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Abstract

For the ultrasonic inspection of bounded elastic structures, finite-duration imaging functions

are derived in the Fourier-Laplace domain. The signals involved are exponentially windowed,

so that early reflections are taken into account more strongly than later ones in the imaging

methodology. Applying classical approaches to the general case of anisotropic elasticity, we

express the Fréchet derivatives of the relevant data-misfit functional with respect to arbitrary

perturbations of the mass density and stiffnesses in terms of forward and adjoint solutions.

Their definitions incorporate the exponentially decaying weighting. The proposed finite-

duration imaging functions are then defined on that basis. As some areas of the structure

are less insonified than others, it is necessary to define normalized imaging functions to

compensate for these variations. Our approach in particular aims to overcome the difficulty

of dealing with bounded domains containing defects not located in direct line of sight from the

transducers and measured signals of long duration. For this initiation work, we demonstate

the potential of the proposed method on a two-dimensional test case featuring the imaging

of mass and elastic stiffness variations in a region of a bounded isotropic medium that is not

directly visible from the transducers.
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Highlights

• Finite-duration imaging functions are derived in the Fourier-Laplace domain.

• Exponential windowing overcomes the difficulty of dealing with bounded domains.

• Perturbations of the mass density and stiffnesses in anisotropic case are imaged.

• Defects not in direct line of sight from the transducers can be located.

Keywords: Ultrasonic Imaging, Exponential Window Method, Fréchet Derivative,

Adjoint-State Method, Anisotropic Elasticity,

PACS: 43.20.Bi, 43.40.Sk, 43.60.Lq, 43.60.Pt

1. Introduction

Ultrasounds are widely used to image fluid and solid media. The produced image is ex-

pected to allow the visualization in space of either the variations of the mechanical properties

of the medium being probed, or of the location and shape of defects (such as holes, cracks

or delaminations) that may be present. Numerous active techniques exist, all based on two

principles. First, one or several transducers emit waves that propagate in the inspected struc-

ture and are received by the same or other transducers, to give the response of the structure.

Then, the image is computed from the emitted and received signals based on a model of

the wave propagation in the inspected medium, whose choice may reflect a compromise be-

tween accuracy and computational cost. Classical well-established methods are based on the

delay-and-sum principle which assumes a globally homogeneous semi-infinite medium. The

underlying heuristics is as follows: an heterogeneity located at given coordinates produces

an acoustic signature in the measured signals at a time corresponding to the wave propaga-

tion from emitters to the heterogeneity and back to the receiver. The intensity associated

to each pixel is typically defined as the sum of each signal delayed by this back and forth

propagation duration [1]. This principle allows efficient and detailed imaging for medical

and non destructive testing (NDT) purposes using transducer arrays when the investigated
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regions are accessible with a direct wave path. As such methods cannot process multiply

reflected waves, regions that are masked by the structure geometry cannot be investigated.

Such difficulties may be addressed with the help of more general imaging heuristics arising

from the inverse problem community.

Quantitative medium imaging is often based on the minimization of a misfit functional

that quantifies the distance between experimental measurements and their model predictions

for a given trial medium. The latter is modified at each iteration following a descent di-

rection defined in terms of the Fréchet derivative of the misfit functional. The latter can

be computed by various methods introduced for inverse problems in geophysics (where in

particular the migration principle of Claerbout [2] was recast [3, 4] as a local optimization

problem) and many other areas. An efficient evaluation of the misfit gradient usually relies

on an adjoint solution approach, that can be seen as a particular case of the general adjoint-

state method (reviewed in [5]) used in PDE-constrained optimization, where a Lagrangian

is introduced as an augmented misfit functional (e.g. [6]). Full waveform inversion (FWI)

algorithms [7, 8] then use the minimization for mapping the space-dependent mechanical

properties of the medium. Such algorithms exist in many forms, including one based on the

error in constitutive relation [9] and applied to wave-based elasticity imaging from full-field

measurements [10].

The fact that optimization-based quantitative medium imaging is computation-intensive

elicits the formulation of faster alternatives that achieve qualitative medium imaging. This

work aims at proposing one such approach, which exploits the Fréchet derivative at the refer-

ence material of a misfit functional designed to emphasize early reverberations. Alternative

imaging approaches belonging to the same general family exploit the concept of topological

derivative, which was initially developed [11] for finding optimal structures subjected to static

loads via topological optimization. This concept was extended in [12] to address the inverse

problem of imaging inclusions in a structure interrogated with elastic waves. The exact ex-

pression of the relevant (Fréchet or topological) derivative depends on the choice of misfit

functional and on the kind of mechanical property (for FWI) or of inclusions (for topological

optimization) to be mapped. Still, all such derivatives can be expressed relatively simply,

3

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4854889

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



as bilinear functionals on the direct and adjoint problem solutions defined for the current

reference medium. In addition to optimization-based imaging methods, qualitative imaging

methods based on linear sampling or factorization ideas are also available, see e.g. [13] for

elastodynamic media and references therein; they however are not well suited to the present

context as they require abundant data (multiple sources and full aperture observations).

The absence of restrictive hypotheses for the initial reference medium and the physical

interpretation of the adjoint problem as a time-reversal process [14] confer to this approach

a strong potential for imaging complex media. Initial attempts at non-iterative imaging

applications were performed for non-destructive testing [15, 16] using a simple homogeneous

semi-infinite reference medium. An experimental application to a bounded reverberating

medium [17] demonstrates that locating accurately a masked defect is possible and that the

topological imaging method takes full advantage of reverberation as a single transducer is

used. Still, this approach cannot be used without modifications for realistic applications, as

the system is not only sensitive to the presence of defects but also to environmental conditions

such as temperature or boundary condition perturbations. To mitigate the latter issue, a first

attempt at truncating reverberation was numerically evaluated for rail inspection [18]. While

producing interesting results, the truncation approach used therein was not consistent with

the theoretical background of the method. In this work, we define a reverberation-truncation

approach that is incorporated directly in the equations governing elastic wave propagation

and the misfit functional defining the inverse problem of imaging local mechanical parameter

variations, making the whole approach fully consistent with the elastodynamic propagation

model for solids of arbitrary shapes. This lays the foundations of an imaging method for

elastic confined media, whose potential is demonstrated here on a simple two-dimensional

test case. More-comprehensive explorations of the many possibilities opened by the proposed

approach are left to follow-up work.

The remainder of this paper consists of two main parts. First, we develop in Section 2

the proposed finite-duration imaging methodology and outline its implementation. We then

assess in Section 3 the potential of our approach using computational experiments on a

two-dimensional test case. The paper closes with concluding remarks (Section 4).
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2. Formulation of finite-duration imaging functions

2.1. Standard equations for propagation in an elastic bounded domain

In an elastic bounded domain Ω containing no source, Newton’s second law and Hooke’s

law are written as follows:

∀x ∈ Ω , ∀t > 0, ρ(x) ∂2
t u(x, t) = ∇ ·Σ(x, t) and Σ(x, t) = C(x) : ∇u(x, t) , (1)

where the displacement vector and the stress tensor at time t and position x are denoted

by u and Σ, respectively. The mass density ρ and the elastic stiffness tensor C depend on

the position but not on time.

The elastic waves propagating in the domain Ω are generated by sources located on its

boundary ∂Ω and characterized by a surface force f(x, t):

∀x ∈ ∂Ω , ∀t > 0 , Σ(x, t)n(x) = f(x, t) , (2)

where n(x) denotes the outward unit vector normal to the boundary. Other types of exci-

tations could be considered instead with minor modifications. Finally, initial-rest conditions

are assumed:

u(x, 0) = ∂tu(x, 0) = 0 .

2.2. Introduction of windowed signals

Since the domain is (by assumption) bounded and lossless, any excitation, no matter

how short, will generate a response of infinite duration. Such signal cannot be processed

in a standard way by discrete Fourier transform. For this reason, we choose to work on

signals windowed by a decreasing exponential window, as previously done e.g. in [19, 20, 21].

This technique is generally referred to in the literature as the Exponential Window Method

(EWM). Indeed, these windowed signals are in practice of finite duration, contrary to physical

signals which oscillate indefinitely with little or no attenuation.

Accordingly, we introduce the windowed displacement vector u defined in terms of the

physical displacement u by

u(x, t) = exp(−γ t)u(x, t) , (3)
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such that the Fourier transform of the function t 7→ u(x, t) coincides with the restriction

of the Laplace transform of t 7→ u(x, t) to a vertical line of equation R(s) = γ in the

complex s-plane. This latter point is crucial for numerical computations in the frequency

domain by means of either integral transforms in multilayer canonical structures [21, 22] or

the Finite Element Method in lossless domains, as described below. Windowed versions of

other quantities, e.g. Σ, are defined in the same manner. Definition (3) implies that u and

its time derivatives are given in terms of u by

u(x, t) = exp(γ t)u(x, t),

∂tu(x, t) = exp(γ t) (∂t + γ)u(x, t),

∂2
t u(x, t) = exp(γ t)

(
∂2
t + 2 γ ∂t + γ2

)
u(x, t),

(4)

and similarly for all windowed fields. The duration T and the parameter γ are set as explained

in Section 3.4.1; in particular they are inversely proportional to each other and such that

exp(γ T ) is small enough.

2.3. Forward problem

2.3.1. Standard form of the equations satisfied by the windowed fields

By using relations (4), Newton’s second law and Hooke’s law (1) become for the windowed

displacement vector u and the windowed stress tensor Σ:

∀x ∈ Ω , ∀t > 0 , ρ(x)
(
∂2
t + 2 γ ∂t + γ2

)
u(x, t) = ∇ ·Σ(x, t) and Σ(x, t) = C(x) : ∇u(x, t) ,

so that u satisfies the following wave equation:

∀x ∈ Ω , ∀t > 0 , ρ(x)
(
∂2
t + 2 γ ∂t + γ2

)
u(x, t)−∇ · [C(x) : ∇u(x, t)] = 0 . (5)

In addition, the windowed fields obey the boundary condition

∀x ∈ ∂Ω , ∀t > 0 , Σ(x, t)n(x) = f(x, t) , (6)

arising from (2), where f denotes the windowed surface force, and the initial-rest conditions

∀x ∈ Ω , u(x, 0) = ∂tu(x, 0) = 0 .
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2.3.2. Weak form of the wave equation

The wave equation (5) and boundary condition (6) can be gathered into a single equation,

namely the weak form of the forward problem, which is perfectly adapted to both the imaging

formalism and finite element methods, as follows: for any test function w, we have

∀t > 0 ,

∫
Ω

ρ(x)w(x)·
(
∂2
t + 2 γ ∂t + γ2

)
u(x, t)dx +∫

Ω

∇w(x):C(x):∇u(x, t)dx =

∫
∂Ω

w(x)·f(x, t)dx ,

∀x ∈ Ω , u(x, 0) = ∂tu(x, 0) = 0 .


(7)

The solution u(x, t) of the forward problem (7) is called the forward field.

2.4. Misfit functional

The displacement field is observed on the boundary ∂Ω (or on a portion of ∂Ω). From

this measurement, denoted by uobs(x, t), we want to image regions in Ω where the material

properties differ from a known background material. For this purpose, the windowed mea-

sured field uobs(x, t) is compared to its model prediction uµ(x, t) for a given set µ = (ρ, C)

by means of the following misfit functional involving the squares of windowed measurement

residuals:

J(µ) =
1

2

∫ T

0

∫
∂Ω

[uµ(x, t)− uobs(x, t)]
2
dxdt

=
1

2

∫ T

0

{∫
∂Ω

[
uµ(x, t)− uobs(x, t)

]2
dx

}
exp(−2 γ t)dt.

(8)

The weighting applied to the observed physical signals decreases with time, in order to

emphasize the first reflections over later multiple reflections. For this reason, we view our

approach described next as using (8) for performing an Early-Reverberation Imaging (ERI).

A PDE-constrained (full-waveform) inversion approach would then consist in seeking a

set µ that minimizes the (positive) misfit functional J(µ) subject to uµ solving (7). In this

work, we do not perform that minimization, but instead use J(µ) as a basis for defining

imaging functions that provide information on µ. Let µ0 = (ρ0, C0) denote the background

(i.e. reference) value of µ corresponding to the healthy medium. Similarly to available

topological imaging methods [12, 15, 16, 23], our approach exploits a linearization of J(µ)
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about µ0 and thus exploits only the first iteration of a complete iterative minimization process.

Generally speaking, this linearization takes the form

J(µ0 + δµ)− J(µ0) = ⟨J ′(µ0), δµ⟩+ o(∥δµ∥) (9)

where J ′(µ0) is the Fréchet derivative of J at the background medium.

In the present case, considering a small parameter variation δµ(x) in the least-squares

misfit functional (8), the first-order perturbation of J can be expressed as:

J(µ0 + δµ)−J(µ0)

=

∫ T

0

∫
∂Ω

[uµ0+δµ(x, t)− uµ0(x, t)]︸ ︷︷ ︸
δu(x,t)

· [uµ0(x, t)− uobs(x, t)]︸ ︷︷ ︸
measurement residual r(x,t)

dxdt+ o(∥δµ∥) , (10)

In (10) and hereafter, the perturbation of the windowed displacement field induced by δµ is

denoted by δu(x, t) and the difference (called residual) between the calculated field and the

observed field by r(x, t). The o(∥δµ∥) remainder in (10) results from δu being known from

solution sensitivity analysis to have a O(∥δµ∥) leading behaviour. The derivative J ′(µ0) is

then to be found from the O(∥δµ∥) leading-order contribution to the integral term of (10).

This task can be carried out by applying the well-known adjoint-state method to the present

case, following the approach described in the survey article [5] (for least-squares migration

applied to acoustic propagation in a fluid with unknown slowness to be mapped in space,

both in frequency and time domains) or in [24] (for a weighted misfit functional and an

elastic isotropic medium), among other references. In the present application-oriented con-

text of using finite-element methods for solving partial differential equations, we prefer to

derive J ′(µ0) using weak formulations and basic linearization, rather than function-analytic

methods.

8
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2.5. Adjoint problem

We then define the adjoint problem as done in FWI or topological imaging methods, as

follows: find v such that, for any test function w,

∀t < T ,

∫
Ω

ρ(x)w(x)·
(
∂2
t − 2 γ ∂t + γ2

)
v(x, t)dx +∫

Ω

∇w(x):C(x):∇v(x, t)dx =

∫
∂Ω

w(x)·r(x, t)dx ,

∀x ∈ Ω , v(x, T ) = ∂tv(x, T ) = 0 .


(11)

The solution v(x, t) of the adjoint problem (11), which includes final rest conditions, is called

the adjoint field. Explicitly performing a time reversal t 7→ T − t in (11) recasts the adjoint

problem in the same form as the forward problem (7), the original source term f(x, t) being

replaced with the time-reversed measurement residual r(x, T − t). From the standpoint of

physical units, r is a displacement (in m) whereas f is a surface force density (in N/m2),

which will impact the definion of dimensionless imaging functions (Section 2.8).

2.6. Imaging functions

By rewriting equation (7) for both µ0+δµ and µ0, subtracting the resulting equalities and

neglecting o(∥δµ∥) higher-order contributions, we obtain the following identity, valid for any

test function and at the first order in δµ:∫
Ω

ρ(x)w(x) ·
(
∂2
t + 2 γ ∂t + γ2

)
δu(x, t)dx+

∫
Ω

∇w(x) : C(x) : ∇δu(x, t)dx

+

∫
Ω

δρ(x)w(x) ·
(
∂2
t + 2 γ ∂t + γ2

)
u(x, t)dx+

∫
Ω

∇w(x) : δC(x) : ∇u(x, t)dx = 0 . (12)

Then, replacing the test function w(x) by the adjoint field v(x, t) in (12) and by the forward

field perturbation δu(x, t) in (11), we obtain by difference:∫
∂Ω

δu(x, t) · r(x, t) dx =

∫
Ω

ρ(x) δu(x, t) ·
(
∂2
t − 2 γ ∂t

)
v(x, t)dx

−
∫
Ω

ρ(x)v(x, t) ·
(
∂2
t + 2 γ ∂t

)
δu(x, t)dx

−
∫
Ω

δρ(x)v(x, t) ·
(
∂2
t + 2 γ ∂t + γ2

)
u(x, t)dx

−
∫
Ω

∇v(x, t) : δC(x) : ∇u(x, t)dx, 0 ≤ t ≤ T .

(13)
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We next integrate (13) over t ∈ [0, T ], using integration by parts in time together with

the vanishing initial conditions on u and final conditions on v; this in particular causes the

contributions of the first two terms of the right-hand side of (13) to cancel each other. Using

the resulting value in (10) and recalling (9), we finally obtain

⟨J ′(µ0), δµ⟩ = −
∫ T

0

∫
Ω

{
δρ(x)v(x, t) ·

(
∂2
t + 2 γ ∂t + γ2

)
u(x, t) +

∇v(x, t) : δC(x) : ∇u(x, t)
}
dxdt .

This result suggests to define imaging functions on the basis of the negative derivative of

J at µ0, by setting

−⟨J ′(µ0), δµ⟩ =
∫
Ω

Iρ(x) δρ(x) dx+
∑

1≤α≤β≤6

∫
Ω

Iαβ(x) δCαβ(x) dx

with the imaging function Iρ for variations of the mass density ρ(x) given by

Iρ(x) =

∫ T

0

v(x, t) ·
(
∂2
t + 2 γ ∂t + γ2

)
u(x, t)dt (14)

and the imaging function Iαβ for variations of the 21 stiffnesses Cαβ (using Voigt indexing,

1 ⩽ α ⩽ β ⩽ 6) given by

Iαβ(x) =
1

1 + δα,β

∫ T

0

[ ∑
(i1, j1) ∈ E(α)

(i2, j2) ∈ E(β)

∂i1vj1(x, t) ∂i2uj2(x, t) + ∂i2vj2(x, t) ∂i1uj1(x, t)
]
dt , (15)

where E(α) = {(α, α)} (α = 1, 2, 3), E(4) = {(2, 3), (3, 2)}, E(5) = {(1, 3), (3, 1)} and E(6) =

{(1, 2), (2, 1)} and δ is the Kronecker symbol. Each imaging function thus defined is hence

positive when the estimate of the real value of the corresponding parameter found by solving

for δµ the linearized equation J(µ0+δµ) = J(µ0) + ⟨J ′(µ0), δµ⟩ is greater than the value µ0

for the healthy medium.

The imaging functions (14) and (15) are defined on the basis of the Fréchet deriva-

tive (9), where the smallness of perturbations δµ is measured in terms of the supremum

norm ∥δµ∥ = ∥δµ∥∞ := supx∈Ω |δµ(x)|. Imaging functions may alternatively be formulated

from the topological derivative of J [11, 12], whose definition rests on the smallness of δµ

10
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being measured in terms of the volume of its geometrical support (finite material variations

being allowed in that case). The mass density imaging functions arising from both approaches

are the same, while the stiffness imaging functions take distinct forms (both bilinear in u,v).

2.7. Rewriting the equations in the frequency domain

All the fields are of practically finite duration T . Moreover, their frequencies are assumed

to be less than a maximum fmax, such that the direct and inverse Fourier transforms defined

by

ŵ(x, f) =

∫ T

0

w(x, t) exp(−2 i π f t)dt ⇐⇒ w(x, t) =

∫ fmax

−fmax

ŵ(x, f) exp(2 i π f t)dt ,

can be calculated numerically by fast Fourier transform.

By virtue of Parseval’s equality and the real-valuedness of u,v, the imaging functions

can also be written as follows. From Eq. (14), an alternative expression of the mass density

imaging function is

Iρ(x) = 2R

[∫ fmax

0

(γ + 2 i π f)2 v̂(x, f)⋆ · û(x, f)df
]
. (16)

while the stiffness imaging functions (15) take the form

Iαβ(x) =
2

1 + δα,β
R

{∫ fmax

0

[ ∑
(i1, j1) ∈ E(α)

(i2, j2) ∈ E(β)

∂i1 v̂j1(x, f)
⋆ ∂i2ûj2(x, f)+∂i2 v̂j2(x, f)

⋆ ∂i1ûj1(x, f)
]
df

}
.

(17)

Expressions (16), (17) will be computed by summation over a finite set F ⊂ [0, fmax] of

discrete frequencies, with a sampling step just under 1/T . The Fourier transforms û(x, f)

and v̂(x, f)⋆ of the forward field and of the conjugated adjoint field, respectively, are directly

computed in the frequency domain for f ∈ F .

Writing the wave equation (5) in the frequency domain and recasting it in weak form by

usual methods, the forward field û is found to satisfy from Eq. (7):∫
Ω

∇ŵ(x) : C(x) : ∇û(x, f)dx +

(γ+2 i π f)2
∫
Ω

ρ(x) ŵ(x) · û(x, f)dx =

∫
∂Ω

ŵ(x) · f̂(x, f)dx

11
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for any test function ŵ. Similarly, the conjugated adjoint field v̂⋆ satisfies, for any test

function ŵ, the same equation with a different source term:∫
Ω

∇ŵ(x) : C(x) : ∇v̂(x, f)⋆dx +

(γ+2 i π f)2
∫
Ω

ρ(x) ŵ(x) · v̂(x, f)⋆dx =

∫
∂Ω

ŵ(x) · r̂(x, f)⋆dx .

The conjugation of v̂ and r̂ of course reflects the time reversal inherent in the definition of

the adjoint field.

In practice, a single problem generally with different canonical source terms is solved with

a finite element code for the set F of frequencies, as detailed below. The different solutions

are then stored in memory. Finally, the discrete Fourier transforms of the windowed sampled

excitation and residual are successively taken as input to obtain the forward and adjoint

fields.

2.8. Normalization of the imaging functions

Not all areas of the domain Ω are insonified in the same way. The total energy density

per unit volume received at position x is the sum of the volume densities ek(x) and ep(x) of

kinetic and strain energies of the direct field, respectively. Their summation over time leads

to the cumulative kinetic energy density

Ek(x) = ρ(x)

∫ fmax

0

(
γ2 + 4 π2 f 2

)
û(x, f)⋆ · û(x, f) df , (18)

and the cumulative strain energy density

Ep(x) =
∫ fmax

0

∇û(x, f)⋆ : C(x) : ∇û(x, f) df . (19)

Therefore, dimensionless imaging functions Sρ and Sαβ can be defined from the imaging

functions Iρ and Iαβ as

Sρ(x) =
ρ(x)

Ek(x)
Zc Iρ(x) and Sαβ(x) =

Cαβ(x)

Ep(x)
Zc Iαβ(x) , (20)

where Zc is a scaling factor corresponding to the modulus of a characteristic impedance

(ratio of surface force over displacement, in N/m3) on the receivers area. This scaling factor
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compensates for the physical unit mismatch between the adjoint loading r and the applied

excitation f , see Section 2.5 above. It is arbitrarily defined using characteristic quantities of

the problem at hand (see Section 3.3), and this results in the dimensionless imaging functions

taking values of the order of unity. In addition to easing interpretation, the use of cumulative

energy densities Ek(x) and Ep(x) to correct the imaging functions in definition (20) serves to

enhance the imaging potential in areas where the insonification results in comparatively low

energy levels, for instance due to not being in direct line of sight from the transducers.

3. A 2D numerical test case

3.1. Medium geometry and transducer location

For this example, the medium Ω undergoing testing and the corresponding transducer

area are such that a part of Ω cannot be directly insonified by the transducers. Thus the

corresponding measurements can be exploited only if providing information gleaned by way

of multiple reflections on the boundaries of the propagation domain. The geometry, material

parameters and excitation signals for the test case are assumed to be translationally invariant

along the x3 coordinate, so that all relevant field quantities only depend on the coordinates

x1, x2 of points in the 2D cross-section Ω, shown in Fig. 1.

The reference medium is assumed homogeneous and orthotropic, its mechanical parame-

ters being those of aluminum. Eight transducers, each 4 mm long, are simulated and cover

the thick line on the edge of the domain drawn in Fig. 1. The excitation signal is a 3-cycle

Gaussian-windowed sine burst of central frequency 300 kHz. The corresponding wavelengths

for the background medium and at this central frequency are 10 and 21 mm for transverse and

longitudinal waves, respectively. The transducers are thus smaller than half of the smallest

wavelength. A small anomaly, described in Section 3.4, is to be imaged.

3.2. Wave equations and finite element modelling

Due to the assumed translational invariance, the frequency-domain version of the wave

equation (5) reduces to two uncoupled 2D wave equations. Firstly, the in-plane components

û1, û2 of û, corresponding to the propagation of both compressional and shear waves carrying
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Figure 1: (Color online) The medium under investigation. The thick line indicates the transducer surface
that is split into 8 independent transducers.

a polarization in the (x, y) plane, satisfy

ρ (γ + 2 i π f)2

 û1

û2

−

∂1 (C11 ∂1û1 + C12 ∂2û2) + ∂2 [C66 (∂1û2 + ∂2û1) ]

∂1 [C66 (∂1û2 + ∂2û1) ] + ∂2 (C12 ∂1û1 + C22 ∂2û2)

 =

0

0

 .

(21)

This will be referred as the in-plane polarization case in what follows. Secondly, the out-

of-plane component û3, corresponding to the propagation of shear waves with out-of-plane

polarization along the z-direction, satisfies

ρ (γ + 2 i π f)2 û3 − [ ∂1 (C55 ∂1û3) + ∂2 (C44 ∂2û3) ] = 0 . (22)

Equations (21) and (22) are recast in the Appendix A in a form allowing their implementation

in Comsol [25]. They are used at two stages. First, synthetic values of the experimental data

uobs are computed by solving them with material parameters set to the perturbed values

to be imaged and on a mesh that explicitly models the anomaly. Then, the forward and

adjoint fields entering the imaging functions are solved in the form (21) and (22) with the

background material parameters and on a distinct imaging mesh that is not affected by the

anomaly geometry.
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It has to be emphasized that the translational invariance along x3 is also assumed for

the sources and the receivers. In practical applications with bounded transducers, this hy-

pothesis is valid if the transducer dimension along the x3-axis is large enough relative to the

wavelength.

3.3. Imaging functions for the 2D case

3.3.1. A single scaling factor common to both polarization cases

The scaling factor Zc for the dimensionless imaging functions is set to Zc=
∣∣ iωc

√
ρ̃ C̃44

∣∣.
This value, suitable for both the in-plane and out-of-plane cases discussed below, uses the

mass density ρ̃ and the stiffness C̃44 of the material near the receivers, and the central angular

frequency ωc of the excitation signal.

3.3.2. The in-plane polarization case

For the in-plane polarization case, the mass density imaging function Iρ(x) given by

Eq. (16) becomes

Iρ(x) = 2R

[∫ fmax

0

(γ + 2 i π f)2 (v̂1(x, f)
⋆û1(x, f) + v̂2(x, f)

⋆û2(x, f)) df

]
,

while the stiffness imaging functions Iαβ given by Eq. (17) become

I11(x) = 2R

[∫ fmax

0

∂1v̂1(x, f)
⋆ ∂1û1(x, f)df

]
,

I22(x) = 2R

[∫ fmax

0

∂2v̂2(x, f)
⋆ ∂2û2(x, f)df

]
,

I12(x) = 2R

[∫ fmax

0

∂1v̂1(x, f)
⋆ ∂2û2(x, f) + ∂2v̂2(x, f)

⋆ ∂1û1(x, f)df

]
,

I66(x) = 2R

{∫ fmax

0

[∂1v̂2(x, f) + ∂2v̂1(x, f)]
⋆ [∂1û2(x, f) + ∂2û1(x, f)] df

}
.

The formulas (18) and (19) giving the cumulative kinetic and strain energy densities take

the more-explicit form

Ek(x) = ρ(x)

∫ fmax

0

(
γ2 + 4 π2 f 2

) (
|û1(x, f)|2 + |û2(x, f)|2

)
df

and

Ep(x) =
∫ fmax

0

{
C11(x) |ε̂11(x, f)|2 + C22(x) |ε̂22(x, f)|2 +

4C66(x) |ε̂12(x, f)|2 + 2C12(x)R
[
ε̂⋆11(x, f) ε̂22(x, f)

]}
df ,
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where ε̂ij(x, f) = (∂iuj(x, f)+∂jui(x, f))/2 denotes the ij-component of the linearized strain

tensor associated to the displacement field û.

3.3.3. The out-of-plane polarization case

For the out-of-plane polarization case, the density imaging function Iρ(x) given by Eq. (16)

becomes

Iρ(x) = 2R

[∫ fmax

0

(γ + 2 i π f)2 v̂3(x, f)
⋆û3(x, f)df

]
,

the stiffness imaging functions Iαβ given by Eq. (17) are rewritten as

I44(x) = 2R

[∫ fmax

0

∂2v̂3(x, f)
⋆ ∂2û3(x, f)df

]
,

I55(x) = 2R

[∫ fmax

0

∂1v̂3(x, f)
⋆ ∂1û3(x, f)df

]
,

and formulas (18) and (19) giving the cumulative kinetic and strain energy densities become:

Ek(x) = ρ(x)

∫ fmax

0

(
γ2 + 4 π2 f 2

)
|û3(x, f)|2 df

Ep(x) = 4

∫ fmax

0

[
C44(x) |ε̂23(x, f)|2 + C55(x) |ε̂13(x, f)|2

]
df .

3.4. Results

The medium anomaly to be imaged for this example is a circular inclusion D of diameter

2mm, located in an area masked from the transducer array and supporting a material per-

turbation such that either ρ = 0.5 ρ0 or C11 = 0.5 (C0)11. The material properties outside of

D are those of the homogeneous background medium. The transducers are located according

to the description of Fig. 1. It has to be emphasized that in such a configuration, there

is no direct path for the waves propagating between the transducers and the perturbation.

Thus the images only rely on waves reflected multiple times on the domain boundaries. As

no dissipation is modelled, the theoretical elastodynamic field does not decay with time.

Recall that the proposed imaging method relies on an exponentially decaying time-domain

truncation window, which can also be interpreted as a weighting window used in the misfit

functional (8).
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3.4.1. Practical design of the decaying window

We design the decaying window t 7→ exp(−γ t) to satisfy two requirements, namely, (i),

the window duration T is larger than the first back and forth propagation duration tBF from

the emitter to the receiver through the region of interest, and (ii), the “tail” of the windowed

fields for t > T is of sufficiently small magnitude. This design rests on the values of T and

γ. Under the present conditions, we have tBF ≈ 100 µs (an exact value can hardly be given

as there are an infinity of propagation paths with potential polarization conversion, due to

Ω being bounded). Thus requirement (i) is here fulfilled choosing T ≥ 100µs. Requirement

(ii) is met by setting exp(−γ T ) = 10−m for some m > 0 and we chose m = 3. In order to

give some insight on the effect of the value of T , different values are tested for the masked

density perturbation and the resulting density images are presented in Fig. 2. In the interest

of conciseness, the results are presented for the in-plane wave case only.

-5 0 5
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y 1 a
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s 
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Figure 2: (Color online) (a) Geometry of the investigated domain. The localized density perturbation is
contained in the circle where the density is twice smaller than in the surrounding region. (b-f) Density
images Iρ obtained using different decaying window duration and in-plane waves.

A duration T of 100µs is too short, as artifacts are dominant [Fig. 2(b)]. All larger values

(c-f) used give satisfactory results as the region of lower density is accurately located and

the negative extremum does indicate a region of smaller mass density. The localized artifacts
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on the right of the perturbation (b-d) tend to decrease, while the overall background noise

tends to increase, as T is increased. At this stage we do not have an automatic method

for finding the best value of the duration T , which depends on the medium shape, on the

presence or absence of direct wave path, on the size of the perturbation and on its contrast to

the surrounding environment. The choice of T also determines the frequency step ∆f = 1/T

used in the computations, and thus drives the computation cost. In the present example, an

empirical compromise is chosen by setting T = 800µs for both cases studied hereafter.

3.4.2. Locating a masked density variation

The local density variation to be imaged can be seen in the density map of Fig. 3(a). All

the different gradients and energies are computed and the dimensionless imaging functions Sρ

and Sαβ are shown in Fig. 3(b-d) for out-of-plane polarization and in Fig. 3(e-i) for in-plane

polarization. Following the qualitative observations of the former section, the same window

duration T = 800µs is chosen for all imaging functions.

For both polarizations, Sρ presents a local minimum at the location of the real inho-

mogeneity, which indicates an accurate location of the perturbation while its negative sign

correctly predicts a mass density value smaller than the background value. However all other

Sαβ functions are nonzero near the inhomogeneity location. This could be expected, as the

underlying inverse problem is ill-posed: two different parameter sets may produce the same

acoustic signature at the transducer location. For instance, it is likely that introducing two

C11 inhomogeneities with higher values on both sides of the actual inhomogeneity location

leads to a similar signature (Fig. 3(f)). Still, it is remarkable that the imaging functions

Sαβ exhibit a specific pattern linked with the axis direction corresponding to α and β. For

instance S22 has an influence on the longitudinal waves propagating along the y direction

and S44 on the out-of-plane transverse waves also propagating along the y direction. They

both exhibit two spots surrounding the real inhomogeneity in the y direction.

In the present case and under the supplementary assumption of an unknown but single

localized inhomogeneity, the comparison of those functions would allow the identification of

a density inhomogeneity.
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Figure 3: (Color online) The density distribution of the test case (a) and the normalized imaging functions
obtained in the reference medium with out-of-plane polarization (b-d) and in-plane polarization (e-i).

3.4.3. Locating a masked C11 variation

The actual local C11 variation can be seen in the C11 map presented in Fig. 4(a). All

the requisite gradients and energies are computed, to obtain the imaging functions Sρ and

Sαβ presented in Fig. 4(b-d) for out-of-plane polarization and in Fig. 4(e-i) for in-plane

polarization.

The imaging function S11 presents a local minimum at the location of the real inho-

mogeneity, which indicates an accurate location of the perturbation, and its negative sign

correctly predicts a stiffness value that is smaller than the background value. As C11 has

influence only on the longitudinal waves, the functions S44, S55 and S66 that only affect
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Figure 4: (Color online) The C11 distribution of the test case (a) and the normalized imaging functions
obtained in the reference medium with out-of-plane polarization (b-d) and in-plane polarization (e-i).

transverse waves take negligible values. However an ambiguity clearly occurs when trying to

identify the nature of the inhomogeneity, since S11, S22 and S12 exhibit a similar behavior.

The supplementary assumption of an unknown but single localized inhomogeneity would only

eliminate the possibility of a mass density inhomogeneity.

3.4.4. Discussion on the robustness versus geometry accuracy

In both cases presented in Figs. 3 and 4, the boundaries of the investigated perturbed

medium and of the reference medium (used for computing forward and adjoint fields) are

exactly identical. In practical, the geometry of the boundaries of the experimental medium

is described with a limited accuracy. This may lead to inaccurate interpretation of the
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measured signals especially if many multiple reflection are taken into account. Thus the

longer the decaying window is, the more sensitive to inaccuracy is expected to be the image

processing. This is exactly the interest of controlling the decaying window. It is meant to

offer the possibility of finding a compromise for exploiting the rich acoustic information of

multiply reflected waves in a realistic environment. A systematic study of the optimization of

the duration T with respect to the uncertainties on both the domain shape and mechanical

parameters of the healthy medium is out of the scope of this paper. A simple example

is presented in Fig. 5 to give a first clue on that matter. The reference medium is the

same as before but the shape of the investigated perturbed medium exhibits respectively a

slight discrepancy at the right bottom [Fig. 5(a)] and a larger one [Fig. 5(d)]. The images

obtained with window durations of T = 200µs and T = 800µs are presented. The respective

discrepancies are 2 and 5mm corresponding to 0.2λ0 and 0.5λ0 where λ0 corresponds to the

wavelength of transverse waves at the central frequency.

In both cases, the perturbation is better located and identified using a shorter duration

(T = 200µs) than that chosen when the medium geometry was assumed to be perfectly

known (T = 800µs). In the case where the geometry discrepancy is small [Fig. 5(a)], the

perturbation is accurately identified as a smaller density for both window duration [Fig. 5(b-

c)] but the artifacts are stronger with the longer window. In the case where the geometry

discrepancy is larger [Fig. 5(d)], a second extremum appears near the perturbation location

with a positive sign. Taking T = 200µs [Fig. 5(e)], it is of similar magnitude as the awaited

minimum. With the longest window, the maximum exceeds the minimum in magnitude.

Beside larger artifacts, the other consequence of the too long window is a misidentification

of the perturbation as being a higher density region. These results demonstrate that the

truncation window is also a tool for mitigating the effects of an inaccurate knowledge of

the medium geometry or material properties and still takes advantage of multiply reflected

acoustic information.
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Figure 5: (Color online) (a)&(d) Geometries of the investigated (smallest boundaries) and reference (largest
boundary) domains. The localized density perturbation is contained in the circle where the density is twice
smaller than in the surrounding region. (b-c) Density images Iρ obtained using different decaying window
duration and in-plane waves for the medium presented in (a). (e-f) Density images Iρ obtained using different
decaying window duration and in-plane waves for the medium presented in (d).

4. Conclusion

The foundations of the early-reverberation imaging (ERI) method are now established.

ERI is motivated by the quest for a realistic compromise between the rich information con-

tained in reverberated measurements and imaging robustness. In this paper, a mathematical

framework is proposed and illustrated with a numerical two-dimensional test case. Distinct

ERI functions have been defined in order to specifically image anomalies in either the mass

density or one of the elastic stiffnesses. The proposed ERI method is particularly convenient

for imaging elastic confined media where the inspected area is not directly visible from the

ultrasonic transducers, as demonstrated in the presented test case. The many possibilities

opened by the proposed approach will be explored in follow-up work. In particular, compre-

hensive investigations still need to be conducted on (i) the influence of the duration T and

the γ parameter on the imaging performance and robustness and (ii) the sensivity of the
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imaging functions to uncertainties on the geometry.

Appendix A. PDE formulation for Comsol software

Using the Comsol partial differential equation module formalism [25], a complex angular

frequency is defined:

ω = 2π f − γ i

and Eqs. (21) and (22) are implemented as follows:

ρω2

 û1

û2

+∇ ·





C11 0

0 C66

 0 C12

C66 0

 0 C66

C12 0

C66 0

0 C22



∇

 û1

û2




=

0

0

 and

ρω2 û3 +∇ ·

C55 0

0 C44

∇û3 = 0 .
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List of Figures

Fig. 1: (Color online) The medium under investigation. The thick line indicates the trans-

ducer surface that is split into 8 independent transducers.

Fig. 2: (Color online) (a) Geometry of the investigated domain. The localized density per-

turbation is contained in the circle where the density is twice smaller than in the surrounding

region. (b-f) Density images Iρ obtained using different decaying window duration and in-

plane waves.

Fig. 3: (Color online) The density distribution of the test case (a) and the normalized imaging

functions obtained in the reference medium with out-of-plane polarization (b-d) and in-plane

polarization (e-i).

Fig. 4: (Color online) The C11 distribution of the test case (a) and the normalized imaging

functions obtained in the reference medium with out-of-plane polarization (b-d) and in-plane

polarization (e-i).

Fig. 5: (Color online) (a)&(d) Geometries of the investigated (smallest boundaries) and ref-

erence (largest boundary) domains. The localized density perturbation is contained in the

circle where the density is twice smaller than in the surrounding region. (b-c) Density images

Iρ obtained using different decaying window duration and in-plane waves for the medium pre-

sented in (a). (e-f) Density images Iρ obtained using different decaying window duration and

in-plane waves for the medium presented in (d).
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