases are particularly captivating due to closed-form posteriors,
enabling both theoretical analysis and computational efficiency; an important practical consideration.

Hierarchical Bayesian bandits [Bastani et al., 2019, Kveton et al., 2021, Basu et al., 2021, Sim-
chowitz et al., 2021, Wan et al., 2021, Hong et al., 2022b, Peleg et al., 2022, Wan et al., 2022, Aouali
et al., 2023b] applied TS to simple graphical models, wherein action parameters are generally sampled
from a Gaussian distribution centered at a single latent parameter. These works mostly span meta-
and multi-task learning for multi-armed bandits, except in cases such as Aouali et al. [2023b], Hong
et al. [2022a] that consider the contextual bandit setting. Precisely, Aouali et al. [2023b] assume that
action parameters are sampled from a Gaussian distribution centered at a linear mixture of multiple
latent parameters. On the other hand, Hong et al. [2022a] applied TS to a graphical model represented
by a tree. Our work can be seen as an extension of all these works to much more complex graphical
models, for which both theoretical and algorithmic foundations are developed. Note that the settings
in most of these works can be recovered with specific choices of the diffusion depth L and functions
fℓ. This attests to the modeling power of dTS.

Approximate Thompson sampling is a major problem in the Bayesian inference literature. This is
because most posterior distributions are intractable, and thus practitioners must resort to sophisti-
cated computational techniques such as Markov chain Monte Carlo [Kruschke, 2010]. Prior works
[Riquelme et al., 2018, Chapelle and Li, 2012, Kveton et al., 2020] highlight the favorable empirical
performance of approximate Thompson sampling. Particularly, [Kveton et al., 2020] provide the-
oretical guarantees for Thompson sampling when using the Laplace approximation in generalized
linear bandits (GLB). In our context, we incorporate approximate sampling when the reward exhibits
non-linearity. While our approximation does not come with formal guarantees, it enjoys strong
practical performance. An in-depth analysis of this approximation is left as a direction for future
works. Similarly, approximating the posterior distribution when the diffusion model is non-linear as
well as analyzing it is an interesting direction of future works.

Bandits with underlying structure also align with our work, where we assume a structured relation-
ship among actions, captured by a diffusion model. In latent bandits [Maillard and Mannor, 2014,
Hong et al., 2020], a single latent variable indexes multiple candidate models. Within structured
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finite-armed bandits [Lattimore and Munos, 2014, Gupta et al., 2018], each action is linked to a known
mean function parameterized by a common latent parameter. This latent parameter is learned. TS
was also applied to complex structures [Yu et al., 2020, Gopalan et al., 2014]. However, simultaneous
computational and statistical efficiencies aren’t guaranteed. Meta- and multi-task learning with
upper confidence bound (UCB) approaches have a long history in bandits [Azar et al., 2013, Gentile
et al., 2014, Deshmukh et al., 2017, Cella et al., 2020]. These, however, often adopt a frequentist
perspective, analyze a stronger form of regret, and sometimes result in conservative algorithms.
In contrast, our approach is Bayesian, with analysis centered on Bayes regret. Remarkably, our
algorithm, dTS, performs well as analyzed without necessitating additional tuning. Finally, Low-rank
bandits [Hu et al., 2021, Cella et al., 2022, Yang et al., 2020] also relate to our linear diffusion model
when L = 1. Broadly, there exist two key distinctions between these prior works and the special
case of our model (linear diffusion model with L = 1). First, they assume θ∗,i = W1ψ∗,1, whereas
we incorporate additional uncertainty in the covariance Σ1 to account for possible misspecification
as θ∗,i = N (W1ψ∗,1,Σ1). Consequently, these algorithms might suffer linear regret due to model
misalignment. Second, we assume that the mixing matrix W1 is available and pre-learned offline,
whereas they learn it online. While this is more general, it leads to computationally expensive
methods that are difficult to employ in a real-world online setting.

Large action spaces. Roughly speaking, the regret bound of dTS scales with Kσ2
1 rather than

K
∑
ℓ σ

2
ℓ . This is particularly beneficial when σ1 is small, a common scenario in diffusion models

with decreasing variances. A notable case is when σ1 = 0, where the regret becomes independent of
K. Also, our analysis (Section 4.1) indicates that the gap in performance between dTS and LinTS
becomes more pronounced when the number of action increases, highlighting dTS’s suitability for
large action spaces. Note that some prior works [Foster et al., 2020, Xu and Zeevi, 2020, Zhu et al.,
2022] proposed bandit algorithms that do not scale with K. However, our setting differs significantly
from theirs, explaining our inherent dependency on K when σ1 > 0. Precisely, they assume a
reward function of r(x, i) = ϕ(x, i)⊤θ∗, with a shared θ∗ ∈ Rd across actions and a known mapping
ϕ. In contrast, we consider r(x, i) = x⊤θ∗,i, requiring the learning of K separate d-dimensional
action parameters. In their setting, with the availability of ϕ, the regret of dTS would similarly be
independent ofK. However, obtaining such a mapping ϕ can be challenging as it needs to encapsulate
complex context-action dependencies. Notably, our setting reflects a common practical scenario,
such as in recommendation systems where each product is often represented by its embedding. In
summary, the dependency on K is more related to our setting than the method itself, and dTS would
scale with d only in their setting. Note that dTS is both computationally and statistically efficient
(Section 4.1). This becomes particularly notable in large action spaces. Our empirical results in
Fig. 2, notably with K = 104, demonstrate that dTS significantly outperforms the baselines. More
importantly, the performance gap between dTS and these baselines is larger when the number of
actions (K) increases, highlighting the improved scalability of dTS to large action spaces.

B Posterior derivations for linear diffusion models

Here, we assume the score functions fℓ are linear such as fℓ(ψ∗,ℓ) = Wℓψ∗,ℓ for ℓ ∈ [L], where
Wℓ ∈ Rd×d are known mixing matrices. Then, (1) becomes a linear Gaussian system (LGS) [Bishop,
2006] and can be summarized as follows

ψ∗,L ∼ N (0,ΣL+1) , (15)
ψ∗,ℓ−1 | ψ∗,ℓ ∼ N (Wℓψ∗,ℓ,Σℓ) , ∀ℓ ∈ [L]/{1} ,
θ∗,i | ψ∗,1 ∼ N (W1ψ∗,1,Σ1) , ∀i ∈ [K] ,

Yt | Xt, θ∗,At ∼ P (· | Xt; θ∗,At) , ∀t ∈ [n] .

In this section, we derive theK+L posteriors Pt,i andQt,ℓ, for which we provide the full expressions
in Appendix B.1. In our proofs, p(x) ∝ f(x) means that the probability density p satisfies p(x) =
f(x)
Z for any x ∈ Rd, where Z is a normalization constant. In particular, we extensively use that if
p(x) ∝ exp[− 1

2x
⊤Λx + x⊤m], where Λ is positive definite. Then p is the multivariate Gaussian

density with covariance Σ = Λ−1 and mean µ = Σm. These are standard notations and techniques
to manipulate Gaussian distributions [Koller and Friedman, 2009, Chapter 7].
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B.1 Posterior expressions for linear diffusion models

Recall that we posit that the reward distribution is parameterized as a generalized linear model (GLM)
[McCullagh and Nelder, 1989], allowing for non-linear rewards. As a result, despite linearity in
score functions, the non-linearity in rewards makes it challenging to obtain closed-form posteriors.
However, since this non-linearity arises solely from the reward distribution, we approximate it using
a Gaussian distribution. This leads to efficient posterior approximations that are exact in cases where
the reward function is indeed Gaussian (a special case of the GLM model). Precisely, the reward
distribution P (· | x; θ) is an exponential-family distribution. Therefore, the log-likelihoods write
logP (Ht,i | θ∗,i = θ) =

∑
k∈St,i

YkX
⊤
k θ − A(X⊤

k θ) + C(Yk), where C is a real function, and A

is a twice continuously differentiable function whose derivative is the mean function, Ȧ = g. Now
we let B̂t,i and Ĝt,i be the maximum likelihood estimate (MLE) and the Hessian of the negative
log-likelihood, respectively, defined as

B̂t,i = argmax
θ∈Rd

logP (Ht,i | θ∗,i = θ) , Ĝt,i =
∑
k∈St,i

ġ
(
X⊤
k B̂t,i

)
XkX

⊤
k . (16)

where St,i = {ℓ ∈ [t − 1] : Aℓ = i} are the rounds where the agent takes action i up to round t.
Then we approximation the respective likelihood as P (Ht,i | θ∗,i = θ) ≈ N

(
θ; B̂t,i, Ĝ

−1
t,i

)
. This

approximation makes all posteriors Gaussian. First, the conditional action-posterior reads Pt,i(· |
ψ1) = N (·; µ̂t,i, Σ̂t,i),

Σ̂−1
t,i = Σ−1

1 + Ĝt,i µ̂t,i = Σ̂t,i
(
Σ−1

1 W1ψ1 + Ĝt,iB̂t,i
)
. (17)

For ℓ ∈ [L]/{1}, the ℓ− 1-th conditional latent-posterior is Qt,ℓ−1(· | ψℓ) = N (µ̄t,ℓ−1, Σ̄t,ℓ−1),

Σ̄−1
t,ℓ−1 = Σ−1

ℓ + Ḡt,ℓ−1 , µ̄t,ℓ−1 = Σ̄t,ℓ−1

(
Σ−1
ℓ Wℓψℓ + B̄t,ℓ−1

)
, (18)

and the L-th latent-posterior is Qt,L(·) = N (µ̄t,L, Σ̄t,L),

Σ̄−1
t,L = Σ−1

L+1 + Ḡt,L , µ̄t,L = Σ̄t,LB̄t,L . (19)

Finally, Ḡt,ℓ and B̄t,ℓ for ℓ ∈ [L] are computed recursively. The basis of the recursion are

Ḡt,1 = W⊤
1

K∑
i=1

(
Σ−1

1 − Σ−1
1 Σ̂t,iΣ

−1
1

)
W1 , B̄t,1 = W⊤

1 Σ
−1
1

K∑
i=1

Σ̂t,iĜt,iB̂t,i . (20)

Then, the recursive step for ℓ ∈ [L]/{1} is,

Ḡt,ℓ = W⊤
ℓ

(
Σ−1
ℓ − Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ

)
Wℓ , B̄t,ℓ = W⊤

ℓ Σ
−1
ℓ Σ̄t,ℓ−1B̄t,ℓ−1 . (21)

This concludes the derivation of our posterior approximation. Note that these approximations are exact
when the reward distribution follows a linear-Gaussian model, P (· | x; θ∗,a) = N (·;x⊤θ∗,a, σ2).

B.2 Derivation of Action-Posteriors for Linear Diffusion Models

To simplify derivations, we consider the case where the reward distribution is indeed linear-
Gaussian as P (· | Xt; θ∗,At

) = N
(
X⊤
t θ∗,At

, σ2
)
, but the same derivations can be applied when

the rewards are non-linear. In this case, the likelihood approximation in (16) becomes exact as
we have that P (Ht,i | θ∗,i = θ) ∝ N

(
θ; B̂t,i, Ĝ

−1
t,i

)
, where B̂t,i is the corresponding MLE and

Ĝt,i = σ−2
∑
k∈St,i

XkX
⊤
k in this case. Our derivations rely on the fact that the MLE B̂t,i in this

linear-Gaussian case satisfies: Ĝt,iB̂t,i = v
∑
k∈St,i

XkY
⊤
k .

Proposition B.1. Consider the following model, which corresponds to the last two layers in Eq. (15)

θ∗,i | ψ∗,1 ∼ N (W1ψ∗,1,Σ1) ,

Yt | Xt, θ∗,At ∼ N
(
X⊤
t θ∗,At , σ

2
)
, ∀t ∈ [n] .

Then we have that for any t ∈ [n] and i ∈ [K], Pt,i(θ | ψ1) = P (θ∗,i = θ |ψ∗,1 = ψ1, Ht,i) =

N (θ; µ̂t,i, Σ̂t,i), where

Σ̂−1
t,i = Ĝt,i +Σ−1

1 , µ̂t,i = Σ̂t,i

(
Ĝt,iB̂t,i +Σ−1

1 W1ψ1

)
.
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Proof. Let v = σ−2 , Λ1 = Σ−1
1 . Then the action-posterior decomposes as

Pt,i(θ | ψ1) = P (θ∗,i = θ |ψ∗,1 = ψ1, Ht,i) ,

∝ P (Ht,i |ψ∗,1 = ψ1, θ∗,i = θ)P (θ∗,i = θ |ψ∗,1 = ψ1) , (Bayes rule)
= P (Ht,i | θ∗,i = θ)P (θ∗,i = θ |ψ∗,1 = ψ1) , (given θ∗,i, Ht,i is independent of ψ∗,1)

=
∏
k∈St,i

N (Yk;X
⊤
k θ, σ

2)N (θ;W1ψ1,Σ1) ,

= exp
[
− 1

2

(
v

∑
k∈St,i

(Y 2
k − 2YkX

⊤
k θ + (X⊤

k θ)
2) + θ⊤Λ1θ − 2θ⊤Λ1W1ψ1

+
(
W1ψ1

)⊤
Λ1

(
W1ψ1

))]
,

∝ exp
[
− 1

2

(
θ⊤(v

∑
k∈St,i

XkX
⊤
k + Λ1)θ − 2θ⊤

(
v

∑
k∈St,i

XkYk + Λ1W1ψ1

))]
,

∝ N
(
θ; µ̂t,i, Λ̂

−1
t,i

)
,

with Λ̂t,i = v
∑
k∈St,i

XkX
⊤
k + Λ1 , Λ̂t,iµ̂t,i = v

∑
k∈St,i

XkYk + Λ1W1ψ1. Using that, in this

linear-Gaussian case, Ĝt,i = v
∑
k∈St,i

XkX
⊤
k and Ĝt,iB̂t,i = v

∑
k∈St,i

XkYk concludes the
proof.

The same proof applies when the reward distribution is not linear-Gaussian, with the approximation
P (Ht,i | θ∗,i = θ) ≈ N

(
θ; B̂t,i, Ĝ

−1
t,i

)
. Using this approximation in the derivations above leads to

the same results.

B.3 Derivation of recursive latent-posteriors for linear diffusion models

Again, to simplify derivations, we consider the case where the reward distribution is indeed linear-
Gaussian as P (· | Xt; θ∗,At

) = N
(
X⊤
t θ∗,At

, σ2
)
, but the same derivations can be applied when the

rewards are non-linear.
Proposition B.2. For any ℓ ∈ [L]/{1}, the ℓ − 1-th conditional latent-posterior reads Qt,ℓ−1(· |
ψℓ) = N (µ̄t,ℓ−1, Σ̄t,ℓ−1), with

Σ̄−1
t,ℓ−1 = Σ−1

ℓ + Ḡt,ℓ−1 , µ̄t,ℓ−1 = Σ̄t,ℓ−1

(
Σ−1
ℓ Wℓψℓ + B̄t,ℓ−1

)
, (22)

and the L-th latent-posterior reads Qt,L(·) = N (µ̄t,L, Σ̄t,L), with

Σ̄−1
t,L = Σ−1

L+1 + Ḡt,L , µ̄t,L = Σ̄t,LB̄t,L . (23)

Proof. Let ℓ ∈ [L]/{1}. Then, Bayes rule yields that

Qt,ℓ−1(ψℓ−1 | ψℓ) ∝ P (Ht |ψ∗,ℓ−1 = ψℓ−1)N (ψℓ−1,Wℓψℓ,Σℓ) ,

But from Lemma B.3, we know that

P (Ht |ψ∗,ℓ−1 = ψℓ−1) ∝ exp
[
− 1

2
ψ⊤
ℓ−1Ḡt,ℓ−1ψℓ−1 + ψ⊤

ℓ−1B̄t,ℓ−1

]
.

Therefore,

Qt,ℓ−1(ψℓ−1 | ψℓ) ∝ exp
[
− 1

2
ψ⊤
ℓ−1Ḡt,ℓ−1ψℓ−1 + ψ⊤

ℓ−1B̄t,ℓ−1

]
N (ψℓ−1,Wℓψℓ,Σℓ) ,

∝ exp
[
− 1

2
ψ⊤
ℓ−1Ḡt,ℓ−1ψℓ−1 + ψ⊤

ℓ−1B̄t,ℓ−1

− 1

2
(ψℓ−1 −Wℓψℓ)

⊤Σ−1
ℓ (ψℓ−1 −Wℓψℓ))

]
,

(i)
∝ exp

[
− 1

2
ψ⊤
ℓ−1(Ḡt,ℓ−1 +Σ−1

ℓ )ψℓ−1 + ψ⊤
ℓ−1(B̄t,ℓ−1 +Σ−1

ℓ Wℓψℓ)
]
,

(ii)
∝ N (ψℓ−1; µ̄t,ℓ−1, Σ̄t,ℓ−1) ,
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with Σ̄−1
t,ℓ−1 = Σ−1

ℓ + Ḡt,ℓ−1 and µ̄t,ℓ−1 = Σ̄t,ℓ−1

(
Σ−1
ℓ Wℓψℓ + B̄t,ℓ−1

)
. In (i), we omit terms that

are constant in ψℓ−1. In (ii), we complete the square. This concludes the proof for ℓ ∈ [L]/{1}. For
Qt,L, we use Bayes rule to get

Qt,L(ψL) ∝ P (Ht |ψ∗,L = ψL)N (ψL, 0,ΣL+1) .

Then from Lemma B.3, we know that

P (Ht |ψ∗,L = ψL) ∝ exp
[
− 1

2
ψ⊤
L Ḡt,LψL + ψ⊤

L B̄t,L

]
,

We then use the same derivations above to compute the product exp
[
− 1

2ψ
⊤
L Ḡt,LψL + ψ⊤

L B̄t,L

]
×

N (ψL, 0,ΣL+1), which concludes the proof.

Lemma B.3. The following holds for any t ∈ [n] and ℓ ∈ [L],

P (Ht |ψ∗,ℓ = ψℓ) ∝ exp
[
− 1

2
ψ⊤
ℓ Ḡt,ℓψℓ + ψ⊤

ℓ B̄t,ℓ

]
,

where Ḡt,ℓ and B̄t,ℓ are defined by recursion in Section 3.1.

Proof. We prove this result by induction. To reduce clutter, we let v = σ−2, and Λ1 = Σ−1
1 . We

start with the base case of the induction when ℓ = 1.

(I) Base case. Here we want to show that P (Ht |ψ∗,1 = ψ1) ∝ exp
[
− 1

2ψ
⊤
1 Ḡt,1ψ1 + ψ⊤

1 B̄t,1
)]

,

where Ḡt,1 and B̄t,1 are given in Eq. (20). First, we have that

P (Ht |ψ∗,1 = ψ1)
(i)
=

∏
i∈[K]

P (Ht,i |ψ∗,1 = ψ1) =
∏
i∈[K]

∫
θ

P (Ht,i, θ∗,i = θ |ψ∗,1 = ψ1) dθ ,

=
∏
i∈[K]

∫
θ

P (Ht,i | θ∗,i = θ)N (θ;W1ψ1,Σ1) dθ ,

=
∏
i∈[K]

∫
θ

( ∏
k∈St,i

N (Yk;X
⊤
k θ, σ

2)
)
N (θ;W1ψ1,Σ1) dθ︸ ︷︷ ︸

hi(ψ1)

,

=
∏
i∈[K]

hi(ψ1) , (24)

where (i) follows from the fact that θ∗,i for i ∈ [K] are conditionally independent given
ψ∗,1 = ψ1 and that given θ∗,i, Ht,i is independent of ψ∗,1. Now we compute hi(ψ1) =∫
θ

(∏
k∈St,i

N (Yk;X
⊤
k θ, σ

2)
)
N (θ;W1ψ1,Σ1) dθ as

hi(ψ1) =

∫
θ

( ∏
k∈St,i

N (Yk;X
⊤
k θ, σ

2)
)
N (θ;W1ψ1,Σ1) dθ ,

∝
∫
θ

exp
[
− 1

2
v

∑
k∈St,i

(Yk −X⊤
k θ)

2 − 1

2
(θ −W1ψ1)

⊤Λ1(θ −W1ψ1)
]
dθ ,

=

∫
θ

exp
[
− 1

2

(
v

∑
k∈St,i

(Y 2
k − 2Ykθ

⊤Xk + (θ⊤Xk)
2) + θ⊤Λ1θ − 2θ⊤Λ1W1ψ1

+ (W1ψ1)
⊤Λ1(W1ψ1)

)]
dθ ,

∝
∫
θ

exp
[
− 1

2

(
θ⊤

(
v

∑
k∈St,i

XkX
⊤
k + Λ1

)
θ − 2θ⊤

(
v

∑
k∈St,i

YkXk

+ Λ1W1ψ1

)
+ (W1ψ1)

⊤Λ1(W1ψ1)
)]

dθ .
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But we know that Ĝt,i = v
∑
k∈St,i

XkX
⊤
k , and Ĝt,iB̂t,i = v

∑
k∈St,i

YkXk (because we assumed
linear-Gaussian likelihood). To further simplify expressions, we also let

V =
(
Ĝt,i + Λ1

)−1
, U = V −1 , β = V

(
Ĝt,iB̂t,i + Λ1W1ψ1

)
.

We have that UV = V U = Id , and thus

hi(ψ1) ∝
∫
θ

exp

[
−1

2

(
θ⊤Uθ − 2θ⊤UV

(
Ĝt,iB̂t,i + Λ1W1ψ1

)
+ (W1ψ1)

⊤Λ1(W1ψ1)
)]

dθ ,

=

∫
θ

exp

[
−1

2

(
θ⊤Uθ − 2θ⊤Uβ + (W1ψ1)

⊤Λ1(W1ψ1)
)]

dθ ,

=

∫
θ

exp

[
−1

2

(
(θ − β)⊤U(θ − β)− β⊤Uβ + (W1ψ1)

⊤Λ1(W1ψ1)
)]

dθ ,

∝ exp

[
−1

2

(
−β⊤Uβ + (W1ψ1)

⊤Λ1(W1ψ1)
)]

,

= exp

[
−1

2

(
−
(
Ĝt,iB̂t,i + Λ1W1ψ1

)⊤
V
(
Ĝt,iB̂t,i + Λ1W1ψ1

)
+ (W1ψ1)

⊤Λ1(W1ψ1)

)]
,

∝ exp

[
−1

2

(
ψ⊤
1 W

⊤
1 (Λ1 − Λ1V Λ1)W1ψ1 − 2ψ⊤

1

(
W⊤

1 Λ1V Ĝt,iB̂t,i

))]
,

= exp

[
−1

2
ψ⊤
1 Ωiψ1 + ψ⊤

1 mi

]
,

where

Ωi = W⊤
1 (Λ1 − Λ1V Λ1)W1 = W⊤

1

(
Λ1 − Λ1(Ĝt,i + Λ1)

−1Λ1

)
W1 ,

mi = W⊤
1 Λ1V Ĝt,iB̂t,i = W⊤

1 Λ1(Ĝt,i + Λ1)
−1Ĝt,iB̂t,i . (25)

But notice that V = (Ĝt,i + Λ1)
−1 = Σ̂t,i and thus

Ωi = W⊤
1

(
Λ1 − Λ1Σ̂t,iΛ1

)
W1 , mi = W⊤

1 Λ1Σ̂t,iĜt,iB̂t,i . (26)

Finally, we plug this result in Eq. (24) to get

P (Ht |ψ∗,1 = ψ1) =
∏
i∈[K]

hi(ψ1) ∝
∏
i∈[K]

exp

[
−1

2
ψ⊤
1 Ωiψ1 + ψ⊤

1 mi

]
,

= exp

−1

2
ψ⊤
1

∑
i∈[K]

Ωiψ1 + ψ⊤
1

∑
i∈[K]

mi

 ,

= exp

[
−1

2
ψ⊤
1 Ḡt,1ψ1 + ψ⊤

1 B̄t,1

]
,

where

Ḡt,1 =

K∑
i=1

Ωi =

K∑
i=1

W⊤
1

(
Λ1 − Λ1Σ̂t,iΛ1

)
W1 = W⊤

1

K∑
i=1

(
Σ−1

1 − Σ−1
1 Σ̂t,iΣ

−1
1

)
W1 ,

B̄t,1 =

K∑
i=1

mi =

K∑
i=1

Σ̂t,iĜt,iB̂t,i = W⊤
1 Σ

−1
1

K∑
i=1

Σ̂t,iĜt,iB̂t,i .

This concludes the proof of the base case.

(II) Induction step. Let ℓ ∈ [L]/{1}. Suppose that

P (Ht |ψ∗,ℓ−1 = ψℓ−1) ∝ exp

[
−1

2
ψ⊤
ℓ−1Ḡt,ℓ−1ψℓ−1 + ψ⊤

ℓ−1B̄t,ℓ−1

]
. (27)
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Then we want to show that

P (Ht |ψ∗,ℓ = ψℓ) ∝ exp

[
−1

2
ψ⊤
ℓ Ḡt,ℓψℓ + ψ⊤

ℓ B̄t,ℓ

]
,

where

Ḡt,ℓ = W⊤
ℓ

(
Σ−1
ℓ − Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ

)
Wℓ = W⊤

ℓ

(
Σ−1
ℓ − Σ−1

ℓ (Σ−1
ℓ + Ḡt,ℓ−1)

−1Σ−1
ℓ

)
Wℓ ,

B̄t,ℓ = W⊤
ℓ Σ

−1
ℓ Σ̄t,ℓ−1B̄t,ℓ−1 = W⊤

ℓ Σ
−1
ℓ (Σ−1

ℓ + Ḡt,ℓ−1)
−1B̄t,ℓ−1 .

To achieve this, we start by expressing P (Ht |ψ∗,ℓ = ψℓ) in terms of P (Ht |ψ∗,ℓ−1 = ψℓ−1) as

P (Ht |ψ∗,ℓ = ψℓ) =

∫
ψℓ−1

P (Ht, ψ∗,ℓ−1 = ψℓ−1 |ψ∗,ℓ = ψℓ) dψℓ−1 ,

=

∫
ψℓ−1

P (Ht |ψ∗,ℓ−1 = ψℓ−1, ψ∗,ℓ = ψℓ)N (ψℓ−1;Wℓψℓ,Σℓ) dψℓ−1 ,

=

∫
ψℓ−1

P (Ht |ψ∗,ℓ−1 = ψℓ−1)N (ψℓ−1;Wℓψℓ,Σℓ) dψℓ−1 ,

∝
∫
ψℓ−1

exp
[
− 1

2
ψ⊤
ℓ−1Ḡt,ℓ−1ψℓ−1 + ψ⊤

ℓ−1B̄t,ℓ−1

]
N (ψℓ−1;Wℓψℓ,Σℓ) dψℓ−1 ,

∝
∫
ψℓ−1

exp
[
− 1

2
ψ⊤
ℓ−1Ḡt,ℓ−1ψℓ−1 + ψ⊤

ℓ−1B̄t,ℓ−1

+ (ψℓ−1 −Wℓψℓ)
⊤Λℓ(ψℓ−1 −Wℓψℓ)

)]
dψℓ−1 .

Now let S = Ḡt,ℓ−1 + Λℓ and V = B̄t,ℓ−1 + ΛℓWℓψℓ. Then we have that,

P (Ht |ψ∗,ℓ = ψℓ)

∝
∫
ψℓ−1

exp
[
− 1

2
ψ⊤
ℓ−1Ḡt,ℓ−1ψℓ−1 + ψ⊤

ℓ−1B̄t,ℓ−1

+ (ψℓ−1 −Wℓψℓ)
⊤Λℓ(ψℓ−1 −Wℓψℓ)

)]
dψℓ−1 ,

∝
∫
ψℓ−1

exp
[
− 1

2

(
ψ⊤
ℓ−1Sψℓ−1 − 2ψ⊤

ℓ−1

(
B̄t,ℓ−1 + ΛℓWℓψℓ

)
+ ψ⊤

ℓ W
⊤
ℓ ΛℓWℓψℓ

)]
dψℓ−1 ,

=

∫
ψℓ−1

exp
[
− 1

2

(
ψ⊤
ℓ−1S(ψℓ−1 − 2S−1V ) + ψ⊤

ℓ W
⊤
ℓ ΛℓWℓψℓ

)]
dψℓ−1 ,

=

∫
ψℓ−1

exp
[
− 1

2

(
(ψℓ−1 − S−1V )⊤S(ψℓ−1 − S−1V )

+ ψ⊤
ℓ W

⊤
ℓ ΛℓWℓψℓ − V ⊤S−1V

)]
dψℓ−1.

In the second step, we omit constants in ψℓ and ψℓ−1. Thus

P (Ht |ψ∗,ℓ = ψℓ)

∝
∫
ψℓ−1

exp

[
−1

2

(
(ψℓ−1 − S−1V )⊤S(ψℓ−1 − S−1V ) + ψ⊤

ℓ W
⊤
ℓ ΛℓWℓψℓ − V ⊤S−1V

)]
dψℓ−1,

∝ exp

[
−1

2

(
ψ⊤
ℓ W

⊤
ℓ ΛℓWℓψℓ − V ⊤S−1V

)]
.
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It follows that

P (Ht |ψ∗,ℓ = ψℓ)

∝ exp

[
−1

2

(
ψ⊤
ℓ W

⊤
ℓ ΛℓWℓψℓ − V ⊤S−1V

)]
,

= exp

[
−1

2

(
ψ⊤
ℓ W

⊤
ℓ ΛℓWℓψℓ −

(
B̄t,ℓ−1 + ΛℓWℓψℓ

)⊤
S−1

(
B̄t,ℓ−1 + ΛℓWℓψℓ

))]
∝ exp

[
−1

2

(
ψ⊤
ℓ

(
W⊤
ℓ ΛℓWℓ −W⊤

ℓ ΛℓS
−1ΛℓWℓ

)
ψℓ − 2ψ⊤

ℓ W
⊤
ℓ ΛℓS

−1B̄t,ℓ−1

)]
,

= exp

[
−1

2
ψ⊤
ℓ Ḡt,ℓψℓ + ψ⊤

ℓ B̄t,ℓ

]
.

In the last step, we omit constants in ψℓ and we set

Ḡt,ℓ = W⊤
ℓ

(
Λℓ − ΛℓS

−1Λℓ
)
Wℓ = W⊤

ℓ

(
Λℓ − Λℓ(Λℓ + Ḡt,ℓ−1)

−1Σ−1
ℓ Λℓ

)
Wℓ ,

B̄t,ℓ = W⊤
ℓ ΛℓS

−1B̄t,ℓ−1 = W⊤
ℓ Λℓ(Λℓ + Ḡt,ℓ−1)

−1B̄t,ℓ−1 .

This completes the proof.

Similarly, this same proof applies when the reward distribution is not linear-Gaussian, with the
approximation P (Ht,i | θ∗,i = θ) ≈ N

(
θ; B̂t,i, Ĝ

−1
t,i

)
. Using this approximation in the derivations

above leads to the same results.

C Posterior derivations for non-linear diffusion models

After deriving the posteriors for linear score functions fℓ, we now get back to the general case in (1),
where the score functions are potentially non-linear. Approximation is needed since both the score
functions and rewards can be non-linear. To avoid any computational challenges, we use a simple
and intuitive approximation, where all posteriors Pt,i and Qt,ℓ are approximated by the Gaussian
distributions in Appendix B.1, with few changes. First, the terms Wℓψℓ in (18) are replaced by fℓ(ψℓ).
This accounts for the fact that the prior mean is now fℓ(ψℓ) rather than Wℓψℓ, and this is the main
difference between the linear diffusion model in (15) and the general, potentially non-linear, diffusion
model in (1). Second, the matrix multiplications that involve the matrices Wℓ in (20) and (21) are
simply removed. Despite being simple, this approximation is efficient and avoids the computational
burden of heavy approximate sampling algorithms required for each latent parameter. This is why
deriving the exact posterior for linear score functions was key beyond enabling theoretical analyses.
Moreover, this approximation retains some key attributes of exact posteriors. Specifically, in the
absence of data, it recovers precisely the prior in (1), and as more data is accumulated, the influence
of the prior diminishes.

D Regret proof and additional discussions

D.1 Sketch of the proof

We start with the following standard lemma upon which we build our analysis [Aouali et al., 2023b].

Lemma D.1. Assume that P (θ∗,i = θ |Ht) = N (θ; µ̌t,i, Σ̌t,i) for any i ∈ [K], then for any δ ∈
(0, 1),

BR(n) ≤
√
2n log(1/δ)

√
E
[∑n

t=1 ∥Xt∥2Σ̌t,At

]
+ cnδ , where c > 0 is a constant . (28)

Applying Lemma D.1 requires proving that the marginal action-posteriors P (θ∗,i = θ |Ht) in Eq. (3)
are Gaussian and computing their covariances, while we only know the conditional action-posteriors
Pt,i and latent-posteriors Qt,ℓ. This is achieved by leveraging the preservation properties of the
family of Gaussian distributions [Koller and Friedman, 2009] and the total covariance decomposition
[Weiss, 2005] which leads to the next lemma.
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Lemma D.2. Let t ∈ [n] and i ∈ [K], then the marginal covariance matrix Σ̌t,i reads

Σ̌t,i = Σ̂t,i +
∑
ℓ∈[L] Pi,ℓΣ̄t,ℓP

⊤
i,ℓ , where Pi,ℓ = Σ̂t,iΣ

−1
1 W1

∏ℓ−1
k=1 Σ̄t,kΣ

−1
k+1Wk+1. (29)

The marginal covariance matrix Σ̌t,i in Eq. (29) decomposes into L + 1 terms. The first term
corresponds to the posterior uncertainty of θ∗,i | ψ∗,1. The remaining L terms capture the posterior
uncertainties of ψ∗,L and ψ∗,ℓ−1 | ψ∗,ℓ for ℓ ∈ [L]/{1}. These are then used to quantify the posterior
information gain of latent parameters after one round as follows.
Lemma D.3 (Posterior information gain). Let t ∈ [n] and ℓ ∈ [L], then

Σ̄−1
t+1,ℓ − Σ̄−1

t,ℓ ⪰ σ−2σ−2ℓ
MAXP

⊤
At,ℓ

XtX
⊤
t PAt,ℓ , where σ2

MAX = maxℓ∈[L+1] 1 +
σ2
ℓ

σ2 . (30)

Finally, Lemma D.2 is used to decompose ∥Xt∥2Σ̌t,At

in Eq. (28) into L + 1 terms. Each term is
bounded thanks to Lemma D.3. This results in the Bayes regret bound in Theorem 4.1.

D.2 Technical contributions

Our main technical contributions are the following.

Lemma D.2. In dTS, sampling is done hierarchically, meaning the marginal posterior distribution of
θ∗,i|Ht is not explicitly defined. Instead, we use the conditional posterior distribution of θ∗,i|Ht, ψ∗,1.
The first contribution was deriving θ∗,i|Ht using the total covariance decomposition combined with
an induction proof, as our posteriors in Section 3.1 were derived recursively. Unlike in Bayes
regret analysis for standard Thompson sampling, where the posterior distribution of θ∗,i|Ht is
predetermined due to the absence of latent parameters, our method necessitates this recursive total
covariance decomposition, marking a first difference from the standard Bayesian proofs of Thompson
sampling. Note that HierTS, which is developed for multi-task linear bandits, also employs total
covariance decomposition, but it does so under the assumption of a single latent parameter; on which
action parameters are centered. Our extension significantly differs as it is tailored for contextual
bandits with multiple, successive levels of latent parameters, moving away from HierTS’s assumption
of a 1-level structure. Roughly speaking, HierTS when applied to contextual would consider a single-
level hierarchy, where θ∗,i|ψ∗,1 ∼ N (ψ∗,1,Σ1) with L = 1. In contrast, our model proposes a
multi-level hierarchy, where the first level is θ∗,i|ψ∗,1 ∼ N (W1ψ∗,1,Σ1). This also introduces a new
aspect to our approach – the use of a linear function W1ψ∗,1, as opposed to HierTS’s assumption
where action parameters are centered directly on the latent parameter. Thus, while HierTS also
uses the total covariance decomposition, our generalize it to multi-level hierarchies under L linear
functions Wℓψ∗,ℓ, instead of a single-level hierarchy under a single identity function ψ∗,1.

Lemma D.3. In Bayes regret proofs for standard Thompson sampling, we often quantify the posterior
information gain. This is achieved by monitoring the increase in posterior precision for the action
taken At in each round t ∈ [n]. However, in dTS, our analysis extends beyond this. We not only
quantify the posterior information gain for the taken action but also for every latent parameter, since
they are also learned. This lemma addresses this aspect. To elaborate, we use the recursive formulas
in Section 3.1 that connect the posterior covariance of each latent parameter ψ∗,ℓ with the covariance
of the posterior action parameters θ∗,i. This allows us to propagate the information gain associated
with the action taken in round At to all latent parameters ψ∗,ℓ, for ℓ ∈ [L] by induction. This is a
novel contribution, as it is not a feature of Bayes regret analyses in standard Thompson sampling.

Proposition 4.2. Building upon the insights of Theorem 4.1, we introduce the sparsity assumption
(A3). Under this assumption, we demonstrate that the Bayes regret outlined in Theorem 4.1 can be
significantly refined. Specifically, the regret becomes contingent on dimensions dℓ ≤ d, as opposed
to relying on the entire dimension d. This sparsity assumption is both a novel and a key technical
contribution to our work. Its underlying principle is straightforward: the Bayes regret is influenced
by the quantity of parameters that require learning. With the sparsity assumption, this number is
reduced to less than d for each latent parameter. To substantiate this claim, we revisit the proof of
Theorem 4.1 and modify a crucial equality. This adjustment results in a more precise representation by
partitioning the covariance matrix of each latent parameter ψ∗,ℓ into blocks. These blocks comprise
a dℓ × dℓ segment corresponding to the learnable dℓ parameters of ψ∗,ℓ, and another block of size
(d− dℓ)× (d− dℓ) that does not necessitate learning. This decomposition allows us to conclude that
the final regret is solely dependent on dℓ, marking a significant refinement from the original theorem.
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D.3 Proof of lemma D.2

In this proof, we heavily rely on the total covariance decomposition [Weiss, 2005]. Also, refer to
[Hong et al., 2022b, Section 5.2] for a brief introduction to this decomposition. Now, from Eq. (17),
we have that

cov [θ∗,i |Ht, ψ∗,1] = Σ̂t,i =
(
Ĝt,i +Σ−1

1

)−1

,

E [θ∗,i |Ht, ψ∗,1] = µ̂t,i = Σ̂t,i

(
Ĝt,iB̂t,i +Σ−1

1 W1ψ∗,1

)
.

First, given Ht, cov [θ∗,i |Ht, ψ∗,1] =
(
Ĝt,i +Σ−1

1

)−1

is constant. Thus

E [cov [θ∗,i |Ht, ψ∗,1] |Ht] = cov [θ∗,i |Ht, ψ∗,1] =
(
Ĝt,i +Σ−1

1

)−1

= Σ̂t,i .

In addition, given Ht, Σ̂t,i, Ĝt,i and B̂t,i are constant. Thus

cov [E [θ∗,i |Ht, ψ∗,1] |Ht] = cov
[
Σ̂t,i

(
Ĝt,iB̂t,i +Σ−1

1 W1ψ∗,1

) ∣∣∣Ht

]
,

= cov
[
Σ̂t,iΣ

−1
1 W1ψ∗,1

∣∣∣Ht

]
,

= Σ̂t,iΣ
−1
1 W1cov [ψ∗,1 |Ht]W

⊤
1 Σ

−1
1 Σ̂t,i ,

= Σ̂t,iΣ
−1
1 W1

¯̄Σt,1W
⊤
1 Σ

−1
1 Σ̂t,i ,

where ¯̄Σt,1 = cov [ψ∗,1 |Ht] is the marginal posterior covariance of ψ∗,1. Finally, the total covariance
decomposition [Weiss, 2005, Hong et al., 2022b] yields that

Σ̌t,i = cov [θ∗,i |Ht] = E [cov [θ∗,i |Ht, ψ∗,1] |Ht] + cov [E [θ∗,i |Ht, ψ∗,1] |Ht] ,

= Σ̂t,i + Σ̂t,iΣ
−1
1 W1

¯̄Σt,1W
⊤
1 Σ

−1
1 Σ̂t,i , (31)

However, ¯̄Σt,1 = cov [ψ∗,1 |Ht] is different from Σ̄t,1 = cov [ψ∗,1 |Ht, ψ∗,2] that we already derived
in Eq. (18). Thus we do not know the expression of ¯̄Σt,1. But we can use the same total covariance
decomposition trick to find it. Precisely, let ¯̄Σt,ℓ = cov [ψ∗,ℓ |Ht] for any ℓ ∈ [L]. Then we have that

Σ̄t,1 = cov [ψ∗,1 |Ht, ψ∗,2] =
(
Σ−1

2 + Ḡt,1
)−1

,

µ̄t,1 = E [ψ∗,1 |Ht, ψ∗,2] = Σ̄t,1

(
Σ−1

2 W2ψ∗,2 + B̄t,1

)
.

First, given Ht, cov [ψ∗,1 |Ht, ψ∗,2] =
(
Σ−1

2 + Ḡt,1
)−1

is constant. Thus

E [cov [ψ∗,1 |Ht, ψ∗,2] |Ht] = cov [ψ∗,1 |Ht, ψ∗,2] = Σ̄t,1 .

In addition, given Ht, Σ̄t,1, Σ̃t,1 and B̄t,1 are constant. Thus

cov [E [ψ∗,1 |Ht, ψ∗,2] |Ht] = cov
[
Σ̄t,1

(
Σ−1

2 W2ψ∗,2 + B̄t,1

) ∣∣∣Ht

]
,

= cov
[
Σ̄t,1Σ

−1
2 W2ψ∗,2

∣∣Ht

]
,

= Σ̄t,1Σ
−1
2 W2cov [ψ∗,2 |Ht]W

⊤
2 Σ

−1
2 Σ̄t,1 ,

= Σ̄t,1Σ
−1
2 W2

¯̄Σt,2W
⊤
2 Σ

−1
2 Σ̄t,1 .

Finally, total covariance decomposition [Weiss, 2005, Hong et al., 2022b] leads to

¯̄Σt,1 = cov [ψ∗,1 |Ht] = E [cov [ψ∗,1 |Ht, ψ∗,2] |Ht] + cov [E [ψ∗,1 |Ht, ψ∗,2] |Ht] ,

= Σ̄t,1 + Σ̄t,1Σ
−1
2 W2

¯̄Σt,2W
⊤
2 Σ

−1
2 Σ̄t,1 .

Now using the techniques, this can be generalized using the same technique as above to

¯̄Σt,ℓ = Σ̄t,ℓ + Σ̄t,ℓΣ
−1
ℓ+1Wℓ+1

¯̄Σt,ℓ+1W
⊤
ℓ+1Σ

−1
ℓ+1Σ̄t,ℓ , ∀ℓ ∈ [L− 1] .
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Then, by induction, we get that

¯̄Σt,1 =
∑
ℓ∈[L]

P̄ℓΣ̄t,ℓP̄
⊤
ℓ , ∀ℓ ∈ [L− 1] ,

where we use that by definition ¯̄Σt,L = cov [ψ∗,L |Ht] = Σ̄t,L and set P̄1 = Id and P̄ℓ =∏ℓ−1
k=1 Σ̄t,kΣ

−1
k+1Wk+1 for any ℓ ∈ [L]/{1}. Plugging this in Eq. (31) leads to

Σ̌t,i = Σ̂t,i +
∑
ℓ∈[L]

Σ̂t,iΣ
−1
1 W1P̄ℓΣ̄t,ℓP̄

⊤
ℓ W

⊤
1 Σ

−1
1 Σ̂t,i ,

= Σ̂t,i +
∑
ℓ∈[L]

Σ̂t,iΣ
−1
1 W1P̄ℓΣ̄t,ℓ(Σ̂t,iΣ

−1
1 W1)

⊤ ,

= Σ̂t,i +
∑
ℓ∈[L]

Pi,ℓΣ̄t,ℓP
⊤
i,ℓ ,

where Pi,ℓ = Σ̂t,iΣ
−1
1 W1P̄ℓ = Σ̂t,iΣ

−1
1 W1

∏ℓ−1
k=1 Σ̄t,kΣ

−1
k+1Wk+1.

D.4 Proof of lemma D.3

We prove this result by induction. We start with the base case when ℓ = 1.

(I) Base case. Let u = σ−1Σ̂
1
2

t,At
Xt From the expression of Σ̄t,1 in Eq. (18), we have that

Σ̄−1
t+1,1 − Σ̄−1

t,1 = W⊤
1

(
Σ−1

1 − Σ−1
1 (Σ̂−1

t,At
+ σ−2XtX

⊤
t )

−1Σ−1
1 − (Σ−1

1 − Σ−1
1 Σ̂t,AtΣ

−1
1 )

)
W1 ,

= W⊤
1

(
Σ−1

1 (Σ̂t,At − (Σ̂−1
t,At

+ σ−2XtX
⊤
t )

−1)Σ−1
1

)
W1 ,

= W⊤
1

(
Σ−1

1 Σ̂
1
2

t,At
(Id − (Id + σ−2Σ̂

1
2

t,At
XtX

⊤
t Σ̂

1
2

t,At
)−1)Σ̂

1
2

t,At
Σ−1

1

)
W1 ,

= W⊤
1

(
Σ−1

1 Σ̂
1
2

t,At
(Id − (Id + uu⊤)−1)Σ̂

1
2

t,At
Σ−1

1

)
W1 ,

(i)
= W⊤

1

(
Σ−1

1 Σ̂
1
2

t,At

uu⊤

1 + u⊤u
Σ̂

1
2

t,At
Σ−1

1

)
W1 ,

(ii)
= σ−2W⊤

1 Σ
−1
1 Σ̂t,At

XtX
⊤
t

1 + u⊤u
Σ̂t,At

Σ−1
1 W1 . (32)

In (i) we use the Sherman-Morrison formula. Note that (ii) says that Σ̄−1
t+1,1 − Σ̄−1

t,1 is one-rank
which we will also need in induction step. Now, we have that ∥Xt∥2 = 1. Therefore,

1 + u⊤u = 1 + σ−2X⊤
t Σ̂t,At

Xt ≤ 1 + σ−2λ1(Σ1)∥Xt∥2 = 1 + σ−2σ2
1 ≤ σ2

MAX ,

where we use that by definition of σ2
MAX in Lemma D.3, we have that σ2

MAX ≥ 1 + σ−2σ2
1 . Therefore,

by taking the inverse, we get that 1
1+u⊤u

≥ σ−2
MAX. Combining this with Eq. (32) leads to

Σ̄−1
t+1,1 − Σ̄−1

t,1 ⪰ σ−2σ−2
MAXW

⊤
1 Σ

−1
1 Σ̂t,At

XtX
⊤
t Σ̂t,At

Σ−1
1 W1

Noticing that PAt,1 = Σ̂t,AtΣ
−1
1 W1 concludes the proof of the base case when ℓ = 1.

(II) Induction step. Let ℓ ∈ [L]/{1} and suppose that Σ̄−1
t+1,ℓ−1 − Σ̄−1

t,ℓ−1 is one-rank and that it
holds for ℓ− 1 that

Σ̄−1
t+1,ℓ−1 − Σ̄−1

t,ℓ−1 ⪰ σ−2σ
−2(ℓ−1)
MAX P⊤

At,ℓ−1XtX
⊤
t PAt,ℓ−1 , where σ−2

MAX = max
ℓ∈[L]

1 + σ−2σ2
ℓ .

Then, we want to show that Σ̄−1
t+1,ℓ − Σ̄−1

t,ℓ is also one-rank and that it holds that

Σ̄−1
t+1,ℓ − Σ̄−1

t,ℓ ⪰ σ−2σ−2ℓ
MAXP

⊤
At,ℓXtX

⊤
t PAt,ℓ , where σ−2

MAX = max
ℓ∈[L]

1 + σ−2σ2
ℓ .
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This is achieved as follows. First, we notice that by the induction hypothesis, we have that Σ̃−1
t+1,ℓ−1−

Ḡt,ℓ−1 = Σ̄−1
t+1,ℓ−1 − Σ̄−1

t,ℓ−1 is one-rank. In addition, the matrix is positive semi-definite. Thus we
can write it as Σ̃−1

t+1,ℓ−1 − Ḡt,ℓ−1 = uu⊤ where u ∈ Rd. Then, similarly to the base case, we have

Σ̄−1
t+1,ℓ−Σ̄−1

t,ℓ = Σ̃−1
t+1,ℓ − Σ̃−1

t,ℓ ,

= W⊤
ℓ

(
Σℓ + Σ̃t+1,ℓ−1

)−1
Wℓ −W⊤

ℓ

(
Σℓ + Σ̃t,ℓ−1

)−1
Wℓ ,

= W⊤
ℓ

[(
Σℓ + Σ̃t+1,ℓ−1

)−1 −
(
Σℓ + Σ̃t,ℓ−1

)−1
]
Wℓ ,

= W⊤
ℓ Σ

−1
ℓ

[(
Σ−1
ℓ + Ḡt,ℓ−1

)−1 −
(
Σ−1
ℓ + Σ̃−1

t+1,ℓ−1

)−1
]
Σ−1
ℓ Wℓ ,

= W⊤
ℓ Σ

−1
ℓ

[(
Σ−1
ℓ + Ḡt,ℓ−1

)−1 −
(
Σ−1
ℓ + Ḡt,ℓ−1 + Σ̃−1

t+1,ℓ−1 − Ḡt,ℓ−1

)−1
]
Σ−1
ℓ Wℓ ,

= W⊤
ℓ Σ

−1
ℓ

[(
Σ−1
ℓ + Ḡt,ℓ−1

)−1 −
(
Σ−1
ℓ + Ḡt,ℓ−1 + uu⊤

)−1
]
Σ−1
ℓ Wℓ ,

= W⊤
ℓ Σ

−1
ℓ

[
Σ̄t,ℓ−1 −

(
Σ̄−1
t,ℓ−1 + uu⊤

)−1
]
Σ−1
ℓ Wℓ ,

= W⊤
ℓ Σ

−1
ℓ

[
Σ̄t,ℓ−1

uu⊤

1 + u⊤Σ̄t,ℓ−1u
Σ̄t,ℓ−1

]
Σ−1
ℓ Wℓ ,

= W⊤
ℓ Σ

−1
ℓ Σ̄t,ℓ−1

uu⊤

1 + u⊤Σ̄t,ℓ−1u
Σ̄t,ℓ−1Σ

−1
ℓ Wℓ

However, we it follows from the induction hypothesis that uu⊤ = Σ̃−1
t+1,ℓ−1 − Ḡt,ℓ−1 = Σ̄−1

t+1,ℓ−1 −
Σ̄−1
t,ℓ−1 ⪰ σ−2σ

−2(ℓ−1)
MAX P⊤

At,ℓ−1XtX
⊤
t PAt,ℓ−1. Therefore,

Σ̄−1
t+1,ℓ − Σ̄−1

t,ℓ = W⊤
ℓ Σ

−1
ℓ Σ̄t,ℓ−1

uu⊤

1 + u⊤Σ̄t,ℓ−1u
Σ̄t,ℓ−1Σ

−1
ℓ Wℓ ,

⪰ W⊤
ℓ Σ

−1
ℓ Σ̄t,ℓ−1

σ−2σ
−2(ℓ−1)
MAX P⊤

At,ℓ−1XtX
⊤
t PAt,ℓ−1

1 + u⊤Σ̄t,ℓ−1u
Σ̄t,ℓ−1Σ

−1
ℓ Wℓ ,

=
σ−2σ

−2(ℓ−1)
MAX

1 + u⊤Σ̄t,ℓ−1u
W⊤
ℓ Σ

−1
ℓ Σ̄t,ℓ−1P

⊤
At,ℓ−1XtX

⊤
t PAt,ℓ−1Σ̄t,ℓ−1Σ

−1
ℓ Wℓ ,

=
σ−2σ

−2(ℓ−1)
MAX

1 + u⊤Σ̄t,ℓ−1u
P⊤
At,ℓXtX

⊤
t PAt,ℓ .

Finally, we use that 1 + u⊤Σ̄t,ℓ−1u ≤ 1 + ∥u∥2λ1(Σ̄t,ℓ−1) ≤ 1 + σ−2σ2
ℓ . Here we use that

∥u∥2 ≤ σ−2, which can also be proven by induction, and that λ1(Σ̄t,ℓ−1) ≤ σ2
ℓ , which follows from

the expression of Σ̄t,ℓ−1 in Section 3.1. Therefore, we have that

Σ̄−1
t+1,ℓ − Σ̄−1

t,ℓ ⪰ σ−2σ
−2(ℓ−1)
MAX

1 + u⊤Σ̄t,ℓ−1u
P⊤
At,ℓXtX

⊤
t PAt,ℓ ,

⪰ σ−2σ
−2(ℓ−1)
MAX

1 + σ−2σ2
ℓ

P⊤
At,ℓXtX

⊤
t PAt,ℓ ,

⪰ σ−2σ−2ℓ
MAXP

⊤
At,ℓXtX

⊤
t PAt,ℓ ,

where the last inequality follows from the definition of σ2
MAX = maxℓ∈[L] 1+ σ−2σ2

ℓ . This concludes
the proof.

D.5 Proof of theorem 4.1

We start with the following standard result which we borrow from [Hong et al., 2022a, Aouali et al.,
2023b],

BR(n) ≤
√
2n log(1/δ)

√√√√E

[
n∑
t=1

∥Xt∥2Σ̌t,At

]
+ cnδ , where c > 0 is a constant . (33)
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Then we use Lemma D.2 and express the marginal covariance Σ̌t,At as

Σ̌t,i = Σ̂t,i +
∑
ℓ∈[L]

Pi,ℓΣ̄t,ℓP
⊤
i,ℓ , where Pi,ℓ = Σ̂t,iΣ

−1
1 W1

ℓ−1∏
k=1

Σ̄t,kΣ
−1
k+1Wk+1. (34)

Therefore, we can decompose ∥Xt∥2Σ̌t,At

as

∥Xt∥2Σ̌t,At
= σ2X

⊤
t Σ̌t,AtXt

σ2

(i)
= σ2

(
σ−2X⊤

t Σ̂t,AtXt + σ−2
∑
ℓ∈[L]

X⊤
t PAt,ℓΣ̄t,ℓP

⊤
At,ℓXt

)
,

(ii)

≤ c0 log(1 + σ−2X⊤
t Σ̂t,AtXt) +

∑
ℓ∈[L]

cℓ log(1 + σ−2X⊤
t PAt,ℓΣ̄t,ℓP

⊤
At,ℓXt) , (35)

where (i) follows from Eq. (34), and we use the following inequality in (ii)

x =
x

log(1 + x)
log(1 + x) ≤

(
max
x∈[0,u]

x

log(1 + x)

)
log(1 + x) =

u

log(1 + u)
log(1 + x) ,

which holds for any x ∈ [0, u], where constants c0 and cℓ are derived as

c0 =
σ2
1

log(1 +
σ2
1

σ2 )
, cℓ =

σ2
ℓ+1

log(1 +
σ2
ℓ+1

σ2 )
,with the convention that σL+1 = 1 .

The derivation of c0 uses that

X⊤
t Σ̂t,At

Xt ≤ λ1(Σ̂t,At
)∥Xt∥2 ≤ λ−1

d (Σ−1
1 +Gt,At

) ≤ λ−1
d (Σ−1

1 ) = λ1(Σ1) = σ2
1 .

The derivation of cℓ follows from

X⊤
t PAt,ℓΣ̄t,ℓP

⊤
At,ℓXt ≤ λ1(PAt,ℓP

⊤
At,ℓ)λ1(Σ̄t,ℓ)∥Xt∥2 ≤ σ2

ℓ+1 .

Therefore, from Eq. (35) and Eq. (33), we get that

BR(n) ≤
√

2n log(1/δ)
(
E
[
c0

n∑
t=1

log(1 + σ−2X⊤
t Σ̂t,AtXt)

+
∑
ℓ∈[L]

cℓ

n∑
t=1

log(1 + σ−2X⊤
t PAt,ℓΣ̄t,ℓP

⊤
At,ℓXt)

]) 1
2

+ cnδ (36)

Now we focus on bounding the logarithmic terms in Eq. (36).

(I) First term in Eq. (36) We first rewrite this term as

log(1 + σ−2X⊤
t Σ̂t,AtXt)

(i)
= log det(Id + σ−2Σ̂

1
2

t,At
XtX

⊤
t Σ̂

1
2

t,At
) ,

= log det(Σ̂−1
t,At

+ σ−2XtX
⊤
t )− log det(Σ̂−1

t,At
) = log det(Σ̂−1

t+1,At
)− log det(Σ̂−1

t,At
) ,

where (i) follows from the Weinstein–Aronszajn identity. Then we sum over all rounds t ∈ [n], and
get a telescoping

n∑
t=1

log det(Id + σ−2Σ̂
1
2

t,At
XtX

⊤
t Σ̂

1
2

t,At
) =

n∑
t=1

log det(Σ̂−1
t+1,At

)− log det(Σ̂−1
t,At

) ,

=

n∑
t=1

K∑
i=1

log det(Σ̂−1
t+1,i)− log det(Σ̂−1

t,i ) =

K∑
i=1

n∑
t=1

log det(Σ̂−1
t+1,i)− log det(Σ̂−1

t,i ) ,

=

K∑
i=1

log det(Σ̂−1
n+1,i)− log det(Σ̂−1

1,i )
(i)
=

K∑
i=1

log det(Σ
1
2
1 Σ̂

−1
n+1,iΣ

1
2
1 ) ,
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where (i) follows from the fact that Σ̂1,i = Σ1. Now we use the inequality of arithmetic and
geometric means and get

n∑
t=1

log det(Id + σ−2Σ̂
1
2

t,At
XtX

⊤
t Σ̂

1
2

t,At
) =

K∑
i=1

log det(Σ
1
2
1 Σ̂

−1
n+1,iΣ

1
2
1 ) ,

≤
K∑
i=1

d log

(
1

d
Tr(Σ

1
2
1 Σ̂

−1
n+1,iΣ

1
2
1 )

)
, (37)

≤
K∑
i=1

d log

(
1 +

n

d

σ2
1

σ2

)
= Kd log

(
1 +

n

d

σ2
1

σ2

)
.

(II) Remaining terms in Eq. (36) Let ℓ ∈ [L]. Then we have that

log(1 + σ−2X⊤
t PAt,ℓΣ̄t,ℓP

⊤
At,ℓXt) = σ2ℓ

MAXσ
−2ℓ
MAX log(1 + σ−2X⊤

t PAt,ℓΣ̄t,ℓP
⊤
At,ℓXt) ,

≤ σ2ℓ
MAX log(1 + σ−2σ−2ℓ

MAXX
⊤
t PAt,ℓΣ̄t,ℓP

⊤
At,ℓXt) ,

(i)
= σ2ℓ

MAX log det(Id + σ−2σ−2ℓ
MAXΣ̄

1
2

t,ℓP
⊤
At,ℓXtX

⊤
t PAt,ℓΣ̄

1
2

t,ℓ) ,

= σ2ℓ
MAX

(
log det(Σ̄−1

t,ℓ + σ−2σ−2ℓ
MAXP

⊤
At,ℓXtX

⊤
t PAt,ℓ)− log det(Σ̄−1

t,ℓ )
)
,

where we use the Weinstein–Aronszajn identity in (i). Now we know from Lemma D.3 that the
following inequality holds σ−2σ−2ℓ

MAXP
⊤
At,ℓ

XtX
⊤
t PAt,ℓ ⪯ Σ̄−1

t+1,ℓ − Σ̄−1
t,ℓ . As a result, we get that

Σ̄−1
t,ℓ + σ−2σ−2ℓ

MAXP
⊤
At,ℓ

XtX
⊤
t PAt,ℓ ⪯ Σ̄−1

t+1,ℓ. Thus,

log(1 + σ−2X⊤
t PAt,ℓΣ̄t,ℓP

⊤
At,ℓXt) ≤ σ2ℓ

MAX

(
log det(Σ̄−1

t+1,ℓ)− log det(Σ̄−1
t,ℓ )

)
,

Then we sum over all rounds t ∈ [n], and get a telescoping

n∑
t=1

log(1 + σ−2X⊤
t PAt,ℓΣ̄t,ℓP

⊤
At,ℓXt) ≤ σ2ℓ

MAX

n∑
t=1

log det(Σ̄−1
t+1,ℓ)− log det(Σ̄−1

t,ℓ ) ,

= σ2ℓ
MAX

(
log det(Σ̄−1

n+1,ℓ)− log det(Σ̄−1
1,ℓ)

)
,

(i)
= σ2ℓ

MAX

(
log det(Σ̄−1

n+1,ℓ)− log det(Σ−1
ℓ+1)

)
,

= σ2ℓ
MAX

(
log det(Σ

1
2

ℓ+1Σ̄
−1
n+1,ℓΣ

1
2

ℓ+1)
)
,

where we use that Σ̄1,ℓ = Σℓ+1 in (i). Finally, we use the inequality of arithmetic and geometric
means and get that

n∑
t=1

log(1 + σ−2X⊤
t PAt,ℓΣ̄t,ℓP

⊤
At,ℓXt) ≤ σ2ℓ

MAX

(
log det(Σ

1
2

ℓ+1Σ̄
−1
n+1,ℓΣ

1
2

ℓ+1)
)
,

≤ dσ2ℓ
MAX log

(
1

d
Tr(Σ

1
2

ℓ+1Σ̄
−1
n+1,ℓΣ

1
2

ℓ+1)

)
, (38)

≤ dσ2ℓ
MAX log

(
1 +

σ2
ℓ+1

σ2
ℓ

)
,

The last inequality follows from the expression of Σ̄−1
n+1,ℓ in Eq. (18) that leads to

Σ
1
2

ℓ+1Σ̄
−1
n+1,ℓΣ

1
2

ℓ+1 = Id +Σ
1
2

ℓ+1Ḡt,ℓΣ
1
2

ℓ+1 ,

= Id +Σ
1
2

ℓ+1W
⊤
ℓ

(
Σ−1
ℓ − Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ

)
WℓΣ

1
2

ℓ+1 , (39)

27



since Ḡt,ℓ = W⊤
ℓ

(
Σ−1
ℓ − Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ

)
Wℓ. This allows us to bound 1

d Tr(Σ
1
2

ℓ+1Σ̄
−1
n+1,ℓΣ

1
2

ℓ+1) as

1

d
Tr(Σ

1
2

ℓ+1Σ̄
−1
n+1,ℓΣ

1
2

ℓ+1) =
1

d
Tr(Id +Σ

1
2

ℓ+1W
⊤
ℓ

(
Σ−1
ℓ − Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ

)
WℓΣ

1
2

ℓ+1) ,

=
1

d
(d+Tr(Σ

1
2

ℓ+1W
⊤
ℓ

(
Σ−1
ℓ − Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ

)
WℓΣ

1
2

ℓ+1) ,

≤ 1 +
1

d

d∑
k=1

λ1(Σ
1
2

ℓ+1W
⊤
ℓ

(
Σ−1
ℓ − Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ

)
WℓΣ

1
2

ℓ+1 ,

≤ 1 +
1

d

d∑
k=1

λ1(Σℓ+1)λ1(W
⊤
ℓ Wℓ)λ1

(
Σ−1
ℓ − Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ

)
,

≤ 1 +
1

d

d∑
k=1

λ1(Σℓ+1)λ1(W
⊤
ℓ Wℓ)λ1

(
Σ−1
ℓ

)
,

≤ 1 +
1

d

d∑
k=1

σ2
ℓ+1

σ2
ℓ

= 1 +
σ2
ℓ+1

σ2
ℓ

, (40)

where we use the assumption that λ1(W⊤
ℓ Wℓ) = 1 (A2) and that λ1(Σℓ+1) = σ2

ℓ+1 and λ1(Σ−1
ℓ ) =

1/σ2
ℓ . This is because Σℓ = σ2

ℓ Id for any ℓ ∈ [L+1]. Finally, plugging Eqs. (37) and (38) in Eq. (36)
concludes the proof.

D.6 Proof of proposition 4.2

We use exactly the same proof in Appendix D.5, with one change to account for the sparsity
assumption (A3). The change corresponds to Eq. (38). First, recall that Eq. (38) writes

n∑
t=1

log(1 + σ−2X⊤
t PAt,ℓΣ̄t,ℓP

⊤
At,ℓXt) ≤ σ2ℓ

MAX

(
log det(Σ

1
2

ℓ+1Σ̄
−1
n+1,ℓΣ

1
2

ℓ+1)
)
,

where

Σ
1
2

ℓ+1Σ̄
−1
n+1,ℓΣ

1
2

ℓ+1 = Id +Σ
1
2

ℓ+1W
⊤
ℓ

(
Σ−1
ℓ − Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ

)
WℓΣ

1
2

ℓ+1 ,

= Id + σ2
ℓ+1W

⊤
ℓ

(
Σ−1
ℓ − Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ

)
Wℓ , (41)

where the second equality follows from the assumption that Σℓ+1 = σ2
ℓ+1Id. But notice that in

our assumption, (A3), we assume that Wℓ = (W̄ℓ, 0d,d−dℓ), where W̄ℓ ∈ Rd×dℓ for any ℓ ∈ [L].
Therefore, we have that for any d × d matrix B ∈ Rdd×d, the following holds, W⊤

ℓ BWℓ =(
W̄⊤
ℓ BW̄ℓ 0dℓ,d−dℓ

0d−dℓ,dℓ 0d−dℓ,d−dℓ

)
. In particular, we have that

W⊤
ℓ

(
Σ−1
ℓ − Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ

)
Wℓ =

(
W̄⊤
ℓ

(
Σ−1
ℓ − Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ

)
W̄ℓ 0dℓ,d−dℓ

0d−dℓ,dℓ 0d−dℓ,d−dℓ

)
. (42)

Therefore, plugging this in Eq. (41) yields that

Σ
1
2

ℓ+1Σ̄
−1
n+1,ℓΣ

1
2

ℓ+1 =

(
Idℓ + σ2

ℓ+1W̄
⊤
ℓ

(
Σ−1
ℓ − Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ

)
W̄ℓ 0dℓ,d−dℓ

0d−dℓ,dℓ Id−dℓ

)
. (43)

As a result, det(Σ
1
2

ℓ+1Σ̄
−1
n+1,ℓΣ

1
2

ℓ+1) = det(Idℓ +σ
2
ℓ+1W̄

⊤
ℓ

(
Σ−1
ℓ −Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ

)
W̄ℓ). This allows

us to move the problem from a d-dimensional one to a dℓ-dimensional one. Then we use the inequality

28



of arithmetic and geometric means and get that
n∑
t=1

log(1 + σ−2X⊤
t PAt,ℓΣ̄t,ℓP

⊤
At,ℓXt) ≤ σ2ℓ

MAX

(
log det(Σ

1
2

ℓ+1Σ̄
−1
n+1,ℓΣ

1
2

ℓ+1)
)
,

= σ2ℓ
MAX log det(Idℓ + σ2

ℓ+1W̄
⊤
ℓ

(
Σ−1
ℓ − Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ

)
W̄ℓ) ,

≤ dℓσ
2ℓ
MAX log

(
1

dℓ
Tr(Idℓ + σ2

ℓ+1W̄
⊤
ℓ

(
Σ−1
ℓ − Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ

)
W̄ℓ)

)
,

≤ dℓσ
2ℓ
MAX log

(
1 +

σ2
ℓ+1

σ2
ℓ

)
. (44)

To get the last inequality, we use derivations similar to the ones we used in Eq. (40). Finally, the
desired result in obtained by replacing Eq. (38) by Eq. (44) in the previous proof in Appendix D.5.

D.7 Additional discussion: link to two-level hierarchies

The linear diffusion (15) can be marginalized into a 2-level hierarchy using two different strategies.
The first one yields,

ψ∗,L ∼ N (0, σ2
L+1BLB

⊤
L ) , (45)

θ∗,i | ψ∗,L ∼ N (ψ∗,L, Ω1) , ∀i ∈ [K] ,

with Ω1 = σ2
1Id +

∑L−1
ℓ=1 σ

2
ℓ+1BℓB

⊤
ℓ and Bℓ =

∏ℓ
k=1 Wk. The second strategy yields,

ψ∗,1 ∼ N (0,Ω2) , (46)

θ∗,i | ψ∗,1 ∼ N (ψ∗,1, σ
2
1Id) , ∀i ∈ [K] ,

where Ω2 =
∑L
ℓ=1 σ

2
ℓ+1BℓB

⊤
ℓ . Recently, HierTS [Hong et al., 2022b] was developed for such

two-level graphical models, and we call HierTS under (45) by HierTS-1 and HierTS under (46)
by HierTS-2. Then, we start by highlighting the differences between these two variants of HierTS.
First, their regret bounds scale as

HierTS-1 : Õ
(√

nd(K
∑L
ℓ=1 σ

2
ℓ + Lσ2

L+1

)
, HierTS-2 : Õ

(√
nd(Kσ2

1 +
∑L
ℓ=1 σ

2
ℓ+1)

)
.

When K ≈ L, the regret bounds of HierTS-1 and HierTS-2 are similar. However, when K > L,
HierTS-2 outperforms HierTS-1. This is because HierTS-2 puts more uncertainty on a single
d-dimensional latent parameter ψ∗,1, rather than K individual d-dimensional action parameters
θ∗,i. More importantly, HierTS-1 implicitly assumes that action parameters θ∗,i are conditionally
independent given ψ∗,L, which is not true. Consequently, HierTS-2 outperforms HierTS-1. Note
that, under the linear diffusion model (15), dTS and HierTS-2 have roughly similar regret bounds.
Specifically, their regret bounds dependency on K is identical, where both methods involve mul-
tiplying K by σ2

1 , and both enjoy improved performance compared to HierTS-1. That said, note
that Theorem 4.1 and Proposition 4.2 provide an understanding of how dTS’s regret scales under
linear score functions fℓ, and do not say that using dTS is better than using HierTS when the score
functions fℓ are linear since the latter can be obtained by a proper marginalization of latent parameters
(i.e., HierTS-2 instead of HierTS-1). While such a comparison is not the goal of this work, we still
provide it for completeness next.

When the mixing matrices Wℓ are dense (i.e., assumption (A3) is not applicable), dTS and HierTS-2
have comparable regret bounds and computational efficiency. However, under the sparsity assumption
(A3) and with mixing matrices that allow for conditional independence of ψ∗,1 coordinates given
ψ∗,2, dTS enjoys a computational advantage over HierTS-2. This advantage explains why works
focusing on multi-level hierarchies typically benchmark their algorithms against two-level structures
akin to HierTS-1, rather than the more competitive HierTS-2. This is also consistent with prior
works in Bayesian bandits using multi-level hierarchies, such as Tree-based priors [Hong et al.,
2022a], which compared their method to HierTS-1. In line with this, we also compared dTS with
HierTS-1 in our experiments. But this is only given for completeness as this is not the aim of
Theorem 4.1 and Proposition 4.2. More importantly, HierTS is inapplicable in the general case in (1)
with non-linear score functions since the latent parameters cannot be analytically marginalized.
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E Broader impact

This work contributes to the development and analysis of practical algorithms for online learning to
act under uncertainty. While our generic setting and algorithms have broad potential applications,
the specific downstream social impacts are inherently dependent on the chosen application domain.
Nevertheless, we acknowledge the crucial need to consider potential biases that may be present in
pre-trained diffusion models, given that our method relies on them.

F Limitations

Our work investigated contextual bandits, laying the groundwork for future exploration into reinforce-
ment learning. This exploration can be done from both practical (empirical) and theoretical angles.
While our method, which approximates rewards using a Gaussian distribution, worked well for linear
rewards and those following a generalized linear model, its effectiveness in real-world, complex
scenarios needs further testing. Another interesting direction for future research is pre-training the
diffusion model prior. Hsieh et al. [2023] proposed a method for this in multi-armed bandits, but its
application to contextual bandits remains unexplored.

G Amount of computation required

Our experiments were conducted on internal machines with 30 CPUs and thus they required a moder-
ate amount of computation. These experiments are also reproducible with minimal computational
resources.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All claims are supported by the theory in Section 4 (with proofs provided in
the appendix) and experiments in Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations were discussed in Section 6 and Appendix F.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Assumptions are mentioned in the main text. Complete proofs are provided in
the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Information needed to reproduce the main experimental results of the paper is
described in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code for the main experiments is shared in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All experimental details are described in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Standard error bars are included in the figures.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As mentioned in Appendix G, our experiments were conducted on internal
machines with 30 CPUs and thus they required a moderate amount of computation. These
experiments are also reproducible with minimal computational resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work contributes to the development and theoretical analysis of online
learning to act under uncertainty and it adheres to the Neurips Code Of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Broader Impacts are discussed in Appendix E.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper is mainly theoretical and the used data is simulated. Thus, we
believe that our work poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: To the best of our knowledge, all relevant and used papers were cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We include our code as supplementary material, with all details needed for
reproducibility given in Section 5.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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