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Abstract

We give general estimates for the approximation numbers of composition operators on
the Hardy space on the ball Bd and the polydisk D
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Bergman space on the polydisk.
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2 F. BAYART, D. LI, H. QUEFFÉLEC AND L. RODRÍGUEZ–PIAZZA

1. Introduction

This work is an attempt to investigate approximation numbers of composition operators
on the Hardy space H 2(�) where � is an open subset of C

d , i.e. when we work with d
complex variables instead of one. In fact, we will essentially consider the two cases when
� = Bd is the unit ball of C

d endowed with its usual hermitian norm ‖z‖ = ( ∑d
j=1 |z j |2

)1/2

and � = D
d is the unit ball of C

d endowed with the sup-norm ‖z‖∞ = supd
j=1 |z j |, that is

when � is the unit polydisk of C
d . In order to treat these two cases jointly, we will work in

the setting of bounded symmetric domains.
An interesting feature is that the rate of decay of approximation numbers highly depends

on d, becoming slower and slower as d increases, which might lead to think that no com-
pact composition operators exist for truly infinite-dimensional symbols. We will see in the
forthcoming paper [27] that this is not the case.

2. Notation and background

A bounded symmetric domain of C
d is a bounded open convex and circled subset � of

C
d such that for every point a ∈ �, there is an involutive bi-holomorphic map u : � → �

such that a is an isolated fixed point of u (equivalently, u(a) = a and u′(a) = −id: see
[32, proposition 3·1·1]). For this definition, see [10, definition 16, and theorem 17], or [11,
definition 5 and theorem 4]. É. Cartan showed that every bounded symmetric domain of
C

d is homogeneous, i.e. the group of automorphisms of � acts transitively on �: for every
a, b ∈ �, there is an automorphism u of � such that u(a) = b (see [32], p. 250). The unit
ball Bd and the polydisk D

d are examples of bounded symmetric domains.
The Shilov boundary S� of such a domain � is the smallest closed set F ⊆ ∂� such that

supz∈� | f (z)| = supz∈F | f (z)| for every function f holomorphic in some neighbourhood of
� (see [10, section 4·1]). Since � is convex, it is also the Shilov boundary of the algebra of
the continuous functions on � which are holomorphic in � (because every such functions
can easily been approximated by a sequence of the former ones: see [15, pp. 152–154]). For
example, the Shilov boundary of the bidisk is SD2 = {(z1, z2) ∈ C

2 ; |z1| = |z2| = 1},
whereas, its usual boundary ∂D

2 is {(z1, z2) ∈ C
2 ; |z1|, |z2| � 1 and |z1| = 1 or |z2| = 1};

for the unit ball Bd , the Shilov boundary is equal to the usual boundary S
d−1 [10, section

4·1]. Equivalently (see [10, theorem 33], or [11, theorem 10]), S� is the set of the extreme
points of the convex set �.

If σ is the unique probability measure on S� invariant under the automorphisms u of �

such that u(0) = 0, the Hardy space H 2(�) is the space of all complex-valued holomorphic
functions f on � such that:

‖ f ‖H 2(�) :=
(

sup
0<r<1

∫
S�

| f (rξ)|2 dσ(ξ)

)1/2

(see [17]). It is a Hilbert space (see [16]).
A Schur map, associated with �, will be a non-constant analytic self-map of � into itself.

It will be called truly d-dimensional if the differential ϕ′(a) : C
d → C

d is an invertible
linear map for at least one point a ∈ �. Then, by the implicit function theorem, and the rank
theorem on local conjugation of ϕ to the map (z1, . . . , zd) 	→ (z1, . . . , zr , 0, . . . 0), this is
equivalent to saying that ϕ(�) has non-void interior. We say that the Schur map ϕ is a symbol
if it defines a bounded composition operator Cϕ : H 2(�) → H 2(�) by Cϕ( f ) = f ◦ ϕ.
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Approximation numbers of composition operators 3

Let us recall that although any Schur function generates a bounded composition operator
on H 2(Dd) when d = 1, this is no longer the case as soon as d � 2, as shown for example
by the Schur map ϕ(z1, z2) = (z1, z1). Indeed (see [2]), if say d = 2, taking f (z) =∑n

j=0 z j
1zn− j

2 , we see that

‖ f ‖2 = √
n + 1 while ‖Cϕ f ‖2 = ‖(n + 1)zn

1‖2 = n + 1 .

The same phenomenon occurs on H 2(Bd) ([28]; see also [7, 8, 12]).
If H is a Hilbert space and T : H → H is a bounded linear operator, the approximation

numbers of T are defined, for n � 1 by:

an(T ) = inf
rank R<n

‖T − R‖ . (2·1)

One has ‖T ‖ = a1(T ) � a2(T ) � · · · � an(T ) � an+1(T ) � · · · , and T is compact if and
only if an(T ) −→

n→∞ 0.

The approximation numbers have (obviously) the following ideal property: for every
bounded linear operators S, U : H → H , one has:

an(ST U ) � ‖S‖ ‖U‖ an(T ) , n = 1, 2 . . . .

For an operator T : H 2(�) → H 2(�) with approximation numbers an(T ) = an , we will
introduce the non-negative numbers 0 � γ −

d (T ) � γ +
d (T ) � ∞ defined by:

γ −
d (T ) = lim inf

n→∞
log 1/an

n1/d
and γ +

d (T ) = lim sup
n→∞

log 1/an

n1/d
· (2·2)

The relevance of those parameters to the decay of approximation numbers is indicated by
the following obvious facts, in which 0 < c � C < ∞ denote constants independent of n:

γ −
d (T ) > 0 ⇐⇒ an � C e−c n1/d

, n = 1, 2, . . . (2·3)

γ +
d (T ) < ∞ ⇐⇒ an � c e−Cn1/d

, n = 1, 2, . . . . (2·4)

So, the positivity of γ −
d (T ) indicates that an is “small” and the finiteness of γ +

d (T ) indicates
that an is “big”.

Equivalently, one may define:

β−
d (T ) = lim inf

n→∞ (and )1/n and β+
d (T ) = lim sup

n→∞
(and )1/n . (2·5)

As usual, the notation A � B means that there is a constant c such that A � c B and
A ≈ B means that A � B and B � A.

3. Lower bound

The next theorem shows that the approximation numbers of composition operators cannot
be very small. We have already seen that in the one-dimensional case in [23]. The important
fact here is that this lower bound depends highly on the dimension.

THEOREM 3·1. Let � be a bounded symmetric domain of C
d and ϕ : � → � be a truly

d-dimensional Schur map inducing a compact composition operator Cϕ : H 2(�) → H 2(�).
Then, for some constants 0 < c � C < ∞, independent of n, we have:

an(Cϕ) � c e−Cn1/d
, ∀n � 1,

that is γ +
d (Cϕ) < ∞, or β−

d (Cϕ) > 0.
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4 F. BAYART, D. LI, H. QUEFFÉLEC AND L. RODRÍGUEZ–PIAZZA

For proving this result, we shall use the following results, the first of which is due to D.
Clahane [9, theorem 2·1] (and to B. MacCluer [28] in the particular case of the unit ball Bd).

THEOREM 3·2 (D. Clahane). Let � be a bounded symmetric domain of C
d and ϕ : � →

� be a holomorphic map inducing a compact composition operator Cϕ : H 2(�) → H 2(�).
Then ϕ has a unique fixed point z0 ∈ � and the spectrum of Cϕ consists of 0, and all possible
products of eigenvalues of the derivative ϕ′(z0).

When ϕ is truly d-dimensional, 0 cannot be an eigenvalue of Cϕ since if f ◦ ϕ = 0,
then f vanishes on ϕ(�) which has a non-void interior, and hence f ≡ 0. Note that 1 is an
eigenvalue, by taking an empty product of eigenvalues of ϕ′(z0).

In fact, in our case, we will not need the existence of z0, for we will force 0 to be a fixed
point by a harmless change of the symbol ϕ. By the multi-dimensional version of Schwarz’s
lemma [30, theorem 8·1·2], ϕ′(0) has norm � 1 if C

d is normed by taking � as open unit
ball; it follows that the eigenvalues of ϕ′(0) have modulus � 1. In fact, when Cϕ is compact,
its eigenvalues tend to 0 and it follows from Theorem 3·2 that the eigenvalues of ϕ′(0) have
modulus < 1.

One may also add that the spectral radius of ϕ′(0) is always � 1 (for � bounded and
connected) and has at least an eigenvalue of modulus < 1 if and only if ϕ is not an auto-
morphism (see [19, Cartan–Caratheodory–Kaup–Wu theorem, page 374]).

LEMMA 3·3. Let H be a complex Hilbert space and T : H → H be a compact operator
with eigenvalues λ1, . . . , λn, . . . arranged so that (|λn|)n�1 is non-increasing. Then, for any
n � 1,

|λ2n|2 � a1 an . (3·1)

Indeed, it suffices to apply an immediate consequence of Weyl’s inequalities (see [6,
page 157]), namely |λn| � (a1 · · · an)

1/n , with n changed into 2n, and square to get

|λ2n|2 � (a1 · · · a2n)
1/n � (an

1 an
n )

1/n = a1 an .

LEMMA 3·4. Let Np be the number of multi-indices α = (α1, . . . , αd) such that |α| =
α1 + · · · + αd � p. Then, as p goes to infinity:

Np ∼ pd

d! · (3·2)

Proof. Let nk be the number of multi-indices (α1, . . . , αd, αd+1) such that
α1 + · · · + αd + αd+1 = k. We have (see [22, page 498]), classically, for |t | < 1:

∞∑
p=0

n pt p =
( ∞∑

α1=0

tα1

)
· · ·

( ∞∑
αd+1=0

tαd+1

)
=

( ∞∑
k=0

t k

)d+1

= 1

(1 − t)d+1
;

hence

n p =
(

d + p

p

)
.

But Np = n p, and hence:

Np = (p + d) · · · (p + 1)

d! ∼ pd

d! ,

as claimed.
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Approximation numbers of composition operators 5

CLAIM 3·5. We may assume that ϕ(0) = 0 and ϕ′(0) is invertible.

Proof. Since ϕ is truly d-dimensional, there exists a ∈ � such that ϕ′(a) is invertible.
Since � is homogeneous, there exist two automorphisms �a and �ϕ(a) of � such that
�a(0) = a and �ϕ(a)[ϕ(a)] = 0. Set ψ = �ϕ(a) ◦ ϕ ◦ �a . Then ψ(0) = 0. Now, every
analytic automorphism � of � induces a bounded composition operator on H 2(�) and
C−1

� = C�−1 [9, theorem 3·1]; hence we can write Cψ = C�a ◦ Cϕ ◦ C�ϕ(a)
and it follows that

Cψ , as well as Cϕ , is compact. The ideal property of approximation numbers implies that,
for n = 1, 2, . . . , one has:(‖C�a ‖ ‖C�ϕ(a)

‖)−1
an(Cϕ) � an(Cψ) � ‖C�a ‖ ‖C�ϕ(a)

‖ an(Cϕ) ,

so γ −
d (Cψ) = γ −

d (Cϕ). Moreover, using the chain rule, we see that ψ ′(0) is invertible, since
ϕ′(a) is.

Proof of Theorem 3·1. Let μ1, . . . , μd be the eigenvalues of ϕ′(0), with |μ1| � · · · �
|μd |. As we said above, we have |μ1| < 1. Set |μd | = e−A, with A > 0. By Theorem 3·2,
the eigenvalues λ1, . . . , λn of Cϕ are the numbers zα = μ

α1
1 · · ·μαd

d rearranged in (modulus)
descending order. We claim that:

|λNp | � |μd |p = e−Ap .

Indeed, there are Np numbers |zα| with |α| � p (cf. Lemma 3·4), and all of them are � |μd |p

since |zα| � |μd ||α| � |μd |p (because |μd | � 1). This proves the claim.
If Mp = �Np�/2 where � . � stands for the integer part, equation (3·1) gives:

e−2Ap � |λNp |2 � |λ2Mp |2 � a1 aMp .

Since Mp ∼ Cd pd in view of Lemma 3·4, inverting this relation and using the monotonicity
of the an’s clearly give the claimed result.

Remark 3·6. When ϕ is not supposed to be truly d-dimensional, we may modify the state-
ment as follows: Let dϕ = max{rank ϕ′(a) ; a ∈ �} be the dimension of ϕ. Then there exists
c, C > 0 such that:

an(Cϕ) � c e−Cn1/dϕ

.

The proof remains almost identical.

4. An alternative approach for the polydisk and the unit ball

The previous proof of Theorem 3·1 is essentially a “functional analysis” one. It is in-
teresting to give a proof using complex analysis tools instead of functional analysis ones.
Moreover, this approach will be useful for the examples in Section 6.

In this section, we restrict ourselves to the polydisk. The same approach works for the unit
ball, by using results of B. Berndtsson in [4]. We will make use of the following theorem of
P. Beurling [14, p. 285], in which the word interpolating sequence refers to the space H∞

of bounded analytic functions on � (� = D or D
d), the interpolation constant MS of the

sequence S = (z j ) being the smallest number M such that, for any sequence (w j ) of data
satisfying sup |w j | � 1, there exists f ∈ H∞(�) such that f (z j ) = w j and ‖ f ‖∞ � M .
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6 F. BAYART, D. LI, H. QUEFFÉLEC AND L. RODRÍGUEZ–PIAZZA

THEOREM 4·1 (P. Beurling). Let (z j ) be an interpolating sequence in the unit disk D,
with interpolation constant M. Then, there exist analytic functions f j , j � 1, on D such
that:

f j (zk) = δ j,k and
∞∑
j=1

| f j (z)| � M , ∀z ∈ D .

As a consequence, if A = (a j ) and B = (bk) are interpolating sequences of D with respect-
ive interpolation constants MA and MB, their “cartesian product” (p j,k) j,k = (

(a j , bk)
)

j,k
is

an interpolating sequence, with respect to H∞(D2), with interpolation constant � MA MB.

The consequence was observed in the paper [5]. Indeed, if ( f j ) and (gk) are P. Beurling’s
functions associated to A and B respectively, any sequence (w j,k) with sup j,k |w j,k | � 1 can
be interpolated by the bounded analytic function

f (z, w) =
∑
j,k�1

w j,k f j (z) gk(w)

which satisfies ‖ f ‖∞ � MA MB .
Alternatively, in the sequel, we might use the result of [5] on the sufficiency of Carleson’s

condition on products of Gleason distances in the case of several variables. But we will
stick to the previous approach. We now make use of the following result of [24] which
was enunciated in the one-dimensional case, but whose proof works word for word in our
new setting; indeed, the space of multipliers of H 2(Dd) is (isometrically) H∞(Dd) and then
one shows that the unconditional basis constant (see [22, chapitre 2, définition II·4], or [1,
definition 3·1·4] for the definition) of the sequence (Ks j )1� j�n of reproducing kernels asso-
ciated to a finite sequence S = (s j )1� j�n is less than MS (see also [23]). Also note that the
reproducing kernel of H 2(Dd) is now, for a = (a1, . . . , ad) ∈ D

d :

Ka(z1, . . . , zd) =
d∏

k=1

1

(1 − ak zk)
,

with ‖Ka‖2 = ∏d
k=1(1 − |ak |2)−1.

PROPOSITION 4·2. Let ϕ : D
d → D

d be a symbol inducing a compact composition op-
erator Cϕ : H 2(Dd) → H 2(Dd). Let u = (u1, . . . , uN ) be a finite sequence of points of D

d

and let v j = ϕ(u j ), 1 � j � N. Assume that the v j are distinct and let Mu and Mv be the
interpolation constant of u and v = (v1, . . . , vN ), respectively. Then, setting:

μ2
N = inf

1� j�N

‖Kv j ‖2

‖Ku j ‖2
= inf

1� j�N

d∏
k=1

1 − |u j,k |2
1 − |v j,k |2

,

with u j = (u j,1, . . . , u j,d) and v j = (v j,1, . . . , v j,d), one has:

aN (Cϕ) � c′ μN M−1
u M−1

v � c′ μN M−2
v . (4·1)

The last inequality Mu � Mv is proved as follows: let sup |w j | � 1 and choose f ∈ H∞

such that f (v j ) = w j and ‖ f ‖∞ � Mv; then g = f ◦ ϕ ∈ H∞ and satisfies ‖g‖∞ � Mv

and g(u j ) = f (v j ) = w j .
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Approximation numbers of composition operators 7

Particular case. Assume that ϕ(z) = (
ϕ1(z1), . . . , ϕd(zd)

)
, with analytic functions

ϕ1, . . . , ϕd : D → D. Then v j,k = ϕk(u j,k) and, if we set

μ2
k,N = inf

1� j�N

1 − |u j,k |2
1 − |v j,k |2

and denote by Mvk the interpolation constant of the sequence (v1,k, . . . , vN ,k), one has:

aN (Cϕ) � c′
d∏

k=1

μk,N M−2
vk

.

New proof of Theorem 3·1. It remains to choose u and v and to estimate the parameters of
Proposition 4·2. As in the first proof, we may assume that ϕ(0) = 0 and that the differential
ϕ′(0) is invertible.

Since ϕ′(0) is invertible, there exists r ∈ (0, 1) and c > 0 such that, for any v ∈ rDd , one
may find u ∈ D

d with ϕ(u) = v and ‖u‖∞ � c ‖v‖∞. For j = ( j1, . . . , jd) ∈ {1, . . . , n}d ,
we set vj = (rω j1, . . . , rω jd ) where ω is a primitive nth-root of unity, e.g. ω = e2iπ/n . The
sequence v = (vj)j has length N = nd . If we set S = (sk)k=1,...,n with sk = rωk , we know
[14, p. 284] that MS = r 1−n , so that Theorem 4·1 gives us Mv � rd(1−n). We now write
vj = ϕ(uj) with ‖uj‖ � c r . Finally,

‖Kvj‖2

‖Kuj‖2
�

d∏
k=1

(1 − ‖ujk ‖2) � (1 − c2r 2)d .

Collecting all those estimates and using (4·1), we obtain:

and (Cϕ) � (1 − c2r 2)d r 2dn−2d � r 2dn .

Interpolating an arbitrary integer m between two consecutive d-powers, we clearly obtain
Theorem 3·1.

5. Upper bounds

We will assume in this section that:

� = Bl1 × · · · × BlN , with l1 + · · · + lN = d (5·1)

is the product of N unit balls. That covers the case of the unit ball of C
d (N = 1) and the

case of the polydisk of C
d (N = d and l1 = · · · = lN = 1). To save notation, we will assume

in the sequel that N = 2.
A point z = (z j)1� j�d ∈ � is of the form z = (u, v) with u = (u j )1� j�l1 , v = (v j )l1< j�d

and
∑l1

j=1 |u j |2 < 1,
∑d

j=l1+1 |v j |2 < 1. We see that � is the unit ball of C
d equipped with

the following norm:

‖z‖ = max

[( l1∑
j=1

|u j |2
)1/2

,

( d∑
j=l1+1

|v j |2
)1/2]

, (5·2)

where z = (u, v) with u ∈ C
l1 and v ∈ C

l2 .
The Shilov boundary of � is S� = Sl1 × Sl2 and the normalised invariant measure on S�

is σ = σl1 ⊗ σl2 where σl1 and σl2 denote respectively the area measure on the hermitian
spheres Sl1 and Sl2 .

The following lemma can be found in [30, p. 16].
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8 F. BAYART, D. LI, H. QUEFFÉLEC AND L. RODRÍGUEZ–PIAZZA

LEMMA 5·1. The monomials eα, with eα(z) = zα, form an orthogonal basis of H 2(�).
Moreover if α = (β, γ ) with β = (α1, . . . , αl1) and γ = (αl1+1, . . . , αd), then writing
z = (u, v) we have:

‖eα‖2 =
∫

Sl1 ×Sl2

|uβ |2 |vγ |2 dσl1(u) dσl2(v) = (l1 − 1)! β!
(l1 − 1 + |β|)!

(l2 − 1)! γ !
(l2 − 1 + |γ |)! ·

Therefore, if f = ∑
α cα eα ∈ H 2(�), one has:

‖ f ‖2 =
∑

α

|cα|2 (l1 − 1)! β!
(l1 − 1 + |β|)!

(l2 − 1)! γ !
(l2 − 1 + |γ |)! ·

We can now state the main result of that section, in which we set :

‖ϕ‖∞ := sup
z∈�

‖ϕ(z)‖ .

THEOREM 5·2. Let � = Bl1 × Bl2 , d = l1 + l2, and ϕ : � → � be a truly d-dimensional
Schur map such that ‖ϕ‖∞ < 1. Then γ −

d (Cϕ) > 0, that is there exist some constants
0 < c � C < ∞, independent of n, such that:

an(Cϕ) � C e−cn1/d
, n = 1, 2, . . . (5·3)

Equivalently, one has β+
d (Cϕ) � e−c < 1.

Proof. Let us set r = ‖ϕ‖∞ < 1. Let f = ∑
cα eα ∈ H 2(�) with

cα = f̂ (α) and ‖ f ‖2 =
∑

α

|cα|2‖eα‖2 � 1 . (5·4)

Then Cϕ f = ∑
cαϕ

α.
We approximate Cϕ by the Nn-rank operator R defined by

R f =
∑
|α|�n

cαϕ
α

and we set g = Cϕ( f ) − R( f ) as well as α = (β, γ ). We begin with observing that
(l1 − 1 + p)!/(l1 − 1)!p! � (p + 1)l1−1 and (l2 − 1 + q)!/(l2 − 1)!q! � (q + 1)l2−1. Since
|cα| � ‖eα‖−1, we get by Lemma 5·1 and the multinomial formulae⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
|β|=p

p!
β! |ϕβ(z)|2 =

( l1∑
j=1

|ϕ j (z)|2
)p

∑
|γ |=q

q!
γ ! |ϕβ(z)|2 =

( d∑
j=l1+1

|ϕ j (z)|2
)q

(5·5)

that, setting p + q = N :∑
|β|=p
|γ |=q

‖eα‖−2|ϕα(z)|2 =
∑
|β|=p
|γ |=q

(l1 − 1 + p)!
β!(l1 − 1)!

(l2 − 1 + q)!
γ !(l2 − 1)! |ϕβ(z)|2 |ϕγ (z)|2

� (p + 1)l1−1(q + 1)l2−1

( l1∑
j=1

|ϕ j (z)|2
)p( d∑

j=l1+1

|ϕ j (z)|2
)q

� (p + 1)l1−1(q + 1)l2−1 r 2p r 2q � (N + 1)l1+l2−2 r 2N .
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Approximation numbers of composition operators 9

We thus have for z ∈ � the pointwise estimate, by (5·4):

|g(z)|2 �
∑
|α|>n

‖eα‖−2|ϕα(z)|2 �
∑
N>n

∑
p+q=N

(N + 1)d−2r 2N � Cd nd r 2n

for all z ∈ �. This now implies ‖(Cϕ − R) f ‖H 2 = ‖g‖H 2 � C ′
d nd/2 rn . Hence:

‖Cϕ − R‖ � C ′
d nd/2 rn .

Therefore:
aNn+1(Cϕ) � C ′

d nd/2 rn .

Since Nn ∼ nd , we get, with r < ρ < 1:

and (Cϕ) � ρn .

By interpolating an arbitrary integer N between two integers of the form nd , we get
aN (Cϕ) � ρN for arbitrary indices, which ends the proof.

Remark 5·3. It follows that such a Schur map ϕ with ‖ϕ‖∞ < 1 induces a compact (hence
bounded) composition operator Cϕ : H 2(�) → H 2(�).

Remark 5·4. We proved in [23, theorem 3·4] (see also [25, theorem 3·14], for another
proof) that, in the one-dimensional case (d = 1), one has the converse in Theorem 5·2: if
an(Cϕ) � C e−cn for some constants 0 < c � C < ∞ independent of n, then ‖ϕ‖∞ < 1.

Our next result gives an upper bound for approximation numbers of composition operators
on H 2(Dd) when the symbol ϕ appears as a tensor product of one-dimensional symbols.

THEOREM 5·5. Let ϕ1, . . . , ϕd : D → D be d Schur maps inducing compact composition
operators on H 2(D), and let ϕ : D

d → D
d be defined by:

ϕ(z) = (
ϕ1(z1), . . . , ϕd(zd)

)
, where z = (z1, . . . , zd) .

Then, for Cϕ : H 2(Dd) → H 2(Dd), one has, for every n � 1:

an(Cϕ) �
(

2d−1
d∏

j=1

‖Cϕ j ‖
)

inf
n1···nd�n

[an1(Cϕ1) + · · · + and (Cϕd )] .

For example, we know [24, theorem 2·4] that if each ϕ j has image contained in a polygon,
then an j (Cϕ j ) � e−β j

√
n; we get then and (Cϕ) � e−β

√
n and, by interpolation, an(Cϕ) �

e−βn1/(2d)

.

Proof of Theorem 5·5. Let us fix n1, . . . , nd with n1 · · · nd � n and consider, for each
j = 1, . . . , d, an operator R j on H 2(D) with rank < n j such that ‖Cϕ j − R j‖ = an j (Cϕ j ).

We define an operator R on H 2(Dd) by:

R(zα) = R1(z
α1
1 ) · · · Rd(z

αd
d ) ,

where α = (α1, . . . , αd). This map R has clearly rank < n1 · · · nd � n.
Now, fix f ∈ H 2(Dd).
One has Cϕ( f ) − R( f ) = ∑d

j=1 f j , where, writing f (z) = ∑
α∈Nd cαzα:

f j =
∑

α( j)∈Nd−1

∑
α j ∈N

cα ϕ1(z1)
α1 · · · ϕ j−1(z j−1)

α j−1

× [ϕ j (z j )
α j − R j (z

α j

j )] R j+1(z j+1) · · · Rd(z
αd
d ) .

Here and below, α( j) stands for (α1, . . . , α j−1, α j+1, . . . , αd).
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10 F. BAYART, D. LI, H. QUEFFÉLEC AND L. RODRÍGUEZ–PIAZZA

The norm of f j may be estimated in the following way:

‖ f j‖2
2 =

∫
Td−1

∫
T

∣∣∣∣ ∑
α j ∈N

[ ∑
α( j)∈Nd−1

cα ϕ1(z1)
α1 · · · ϕ j−1(z j−1)

α j−1

× R j+1(z
α j+1

j+1 ) · · · Rd(z
αd
d )

]
[ϕ j (z j )

α j − R j (z
α j

j )]
∣∣∣∣2

dz j dz( j)

� [an j (Cϕ j )]2

∫
Td−1

∣∣∣∣[ ∑
α( j)∈Nd−1

cα ϕ1(z1)
α1 · · · ϕ j−1(z j−1)

α j−1

× R j+1(z
α j+1

j+1 ) · · · Rd(z
αd
d )

]∣∣∣∣2

dz( j) ,

where z( j) stands for (z1, . . . , z j−1, z j+1, . . . , zd).
Integrating separately with respect to each variable, and using the fact that ‖Rk‖ �

ank (Cϕk ) + ‖Cϕk ‖ � 2 ‖Cϕk ‖, gives the result.

As another application of the separation of variables, we also get nearly exponential decay
for some maps whose image touches the boundary, as was shown in dimension one [25].

THEOREM 5·6. For every sequence of positive numbers εn ↓ 0, there exists a continu-
ous map ϕ : Dd → Dd , analytic in D

d , with ϕ(1, 1, . . . , 1) = (1, 1, . . . , 1), such that
Cϕ : H 2(Dd) → H 2(Dd) is bounded and

an(Cϕ) � e−εn n1/d
.

In particular, we can have Cϕ ∈ ⋂
p>0 Sp with ϕ(Td) � T

d ��.

Proof. By [25], we can find an analytic self-map ψ : D → D, belonging to the disk
algebra A(D), with ψ(1) = 1, and such that an(Cψ) � a e−nεnd . Define ϕ = ψ ⊕ ψ · · · ⊕ ψ

(d times). Then ϕ : Dd → Dd is continuous on Dd , analytic in D
d , and ϕ(1, 1, . . . , 1) =

(1, 1, . . . , 1). Theorem 5·5 with n1 = · · · = nd = n shows that, if nd � N < (n + 1)d , then

aN (Cϕ) � and (Cϕ) � an(Cψ) � e−nεnd � e−N 1/dεN ,

completing the proof of Theorem 5·6.

6. Examples

6·1. Multi-lens maps

For 0 < θ < 1, the lens map λθ of parameter θ is defined by:

λθ(z) = (1 + z)θ − (1 − z)θ

(1 + z)θ + (1 − z)θ
(6·1)

(see [31] or [20]).
Let λ1 = λθ1, . . . , λd = λθd be lens maps of parameters 0 < θ1, . . . , θd < 1. We define a

multi-lens map ϕ on the polydisk D
d as:

ϕ(z1, . . . , zd) = (
λ1(z1), . . . , λd(zd)

)
, (6·2)

for (z1, . . . , zd) ∈ D
d . We write it ϕ = λ1 ⊗ · · · ⊗ λd .
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Approximation numbers of composition operators 11

To save notation, we will assume in the sequel that θ1 = · · · = θd = θ , and we will say
that the multi-lens map ϕ = ϕθ has parameter θ .

THEOREM 6·1. Let ϕ be a multi-lens map with parameter θ . Then, for positive constants
a, b, a′, b′ depending only on θ and d, one has:

a′ e−b′n1/(2d) � an(Cϕ) � a e−b n1/(2d)

(6·3)

In particular, γ −
d (Cϕ) = 0 even though Cϕ belongs to all Schatten classes.

Proof. (1) The upper estimate follows from Theorem 5·5 since the lenses are contained
in a polygon.

(2) To prove the lower bound, we will use Theorem 4·1 and Proposition 4·2.
First, the upper estimate implies that Cϕ is a compact operator on H 2(Dd).
Let σ > 0 and, for 1 � jk � n, 1 � k � d:

u j1,..., jd = (1 − e− j1σ , . . . , 1 − e− jdσ ) .

Let:

v j1,..., jd = ϕ(u j1,..., jd ) = (
λ1(1 − e− j1σ ), . . . , λd(1 − e− jdσ )

)
.

By (4·1), one has, with N = nd :

aN (Cϕ) � c′μN M−2
v . (6·4)

Actually, if

μk,n = inf
1� jk�n

1 − |1 − e− jkσ |2
1 − |λk(1 − e− jkσ )|2 ,

one has:

aN (Cϕ) � c′ ∏
1�k�d

μk,n M−2
v .

On the other hand, if Mk,v is the interpolation constant of the sequence(
λk(1 − e−σ ), . . . , λk(1 − e−nσ )

)
,

of points of D, one has Mv � M1,v · · · Md,v, by Theorem 4·1; hence:

aN (Cϕ) � c′ ∏
1�k�d

μk,n M−2
k,v .

But we proved in [26, see the proof of Proposition 2] that, for a suitable choice of σ

(namely σ = 1√
n ), we have:

μk,n M−2
k,v � e−β

√
n

for some constant β > 0 depending only on θ . We get hence:

aN (Cϕ) � e−βd
√

n .

Since N = nd , we get, by interpolation, that, for every N � 1:

aN (Cϕ) � e−βd N 1/(2d)

,

and that ends the proof of Theorem 6·1.
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12 F. BAYART, D. LI, H. QUEFFÉLEC AND L. RODRÍGUEZ–PIAZZA

10

Fig. 1. Cusp map domain.

6·2. Multi-cusp map

We refer to [24, definition 4·1] for the definition of the cusp map. In short, it is the
conformal map χ from the open unit disk onto the domain limited by three half-circles
represented on Fig. 1, with χ(1) = 1, χ(−1) = 0 and χ(i) = (1 + i)/2. We proved
in [24, theorem 4·3], that e−b n/ log n � an(Cχ) � e−a n/ log n for n = 2, 3, . . ., for some
constants b > a > 0. It follows from Theorem 5·5 that if we define ϕ : D

d → D
d by

ϕ(z) = (
χ(z1), . . . , χ(zd)

)
, then an(Cϕ) � Cd e−ad n1/d/ log n .

THEOREM 6·2. let χ : D → D be the cusp map and ϕ : D
d → D

d defined by ϕ(z) =(
χ(z1), . . . , χ(zd)

)
. Then:

cd e−b n1/d/ log n � an(Cϕ) � Cd e−a n1/d/ log n ,

where b > a > 0 are absolute constants and cd < Cd depend only on d.

Proof. The upper bound is discussed above. Let us prove the lower bound.
As in [24, p. 556], we fix 0 < σ < 1 and define inductively u j ∈ [0, 1) by u0 = 0 and the

relation

1 − ϕ(u j+1) = σ [1 − ϕ(u j )] with 1 > u j+1 > u j

(using the intermediate value theorem).
Setting v j = ϕ(u j ), we have −1 < v j < 1, (1 − v j+1)/(1 − v j ) = σ , and 1 − vn = α σ n ,

with α = 1 − ϕ(0). We proved (see also [26, section 2·3, example 2]) that, if Mv is the
interpolation constant of the sequence v = (v1, . . . , vn), one has, for n large enough:

1 − |u j |2
1 − |v j |2 M−1

v � K exp
(

− 25 n

log n

)
for all j = 1, . . . , n.

Using Proposition 4·2 for the sequence of (u j1, . . . , u jd ), 1 � j1, . . . , jd � n, we get that:

and (Cϕ) � K d exp
(

− 25 d n

log n

)
.

By interpolation, we obtain:

an(Cϕ) � cd exp
(

− 25 d2n1/d

log n

)
for all n � 1.
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6·3. A different example

Let a, b > 0 such that a + b � 1. Let us set z = (z1, z2) and let ϕ : D
2 → D

2 defined by:

ϕ(z) = (az1 + bz2, 0) .

In this simple case, we are able to give a precise estimate of the approximation numbers.

THEOREM 6·3. One has:

c
(a + b)n

n1/4
� an (Cϕ) � C

(a + b)n

n1/4
,

where 0 < c < C < ∞ are numerical constants.
In particular, if a + b = 1, the operator Cϕ is compact, but is in the Schatten class Sp if

and only if p > 4.

We will use two simple lemmas.

LEMMA 6·4. The functions fn(z) = (az1 +bz2)
n are orthogonal with respect to the Haar

measure dm2(z).

Proof. Indeed, fn is an homogeneous polynomial of degree n and homogeneous polyno-
mials of different degrees are clearly orthogonal in H 2(Dd).

LEMMA 6·5. One has:

In :=
∫

|az1 + bz2|2n dm2(z) ≈ (a + b)2n

√
n

·

Proof. We write:

In ≈
∫ π

−π

(
a2 + b2 + 2ab − 2ab (1 − cos t)

)n
dt

and, seeing 1 − cos t as t2 at the neighborhood of 0, we get:

In ≈ (a + b)2n

∫ π

0

(
1 − 2ab (a + b)−2t2

)n
dt

≈ (a + b)2n

∫ ∞

0
e−δnt2

dt ≈ (a + b)2nn−1/2 ,

with δ = 2ab (a + b)−2.

Proof of Theorem 6·3.
Lower bound. Recall that if T : X → Y is an operator between two Banach spaces X and Y ,
the n-th Bernstein number bn(T ) of T , is defined as:

bn(T ) = sup
E⊆X

dim E=n

inf
x∈SE

‖T x‖ , (6·5)

where SE = {x ∈ E ; ‖x‖ = 1} is the unit sphere of E , and that an(T ) = bn(T ) if X and Y
are Hilbert spaces [29, theorem 2·1].

Let E be the (n + 1)-dimensional subspace of H 2(D2) generated by the functions
1, z1, . . . , zn

1. Let f ∈ E such that ‖ f ‖ = 1. If we show that ‖Cϕ( f )‖ � δ (a + b)n/n1/4,
we get that the (n + 1)-th Bernstein number bn+1(Cϕ) is � δ (a + b)n/n1/4. Since H 2(D2) is
a Hilbert space, one will get an(Cϕ) = bn(Cϕ) � δ′ (a + b)n/n1/4.
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14 F. BAYART, D. LI, H. QUEFFÉLEC AND L. RODRÍGUEZ–PIAZZA

Now writing f (z) = ∑n
k=0 ak zk

1, one has 1 = ‖ f ‖2 = ∑n
k=0 |ak |2. On the other hand,

[Cϕ( f )](z) = ∑n
k=0 ak(az1 + bz2)

k , so that, using Lemma 6·4:

‖Cϕ( f )‖2 =
n∑

k=0

|ak |2
∫

T2

|az1 + bz2|2k dz1 dz2 �
n∑

k=0

|ak |2 (a + b)2n

n1/2
= (a + b)2n

n1/2
,

by Lemma 6·5.
Upper bound. Let f (z) = ∑∞

k=0 a j,k z j
1 zk

2 ∈ H 2(D2) such that ‖ f ‖ = 1; then:

[Cϕ( f )](z) =
∞∑
j=0

a j,0 (az1 + bz2)
j .

Let

(R f )(z) =
n∑

j=0

a j,0 (az1 + bz2)
j .

This operator R has rank � n + 1 and, using Lemma 6·4 and Lemma 6·5:

‖Cϕ( f ) − R( f )‖2 =
∞∑

j=n+1

|a j,0|2
∫

T2

|az1 + bz2|2 j dz1 dz2

�
∞∑

j=n+1

|a j,0|2 (a + b)2n

n1/2
� (a + b)2n

n1/2
;

hence an(Cϕ) � (a + b)n/n1/4.

Remark 6·6. The same proof works word for word in upper dimensions. Precisely: If
ϕ : z ∈ D

d 	→ (a1z1 +· · ·+ad zd, 0, . . . , 0) ∈ D
d with a1, . . . , ad > 0 and a1 +· · ·+ad � 1,

then

an(Cϕ) ≈ (a1 + · · · + ad)
n

n(d−1)/4
·

Indeed, Lemma 6·5 then holds with the right-hand side equal to
(a1 + · · · + ad)

2n

n(d−1)/2
(see [13]).

7. An upper bound on the Bergman space

7·1. A general upper bound

In this section, we give an upper bound for “less trivial maps”, which is valid on the
Bergman space A2(Dd). Let us recall that A2(Dd) is the space of all analytic functions
f : D

d → C such that: ∫
Dd

| f (z)|2 dmd(z) < ∞ ,

where md is the normalised Lebesgue measure on D
d . It is a Hilbert space with the norm

defined by:

‖ f ‖A2(Dd ) =
(∫

Dd

| f (z)|2 dmd(z)

)1/2

.

Let us also recall some other definitions. If H is a Hilbert space of functions on some
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Approximation numbers of composition operators 15

measurable set � in C, we say that a nonnegative Borel measure μ on � is a Carleson
measure for H if there exists a positive constant C such that∫

�

| f (z)|2dμ(z) � C ‖ f ‖2
H

for every f in H . The smallest possible C in this inequality is called the Carleson norm of
μ with respect to H . We denote it by ‖μ‖C,H or, when the context is clear, ‖μ‖C .

Carleson measures on A2(Dd) have been characterised by Hastings [18]. For any ξ ∈ T
d

and any δ = (δ1, . . . , δd) ∈ (0, 2]d , we define

S(ξ, δ) = {
(z1, . . . , zd) ∈ D

d ; |zk − ξk | < δk , 1 � k � d
}
.

The set S(ξ, δ) will be called a Carleson box at ξ . Then μ is a Carleson measure for
A2(Dd) if and only if, there is a constant κ > 0 such that, for any ξ = (ξ1, . . . , ξd) ∈ T

d and
any δ = (δ1, . . . , δd) ∈ (0, 2]d , one has:

μ
(
S(ξ, δ)

)
� κ δ2

1 · · · δ2
d . (7·1)

Moreover, there exists some constant βd depending only on d such that:

‖μ‖C,A2(Dd ) � βd κ .

Let now ϕ be a Schur map of D
d and let us associate to it the following measure on D

d :

μϕ(E) = md({z ∈ D
d ; ϕ(z) ∈ E}).

Then ϕ induces a bounded composition operator Cϕ on A2(Dd) if and only if μϕ is a
Carleson measure for A2(Dd), and then ‖Cϕ‖2 = ‖μ‖C,A2(Dd ). Similarly, the compactness of
Cϕ may be characterised using the notion of vanishing Carleson measures, meaning that we
can replace the big-oh condition in (7·1) by a small-oh condition.

Our aim in this section is to show that we can get upper bounds for the approximation
numbers of Cϕ (acting on A2(Dd)) if we can control the range of Cϕ and “how much Car-
leson” μϕ is. We need to introduce some terminology. Let ρ ∈ (0, 1). We say that B is a
Blaschke product on ρD if it is a Blaschke product with zeros in ρD and modulus 1 on ρT.
In other words, if B(·ρ) is a usual Blaschke product. We define, for j = 1, . . . , d:

μϕ, j,ρ(E) = md({z ∈ D
d ; ϕ(z) ∈ E and |ϕ j (z)| > ρ}) . (7·2)

Now, we have the following result.

THEOREM 7·1. For j = 1, . . . , d, let η j ∈ (0, 1/2), let B j be a Blaschke product on
(1 − η j )D with degree p j and let � j = {ϕ j (z) ; |ϕ j (z)| � 1 − 2η j }. Then:

ap1···pd+1(Cϕ) �
d∑

j=1

(
1

η2
j

sup
w∈� j

|Bj (w)|2‖Cϕ‖2 + ‖μϕ, j,1−2η j ‖C,A2(Dd )

)1/2

.

Proof. In the course of the proof, we will just write dz or dw to designate the Lebesgue
measure of the ambient hermitian space. Let K j be the subspace of A2(D) of functions which
are divisible by Bj and let Pj be the orthogonal projection from A2(D) onto A2(D) � K j .
The map Pj has rank p j . Let: {

P(zα) = P1(z
α1
1 ) · · · Pd(z

αd
d )

R = Cϕ ◦ P .
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16 F. BAYART, D. LI, H. QUEFFÉLEC AND L. RODRÍGUEZ–PIAZZA

These maps have rank p1 · · · pd . Write f − P( f ) = ∑d
j=1 f j where:

f j (z) =
∑

α( j)∈Nd−1

∑
α j ∈N

cαzα1
1 · · · z

α j−1

j−1

(
z
α j

j − Pj (z
α j

j )
)
Pj+1(z

α j+1

j+1 ) · · · Pd(z
αd
d ) .

Observe that ‖ f j‖A2(Dd ) � ‖ f ‖A2(Dd ).
For almost all z( j) ∈ D

d−1, the function f j (z1, . . . , z j−1, ·, z j+1, . . . , zd) is well-defined
on D and belongs to A2(D). Moreover, it may be factorised by Bj for |z| � 1 − η j (observe
that Bj is in general not holomorphic in the whole of D):

f j (z1, . . . , z j−1, · , z j+1, . . . , zd) = Bj ( · ) g j (z1, . . . , z j−1, · , z j+1, . . . , zd) .

For a fixed value of z( j), the functions

f j (z1, . . . , z j−1, · , z j+1, . . . , zd) and g j (z1, . . . , z j−1, · , z j+1, . . . , zd)

have the same modulus on (1−η j )T. Hence, if |z j | = 1−η j , using the norm of the pointwise
evaluation in the Bergman space (or just subharmonicity), we get:

|g j (z1, . . . , z j−1, z j , z j+1, . . . , zd)|2 = | f j (z1, . . . , z j−1, z j , z j+1, . . . , zd)|2

� 1

η2
j

∫
D

| f j (z1, . . . , z j−1, w, z j+1, . . . , zd)|2 dw .

(7·3)

By the maximum modulus principle with respect to z j , z( j) remaining fixed, we get the same
upper bound for |z j | � 1 − η j .

We now write ‖Cϕ( f ) − R( f )‖ �
∑d

j=1 ‖ f j ◦ ϕ‖. To control ‖ f j ◦ ϕ‖, we write:∫
Dd

| f j ◦ ϕ(z)|2 dz =
∫

{z∈Dd ; |ϕ j (z)|�1−2η j }
| f j ◦ ϕ(z)|2 dz

+
∫

{z∈Dd ; |ϕ j (z)|>1−2η j }
| f j ◦ ϕ(z)|2 dz .

The second integral is easily estimated using the Carleson norm of μϕ, j,1−2η j . For the first
integral, (7·3) yields that, for any z ∈ D

d with |ϕ j (z)| � 1 − 2η j :

| f j ◦ ϕ(z)|2 � sup{|Bj (w)|2; w ∈ � j }
× 1

η2
j

∫
D

| f j (ϕ1(z), . . . , ϕ j−1(z), w, ϕ j+1(z), . . . , ϕd(z))|2 dw .

Fix for a while w ∈ D and define:{
h j,w(z1, . . . , z j−1, z j+1, . . . , zd) = f j (z1, . . . , z j−1, w, z j+1, . . . , zd)

ψ(z) = (
ϕ1(z), . . . , ϕ j−1(z), ϕ j+1(z), . . . , ϕd(z)

)
.

We claim that μψ = md({z ∈ D
d ; ψ(z) ∈ E}) is a Carleson measure for A2(Dd−1) and

that:

‖μψ‖C,A2(Dd−1) � ‖μϕ‖C,A2(Dd ) .

Indeed, let ξ ∈ T
d−1 and δ̄ ∈ (0, 2]d−1 and define:

ξ ′ = (ξ1, . . . , ξ j−1, 1, ξ j+1, . . . , ξd) and δ′ = (δ1, . . . , δ j−1, 2, δ j+1, . . . , δd) .

Then (setting μψ = md ◦ ψ−1 as above)

μψ

(
S(ξ, δ)

) = μϕ

(
S(ξ ′, δ′)

)
� 4κϕ δ2

1 · · · δ2
j−1δ

2
j+1 · · · δ2

d .
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Approximation numbers of composition operators 17

This means that:∫
D

∫
Dd

| f j (ϕ1(z), . . . , ϕ j−1(z),w, ϕ j+1(z), . . . , ϕd(z))|2 dz dw

=
∫

D

∫
Dd

|h j,w

(
ψ(z)

)|2 dz dw

� ‖Cϕ‖2

∫
D

∫
Dd−1

|h j,w(z)|2 dz dw

� ‖Cϕ‖2

∫
D

∫
Dd−1

| f j (z1, . . . , z j−1, w, z j+1, . . . , zd)|2 dz dw

= ‖Cϕ‖2‖ f j‖2 .

We finally conclude by recalling that ‖ f j‖A2(Dd ) � ‖ f ‖A2(D).

7·2. Applications

We shall now apply Theorem 7·1 to several examples. We shall need a couple of lemmas.
The first one is [3, lemma 23]. If � is a curve contained in D, we denote by L p(�) its

hyperbolic length. Recall that, by definition, L p(�) = 2
∫

�

|dz|
1 − |z|2 ·

LEMMA 7·2. Let � be a bounded domain in D whose boundary is a piecewise regular
Jordan curve �, with L p(�) � 1. Let s1, . . . , sn be points in � such that the hyperbolic
length of the curve between any two points s j and s j+1 is equal to L p(�)/n, 1 � j � n,
where sn+1 = s1. Let B be the Blaschke product of degree n whose zeros are precisely
s1, . . . , sn. Then, for any s ∈ �, one has:

|B(s)| � exp

(
−C

n

L p(�)

)
,

where C is some absolute constant.

We also need to control the hyperbolic length of some curves.

LEMMA 7·3. Let ρ ∈ (0, 1) and let �ρ be the circle |z| = ρ. Then L p(�ρ) � 1/(1 − ρ)·
Proof. This follows from the definition of the hyperbolic length.

LEMMA 7·4. For θ ∈ (0, π/2) and ρ ∈ (0, 1), let S(θ) be a Stolz angle with angle θ and
let Sρ(θ) = {z ∈ S(θ) ; |z| < ρ}. Then L p

(
∂Sρ(θ)

)
� log[1/(1 − ρ)].

Proof. Without loss of generality, we may assume that the vertex of S(θ) is 1. Recall that
S(θ) is by definition the convex hull of 1 and the closed disk D(0, sin θ) and that

S(θ) ⊂ {1 − teiϕ : |ϕ| � θ and 0 � t < tθ },
where tθ < 2 only depends on θ .The boundary of Sρ(θ) can be divided into four parts: two
line segments starting at ρ e±iα and stopping at some fixed point, a circular arc of radius ρ

joining ρ eiα to ρ e−iα and a part far from T, independently of ρ. Each line segment can be
parametrized as 1 − te±iθ with t � 1 − ρ. Since 1 − |1 − te±iθ |2 = 2t cos θ − t2 ∼

0
2t cos θ ,

it follows easily from the definition of the hyperbolic distance that the hyperbolic length of
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18 F. BAYART, D. LI, H. QUEFFÉLEC AND L. RODRÍGUEZ–PIAZZA

each line segment is less than −C log(1 − ρ). Let us now turn to the circular arc ρeiϕ with
|ϕ| � α . It is easy to show that α � 1 − ρ. Now,∫ 1−ρ

−(1−ρ)

1

1 − ρ2
dϕ � 1 .

This concludes the proof of this lemma.

As a first application of Theorem 7·1 and Lemma 7·3, we get the following corollary.

COROLLARY 7·5. Let ϕ be a Schur map of D
d inducing a continuous composition oper-

ator on A2(Dd). Assume that there exist � ∈ {1, . . . , d} and k1, . . . , k� > 0 such that:

‖μϕ, j,1−η‖C,A2(Dd ) � ηk j , j = 1, . . . , � ; η ∈ (0, 1/2)

and ‖ϕ j‖∞ < 1 for j = � + 1, . . . , d. Then:

aq(Cϕ) � (log p)k/2

p
,

where q = p
2

k1
+···+ 2

k� (log p)d−l and k = max j=1,...,� k j

Proof. For j ∈ {1, . . . , �}, let η j ∈ (0, 1/2) to be defined later. Let � j be the circle
|z| = (1 − 2η j )/(1 − η j ) and let C j be the Blaschke product defined in Lemma 7·2 with
� = � j and degree p j � 1. Let finally Bj ( · ) = C j ( · (1 − η j )). Then, with the notations of
Theorem 7·1 and the results of Lemmas 7·2 and 7·3, we get:

1

η2
j

sup
w∈� j

|Bj (w)|2 ‖Cϕ‖2 + ‖μϕ, j,1−2η j ‖C,A2(Dd )

� exp(−Cp jη j − 2 log η j ) + exp(k j log η j ) .

We choose η j = σ j log(p j )/p j where σ j is a numerical constant such that the last quantity
is dominated by (log p j/p j )

k j .
For j � l, let η j = (1 − ‖ϕ j‖∞)/2 so that ‖μϕ, j,1−2η j ‖C,A2(Dd ) = 0. With the same choice

of Bj , we then have:

1

η2
j

sup
w∈� j

|Bj (w)|2 ‖Cϕ‖2 + ‖μϕ, j,1−2η j ‖C,A2(Dd ) � exp(−Cp j ) .

Theorem 7·1 then yields:

ap1···pd+1(Cϕ) �
�∑

j=1

(
log p j

p j

)k j /2

+
d∑

j=�+1

exp(−Cp j ) .

Optimizing the choice of p j by setting p j = p2/k j for j = 1, . . . , � and p j = C log p for
j = � + 1, . . . , d gives the result.

Remark 7·6. If ϕ j is constant for j > l, we can dispense with the factor (log p)d−l in
the definition of q. Indeed, it is sufficient to take the Blaschke product of degree 1 which
vanishes at ϕ(0).

To be able to apply Theorem 7·1 or its Corollary 7·5, we need to control the quantity
‖μϕ, j,1−η‖C,A2(Dd ) for some maps. We may appeal to the techniques of [2] when the coordin-
ate functions are linear maps.
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Approximation numbers of composition operators 19

LEMMA 7·7. Let a, b > 0 with a + b = 1, 0 < η < δ and ξ ∈ T. Then:

m2

({z ∈ D
2 ; |az1 + bz2| > 1 − η and |az1 + bz2 − ξ | < δ}) � δ3/2η2 .

Proof. We may assume ξ = 1. The condition |az1+bz2−1| < δ implies Re (zi) � 1−C δ

for some C > 0 independent of δ. The condition |az1+bz2| > 1−η implies that |zi | > 1−cη
for some c > 0 independent of η. Indeed,

1 − η < |az1 + bz2| � b + a|z1|
implies

|z1| >
1 − η − b

a
= 1 − η

a
·

Hence, z2 belongs to the intersection of D, the corona 1−cη < |z| < 1 and {z ∈ D ; Re (z) >

1 − C δ}. It is easy to see that the volume of this is � δ1/2η. A value of z2 being fixed, z1

belongs to the intersection of a ball of radius δ and a corona of size η; this set has volume
� δη. Fubini’s theorem gives the conclusion.

COROLLARY 7·8. Let ϕ(z) = (
az1+bz2, ϕ2(z)

)
with a, b > 0, a+b = 1 and ‖ϕ2‖∞ < 1.

Then:

‖μϕ,1,1−η‖C,A2(Dd ) � η3/2.

Proof. We have to estimate supξ∈T2,δ∈(0,2]2 μϕ,1,1−η

(
S(ξ, δ)

)
/δ2

1δ
2
2 ·

Since μϕ,1,1−η

(
S(ξ, δ)

) = 0 when δ2 < ‖ϕ2‖∞, we have just to estimate

sup
ξ1∈T,δ1∈(0,2]

m2

({z ∈ D
2 ; |az1 + bz2 − 1| < δ1 and |az1 + bz2| > 1 − η})

δ2
1

·

When δ1 > η, an appeal to Lemma 7·7 shows that the last quantity is dominated by δ
−1/2
1 η2.

On (η, 2], its supremum is equal to η3/2. When δ1 < η, the condition |az1 + bz2| > 1 − η is
automatically satisfied as soon as |az1 +bz2 −1| < δ1, and the volume of the vectors z ∈ D

2

satisfying this last inequality is δ
3/2
1 δ2

1 = δ
7/2
1 . Then,

sup
ξ1∈T,δ1∈(0,η]

m2

({z ∈ D
2 ; |az1 + bz2 − 1| < δ1 and |az1 + bz2| > 1 − η})

δ2
1

� η3/2

and the corollary is proved.

We are ready to give a Bergman space analogue to Theorem 6·3.

COROLLARY 7·9. Let ϕ(z) = (az1+bz2, ϕ2(z)) with a, b > 0, a+b = 1 and ‖ϕ2‖∞ < 1.
Then:

an(Cϕ) �
(

log2 n

n

)3/4

.

Moreover, if ϕ2 is constant, then:

an(Cϕ) �
(

log n

n

)3/4

.

Proof. This follows from Corollary 7·5 and Corollary 7·8, in setting p = (n/ log n)3/4 in
the first case, and p = n3/4 in the second one.
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Remark 7·10. With this method, we lose a factor log n if we compare with the result
obtained by adapting the proof of Theorem 6·3 to Bergman spaces (see the next section).
However, it should be clear that our example is just a toy example, and that our method
could be used for many maps, in particular for all examples given in [2]. Unfortunately, the
estimates of volume could become quickly very complicated.

For more general maps, we have the following general estimates on ‖μϕ, j,1−η‖C,A2(Dd ).

LEMMA 7·11. Let ϕ be a Schur map of D
d . Assume that there exist positive functions

f1, . . . , fd such that f j (x)/x2 in non-decreasing and bounded on (0, 2] and for which we
have, for any ξ ∈ T

d and any δ ∈ (0, 2]d :

μϕ

(
S(ξ, δ)

)
� f1(δ1) · · · fd(δd) .

Then for any η ∈ (0, 1) and any j ∈ {1, . . . , d}:
‖μϕ, j,1−η‖C,A2(Dd ) � f j (2 η)/η2 .

Proof. For notational convenience, we assume j = 1. If δ1 < η, then

μϕ,1,1−η

(
S(ξ, δ)

) = μϕ

(
S(ξ, δ)

)
,

so that:

sup

{
μ

(
S(ξ, δ)

)
δ2

1 · · · δ2
d

; ξ ∈ T
d, δ ∈ (0, 2]d, δ1 ∈ (0, η)

}
� f1(η)/η2 � f1(2 η)/η2 .

If δ1 � η, then there exists N � δ1/η such that, for any ξ1 ∈ T, there exist ξ 1
1 , . . . , ξ N

1 ∈ T

satisfying

{z ∈ D
d ; |z1 − ξ1| < δ1 and |z1| � 1 − η} ⊆

N⋃
�=1

{z ∈ D
d ; |z1 − ξ�

1 | < 2 η}.

This means that, setting ξ� = (ξ �
1 , ξ2, . . . , ξd) and δ′ = (2 η, δ2, . . . , δd),

μϕ,1,1−η

(
S(ξ, δ)

)
�

N∑
�=1

μϕ

(
S(ξ �, δ′)

)
� (δ1/η) f1(2 η) f2(δ2) · · · fd(δd) .

Dividing by δ2
1 · · · δ2

d and taking the supremum over δ ∈ (0, 2]d with δ1 ∈ [η, 2] yield the
result.

We now consider maps such that each coordinate function has its image contained in a
polygon.

COROLLARY 7·12. Let ϕ be a Schur map of D
d inducing a continuous composition op-

erator on A2(Dd). Assume that each ϕ j has its image contained in a polygon.
(1) If there exist k1, . . . , kd > 2 such that, for any ξ ∈ T

d and any δ ∈ (0, 2]d :

μϕ

(
S(ξ, δ)

)
� δ

k1
1 · · · δkd

d ,

then:

an(Cϕ) � exp (−C n1/2d).

(2) If there exist b > 0 such that, for any ξ ∈ T
d and any δ ∈ (0, 2]d :

μϕ

(
S(ξ, δ)

)
� exp

( − b [(1/δ1) + · · · + (1/δd)]
)
,
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then:

an(Cϕ) � exp
( − C n1/d/ log n

) ·
Proof. (1) We follow the method of Corollary 7·5 but now � j is the intersection of the

Stolz angle with the disk |z| < (1 − 2η j )/(1 − η j ), so that the hyperbolic length of � j =
∂� j is dominated by − log(η j ). We now have:

1

η2
j

sup
w∈� j

|Bj (w)|2 ‖Cϕ‖2 + ‖μϕ, j,1−2η j ‖C,A2(Dd )

� exp

(
C

p j

log η j
− 2 log η j

)
+ exp(k j log η j ) .

We choose η j = exp(−σ j p1/2
j ) so that the right hand side is dominated by exp(−C ′ p1/2

j )

if σ j is small enough. We conclude by choosing p1 = · · · = pd = p and by interpolating
between pd and (p + 1)d .

(2) The proof is analogous: we have now ‖μϕ, j,1−η j ‖C,A2(Dd ) � exp(−b′/η j ) for 1 � j �
d and 0 < η j < 1 and we choose η j = 1/p j .

Examples
(1) Let ϕ = λ1 ⊗· · ·⊗λd , where λ j is the lens map of parameter θ j , 1 � j � d. We know

[20, lemma 3·3], that μλ j

(
S(ξ, δ)

)
� δ1/θ j . We get hence that an(Cϕ) � exp(−C n1/2d) for

the operator Cϕ : A2(Dd) → A2(Dd).
(2) Let χd = χ ⊗ · · · ⊗ χ be the multi-cusp map, as defined in Theorem 6·2. We know

that assumption on the Carleson function is satisfied for the cusp map χ (see [21], bot-
tom of the page 3967). We get hence that an(Cχd ) � exp (−C n1/d/ log n), for the operator
Cχd : A2(Dd) → A2(Dd).

8. Concluding remarks

8·1. Toy examples

We can say a little more on our “toy examples”, as evidenced by the following synthetic
result: if the second component is a constant, we have the same estimates; and if the second
component has a sup-norm < 1, we lose at most a factor log n, not a factor log2 n.

PROPOSITION 8·1. Let ϕ = (az1 + bz2, c) where a, b > 0, a + b = 1 and |c| < 1, c a
constant. Then, we have the two-sided estimate an(Cϕ) ≈ n−3/4 without logarithmic factors.

Similarly on the Hardy space: an(Cϕ) ≈ n−1/4.
If now ϕ = (az1 + bz2, ϕ2) where a, b > 0, a + b = 1 and ‖ϕ2‖∞ < 1, we have for

Cϕ : H 2(D2) → H 2(D2) the upper estimate: an(Cϕ) � (log n/n)1/4.
Similarly, an(Cϕ) � (log n/n)3/4 for the Bergman case.

Proof. We do not detail it. The key point is the following lemma.

LEMMA 8·2. We have (dA denoting the area measure on D):∫
D2

|az1 + bz2|2nd A(z1)d A(z2) ≈ (n + 1)−5/2.

The lemma follows from Lemma 6·5 (with a, b replaced by ar1, br2) and from an integ-
ration in polar coordinates (in two variables, z j = r j eiθ j , j = 1, 2). We skip the details.
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8·2. Slow Blaschke products

Some Blaschke products used before with help of the Poincaré metric can be replaced by
the simpler, following version, as far as Stolz angles are not concerned.

We can proceed as follows (see also [20, lemma 3·3, p. 60]): let 0 < ρ < 1, r = ρ2,
ω = e2iπ/p and B the Blaschke product of degree p on ρD with zeros rωl, 1 � l � p.
Namely:

B(z) =
∏

1�l�p

ρ(z − rωl)

ρ2 − rωl z
=: C(z/ρ).

We observe that the usual Blaschke product C is

C(z) =
∏

1�l�p

z − ρωl

1 − ρωl z
= z p − ρ p

1 − ρ pz p
·

For |z| < 1, the properties of the pseudo-hyperbolic metric give

|C(z)| � |z|p + ρ p

1 + ρ p|z|p
� |z|p + ρ p. (8·1)

This implies the following result.

PROPOSITION 8·3. Let B be the previously defined Blaschke product. Then

|z| = ρ2 ⇒ |B(z)| � 2ρ p. (8·2)
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complexe. Application aux domaines bornés symétriques. Ann. Sci. École Norm. Sup. (4) 9 (1976),
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