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Abstract

In interactive systems, actions are often correlated, presenting an opportunity for
more sample-efficient off-policy evaluation (OPE) and learning (OPL) in large
action spaces. We introduce a unified Bayesian framework to capture these correla-
tions through structured and informative priors. In this framework, we propose sDM,
a generic Bayesian approach designed for OPE and OPL, grounded in both algorith-
mic and theoretical foundations. Notably, sDM leverages action correlations without
compromising computational efficiency. Moreover, inspired by online Bayesian
bandits, we introduce Bayesian metrics that assess the average performance of
algorithms across multiple problem instances, deviating from the conventional
worst-case assessments. We analyze sDM in OPE and OPL, highlighting the ben-
efits of leveraging action correlations. Empirical evidence showcases the strong
performance of sDM.

1 Introduction

An off-policy contextual bandit [Dudík et al., 2011] is a practical framework for improving decision-
making using logged data that records an agent’s interactions with an online environment [Bottou
et al., 2013]. This data consists of context-action-reward tuples generated during online interactions
where the agent observes a context, takes an action, and receives a reward depending on that context
and action. Such data can be leveraged to enhance the agent’s performance through two main tasks:
off-policy evaluation (OPE) [Dudík et al., 2011], which predicts the expected reward of a new policy
using logged data, and off-policy learning (OPL) [Swaminathan and Joachims, 2015a], which learns
an improved policy using the OPE estimator. Many interactive systems can be modeled as contextual
bandits. For example, in online advertising, the context is the user’s features, the action is a product
choice, and the reward is the click-through rate (CTR).

When the number of actions is small, existing methods, often based on the inverse propensity
scoring (IPS) estimator [Horvitz and Thompson, 1952], are reliable and come with theoretical
guarantees [Dudík et al., 2011, Dudík et al., 2012, Dudik et al., 2014, Wang et al., 2017, Farajtabar
et al., 2018, Su et al., 2019, 2020, Metelli et al., 2021, Swaminathan and Joachims, 2015a, London
and Sandler, 2019, Aouali et al., 2023a]. However, IPS can suffer from high bias and variance. The
bias arises because the logging policy might have deficient support [Sachdeva et al., 2020], and the
variance is due to potentially high values of the importance weights [Swaminathan et al., 2017]. Both
issues are more pronounced in large action spaces. To address this, Saito and Joachims [2022] recently
proposed MIPS, an IPS variant for OPE in large action spaces. However, MIPS requires access to
informative embeddings that capture entirely the causal effects of actions on rewards. Hence, recent
variants of MIPS propose to learn such embeddings directly from logged data Peng et al. [2023],
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Sachdeva et al. [2023], Cief et al. [2024], or to relax the embedding causal effect assumption Taufiq
et al. [2024], Saito et al. [2023].

An alternative to IPS is the direct method (DM) [Jeunen and Goethals, 2021], which does not rely
on importance weighting. Instead, DMs learn a reward model and use it to evaluate policies. DMs
tend to introduce less variance than IPS, but they can suffer from higher bias if the model is not
well-suited for the data. The theoretical properties of DMs are underexplored, with a few exceptions
[Jin et al., 2021, Hong et al., 2023]. Yet, they are widely used in practice, especially in recommender
systems [Sakhi et al., 2020, Jeunen and Goethals, 2021, Aouali et al., 2022b,a]. This work aims to
develop the algorithmic and theoretical foundations for DMs, improving our understanding of their
performance in OPE and OPL from a Bayesian perspective. The goal is to enhance the efficiency
of DMs through informative priors, particularly in scenarios with large action spaces. For intuition,
consider how MIPS [Saito and Joachims, 2022] extended IPS to large action spaces by incorporating
auxiliary information in the form of embeddings. We aim to achieve a similar extension for DMs by
integrating auxiliary information into existing DMs and demonstrating how their performance can be
improved. However, unlike MIPS’s extension of IPS, we provide theoretical and empirical evidence
for both OPE and OPL, rather than focusing only on OPE. Also, our assumptions differ from those
made by MIPS and its variants.

Contributions. We introduce a Bayesian direct method, called structured Direct Method (sDM),
which uses informative priors to share data (reward) information among actions. Essentially, when
one action is observed, it enhances sDM’s knowledge about similar actions, significantly boosting
statistical efficiency while maintaining computational efficiency. This makes sDM scalable to large
action spaces, addressing a key limitation of standard DMs. Moreover, we provide a comprehensive
step-by-step framework to assist practitioners in using sDM for OPE and OPL. To analyze sDM,
we introduce Bayesian metrics for OPE and OPL that assess average performance across various
problem instances, diverging from frequentist worst-case evaluations. Unlike frequentist metrics,
these Bayesian metrics capture the benefits of incorporating informative priors, enhancing our
understanding of DMs, especially given the relatively underdeveloped statistical analysis of DMs in
OPE and OPL. Finally, we evaluate sDM using both synthetic and MovieLens data.

Related work. Bayesian models for OPL have been explored by Lazaric and Ghavamzadeh [2010],
Hong et al. [2023]. However, these studies incorporate Bayesian techniques in multi-task learning,
distinguishing them from our more focused single-task approach. Additionally, the models used in
these prior works differ from the ones we employ. While certain similarities can be drawn with Hong
et al. [2023] in terms of analysis, our approach offers a broader scope. Note that Hong et al. [2023]
also introduced a Bayesian metric for assessing suboptimality, yet their metric evaluates performance
in an environment drawn from the prior given a fixed sample set, whereas ours measures average
performance across all environments sampled from the prior and all sample sets. The latter is more
common in Bayesian analyses (e.g., Bayesian regret in Russo and Van Roy [2014]). Also, in this
work, we cover OPE which goes beyond the scope of Lazaric and Ghavamzadeh [2010], Hong et al.
[2023] that focused on OPL. For a more extensive discussion of related works, we refer the reader to
Appendix B.

The paper is organized as follows. Section 2 provides some background on OPE and OPL. Section 3
describes our method, sDM. Section 4 focuses on the linear case of sDM. In Section 5 we analyze sDM
through finite sample bounds. In Section 6, we show that sDM enjoys favorable performance.

2 Background

Let [n] = {1, . . . , n} for any positive integer n. Random variables are denoted with capital letters,
and their realizations with the respective lowercase letters, except for Greek letters. Let X,Y be
two random variables, with a slight abuse of notation, the distribution (or density) of X | Y = y
evaluated at x is denoted by p(x | y). Let a1, . . . , an be n vectors of Rd, a = (ai)i∈[n] ∈ Rnd is their
nd-dimensional concatenation, ⊗ denotes the Kronecker product, and O the big-O notation. Finally,
for any vector a ∈ Rd and any positive-definite matrix Σ ∈ Rd×d, we define ∥a∥Σ =

√
a⊤Σa.

Agents are represented by stochastic policies π ∈ Π, where Π is the set of policies. Precisely, given a
context x ∈ Rd, π(· | x) is a probability distribution over a finite action set A = [K], where K is the
number of actions. Agents interact with a contextual bandit environment over n rounds as follows. In
round i ∈ [n], the agent observes a context Xi ∼ ν, where ν is a distribution whose support X is a
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compact subset of Rd. Then the agent takes an action Ai ∼ π0(· | Xi) from the action set A, where
π0 is the logging policy. Finally, assuming a parametric model, the agent receives a stochastic reward
Ri ∼ p(· | Xi; θ∗,Ai). Here p(· | x; θ∗,a) is the reward distribution for action a in context x, where
θ∗,a ∈ Rd is an unknown d-dimensional parameter of action a. Let θ∗ = (θ∗,a)a∈A ∈ RdK be the
concatenation of action parameters. Then, r(x, a; θ∗) = ER∼p(·|x;θ∗,a) [R] is the reward function that
outputs the expected reward of action a in context x. Finally, the goal is to find a policy π ∈ Π that
maximizes the value function V (π; θ∗) = EX∼νEA∼π(·|x) [r(X,A; θ∗)].

Let S = (Xi, Ai, Ri)i∈[n] be a set of random variables drawn i.i.d. as Xi ∼ ν, Ai ∼ π0(· | Xi)
and Ri ∼ p(· | Xi; θ∗,Ai); that we will refer to as the sample set. The goal of off-policy evaluation
(OPE) and learning (OPL) is to build an estimator V̂ (π, S) of V (π; θ∗) and then use V̂ (π, S) to find a
policy π̂ ∈ Π that maximizes V (·; θ∗). In OPE, it is common to use inverse propensity scoring (IPS)
[Horvitz and Thompson, 1952, Dudík et al., 2012], which leverages importance sampling to estimate
the value V (π; θ∗) as V̂IPS(π, S) =

1
n

∑
i∈[n]

π(Ai|Xi)
π0(Ai|Xi)

Ri where for any (x, a) ∈ X × A , π(a|x)π0(a|x)
are the importance weights. In practice, IPS can suffer high variance, especially when the action
space is large [Swaminathan et al., 2017, Saito and Joachims, 2022]. Moreover, while IPS is unbiased
under the assumption that the logging policy has full support, it can induce a high bias when such an
assumption is violated [Sachdeva et al., 2020], which is again likely when the action space is large.
IPS, also, assumes access to the logging policy π0. An alternative approach to IPS is to use a direct
method (DM) [Jeunen and Goethals, 2021], that relies on a reward model r̂ to estimate the value
V (π; θ∗) as

V̂DM(π, S) =
1

n

∑
i∈[n]

∑
a∈A

π(a | Xi)r̂(Xi, a) , (1)

where r̂(x, a) is an estimation of r(x, a; θ∗). DM estimators may exhibit modeling bias, but they
generally have lower variance than IPS [Saito and Joachims, 2022]. Another advantage of DM is its
practical utility without assuming access to the logging policy π0 [Jeunen and Goethals, 2021, Aouali
et al., 2022b, Hong et al., 2023]. Also, DMs can be incorporated into a Bayesian framework, where
informative priors can be used to enhance statistical efficiency. This allows for the development of
scalable methods suitable for large action spaces, as demonstrated in our work.

3 Structured direct method

3.1 Structured priors

Pitfalls of non-structured priors. Before presenting sDM, we first describe the pitfalls of using the
following widely used standard prior,

θa ∼ N (µa,Σa) , ∀a ∈ A , (2)

R | θ,X,A ∼ N (ϕ(X)⊤θA, σ
2) ,

where ϕ(X) outputs a d-dimensional representation of the context X ∈ X , N (µa,Σa) is the prior
density of θa, and σ2 is the reward noise. In this prior, each action a corresponds to a parameter
θa. Then, under the prior in (2), the posterior on an action parameter is also a multivariate Gaussian
and writes θa | S ∼ N (µ̂a, Σ̂a) , where Σ̂−1

a = Σ−1
a + Ga and Σ̂−1

a µ̂a = Σ−1
a µa + Ba, with

Ga = σ−2
∑
i∈[n] I{Ai=a}ϕ(Xi)ϕ(Xi)

⊤ and Ba = σ−2
∑
i∈[n] I{Ai=a}Riϕ(Xi). Note that Ga

and Ba only use the portion of the sample set S where action a was observed. Thus, observations
relative to other actions b ̸= a are not involved in the posterior inference relative to action a. This
leads to statistical inefficiency since it is not even guaranteed that the sample set S covers all the
actions. In particular, the posterior θa | S of an unseen action a would be exactly the priorN (µa,Σa)
since Ga = 0d×d and Ba = 0d in that case. To mitigate this, we make the assumption that actions
can be correlated, which is realistic in practice such as in modern recommender systems. Now one
can think of capturing correlations by simply modeling the joint posterior density of (θa)a∈A | S.
Unfortunately, this is computationally expensive when K is large.

Structured priors. To model action correlations, we assume that there exists an unknown d′-
dimensional latent parameter, ψ ∈ Rd′ , which is sampled from a latent prior q(·), such as ψ ∼ q(·).
Then the correlations between actions arise since they are derived from the same latent parameter ψ.
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Precisely, action parameters θa are sampled conditionally independently from a conditional prior pa
as θa | ψ ∼ pa(·; fa(ψ)) for any a ∈ A, where pa is parametrized by fa(ψ) and fa : Rd′ → Rd is a
known function that encodes the hierarchical relation between action parameters θa and the latent
parameter ψ. In particular, the function fa can capture sparsity. That is, when θa only depends on a
few coordinates of ψ. Moreover, pa incorporates uncertainty due to model misspecification when θa
is not a deterministic function of ψ; that is, when θa ̸= fa(ψ). Finally, the reward distribution for
action a in context x is p(· | x; θa) and it only depends on x and θa. To summarize, the prior is

ψ ∼ q(·) , (3)
θa | ψ ∼ pa(·; fa(ψ)) , ∀a ∈ A ,

R | ψ, θ,X,A ∼ p(· | X; θA) .

This prior is general as assuming the existence of such latent parameter ψ is mild (Appendix E.6). To
be able to derive the posterior of our prior in (3), we assume that (i) (X,A) is independent of ψ and
given ψ, (X,A) is independent of θ. (ii) Given ψ, the θa, for all a ∈ A are independent.

Now, we discuss how to perform OPE and OPL under the structured prior in (3).

3.2 Off-policy evaluation and learning

Off-policy evaluation. OPE aims at estimating the value function V (π; θ∗) using the sample set S.
In DMs, the estimator V̂DM in (1) requires access to the learned reward r̂(x, a) ≈ r(x, a; θ∗). In our
Bayesian setting, this requires access to the action posterior θa | S under model (3). The expected
reward is then estimated as r̂(x, a) = E [r(x, a; θ) |S] for any (x, a) ∈ X ×A, and this estimate is
plugged into V̂DM in (1) to estimate V (π; θ∗). Therefore, we only need to derive the unnormalized
posterior density of the action parameter θa, p(θa | S), under the structured prior in (3), which reads

p(θa | S) =
∫
ψ

p(θa | ψ, S)p(ψ | S) dψ , (4)

where ψ | S is the latent posterior and θa | ψ, S is the conditional action posterior. To compute
p(θa | S), we first compute p(θa | ψ, S) and p(ψ | S) and then integrate out ψ following (4). First,

p(θa | ψ, S) ∝ La(θa)pa(θa; fa(ψ)) , (5)
with La(θa) =

∏
(X,A,R)∈Sa

p(R|X; θa) is the likelihood of observations of action a (Sa =

(Xi, Ai, Ri)i∈[n],Ai=a is the subset of S where Ai = a). Similarly,

p(ψ | S) ∝
∏
b∈A

∫
θb

Lb(θb)pb (θb; fb(ψ)) dθb q(ψ) , (6)

This allows us to further develop (4) as

p(θa | S) ∝
∫
ψ

La(θa)pa(θa; fa(ψ))
∏
b∈A

∫
θb

Lb(θb)pb (θb; fb(ψ)) dθb q(ψ) dψ . (7)

All the quantities inside the integrals in (7) are given (the parameters of pa and q) or tractable (the
terms in La). Thus, if these integrals can be computed, then the posterior can be fully characterized
in closed-form which we will do in Section 4 in the fully linear case. Otherwise, the posterior should
be approximated, e.g. through approximate sampling methods, see Appendix E.1 for more details.

Greedy off-policy learning. OPL aims at finding a policy π that maximizes the value V (π; θ∗). We
act greedy with respect to our estimator V̂DM(·, S) and define the learned policy as the one maximizing
it: π̂G = argmaxπ∈Π V̂DM(π, S). If the set of policies Π contains deterministic policies, then

π̂G(a | x) = 1{a = argmax
b∈A

r̂(x, b)} . (8)

Thus we do not adopt the common pessimism approach [Jin et al., 2021]. In pessimism, one constructs
confidence intervals of the reward estimate r̂(x, a) of the form |r(x, a; θ)− r̂(x, a)| ≤ u(x, a), and
then defines the learned policy as π̂P(a | x) = 1{a = argmaxb∈A r̂(x, b)− u(x, b)}. When u(x, a)
does not depend on x and a, pessimistic and greedy policies are the same. The advantage of one
over another depends on the evaluation metric. In this work, we use a novel metric, Bayesian
suboptimality (BSO), defined in Section 5. It assesses the average performance of algorithms across
multiple problem instances rather than focusing on the worst-case. We justify that the Greedy policy
is more suitable for BSO optimization than pessimism theoretically in Section 5 and empirically in
Appendix F.5.
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4 Application: linear hierarchy

In this section, we motivate the use of linear functions fa for the structured prior (3). Let Wa ∈ Rd×d′

be the mixing matrix for action a, we define fa(v) = Wav for any v ∈ Rd′ . Then,

θa | ψ ∼ pa(·;Waψ) , ∀a ∈ A . (9)

This is an important model, in both practice and theory since linear models often lead to closed-form
solutions that are both computationally tractable and allow theoretical analysis.

4.1 Applications

To highlight the generality of (9), we provide some problems where it can be used.

Mixed-effect modeling. (9) allows modeling that action parameters depend on a linear mixture of
effect parameters. Precisely, let J be the number of effects and assume that d′ = dJ so that the
latent parameter ψ is the concatenation of J , d-dimensional effect parameters, ψj ∈ Rd, such as
ψ = (ψj)j∈[J] ∈ RdJ . Moreover, assume that for any a ∈ A , Wa = w⊤

a ⊗ Id ∈ Rd×dJ where
wa = (wa,j)j∈[J] ∈ RJ are the mixing weights of action a. Then, Waψ =

∑
j∈[J] wa,jψj for any

a ∈ A. Sparsity, i.e., when an action a only depends on a subset of effects, is captured through
the mixing weights wa: wa,j = 0 when action a is independent of the j-th effect parameter ψj and
wa,j ̸= 0 otherwise. Also, the level of dependence between action a and effect j is quantified by
the absolute value of wa,j . This Mixed-effect model [Aouali et al., 2023b] can be used in numerous
applications. In movie recommendation, θa is the parameter of movie a, ψj is the parameter of theme
j (adventure, romance, etc.), and wa,j quantifies the relevance of theme j to movie a. Similarly, in
clinical trials, a drug is a combination of multiple ingredients, each with a specific dosage. Then θa is
the parameter of drug a, ψj is the parameter of ingredient j, and wa,j is the dosage of ingredient j in
drug a.

Low-rank modeling. (9) can also model the case where the dimension of the latent parameter ψ
is much smaller than that of the action parameters θa, i.e., when d′ ≪ d. Again, this is captured
through the mixing matrices Wa. Precisely, when Wa is low-rank. This improves both statistical and
computational efficiency as we show in Section 5.

4.2 Closed-form solutions for sDM

We further assume that the latent prior q(·) = N (·;µ,Σ) is Gaussian with mean µ ∈ Rd′ and
covariance Σ ∈ Rd′×d′ , and the conditional prior pa(·; fa(ψ)) = N (·;Waψ,Σa) is Gaussian with
mean fa(ψ) = Waψ ∈ Rd and covariance Σa ∈ Rd×d. The reward distribution p(· | x; θa) is also
linear-Gaussian as N (·;ϕ(x)⊤θa, σ2), where ϕ(·) outputs a d-dimensional representation of x and
σ > 0 is the observation noise. The whole prior induces a Gaussian graphical model

ψ ∼ N (µ,Σ) , (10)

θa | ψ ∼ N
(
Waψ, Σa

)
, ∀a ∈ A ,

R | ψ, θ,X,A ∼ N (ϕ(X)⊤θA, σ
2) .

The conditional action posterior is known in closed-form as θa | ψ, S ∼ N (µ̃a, Σ̃a), with

Σ̃−1
a = Σ−1

a +Ga , Σ̃−1
a µ̃a = Σ−1

a Waψ +Ba , (11)

where Ga = σ−2
∑
i∈[n] 1{Ai = a}ϕ(Xi)ϕ(Xi)

⊤ and Ba = σ−2
∑
i∈[n] 1{Ai = a}Riϕ(Xi).

This posterior has the standard form except that the prior mean Waψ now depends on the latent
parameter ψ. Similarly, the effect posterior is known in closed-form as ψ | S ∼ N (µ̄, Σ̄), where

Σ̄−1=Σ−1+
∑
a∈A

W⊤
a (Σ

−1
a − Σ−1

a Σ̃aΣ
−1
a )Wa, Σ̄

−1µ̄ = Σ−1µ+
∑
a∈A

W⊤
a Σ

−1
a Σ̃aBa. (12)

The latent posterior precision Σ̄−1 is the sum of the latent prior precision Σ−1 and the sum of all
learned action precisions Σ−1

a − Σ−1
a Σ̃aΣ

−1
a weighted by W⊤

a ·Wa. The contribution of a learned
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action precision to the global latent precision is proportional to W⊤
aWa. A similar intuition can be

used to interpret the latent posterior µ̄. Finally, from (7), the action posterior is θa | S ∼ N (µ̂a, Σ̂a),

Σ̂a = Σ̃a + Σ̃aΣ
−1
a WaΣ̄W

⊤
a Σ

−1
a Σ̃a , µ̂a = Σ̃a

(
Σ−1
a Waµ̄+Ba

)
. (13)

To see why this is more beneficial than the standard prior in (2), notice that the mean and covariance
of the posterior of action a, µ̂a and Σ̂a, are now computed using the mean and covariance of the
latent posterior, µ̄ and Σ̄. But µ̄ and Σ̄ are learned using the interactions with all the actions in S.
Thus µ̂a and Σ̂a are also learned using the interactions with all the actions in S, in contrast with
the non-structured case (2) where they were learned using only the interaction with action a. The
additional computational cost of considering the structured prior in (10) is small. The computational
and space complexities areO(K((d2+d′

2
)(d+d′))) andO(Kd2), respectively. For example, when

d′ = O(d), the above complexities become O(Kd3) and O(Kd2), respectively. This is exactly the
cost of the standard prior in (2). In contrast, this strictly improves the computational efficiency of
jointly modeling the action parameters, where the complexities areO(K3d3) andO(K2d2) since the
joint posterior of (θa)a∈A | S would require converting and storing a dK × dK covariance matrix.

Now that we have a closed-form update for the posterior, we can compute reward estimates. By (10),
we have r(x, a; θ) = ϕ(x)⊤θ. Thus r̂(x, a) = E [r(x, a; θ) | S] = ϕ(x)⊤µ̂a for any (x, a) ∈ X ×A,
that we can plug in (1). Then, the learned policy is π̂G(a | x) = 1{a = argmaxb∈A ϕ(x)

⊤µ̂b}.
Remark 4.1. sDM with this linear Gaussian hierarchy can be used even with data generated from
non-linear rewards, and we empirically investigate its robustness to misspecification. We found that
this model performs well even if the true rewards are not generated from a linear-Gaussian distribution.
Additionally, an extension of sDM to logistic-Bernoulli rewards is provided in Appendix E.1.

5 Analysis

We now analyze our proposed method sDM. All proofs are in Appendix E. We first introduce new
Bayesian metrics for OPE and OPL, which are of independent interest.

5.1 Bayesian metrics

While it is standard to discuss and present OPE before OPL, we first introduce our Bayesian metric
for OPL, called Bayesian suboptimality, since it is relatively easier to explain, allowing us to build
intuition before presenting the Bayesian mean squared error metric for OPE.

Bayesian suboptimality (BSO). In OPL, we compare the learned policy π̂ to the optimal π∗ =
argmaxπ∈Π V (π; θ∗), using the suboptimality (SO) defined as SO(π̂; θ∗) = V (π∗; θ∗)− V (π̂; θ∗).
This metric is standard in both offline contextual bandits and reinforcement learning [Jin et al., 2021].
It is appropriate when the environment is generated by some ground truth, unique and fixed θ∗. It
can be used to evaluate any policy π̂, e.g. learnt in a frequentist manner (e.g., MLE) or a Bayesian
one (e.g., ours). However, it is not the most suitable when the environment is generated by a random
variable θ∗. Motivated by the recent development of Bayesian analyses for online bandits using the
Bayes regret [Russo and Van Roy, 2014], we introduce in our offline setting a novel metric, namely
Bayes suboptimality defined as

BSO(π̂) = E [V (π∗; θ∗)− V (π̂; θ∗)] , (14)

where the expectation is taken over all random variables: the sample set S and θ∗, which is treated
as a random variable sampled from the prior. The BSO can be computed in two ways. One method
involves taking the expectation under the prior θ∗, followed by taking an expectation under data
generated from a fixed environment θ∗ as S | θ∗. The other method involves taking an expectation
under the data S, followed by taking an expectation under the posterior θ∗ | S. The BSO is a
reasonable metric for assessing the average performance of algorithms across multiple environments,
due to the expectation over θ∗. It is also known that Bayes regret captures the benefits of using
informative priors [Aouali et al., 2023b], and this is similarly achieved by the BSO (Appendix E.2).

Note that Hong et al. [2023] also examined a concept of Bayesian suboptimality defined as
V (π∗; θ∗) − V (π̂; θ∗) | S, where the sample set S is fixed and randomness only comes from
θ∗ sampled from the posterior. In contrast, our definition aligns with traditional online bandit settings
(Bayesian regret [Russo and Van Roy, 2014]) by averaging the suboptimality across both the sample
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set S and parameter θ∗ sampled from the prior. This leads to a different metric that captures the
average performance under various data realizations and parameter draws. Notably, one major
difference is that our metric favors the greedy policy (Section 5.2), while they use pessimism [Hong
et al., 2023, Sections 4 and 5].

Bayesian mean squared error (BMSE). In OPE, we assess the quality of estimator r̂ using the mean
squarred error (MSE). Then, similarly to the BSO, we can define the BMSE of the estimator r̂ for a
fixed action a and context x as

BMSE(r̂(x, a)) = E
[(
r̂(x, a)− r(x, a; θ∗)

)2]
. (15)

The BMSE diverges from the MSE in that the expectation in BMSE is calculated over the sample set
S and across the true parameter θ∗ sampled from the prior.

5.2 Theoretical results

Our theory relies on a well-specified prior assumption, where action parameters θ∗,a and true rewards
are assumed to be drawn from the structured prior (10). We start by presenting our OPE results where
we bound the BMSE of sDM. Then, we present our main result, a bound on the BSO of sDM in OPL.
Theorem 5.1 (OPE Result). Let x ∈ X and a ∈ A, the BMSE of sDM under prior (10) satisfies
BMSE(r̂(x, a)) ≤ E

[
∥ϕ(x)∥2

Σ̂a

]
.

For any context x and action a, the BMSE of sDM is bounded by E[∥ϕ(x)∥2
Σ̂a

]. This is expected, given
that we assume access to well-specified prior and likelihood, eliminating bias and directly linking
BMSE to the variance. Essentially, estimation accuracy increases as the posterior covariance of action
a, Σ̂a, diminishes in the direction of ϕ(x). For the standard non-structured prior in (2), this would
only happen if the context x and action a appear frequently in the sample set S. However, sDM’s use
of structured priors ensures lower covariance in the direction of ϕ(x) even without observing context
x and action a together. This is because sDM calculates posterior covariance for action a using all
observed contexts and actions, which reduces its variance. We will now present our main OPL result.
Theorem 5.2 (OPL Result). Let δ ∈ (0, 1) and π∗(x) be the optimal action for context x. Then the
BSO of sDM under prior (10) satisfies

BSO(π̂G) ≤ β(d, δ)E
[
∥ϕ(X)∥Σ̂π∗(X)

]
, (16)

where β(d, δ) =
√
2/πe−α(d,δ)2/2 + α(d, δ) for α(d, δ) =

√
d+ 2

√
d log 1/δ + 2 log 1/δ.

Scaling of the bound in Theorem 5.2 aligns with existing frequentist results [Jin et al., 2021, Theorem
4.4]. The main differences lie in the constants, which in our case reflect the benefits of using
informative priors (Appendix E.2), and the fact that this rate is achieved using greedy policies (8).
This contrasts with the frequentist setting where pessimism is used [Jin et al., 2021] and known to
be optimal [Jin et al., 2021, Theorem 4.7]. In fact, greedy policies are optimal when using BSO
as a performance metric. Specifically, BSO(π̂G) ≤ BSO(π) for any policy π, including pessimistic
ones [Jin et al., 2021]. Therefore, in the Bayesian setting and when using BSO as a performance
metric, greedy policies should always be preferred to pessimistic ones. This fundamental difference
is proven in Appendix E.5 and it is of independent interest beyond this work. Theorem 5.2 suggests
that the BSO primarily depends on the posterior covariance of action π∗(X) in the direction of the
context ϕ(X). That is, when the uncertainty in the posterior distribution of the optimal action π∗(X)
is low on average across different contexts X , problem instances θ∗, and sample sets S, then the BSO
bound is correspondingly small. In particular, the tightness of the bound depends on the degree to
which the sample set covers the optimal actions on average. Moreover, this bound would roughly
scale as O(1/

√
n) if we were to make the well-explored dataset assumption, commonly used in the

literature [Swaminathan et al., 2017, Jin et al., 2021, Hong et al., 2023].

Even without such an assumption, Theorem 5.2 still highlights the advantages of using sDM over
the non-structured prior (2). To see this, notice that the parameters of the non-structured prior in
(2), µa and Σa, are obtained by marginalizing out ψ in (10). In this case, µa = Waµ and Σa =

Σa +WaΣW
⊤
a . The corresponding posterior covariance is Σ̂NS

a = ((Σa +WaΣW
⊤
a )

−1 +Ga)
−1,

and is generally larger than the covariance of sDM, Σ̂a in (13). This is more pronounced when the
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Figure 1: The relative reward of the learned policy on synthetic problems with varying n, K and d′.

number of actions K is large and when the latent parameters are more uncertain than the action
parameters. Thus, the BSO bound of sDM is smaller due to the reduced posterior uncertainty it exhibits.
Also, note that even when π∗(X) is unobserved in the sample set S, sDM’s posterior covariance
Σ̂π∗(X) can remain small since we use interactions with all actions to compute it. This contrasts with
standard non-structured priors (2), where observing π∗(X) is necessary; without such observations,
the posterior covariance Σ̂π∗(X) would simply be the prior covariance Σπ∗(X).

6 Experiments

We evaluate sDM using synthetic and MovieLens datasets. We focus on OPL experiments and use the
average reward relative to the optimal policy as our evaluation metric, which is equivalent to BSO.
Additional OPE experiments are provided in Appendix F.1 and they lead to similar conclusions.

Synthetic problems. We simulate synthetic data using the model in (10) with σ = 1. The contexts
X are sampled uniformly from [−1, 1]d, with d = 10. The matrices Wa are sampled uniformly from
[−1, 1]d×d′ , where d′ varies as d′ ∈ {5, 10, 20}. We set Σ = 3Id′ and Σa = Id (the latent parameters
are more uncertain than the action parameters). Finally, the latent mean µ is randomly sampled from
[−1, 1]d′ . The number of actions varies as K ∈ {102, 103}. We use a uniform logging policy to
collect data while we defer the results with ϵ-greedy logging policies to Appendix F.2.

We evaluate several baselines. First, we use sDM under prior (10). Second, we examine DM (Bayes),
which uses the standard non-structured prior (2), where parameters µa and Σa are obtained by
marginalizing out the latent parameters ψ in (10). Thus DM (Bayes) is a standard Bayesian DM that
does not capture arm reward correlations. We also include DM (Freq), which estimates θ∗,a by the
MLE. We include IPS [Horvitz and Thompson, 1952], self-normalized IPS (snIPS) [Swaminathan
and Joachims, 2015b], and doubly robust (DR) [Dudik et al., 2014], which we optimize to learn the
optimal policy. Note that the goal of these experiments is not to compare with IPS and its variants. In
particular, our experimental setting is better suited for DMs due to its high number of actions, known
reward function, and well-specified priors, which favor DMs over IPS variants. Nevertheless, we
include the IPS variants for the sake of completeness only. In Fig. 1, we plot the average relative
reward with varying K, d′, n. Overall, sDM consistently outperforms the baselines in terms of both
sample efficiency and average reward. This performance gap becomes even more significant in
scenarios with a high number of actions K or small sample size n. These results highlight sDM’s
enhanced efficiency in using available logged data, making it particularly beneficial in data-limited
situations and scalable to large action spaces.
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Figure 2: Comparison of sDM and
DM (Bayes) with varying K.

Large action spaces. sDM achieves improved scalability, in
the sense that its performance remains robust in large action
spaces, by leveraging data more efficiently. While it still learns
a d-dim. parameter for each action a, it does so by considering
interactions with all actions in the sample set S, instead of only
using interactions with the specific action a. This is crucial,
especially given that many actions may not even be observed
in S. To show sDM’s improved scalability, we compared it
to the most competitive baseline, DM (Bayes), for varying
K ∈ [10, 105] with n = 103. The results in Fig. 2 reveal that
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the performance gap between sDM and DM (Bayes) becomes more significant when the number of
actions K increases. Hence, despite the necessity for sDM to learn distinct parameters for each action,
accommodating practical scenarios like recommender systems where unique embeddings are learned
for each product, it still enjoys good scalability.
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Figure 3: Average relative reward of the learned
policy on MovieLens with varying n and K.

MovieLens problems. We also experiment with
the MovieLens 1M dataset [Lam and Herlocker,
2016]. This dataset contains 1M ratings, reflect-
ing the interactions of a set of 6,040 users with
a collection of 3,952 movies. Our evaluation ap-
proach involves the creation of a semi-synthetic
environment as follows. Initially, we apply a
low-rank factorization technique to the rating
matrix, yielding 5-dimensional representations
denoted as xu ∈ R5 for user u ∈ [6040] and
θa ∈ R5 for movie a ∈ [3952]. Subsequently,
the movies are treated as actions, and the con-
texts X are sampled randomly from the user vectors. The reward associated with movie a for user u
is modeled as N (x⊤u θa, 1), effectively representing a proxy for the rating. We use a uniform logging
policy to generate logged data and experiments with ϵ-greedy logging policies are in Appendix F.2.

A prior is not needed for DM (Freq), IPS, snIPS, and DR. However, for DM (Bayes), a standard
prior (2) is inferred from data, where we set µa to be the mean of movie vectors across all dimensions,
and Σa = diag(v), where v represents the variance of movie vectors across all dimensions. Unlike
the synthetic experiments, the latent structure assumed by sDM is not inherently present in MovieLens.
But we learn it by training a Gaussian Mixture Model (GMM) to cluster movies into J = 5 mixture
components. This gives rise to the mixed-effect structure described in Section 4, which represents
a specific instance of sDM with d′ = dJ = 25. Both DM (Bayes) and sDM use the same subset of
data to learn their priors and it is of size {100, 1000} depending on the setting. We conduct two
experiments with K ∈ {102, 103} randomly selected movies, and the results are in Fig. 3. Even
though the latent structure assumed by sDM is absent, sDM still outperforms the baselines.
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Figure 4: Effect of prior misspecification.

Prior misspecification. We consider the same
synthetic problems above, but where the pa-
rameters of the prior distribution used to sam-
ple the true parameters differ from those em-
ployed by sDM. This was achieved by adding
uniformly sampled noise from [v, v + 0.5] to
the true prior parameters µ,Σ,Wa,Σa, with v
controlling the level of misspecification. We
varied v ∈ {0.5, 1, 1.5} and analyzed its im-
pact on sDM’s performance. For comparison, we
included the well-specified sDM and the most
competitive baseline, DM (Bayes), while omit-
ting other baselines to reduce clutter. Results are shown in Fig. 4. As expected, sDM’s performance
decreases with increasing misspecification. However, note that the entries of the true parameters Wa

and Σa and µ are in [−1, 1], so values v ∈ {0.5, 1, 1.5} can lead to significant misspecification, yet
sDM outperforms the most competitive baseline, especially when K is large.
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Figure 5: Effect of likelihood misspecification.

Likelihood misspecification. We also simu-
late the case when the true reward distribution
differed from the likelihood assumed by sDM.
For example, we simulated binary rewards us-
ing a Bernoulli-logistic model while sDM used
a linear-Gaussian likelihood. Other DMs: DM
(Bayes) and DM (Freq) also use a misspeci-
fied likelihood model and to emphasize this we
add the suffix Lin to all DMs names. Overall, as
known in the literature, IPS variants performed
better than standard DMs when the likelihood
was misspecified. However, this is not the case
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for sDM. While misspecification narrowed the performance gap between sDM and baselines, sDM still
consistently outperformed them, particularly in low-data regimes or large action spaces. In a few
cases, some baselines, e.g., snIPS, showed competitive performance with enough data.

Additional experiments on prior and likelihood misspecification are provided in Appendix F.3.
For completeness, we also compare sDM with MIPS [Saito and Joachims, 2022] in Appendix F.4.
However, the goal of this work is not to compare with MIPS or other IPS variants, but to improve
DMs. Therefore, we compared our DM (sDM) to standard DMs (DM (Bayes) and DM (Freq)) to
highlight the benefits of using structured priors. The inclusion of IPS variants is for completeness only.
Finally, Appendix F.5 compares pessimistic and greedy policies in our Bayesian setting, validating
our theory.

7 Conclusion

We introduced sDM, a novel approach for OPE and OPL with large action spaces that leverages
latent structures among actions to enhance statistical and computational efficiency. We provide
theoretical justifications for sDM’s improved concentration properties towards the optimal policy
and demonstrate the superiority of greedy policies over pessimistic ones in the Bayesian setting.
Our experiments validate our theory, showing that the introduced Bayesian metrics highlight the
advantages of structured priors, especially in large action spaces with limited data. However, a primary
limitation of our theory is the well-specified prior assumption. While we have empirically studied the
effect of misspecification, investigating it theoretically is left for future work. Moreover, extending
sDM’s applicability to non-linear hierarchies is an important direction for further investigation.
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Organization of the supplementary material

The supplementary material is organized as follows.

• In Appendix A, we provide a detailed notation.
• In Appendix B, we provide an extended related work discussion.
• In Appendix C, we outline the posterior derivations for the standard prior in (2).
• In Appendix D, we outline the posterior derivations under the structured prior in (10).
• In Appendix E, we prove the claims made in Section 5.
• In Appendix F, we present supplementary experiments.

A Detailed notation

For any positive integer n, we define [n] as the set 1, 2, . . . , n. We represent the identity matrix
of dimension d × d as Id. In our notation, unless explicitly stated otherwise, the i-th coordinate
of a vector v is denoted as vi. However, if the vector is already indexed, such as xi, we use the
notation xi,j to represent the j-th entry of the vector xi. When dealing with matrices, we refer to the
(i, j)-th entry of a matrix A as Ai,j . Also, λ1(A) and λd(A) refer to the maximum and minimum
eigenvalues of matrix A, respectively. Moreover, for any positive-definite matrix A and vector x, we
let ∥x∥A =

√
x⊤Ax.

Now, consider a collection of n vectors, denoted as a1 ∈ Rd, a2 ∈ Rd, . . . , an ∈ Rd. Then
we use a = (ai)i∈[n] ∈ Rnd to represent a nd-dimensional vector formed by concatenating
the vectors a1, a2, . . . , an. The operator Vec(·) is used to vectorize a matrix or a set of vec-
tors. Let A1,A2, . . . ,An be a collection of n matrices, each of dimension d × d. The notation
diag((Ai)i∈[n]) ∈ Rnd×nd represents a block diagonal matrix where A1,A2, . . . ,An are the main-
diagonal blocks. Similarly, (Ai)i∈[n] ∈ Rnd×d denotes the nd× d matrix formed by concatenating
matrices A1,A2, . . . ,An. To provide a more visual representation, consider a collection of vectors
a1 ∈ Rd, a2 ∈ Rd, . . . , an ∈ Rd and matrices A1 ∈ Rd×d,A2 ∈ Rd×d, . . . ,An ∈ Rd×d. We can
represent them as follows

(ai)i∈[n] =


a1
a2
...
an

 ∈ Rnd , diag((Ai)i∈[n]) =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An

 ∈ Rnd×nd ,

(Ai)i∈[n] =


A1

A2

...
An

 ∈ Rnd×d .

B Extended related work

Online learning under uncertainty is often modeled within the framework of contextual bandits
[Lattimore and Szepesvari, 2019, Li et al., 2010, Chu et al., 2011]. Naturally, learning within
this framework follows an online paradigm. However, practical applications often entail a large
action space and a significant emphasis on short-term gains. This presents a challenge where the
agent needs to exhibit a risk-averse behavior, contradicting the foundational principle of online
algorithms designed to explore actions for long-term benefit [Auer et al., 2002, Thompson, 1933,
Russo et al., 2018, Agrawal and Goyal, 2013, Abbasi-Yadkori et al., 2011]. While several practical
online algorithms have emerged to efficiently explore the action space in contextual bandits [Zong
et al., 2016, Zhu et al., 2022, Aouali et al., 2023b, Aouali, 2023], a notable gap exists in the quest for
an offline procedure capable of optimizing decision-making using historical data. Fortunately, we
are often equipped with a sample set collected from past interactions. Leveraging this data, agents
can enhance their policies offline [Swaminathan and Joachims, 2015a, London and Sandler, 2019,
Sakhi et al., 2022], consequently improving the overall system performance. This study is primarily
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concerned with this offline or off-policy formulation of contextual bandits [Dudík et al., 2011, Dudík
et al., 2012, Dudik et al., 2014, Wang et al., 2017, Farajtabar et al., 2018]. There are two main tasks
in off-policy contextual bandits, first, off-policy evaluation (OPE) [Dudík et al., 2011] which involves
estimating policy performance using historical data, simulating as if these evaluations were performed
while the policy is interacting with the environment in real-time. Subsequently, the derived estimator
is refined to closely approximate the optimal policy, a process known as off-policy learning (OPL)
[Swaminathan and Joachims, 2015a]. Next, we review both OPE and OPL.

B.1 Off-policy evaluation

Recent years have witnessed a surge in interest in OPE, with several key works contributing to this
field [Dudík et al., 2011, Dudík et al., 2012, Dudik et al., 2014, Wang et al., 2017, Farajtabar et al.,
2018, Su et al., 2019, 2020, Metelli et al., 2021, Kuzborskij et al., 2021, Saito and Joachims, 2022,
Sakhi et al., 2020, Jeunen and Goethals, 2021]. The literature on OPE can be broadly categorized
into three main approaches. The first approach referred to as the direct method (DM) [Jeunen
and Goethals, 2021, Hong et al., 2023], involves learning a model that approximates the expected
reward. This model is then used to estimate the performance of evaluated policies. The second
approach, inverse propensity scoring (IPS) [Horvitz and Thompson, 1952, Dudík et al., 2012], aims
to estimate the reward of evaluated policies by correcting for the preference bias of the logging
policy in the sample set. IPS is unbiased when there’s an assumption that the evaluation policy is
absolutely continuous with respect to the logging policy. However, it can exhibit high variance and
substantial bias when this assumption is violated [Sachdeva et al., 2020]. Various techniques have
been introduced to address the variance issue, such as clipping importance weights [Ionides, 2008,
Swaminathan and Joachims, 2015a], smoothing them [Aouali et al., 2023a], self-normalization of
weights [Swaminathan and Joachims, 2015b], etc. [Gilotte et al., 2018]. The third approach, known as
doubly robust (DR) [Robins and Rotnitzky, 1995, Bang and Robins, 2005, Dudík et al., 2011, Dudik
et al., 2014, Farajtabar et al., 2018], combines elements of DM and IPS, helping to reduce variance.
Assessing the accuracy of an OPE estimator, denoted as R̂n(π), is typically done using the mean
squared error (MSE). It may be relevant to note that Metelli et al. [2021] argued that high-probability
concentration rates should be preferred over the MSE to evaluate OPE estimators as they provide
non-asymptotic guarantees. In this work, we presented a direct method for OPE, for which we could
derive both an MSE and high-probability concentration bound under our assumptions. However, we
focused more on OPL.

B.2 Off-policy learning

OPL under IPS. Prior research on OPL predominantly revolved around developing learning princi-
ples influenced by generalization bounds for IPS. Swaminathan and Joachims [2015a] proposed to
penalize the IPS estimator with a variance term leading to a learning principle that promotes policies
that achieve high estimated reward and exhibit minimal empirical variance. In a recent development,
London et al. [London and Sandler, 2019] made a connection between PAC-Bayes theory and OPL
that inspired several works in the same vein [Sakhi et al., 2022, Aouali et al., 2023a]. London and
Sandler [2019] proposed a learning principle that favors policies with high estimated reward while
keeping the parameter close to that of the logging policy in terms of L2 distance. In particular, this
learning principle is scalable. Then Sakhi et al. [2022], Aouali et al. [2023a] took a different direction
of deriving tractable generalization bounds and optimizing them directly as they are. Finally, Wang
et al. [2023] recently introduced an efficient learning principle with guarantees for a specific choice of
their hyperparameter. All of these learning principles are related to the concept of pessimism which
we discuss next.

OPL under DM. The majority of OPL approaches in contextual bandits rely on the principle
of pessimism [Jeunen and Goethals, 2021, Jin et al., 2021, Hong et al., 2023]. In essence, these
methods construct confidence intervals for reward estimates r̂(x, a), that hold simultaneously for all
(x, a) ∈ X ×A and satisfy the following condition

|r(x, a; θ)− r̂(x, a)| ≤ u(x, a) , ∀(x, a) ∈ X ×A

Subsequently, the policy learned with this pessimistic approach is defined as

π̂P(a | x) = 1{a = argmax
b∈A

r̂(x, b)− u(x, b)} . (17)
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Note that when the function u(x, a) is independent of both x and a, the pessimistic and greedy
policies become equivalent. However, in this work, we highlight the critical role of the selected
metric and the underlying assumptions about r̂ in choosing between pessimistic and greedy policies.
In particular, we introduce the concept of Bayesian suboptimality (BSO), as defined in Section 5.1.
BSO evaluates the average performance of algorithms across multiple problem instances, and in this
context, the Greedy policy emerges as a more suitable choice for minimizing the BSO. A detailed
comparison of pessimistic and greedy policies is presented in Appendix E.5.

In addition to not using pessimism, our work also considers structured contextual bandit problems,
upon which we build informative priors. Notably, while structured problems have been previously
investigated in the context of multi-task learning by Lazaric and Ghavamzadeh [2010], Hong et al.
[2023], these works primarily focused on cases where there are multiple contextual bandit instances
that bear similarity to one another. Interaction with one bandit instance contributes to the agent’s
understanding of other instances. In contrast, our work tackles a single contextual bandit instance
with a large action space and considers an inherent structure among actions within this bandit instance.
Furthermore, the structure we address in the single-instance problem is different and more general
compared to the ones explored in the aforementioned multi-task learning works.

C Posterior derivations under standard priors

Here we derive the posterior under the standard prior in (2). These are standard derivations and we
present them here for the sake of completeness. But first, we state the following standard assumption
that allows posterior derivations.
Assumption C.1 (Independence). (X,A) is independent of θ, and the θa, for a ∈ A are independent.

Derivation of p(θa | S) for the standard prior in (2). We start by recalling the standard prior in (2)

θa ∼ N (µa,Σa) , ∀a ∈ A , (18)

R | θ,X,A ∼ N (ϕ(X)⊤θA, σ
2) ,

where N (µa,Σa) is the prior on the action parameter θa. Let θ = (θa)a∈A ∈ RdK , ΣA =

diag(Σa)a∈A ∈ RdK×dK and µA = (µa)a∈A ∈ RdK . Also, let ua ∈ {0, 1}K be the binary vector
representing the action a. That is, ua,a = 1 and ua,a′ = 0 for all a′ ̸= a. Then we can rewrite the
model in (18) as

θ ∼ N (µA,ΣA) , (19)

R | θ,X,A ∼ N ((uA ⊗ ϕ(X))⊤θ, σ2) .

Then the joint action posterior p(θ | S) decomposes as

p(θ | S) = p(θ | (Xi, Ai, Ri)i∈[n])
(i)
∝ p((Ri)i∈[n] | θ, (Xi, Ai)i∈[n])p(θ | (Xi, Ai)i∈[n]) ,

(ii)
= p((Ri)i∈[n] | θ, (Xi, Ai)i∈[n])p(θ)

(iii)
=

∏
i∈[n]

p(Ri | θ,Xi, Ai)p(θ) ,

(iv)
=
∏
i∈[n]

N (Ri; (uAi
⊗ ϕ(Xi))

⊤θ, σ2)N (θ;µA,ΣA) ,

= exp

[
−1

2

(
v

n∑
i=1

(R2
i − 2Ri(uAi

⊗ ϕ(Xi))
⊤θ + ((uAi

⊗ ϕ(Xi))
⊤θ)2) + θ⊤ΛAθ − 2θ⊤ΛAµA + µ⊤

AΛAµA

)]
,

∝ exp

[
−1

2

(
θ⊤(v

n∑
i=1

(uAi ⊗ ϕ(Xi))(uAi ⊗ ϕ(Xi))
⊤ + ΛA)θ − 2θ⊤

(
v

n∑
i=1

(uAi ⊗ ϕ(Xi))
⊤Ri + ΛAµA

))]
,

= exp

[
−1

2

(
θ⊤(v

n∑
i=1

(uAi
u⊤Ai
⊗ ϕ(Xi)ϕ(Xi)

⊤) + ΛA)θ − 2θ⊤

(
v

n∑
i=1

(uAi
⊗ ϕ(Xi))

⊤Ri + ΛAµA

))]
,

(v)
∝ N

(
θ; µ̂A,

(
Λ̂A

)−1
)
.
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In (i), we apply Bayes rule. In (ii), we use that θ is independent of (X,A), and (iii) follows
from the assumption that Ri | θ,Xi, Ai are i.i.d. Finally, in (iv), we replace the distribution
by their Gaussian form, and in (v), we set Λ̂A = v

∑n
i=1(uAi

u⊤Ai
⊗ ϕ(Xi)ϕ(Xi)

⊤) + ΛA , and

µ̂a = Λ̂−1
A
(
v
∑n
i=1(uAi

⊗ ϕ(Xi))
⊤Ri + ΛAµA

)
. Now notice that Λ̂A = diag(Σ−1

a + Ga)a∈A.

Thus, p(θ | S) = N (θ, µ̂A,Λ
−1
A ) where µ̂A = (µ̂a)a∈A and ΛA = diag(Λ̂a)a∈A , with

Λ̂a = Σ−1
a +Ga , Λ̂aµ̂a = Σ−1

a µa +Ba .

Since the covariance matrix of p(θ | S) is diagonal by block, we know that the marginals θa | S also
have a Gaussian density p(θa | S) = N (θa; µ̂a, Σ̂a) where Σ̂a = Λ̂−1

a .

D Posterior derivations under structured priors

Here we derive the posteriors under the structured prior in (10). Precisely, we derive the latent
posterior density of ψ | S, the conditional posterior density of θ | S, ψ. Then, we derive the marginal
posterior θ | S. Posterior derivations rely on the following assumption.

Assumption D.1 (Structured Independence). (i) (X,A) is independent of ψ and given ψ, (X,A) is
independent of θ. (ii) Given ψ, the θa, for all a ∈ A are independent.

D.1 Latent posterior

Derivation of p(ψ | S). First, recall that our model in (10) reads

ψ ∼ N (µ,Σ) ,

θa | ψ ∼ N
(
Waψ, Σa

)
, ∀a ∈ A ,

R | ψ, θ,X,A ∼ N (ϕ(X)⊤θA, σ
2) . (20)

Then we first rewrite it as

ψ ∼ N (µ,Σ) ,

θ | ψ ∼ N
(
WAψ, ΣA

)
,

R | ψ, θ,X,A ∼ N ((uA ⊗ ϕ(X))⊤θ, σ2) . (21)

Then the latent posterior is

p(ψ | (Xi, Ai, Ri)i∈[n]) ∝ p((Ri)i∈[n] | ψ, (Xi, Ai)i∈[n])p(ψ | (Xi, Ai)i∈[n]) ,

(i)
= p((Ri)i∈[n] | ψ, (Xi, Ai)i∈[n])q(ψ) ,

=

∫
θ

p((Ri)i∈[n], θ | ψ, (Xi, Ai)i∈[n]) dθ q(ψ) ,

=

∫
θ

p((Ri)i∈[n] | ψ, θ, (Xi, Ai)i∈[n])p(θ | ψ, (Xi, Ai)i∈[n]) dθ q(ψ) ,

(ii)
=

∫
θ

p((Ri)i∈[n] | ψ, θ, (Xi, Ai)i∈[n])p(θ | ψ) dθ q(ψ) ,

In (i), we use that (X,A) is independent of ψ, which follows from Assumption D.1. Similarly,
in (ii), we use that θ is conditionally independent of (X,A) given ψ. Now we know that given θ,
Ri | Xi, Ai are i.i.d. and hence p((Ri)i∈[n] | ψ, θ, (Xi, Ai)i∈[n]) =

∏
a∈A La(θa). Moreover, θa

for a ∈ A are conditionally independent given ψ. Thus p(θ | ψ) =
∏
a∈A pa (θa; fa(ψ)), where we
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also used that θa | ψ ∼ pa (·; fa(ψ)). This leads to

p(ψ | (Xi, Ai, Ri)i∈[n]) ∝
∫
θ

∏
a∈A
La(θa)pa (θa; fa(ψ)) dθ q(ψ) ,

(i)
=
∏
a∈A

∫
θa

La(θa)N (θa;Waψ,Σa) dθaN (ψ;µ,Σ) ,

(ii)
=
∏
a∈A

∫
θa

( ∏
i∈Ia

N (Ri;ϕ(Xi)
⊤θa, σ

2)
)
N (θa;Waψ,Σa) dθaN (ψ;µ,Σ) .

In (i), we notice that θ = (θa)a∈A and apply Fubini’s Theorem. In (ii), we let Ia = |Sa| =∑
i∈[n] 1{Ai = a} as the number of times action a appears in the sample set S. Now let ha(ψ) =∫

θa

(∏
i∈Ia N (Ri;ϕ(Xi)

⊤θa, σ
2)
)
N (θa;Waψ,Σa) dθ. Then we have that

p(ψ | S) ∝
∏
a∈A

ha(ψ)N (ψ;µ,Σ) . (22)

We start by computing ha. To reduce clutter, let v = σ−2 and Λa = Σ−1
a . Then we compute ha as

ha(ψ) =

∫
θa

(∏
i∈Ia

N (Ri;ϕ(Xi)
⊤θa, σ

2)

)
N (θa;Waψ,Σa) dθa ,

∝
∫
θa

exp

[
−1

2
v
∑
i∈Ia

(Ri − ϕ(Xi)
⊤θa)

2 − 1

2
(θa −Waψ)

⊤Λa(θa −Waψ)

]
dθa ,

=

∫
θa

exp
[
− 1

2

(
v
∑
i∈Ia

(R2
i − 2Riθ

⊤
a ϕ(Xi) + (θ⊤a ϕ(Xi))

2) + θ⊤a Λaθa − 2θ⊤a ΛaWaψ

+ (Waψ)
⊤Λa(Waψ)

)]
dθa ,

∝
∫
θa

exp
[
− 1

2

(
θ⊤a

(
v
∑
i∈Ia

ϕ(Xi)ϕ(Xi)
⊤ + Λa

)
θa − 2θ⊤a

(
v
∑
i∈Ia

Riϕ(Xi) + ΛaWaψ

)
+ (Waψ)

⊤Λa(Waψ)
)]

dθa .

Now recall that Ga = v
∑
i∈Ia ϕ(Xi)ϕ(Xi)

⊤ and Ba = v
∑
i∈Ia Riϕ(Xi) and let Va =

(Ga + Λa)
−1, Ua = V −1

a , and βa = Va(Ba + ΛaWaψ). Then have that UaVa = VaUa = Id , and
thus

f(ψ) ∝
∫
θa

exp

[
−1

2

(
θ⊤a Uaθa − 2θ⊤a UaVa (Ba + ΛaWaψ) + (Waψ)

⊤Λa(Waψ)
)]

dθa ,

=

∫
θa

exp

[
−1

2

(
θ⊤a Uaθa − 2θ⊤a Uaβa + (Waψ)

⊤Λa(Waψ)
)]

dθa ,

=

∫
θa

exp

[
−1

2

(
(θa − βa)⊤Ua(θa − βa)− β⊤

a Uaβa + (Waψ)
⊤Λa(Waψ)

)]
dθa ,

∝ exp

[
−1

2

(
−β⊤

a Uaβa + (Waψ)
⊤Λa(Waψ)

)]
,

= exp

[
−1

2

(
− (Ba + ΛaWaψ)

⊤
Va (Ba + ΛaWaψ) + (Waψ)

⊤Λa(Waψ)
)]

,

∝ exp

[
−1

2

(
ψ⊤W⊤

a (Λa − ΛaVaΛa)Waψ − 2ψ⊤ (W⊤
a ΛaVaBa

))]
,

∝ N (ψ; µ̄a, Σ̄a) ,

where

Σ̄−1
a = W⊤

a (Λa − ΛaVaΛa)Wa = W⊤
a

(
Σ−1
a − Σ−1

a (Ga +Σ−1
a )−1Σ−1

a

)
Wa ,

Σ̄−1
a µ̄a = W⊤

a ΛaVaBa = W⊤
a Σ

−1
a (Ga +Σ−1

a )−1Ba . (23)
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However, we know from (22) that p(ψ | S) ∝
∏
a∈A ha(ψ)N (ψ;µ,Σ). But ha(ψ) is proportional

toN (ψ; µ̄a, Σ̄a) for any a. Thus p(ψ | S) can be seen as the product of K +1 multivariate Gaussian
distributionsN (µ,Σ) andN (µ̄a, Σ̄a) for a ∈ A (the terms ha). Thus, p(ψ | S) is also a multivariate
Gaussian distribution N (µ̄, Σ̄−1), with

Σ̄−1 = Σ−1 +
∑
a∈A

Σ̄−1
a = Σ−1 +

∑
a∈A

W⊤
a

(
Σ−1
a − Σ−1

a (Ga +Σ−1
a )−1Σ−1

a

)
Wa , (24)

Σ̄−1µ̄ = Σ−1µ+
∑
a∈A

Σ̄−1
a µ̄a = Σ−1µ+

∑
a∈A

W⊤
a Σ

−1
a (Ga +Σ−1

a )−1Ba . (25)

D.2 Conditional posterior

Derivation of p(θa | ψ, S). Let v = σ−2 , Λa = Σ−1
a . We consider the model rewritten in (21),

then the joint action posterior p(θ | S) decomposes as

p(θ | ψ, S) = p(θ | ψ, (Xi, Ai, Ri)i∈[n])
(i)
∝ p((Ri)i∈[n] | θ, ψ, (Xi, Ai)i∈[n])p(θ | ψ, (Xi, Ai)i∈[n]) ,

(ii)
= p((Ri)i∈[n] | θ, (Xi, Ai)i∈[n])p(θ | ψ)

(iii)
=

∏
i∈[n]

p(Ri | θ,Xi, Ai)p(θ | ψ) ,

(iv)
=
∏
i∈[n]

N (Ri; (uAi
⊗ ϕ(Xi))

⊤θ, σ2)N (θ;WAψ,ΣA) ,

= exp
[
− 1

2

(
v

n∑
i=1

(R2
i − 2Ri(uAi

⊗ ϕ(Xi))
⊤θ + ((uAi

⊗ ϕ(Xi))
⊤θ)2) + θ⊤ΛAθ − 2θ⊤ΛAWAψ

+ ψ⊤W⊤
AΛAWAψ

)]
,

∝ exp

[
−1

2

(
θ⊤(v

n∑
i=1

(uAi
⊗ ϕ(Xi))(uAi

⊗ ϕ(Xi))
⊤ + ΛA)θ − 2θ⊤

(
v

n∑
i=1

(uAi
⊗ ϕ(Xi))

⊤Ri + ΛAWAψ

))]
,

= exp
[
− 1

2

(
θ⊤(v

n∑
i=1

(uAiu
⊤
Ai
⊗ ϕ(Xi)ϕ(Xi)

⊤) + ΛA)θ − 2θ⊤

(
v

n∑
i=1

(uAi ⊗ ϕ(Xi))
⊤Ri + ΛAWAψ

))]
,

(v)
∝ N

(
θ; µ̃A,

(
Λ̃A

)−1
)
,

where we use Bayes rule in (i), (ii) uses two assumptions. First, Given θ,X,A, R is independent of
ψ. Second, given ψ, θ is independent of (X,A). Moreover, (iii) follows from the assumption that
Ri | θ,Xi, Ai are i.i.d. Finally, in iv, we replace the distribution by their Gaussian form, and in (v),
we set Λ̃A = v

∑n
i=1(uAi

u⊤Ai
⊗ϕ(Xi)ϕ(Xi)

⊤)+ΛA , and µ̃a = Λ̃−1
A
(
v
∑n
i=1(uAi

⊗ϕ(Xi))
⊤Ri+

ΛAWAψ
)

. Now notice that Λ̃A = diag(Σ−1
a +Ga)a∈A. Thus, p(θ | S) = N (θ, µ̃A,Λ

−1
A ) where

µ̃A = (µ̃a)a∈A and ΛA = diag(Λ̃a)a∈A , with

Λ̃a = Σ−1
a +Ga ,

Λ̃aµ̃a = Σ−1
a Waψ +Ba .

The covariance matrix of p(θ | ψ, S) is diagonal by block. Thus θa | ψ, S for a ∈ A are independent
and have a Gaussian density p(θa | S) = N (θa; µ̃a, Σ̃a) where Σ̃a = Λ̃−1

a .

D.3 Action posterior

Derivation of p(θa | S). We know that θa | S, ψ ∼ N (µ̃a, Σ̃a) and ψ | S ∼ N (µ̄, Σ̄). Thus the
posterior density of θa | S is also Gaussian since Gaussianity is preserved after marginalization
[Koller and Friedman, 2009]. We let θa | S ∼ N (µ̂a, Σ̂a). Then, we can compute µ̂a and Σ̂a using
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the total expectation and total covariance decompositions. Let Λa = Σ−1
a . Then we have that

Σ̃a = (Ga + Λa)
−1

E [θa |ψ, S] = Σ̃a (Ba + ΛaWaψ)

First, given S, Σ̃a = (Ga + Λa)
−1 and Ba are constant (do not depend on ψ). Thus

µ̂a = E [θa |S] = E [E [θa |ψ, S] | S] = Eψ∼N (µ̄,Σ̄)

[
Σ̃a (Ba + ΛaWaψ)

]
= Σ̃a

(
Ba + ΛaWaEψ∼N (µ̄,Σ̄) [ψ]

)
,

= Σ̃a (Ba + ΛaWaµ̄) .

This concludes the computation of µ̂a. Similarly, given S, Σ̃a = (Ga + Λa)
−1 and Ba are constant

(do not depend on ψ), yields two things. First,

E [cov [θa |ψ, S] |S] = E
[
Σ̃a

∣∣∣S] = Σ̃a .

Second,

cov [E [θa |ψ, S] |S] = cov
[
Σ̃aΛaWaψ

∣∣∣S]
= Σ̃aΛaWacov [ψ |S]W⊤

a ΛaΣ̃a

= Σ̃aΛaWaΣ̄W
⊤
a ΛaΣ̃a .

Finally, the total covariance decomposition [Weiss, 2005] yields that

Σ̂a = cov [θa |S] = E [cov [θa |ψ, S] |S] + cov [E [θa |ψ, S] |S] = Σ̃a + Σ̃aΛaWaΣ̄W
⊤
a ΛaΣ̃a .

This concludes the proof.

E Missing discussions and proofs

E.1 Linear hierarchy with non-linear rewards

In this subsection, the action and latent parameters are generated as in (10). But the reward is no longer
Gaussian. Precisely, let Ber(p) be a Bernoulli distribution with mean p, and g(u) = 1/(1+exp(−u))
be the logistic function. We define p(· | x; θa) = Ber(g(ϕ(x)⊤θa)) which yields

ψ ∼ N (µ,Σ) , (26)

θa | ψ ∼ N
(
Waψ, Σa

)
, ∀a ∈ A ,

R | ψ, θ,X,A ∼ Ber(g(ϕ(X)⊤θA)) .

Step (A). In this case, we cannot derive closed-form posteriors. But we can approximate the
likelihoods La(·) by multivariate Gaussian distributions such as

La(·) ≈ N (·; µ̆a, (Ğa)−1) . (27)

where µ̆a and Ğa are the maximum likelihood estimator (MLE) and the Hessian of the negative
log-likelihood − logLa(·), respectively:

µ̆a = argmaxθ∈Rd logLa(θ) ,
Ğa =

∑
i∈[n] 1{Ai = a}ġ

(
X⊤
i µ̆a

)
ϕ(Xi)ϕ(Xi)

⊤ .

The latter approximation is slightly different from the popular Laplace approximation1 and is some-
times referred to as Bernstein-von-Mises approximation, see [Schillings et al., 2020, Remark 3] for a
detailed discussion. It is simpler and more computationally friendly than the Laplace approximation

1Laplace approximation’s mean is given by the maximum a-posteriori estimate (MAP) of the posterior and
its covariance is the inverse Hessian of the negative log posterior density.
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in our setting. Indeed, interestingly, (27) allows us to use the Gaussian posteriors (11), (12) and (13)
in Step (A) in Section 4, except that Ga and Ba are replaced by Ğa and Ğaµ̆a, respectively (notice
that the inverse Ğ−1

a may not exist but it is not used in our formulas). There is a clear intuition behind
this. First, Ga ← Ğa captures the change of curvature due to the nonlinearity of the mean function g.
Moreover, Ba ← Ğaµ̆a follows from the fact that the MLE of the action parameter θa with linear
rewards in (10) is G−1

a Ba, and it corresponds to µ̆a in this case.

Step (B). The reward function under (26) is r(x, a; θ) = g(ϕ(x)⊤θ). Thus our reward estimate is

r̂(x, a) = g
(

ϕ(x)⊤µ̂a√
1+π/8∥ϕ(x)∥Σ̂a

)
,

where we use an approximation of the expectation of the sigmoid function under a Gaussian distribu-
tion [Spiegelhalter and Lauritzen, 1990, Appendix A].

Step (C). Since g is increasing, the learned policy is

π̂G(a | x) = 1
{
a = argmaxb∈A

ϕ(x)⊤µ̂b√
1+π/8∥ϕ(x)∥Σ̂b

}
.

E.2 Frequentist vs. Bayesian suboptimality

Before diving into our main result, a Bayesian suboptimality bound for the structured prior in (3),
we motivate its use by analyzing both Bayesian and frequentist suboptimality for the simpler non-
structured prior in (2). While this analysis uses the non-structured prior, our main result applies
directly to the structured one. The key distinction between Bayesian and frequentist suboptimality
lies in their confidence intervals, as discussed in [Hong et al., 2023, Section 4.2]. However, we still
provide a self-contained explanation for completeness, considering our slightly different results and
proofs. Also, note that Hong et al. [2023] also explored a notion of Bayesian suboptimality that
they defined as V (π∗; θ∗) − V (π̂; θ∗) | S. Precisely, they fix the sample set S and consider only
randomness in θ∗ sampled from the prior. In contrast, our definition aligns with traditional online
bandits (Bayesian regret) by averaging suboptimality across both the sample set and θ∗ sampled
from the prior: E [V (π∗; θ∗)− V (π̂; θ∗)]. These metrics are different and have distinct implications.
Interestingly, ours favors the greedy policy (Appendix E.5), while theirs incentivizes pessimistic
policies.

Frequentist confidence intervals. Assume that for any a ∈ A, there exists a parameter θ∗,a ∈ Rd
generating the reward as R | θ∗, X,A ∼ N (ϕ(X)⊤θ∗,A, σ

2). Then the posterior under the non-
structured prior in (2) satisfies

P

(
∀x ∈ X : |r(x, a; θ∗)− r̂(x, a)| ≤

(
α(d, δ) +

ca + ∥µa∥2√
λd(Σa)

)
∥ϕ(X)∥Σ̂a

| S̃

)
≥ 1−δ , (28)

where S̃ = (Xi, Ai)i∈[n], the randomness in P is over the true reward noiseN (0, σ2), and α(d, δ) =√
d+ 2

√
d log 1

δ + 2 log 1
δ . Now let us compare this confidence interval to the Bayesian one below.

Bayesian confidence intervals. Here we further assume that for any a ∈ A, the action parameter
θ∗,a is generated from a know Gaussian distribution as θ∗,a ∼ N (µa,Σa) whose parameters µa,Σa
match the ones used in the non-structured prior (2). Then the posterior under the non-structured prior
in (2) satisfies

P
(
∀x ∈ X : |r(x, a; θ∗)− r̂(x, a)| ≤ α(d, δ)∥ϕ(X)∥Σ̂a

∣∣∣S) ≥ 1− δ (29)

Here the randomness in P is over the action parameter uncertainty N (0,Σa) as we condition on
S = (Xi, Ai, Ri)i∈[n]. The proof is given after Lemma E.1. In Bayesian bounds, θ∗,a is treated
as a random variable with distribution N (µa,Σa) and it is included in the randomness in P. The
randomization of the data (Xi, Ai, Ri)i∈[n] is also included in P. However, we condition on S, and
hence they are treated as fixed. In contrast with frequentist bounds where θ∗,a is fixed while the
reward is random and included in the randomness in P without conditioning on it. The Bayesian
confidence intervals capture that the agent has access to the prior on the true action parameters and
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hence the additional misspecification term ca+∥µa∥2√
λd(Σa)

is not present, as opposed to its frequentist

counterpart. This is the main reason why BSO captures the benefits of knowing and leveraging
informative priors.

Lemma E.1 (Bayesian bound). Let a ∈ A, δ ∈ (0, 1) and α(d, δ) =

√
d+ 2

√
d log 1

δ + 2 log 1
δ .

Then

P
(
∀x ∈ X : |r(x, a; θ∗)− r(x, a; µ̂)| ≤ α(d, δ)∥ϕ(X)∥Σ̂a

∣∣∣S) ≥ 1− δ (30)

Proof. First, we have that

|r(x, a; θ∗)− r(x, a; µ̂)| = |ϕ(X)⊤θ∗,a − ϕ(X)⊤µ̂a| = |ϕ(X)⊤ (θ∗,a − µ̂a) | ,

= |ϕ(X)⊤Σ̂
1
2
a Σ̂

− 1
2

a (θa − µ̂a) | ≤ ∥ϕ(X)∥Σ̂a
∥θa − µ̂a∥Σ̂−1

a
,

where we use the Cauchy-Schwarz inequality in the last step. Now we assumed that the true action
parameters θ∗,a are random and their prior distribution matches our model in (10). Therefore,
θ∗,a | S have the same density as our posterior θa | S, and hence θ∗,a | S ∼ N (µ̂a, Σ̂a). This

means that θ∗,a − µ̂a | S ∼ N (0, Σ̂a). Thus, Σ̂− 1
2

a (θ∗,a − µ̂a) ∼ N (0, Id). But notice that

∥θ∗,a − µ̂a∥Σ̂−1
a

= ∥Σ̂− 1
2

a (θ∗,a − µ̂a)∥. Thus we apply Laurent and Massart [2000, Lemma 1] and
get that

P
(
∥θ∗,a − µ̂a∥Σ̂−1

a
≤ α(d, δ)

∣∣∣S) ≥ 1− δ .

Finally using that for any x ∈ A, |r(x, a; θ∗) − r(x, a; µ̂)| ≤ ∥ϕ(X)∥Σ̂a
∥θa − µ̂a∥Σ̂−1

a
concludes

the proof.

Lemma E.2 (Frequentist bound). Let a ∈ A, δ ∈ (0, 1) and α(d, δ) =

√
d+ 2

√
d log 1

δ + 2 log 1
δ .

Then

P

(
∀x ∈ X : |r(x, a; θ∗)− r(x, a; µ̂)| ≤

(
α(d, δ) +

ca + ∥µ̂a∥2√
λd(Σa)

)
∥ϕ(X)∥Σ̂a

∣∣∣∣∣ S̃
)
≥ 1− δ ,

(31)

where S̃ = (Xi, Ai)i∈[n].

Proof. Similarly to Lemma E.1, we have that |r(x, a; θ∗)− r(x, a; µ̂)| ≤ ∥ϕ(X)∥Σ̂a
∥θa − µ̂a∥Σ̂−1

a
.

Note that (Xi, Ai) and θ∗,a are fixed; the randomness only comes from Ri for i ∈ [n]. Thus Σ̂a is
fixed while µ̂a is random. Keeping this in mind, we have that Ri ∼ N (ϕ(Xi)

⊤θ∗,a, σ
2) and thus∑

i∈[n]

I{Ai=a}ϕ(Xi)Ri ∼ N
( ∑
i∈[n]

I{Ai=a}ϕ(Xi)ϕ(Xi)
⊤θ∗,a, σ

2
∑
i∈[n]

I{Ai=a}ϕ(Xi)ϕ(Xi)
⊤
)
.

(32)

But
∑
i∈[n] I{Ai=a}ϕ(Xi)Ri = σ2Ba and

∑
i∈[n] I{Ai=a}ϕ(Xi)ϕ(Xi)

⊤ = σ2Ga. Thus, we get
that

σ2Ba ∼ N (σ2Gaθ∗,a, σ
4Ga) , (33)

and hence

Ba ∼ N (Gaθ∗,a, Ga) . (34)

Now since Σa, µa and Σ̂a are fixed, we have that

µ̂a = Σ̂a(Σ
−1
a µa +Ba) ∼ N (Σ̂a(Σ

−1
a µa +Gaθ∗,a), Σ̂aGaΣ̂a) . (35)
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But notice thatGaθ∗,a = (Ga+Σ−1
a )θ∗,a−Σ−1

a θ∗,a = Σ̂−1
a θ∗,a−Σ−1

a θ∗,a and hence (35) becomes

µ̂a ∼ N (Σ̂aΣ
−1
a (µa − θ∗,a) + θ∗,a, Σ̂aGaΣ̂a) . (36)

Thus

µ̂a − θ∗,a ∼ N (Σ̂aΣ
−1
a (µa − θ∗,a), Σ̂aGaΣ̂a) . (37)

Multiplying by Σ̂
− 1

2
a leads to

Σ̂
− 1

2
a (µ̂a − θ∗,a) ∼ N (Σ̂

1
2
aΣ

−1
a (µa − θ∗,a), Σ̂

1
2
aGaΣ̂

1
2
a ) . (38)

Now we rewrite (38) as

Σ̂
− 1

2
a (µ̂a − θ∗,a) = Σ̂

1
2
aΣ

−1
a (µa − θ∗,a) + Σ̂

1
2
aG

1
2
aZ , Z ∼ N (0, Id) . (39)

Thus we have that

∥Σ̂− 1
2

a (µ̂a − θ∗,a)∥2 = ∥µ̂a − θ∗,a∥Σ̂−1
a

= ∥Σ̂
1
2
aΣ

−1
a (µa − θ∗,a) + Σ̂

1
2
aG

1
2
aZ∥2 ,

≤ ∥Σ̂
1
2
aΣ

−1
a (µa − θ∗,a)∥2 + ∥Σ̂

1
2
aG

1
2
aZ∥2 ,

≤ ∥µa − θ∗,a∥2√
λd(Σa)

+ ∥Z∥2 . (40)

Finally, since Z ∼ N (0, Id), we apply Laurent and Massart [2000, Lemma 1] and get that

P(∥Z∥2 ≤ α(d, δ)) ≥ 1− δ .

Combining this with (40) leads to

P

(
∥θ∗,a − µ̂a∥Σ̂−1

a
≤ ∥µa − θ∗,a∥2√

λd(Σa)
+ α(d, δ)

∣∣∣∣∣ (Xi, Ai)i∈[n]

)
≥ 1− δ .

Finally using that for any x ∈ A, |r(x, a; θ∗) − r(x, a; µ̂)| ≤ ∥ϕ(X)∥Σ̂a
∥θa − µ̂a∥Σ̂−1

a
and using

that ∥θ∗,a − µ̂a∥2 ≤ ca + ∥µ̂a∥2 concludes the proof.

E.3 Main result

In this section, we prove Theorem 5.2. Recall that we make the following well-specified prior
assumption.

Assumption E.3 (Well-specified priors). Action parameters θ∗,a and rewards are drawn from (10).

First, given x ∈ X , by definition of the optimal policy, we know that it is deterministic. That
is, there exists ax,θ∗ ∈ [K] such that π∗(ax,θ∗ | x) = 1. To simplify the notation and since π∗
is deterministic, we let π∗(x) = ax,θ∗ . Also, we know that the greedy policy is deterministic in
âx = argmaxb∈A r̂(x, b). That is π̂G(âx | x) = 1. Similarly, we let π̂G(x) = âx. Moreover, we let
Φ(x, a) = ea ⊗ ϕ(X) ∈ RdK where ea ∈ RK is the indicator vector of action a, such that ea,b = 0
for any b ∈ A/{a} and ea,a = 1. Also, recall that µ̂ = (µ̂a)a∈A is the concatenation of the posterior
means.

BSO(π̂G) = E [V (π∗; θ∗)− V (π̂; θ∗)] ,

= E [r(X,π∗(X); θ∗)− r(X, π̂G(X); θ∗)] ,

= E [r(X,π∗(X); θ∗)− r(X, π̂G(X); µ̂) + r(X, π̂G(X); µ̂)− r(X, π̂G(X); θ∗)] ,

≤ E [r(X,π∗(X); θ∗)− r(X,π∗(X); µ̂) + r(X, π̂G(X); µ̂)− r(X, π̂G(X); θ∗)] ,

≤ E [r(X,π∗(X); θ∗)− r(X,π∗(X); µ̂)] + E [r(X, π̂G(X); µ̂)− r(X, π̂G(X); θ∗)] .
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Now we start by proving that E [r(X, π̂G(X); µ̂)− r(X, π̂G(X); θ∗)] = 0. This is achieved as
follows
E [r(X, π̂G(X); µ̂)− r(X, π̂G(X); θ∗)] = E [E [r(X, π̂G(X); µ̂)− r(X, π̂G(X); θ∗) | X,S]] ,

= E
[
E
[
ϕ(X)⊤µ̂π̂G(X) − ϕ(X)⊤θ∗,π̂G(X) | X,S

]]
,

(i)
= E

[
E
[
Φ(X, π̂G(X))⊤µ̂− Φ(X, π̂G(X))⊤θ∗ | X,S

]]
,

(ii)
= E

[
Φ(X, π̂G(X))⊤E [µ̂− θ∗ | X,S]

]
,

(iii)
= E

[
Φ(X, π̂G(X))⊤(µ̂− E [θ∗ | X,S])

]
,

(iv)
= 0 .

In (i), we used that by definition of Φ(x, a) = ea ⊗ ϕ(X) ∈ RdK , we have ϕ(x)⊤µ̂a = Φ(x, a)⊤µ̂
for any (x, a), and the same holds for θ∗. In (ii), we used that Φ(X, π̂G(X)) is deterministic given
X and S. In (iii), we used that µ̂ is deterministic given X and S. Finally, in (iv), we used that
E [θ∗ | X,S] = E [θ∗ | S] = µ̂, which follows from the assumption that θ∗ does not depend on X
and the assumption that θ∗ is drawn from the prior, and hence when conditioned on S, it is drawn
from the posterior whose mean is µ̂. Therefore, E [r(X, π̂G(X); µ̂)− r(X, π̂G(X); θ∗)] = 0 which
leads to

BSO(π̂G) ≤ E [r(X,π∗(X); θ∗)− r(X,π∗(X); µ̂)] .

Now let δ ∈ (0, 1), we define the following high-probability events

Ea =
{
∀x ∈ X : |r(x, a; θ∗)− r(x, a; µ̂)| ≤ α(d, δ)∥ϕ(x)∥Σ̂a

}
, ∀a ∈ A ,

where α(d, δ) =

√
d+ 2

√
d log 1

δ + 2 log 1
δ . Then we decompose BSO(π̂G) as

BSO(π̂G) ≤ E [r(X,π∗(X); θ∗)− r(X,π∗(X); µ̂)] ,

≤ E [|r(X,π∗(X); θ∗)− r(X,π∗(X); µ̂)|] ,
≤ E

[
|r(X,π∗(X); θ∗)− r(X,π∗(X); µ̂)|1

{
Eπ∗(X)

}]
+ E

[
|r(X,π∗(X); θ∗)− r(X,π∗(X); µ̂)|1

{
Ēπ∗(X)

}]
,

≤ α(d, δ)E
[
∥ϕ(X)∥Σ̂π∗(X)

]
+ E

[
|r(X,π∗(X); θ∗)− r(X,π∗(X); µ̂)|1

{
Ēπ∗(X)

}]
.

Now we deal with the term E
[
|r(X,π∗(X); θ∗)− r(X,π∗(X); µ̂)|1

{
Ēπ∗(X)

}]
. Let Za =

r(X, a; θ∗) − r(X, a; µ̂), so that Zπ∗(X) = r(X,π∗(X); θ∗) − r(X,π∗(X); µ̂). Then we have
that

E
[
|r(X,π∗(X); θ∗)− r(X,π∗(X); µ̂)|1

{
Ēπ∗(X)

}]
= E

[
|Zπ∗(X)|1

{
|Zπ∗(X)| > α(d, δ)∥ϕ(X)∥Σ̂π∗(X)

}]
,

= E
[
E
[
|Zπ∗(X)|1

{
|Zπ∗(X)| > α(d, δ)∥ϕ(X)∥Σ̂π∗(X)

}
| X,S

]]
,

(i)

≤ E

 2

∥ϕ(X)∥Σ̂π∗(X)

√
2π

∫ ∞

u=α(d,δ)∥ϕ(X)∥Σ̂π∗(X)

u exp

− u2

2∥ϕ(X)∥2
Σ̂π∗(X)

du

 ,
(ii)

≤ E

[
∥ϕ(X)∥Σ̂π∗(X)

2√
2π

∫ ∞

u=α(d,δ)

u exp

[
−u

2

2

]
du

]
,

(iii)

≤
√

2

π
exp

(
− α(d, δ)2

2

)
E
[
∥ϕ(X)∥Σ̂π∗(X)

]
,

where (i) follows from the facts that Zπ∗(X) | X,S ∼ N (0, ∥ϕ(X)∥Σ̂π∗(X)
). In (ii), we use the

change of variables u← u/∥ϕ(X)∥Σ̂π∗(X)
. Finally, in (iii), we compute the integral. This leads to

the following result

BSO(π̂G) ≤

(√
2

π
exp

(
− α(d, δ)2

2

)
+ α(d, δ)

)
E
[
∥ϕ(X)∥Σ̂π∗(X)

]
. (41)

(42)
This concludes the proof.
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E.4 Proof of Theorem 5.1

Proof. The proof is similar to that of Theorem 5.2. Precisely, we have that

BMSE(r̂(x, a)) = E
[(
r̂(x, a)− r(x, a; θ∗)

)2]
,

= E
[
E
[(
r̂(x, a)− r(x, a; θ∗)

)2 | S]] ,
= E

[
E
[(
ϕ(x)⊤µ̂a − ϕ(x)⊤θ∗,a

)2 | S]] ,
= E

[
E
[(
ϕ(x)⊤θ∗,a − ϕ(x)⊤µ̂a

)2 | S]] .
But we assumed that the true action parameters θ∗,a are random and their prior distribution matches
our model in (10). Therefore, θ∗,a | S have the same density as our posterior θa | S, and hence θ∗,a |
S ∼ N (µ̂a, Σ̂a). This means that ϕ(x)⊤θ∗,a | S ∼ N (ϕ(x)⊤µ̂a, ∥ϕ(x)∥2Σ̂a

). But E
[(
ϕ(x)⊤θ∗,a −

ϕ(x)⊤µ̂a
)2 | S] is exactly the variance of ϕ(x)⊤θ∗,a | S and thus it is equal to ∥ϕ(x)∥2

Σ̂a
. Taking

the expectation concludes the proof.

E.5 Optimality of greedy policies

Here, we show that Greedy policy π̂G should be preferred to any other choice of policies when
considering the BSO as our performance metric. This is because π̂G minimizes the BSO. To see this,
note that by definition the Greedy policy π̂G is deterministic, that is for any context x ∈ X , there
exists âG, such that π̂G(âG | x) = 1. Thus, for any context x ∈ X , we simplify the notation by letting
π̂G(x) denote the action that has a mass equal to 1. Then, we have that

EA∼π̂G(·|x) [Eθ∗ [r(x,A; θ∗) | S]] = Eθ∗ [r(x, π̂G(x); θ∗) | S] ≥ E [r(x, a; θ∗) | S] ∀x, a ∈ X ×A .
(43)

where this follows from the definition of r̂(x, a) = E [r(x, a; θ) | S], the definition of π̂G and the fact
that θ∗ is sampled from the prior, which leads to E [r(x, a; θ) | S] = E [r(x, a; θ∗) | S]. Now (43)
holds for any x ∈ X and a ∈ A, and hence it holds in expectation under X ∼ ν and A ∼ π(· | X)
for any policy π. That is,

EX∼ν,A∼π̂G(·|X) [Eθ∗ [r(x,A; θ∗) | S]] ≥ EX∼ν,A∼π(·|X) [Eθ∗ [r(x,A; θ∗) | S]] . (44)

Taking another expectation w.r.t. the sample set S and using Fubini’s theorem and the tower rule
leads to E [V (π̂G; θ∗)] ≥ E [V (π; θ∗)] for any stationary policy π. Then, subtracting E [V (π∗; θ∗)]
from both sides of the previous inequality yields that the BSO is minimized by π̂G compared to any
stationary policy π, in particular, compared to the policy πP induced by pessimism.

E.6 Discussing the main assumption

In this section, we discuss our main assumption of the existence of the latent parameter ψ. Let us
take the Gaussian case, where were assume that

ψ ∼ N (µ,Σ) , (45)

θa | ψ ∼ N
(
Waψ, Σa

)
, ∀a ∈ A .

Now we discuss if (45) is as mild as assuming that the action parameters are jointly sampled as θ ∼
N (µACT,ΣACT), where µACT ∈ RdK and ΣACT ∈ RdK×dK . To do so, assume that θ ∼ N (0,ΣACT),
where we set µACT = 0 to simplify notation. Then we want to prove that there exists ψ ∼ N (0, Id′),
with µ ∈ Rd′ for some d′ ≥ 1 and W ∈ RdK×d′ such that θ | ψ ∼ N (Wψ, Σ̃), where Σ̃ is diagonal
by d × d blocks. First, note that (θ, ψ) is also Gaussian with a mean equal to 0 and covariance

Ω =

(
ΣACT Ω2

Ω⊤
2 Id′

)
∈ R(dK+d′)×(dK+d′). Then it suffices to find W such that θ −Wψ ⊥⊥ ψ. That

is, W such that cov(θ −Wψ,ψ) = cov(θ, ψ) −Wcov(ψ,ψ) = Ω2 −W = 0, which leads to
W = Ω2. Using this conditional independence and that W = Ω2, we get that the distribution of
θ −Wψ | ψ is the same as the distribution of θ −Wψ and it writes N (0,ΣACT −WW⊤). Thus,
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θ | ψ ∼ N (Wψ,ΣACT −WW⊤). But ΣACT is positive-definite and hence there exists λ > 0 such
that ΣACT − λIdK is symmetric and positive semi-definite. Therefore, ΣACT − λIdK can be written as
ΣACT − λIdK = BB⊤ where B ∈ RdK×d′ is such that d′ ≥ rank(ΣACT − λIdK) and setting W = B
concludes the proof.

F Additional experiments

As mentioned in Appendix F, our experiments were conducted on internal machines with 30 CPUs
and thus they required a moderate amount of computation. These experiments are also reproducible
with minimal computational resources.

F.1 OPE experiments

We consider the same synthetic setting as in Section 6, but now we fix a target policy π and assess
algorithm performance in evaluating the value function of that target policy using the mean squared
error (MSE) averaged over 50 problem instances sampled from the prior. This can be seen as a proxy
for our theoretical metric, Bayesian MSE (BMSE). The target policy is defined as ϵ-greedy with
ϵ = 0.5; it chooses the best action with probability 0.5 and a random action with probability 0.5.

Results are shown in Fig. 6. While sDM maintains its advantage over baselines, particularly in low-
data settings, an interesting observation emerged. IPS-based methods (snIPS and DR) outperformed
standard direct methods (DM (Bayes) and DM (Freq)) in the OPE experiments, which was not the
case in OPL experiments. The only direct method that outperformed them in OPE is sDM.
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Figure 6: The average MSE of an ϵ-greedy target policy on synthetic problems with varying n, K
and d′.

F.2 Different logging policy: ϵ-greedy

Here we consider the setting in Section 6 and provide additional results with the ϵ-greedy logging
policy, where ϵ = 0.5. We consider both synthetic and MovieLens datasets. The results are shown in
Fig. 7. The conclusions are similar to those in Section 6, except that IPS outperforms the other variants
DR and snIPS when the logging policy is performing well. Also, the results for the MovieLens
problems are given in Fig. 8 and the conclusions are similar to those made in Section 6.
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Figure 7: The relative reward of the learned policy on synthetic problems with varying n, K and d′
and varying logging policies.
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Figure 8: The relative reward of the learned policy on MovieLens problems with varying n and K
and varying logging policies.

F.3 Robustness to misspecification

We strengthened our evaluation by assessing sDM’s robustness to prior/model misspecification. In
these experiments, the true data-generating process (same as the synthetic experiments in Section 6)
differed from sDM’s assumptions in four different ways:

Misspecified prior means (Fig. 9). This was achieved by adding uniformly sampled noise from
[v, v+0.5] to the true prior mean parameters µ and Wa, with v controlling the level of misspecification.
We varied v ∈ {0.5, 1, 1.5} and analyzed its impact on sDM’s performance.

Misspecified prior covariances (Fig. 10). This is achieved by adding uniformly sampled noise
from [v, v + 0.5] to the true prior covariance parameters Σ and Σa, with v controlling the level of
misspecification. We varied v ∈ {0.5, 1, 1.5} and analyzed its impact on sDM’s performance.

Misspecified prior means and covariances(Fig. 11). This is achieved by adding uniformly sampled
noise from [v, v + 0.5] to both the true prior mean and covariance parameters µ,Σ,Wa,Σa, with
v controlling the level of misspecification. We varied v ∈ {0.5, 1, 1.5} and analyzed its impact on
sDM’s performance. For comparison, we included the well-specified sDM and the most competitive
baseline, DM (Bayes), while omitting other baselines to reduce clutter. In all figures (Figs. 9 to 11)
sDM’s performance decreases with increasing misspecification, yet sDM with misspecification still
outperforms the most competitive baseline, especially when K is large. We also observe that the
impact of prior covariance misspecification is less significant compared to prior mean misspecification.

Misspecified likelihood (Fig. 12). We also simulate the case when the true reward distribution
differed from the likelihood assumed by sDM. For example, we simulated binary rewards using a
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Bernoulli-logistic model while sDM used a linear-Gaussian likelihood. Other DMs: DM (Bayes) and
DM (Freq) also use a misspecified likelihood model and to emphasize this we add the suffix Lin to
all DMs names. Overall, as known in the literature, IPS variants performed better than standard DMs
when the likelihood was misspecified. However, this is not the case for sDM. While misspecification
narrowed the performance gap between sDM and baselines, sDM still consistently outperformed them,
particularly in low-data regimes or large action spaces. In a few cases, some baselines, e.g., snIPS,
showed competitive performance with enough data.
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Figure 9: Effect of prior mean misspecification: The relative reward of the learned policy on synthetic
problems using both misspecified prior means and covariances with varying n and K.
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Figure 10: Effect of prior covariance misspecification: The relative reward of the learned policy on
synthetic problems using both misspecified prior means and covariances with varying n and K.
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Figure 11: Effect of prior mean and covariance misspecification: The relative reward of the learned
policy on synthetic problems using both misspecified prior means and covariances with varying n
and K.
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Figure 12: Effect of likelihood misspecification: The relative reward of the learned policy on synthetic
problems using misspecified likelihood with varying n and K.

F.4 Comparison to MIPS

MIPS was designed for OPE only and thus we consider the OPE setting in Appendix F.1. MIPS
assumes access to embeddings Ei in the sample set S and defines its estimator as follows

V̂ MIPS(π, S) =
1

n

n∑
i=1

π (Ei | Xi)

π0 (Ei | Xi)
Ri =

1

n

n∑
i=1

w (Xi, Ei)Ri ,

where the sample set S = {(Xi, Ai, Ei, Ri)}ni=1 now includes action embeddings Ei for each data
point i ∈ [n], and the marginal importance weight is given by w(x, e) = π(e|x)

π0(e|x) =
∑

a p(e|x,a)π(a|x)∑
a p(e|x,a)π0(a|x) ,

where p(· | x, a) is the embedding distribution such that Ei ∼ p(· | Xi, Ai). They assume that R is
independent of A given X and E and hence we should define embeddings that have a direct effect on
the reward. From our prior (10), these correspond to the true action parameters θ∗. In fact, creating
MIPS’s structure from our prior in (10) is not straightforward, but we approach it as follows. We
define the embedding distribution as p(· | x, a) = N (·;µa,Σa), where µa and Σa are obtained by
marginalizing out the latent parameters ψ in (10). Additionally, we set Ai = θ∗,Ai , having access to
θ∗ since these are synthetic problems. This is the best version of MIPS that we could create from our
prior (10). However, we stress again that this comparison is only provided for completeness as the
setting may be favorable to sDM. In this setting, sDM outperforms MIPS.
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Figure 13: Comparison of sDM and MIPS in OPE: The average MSE of an ϵ-greedy policy on synthetic
problems with varying n, K and d′.

F.5 Comparison of greedy and pessimistic policies

To validate our theory that a greedy policy should be preferred over the commonly adopted pessimistic
policy in our Bayesian setting, we used a performance metric averaged over multiple bandit problems
sampled from the prior. To verify this, we considered the same OPL synthetic setting as in Section 6
and compared sDM with a greedy policy to sDM with a pessimistic policy. Recall that a greedy policy
with respect to our reward estimate writes

π̂G(a | x) = 1{a = argmax
b∈A

r̂(x, b)} , (46)

while a pessimistic one writes

π̂P(a | x) = 1{a = argmax
b∈A

r̂(x, b)− u(x, a)} , (47)

where u(x, a) = α(d, δ)∥ϕ(X)∥Σ̂a
with α(d, δ) =

√
d+ 2

√
d log 1

δ + 2 log 1
δ and this is derived

in (29) in Appendix E.2. As predicted by our theory, the results show that the greedy policy has better
average performance over multiple bandit instances sampled from the prior.
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Figure 14: Comparison of sDM with greedy policy and sDM with pessimistic policy in OPL: The
average MSE of an ϵ-greedy policy on synthetic problems with varying n, K, and d′.

G Broader impact

This work contributes to the development and analysis of practical algorithms for offline learning to
act under uncertainty. While our generic setting and algorithms have broad potential applications, the
specific downstream social impacts are inherently dependent on the chosen application.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All claims are supported by the theory in Section 5 (with proofs provided in
the appendix) and experiments in Section 6. The limitations of direct methods were also
discussed in the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations were discussed in the conclusion in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
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technical jargon.
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and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Assumptions are mentioned in the main text and restated in the appendix
(Assumption D.1, Assumption E.3), where proofs are also provided.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Information needed to reproduce the main experimental results of the paper is
described in Section 6 and Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code for the main experiments is shared in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All experimental details are described in Section 6 and Appendix F.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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Answer: [Yes]
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the main claims of the paper.
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As mentioned in Appendix F, our experiments were conducted on internal
machines with 30 CPUs and thus they required a moderate amount of computation. These
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
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Answer: [Yes]

Justification: This work contributes to the development and theoretical analysis of offline
learning to act under uncertainty and it adheres to the Neurips Code Of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
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societal impacts of the work performed?

Answer: [Yes]
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• The answer NA means that there is no societal impact of the work performed.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper is mainly theoretical and the used data is either simulated or openly
accessible. Thus, we believe that our work poses no such risks.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with
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that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: To the best of our knowledge, all relevant and used papers were cited.
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• The answer NA means that the paper does not use existing assets.
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• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We include our code as supplementary material, with all details needed for
reproducibility given in Section 6 and Appendix F.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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