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New results on biorthogonal families in cylindrical domains
and controllability consequences

F. AMMAR KHoDJA* A. BENABDALLAH! M. GONZALEZ-BURGOS! M. MORANCEY?
and L. DE TERESAY

Abstract

In this article we consider moment problems equivalent to null controllability of
some linear parabolic partial differential equations in space dimension higher than one.
For these moment problems, we prove existence of an associated biorthogonal family
and estimate its norm. The considered setting requires the space domain to be a
cylinder and the evolution operator to be tensorized.

Roughly speaking, we assume that the so-called Lebeau-Robbiano spectral inequal-
ity holds but only for the eigenvectors of the transverse operator. In the one dimensional
tangent variable we assume the solvability of block moment problem as introduced in
[Benabdallah, Boyer and Morancey - Ann. H. Lebesgue. 3 (2020)].

We apply this abstract construction of biorthogonal families to the characterization
of the minimal time for simultaneous null controllability of two heat-like equations in
a cylindrical domain. To the best of our knowledge, this result is unattainable with
other known techniques.
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1 Introduction

1.1 Biorthogonal families and moment method

The first results on the boundary or internal null-controllability at a positive time 7" of the
heat equation were obtained in the 70’s (see [14], [15], [13]) using the moment method. This
technique consists in writting a null controllability objective as a moment problem satisfied
by the control. In those references, this moment problem is solved thanks to a biorthogonal
family in L?(0,T; R) to {t — (f/\kt}k>1 where {—\g}i>1 is the sequence of eigenvalues of
the Dirichlet Laplace operator. As proved in [27] a necessary and sufficient condition of
existence of such biorthogonal family is the convergence of the series ) )\ik Therefore, the
E>1

Weyl’s asymptotic restricts this approach to the one dimensional heat equation.

In several space dimensions, other techniques were required to control to zero the heat
equation. In particular, the use of Carleman inequalities (see [21] and [I7] for the main
references) generated a lot of results.

Yet, in the last fifteen years the moment method was used again in the context of
parabolic control problems. In particular, it allowed to solve control problems that seemed
unattainable by Carleman’s inequalities. One can cite for example, the boundary control
of coupled parabolic equations [16]. It also allowed to deal with some parabolic control
problems in which a positive minimal time or geometric conditions on the control region
may be required for null controllability to hold (see for instance [2], B, 11, 24]). These are
high-frequency phenomena due for instance to eigenvalue condensation and/or eigenvector
localization which are well captured by the biorthogonal families.

Let us also mention that this strategy also allowed to study null controllability for
degenerate parabolic operators [9, [10].

Recently, to take into account condensation of eigenvectors, the use of biorthogonal
families to solve moment problems was replaced by the resolution of appropriate block
moment problems (see [5, [§]) still under the assumption that the series of the inverse of
the eigenvalues converges. This allows to consider situations in which the eigenvectors also
condensate.

The natural question is then to study the phenomenon in higher dimensions, i.e., when
this series does not converge. Very few results are available in this direction. Let us mention
the recent work [7] where the authors prove null controllability in any time of two coupled
heat equations in a rectangle with distinct diffusion speeds when the controls acts on two
non parallel sides. Their proof relies on the moment method with a subtle decomposition
of the moment problem into an infinite family of one dimensional moment problems. Their
construction does not seem to be easily generalizable and the proved result is not contained
in our study.

Thus, the main question addressed in this paper is the construction of biorthogonal
families associated with moment problems coming from parabolic control problems in space
dimensions larger than one.



1.2 Biorthogonal families in higher dimension and strategy of proof

To expose more precisely the problem solved in this article, we introduce an abstract control

problem

1) v + Ay = Bu
y(0) = yo

on a Hilbert space H. Assume that A generates a C°—semigroup and that B ensures well-
posedness for any v € L?(0,T;U) where U is the Hilbert space of controls. The precise
setting under study (with tensorized operators and cylindrical geometry) will be specified
later on. We assume that the operator A* has a family of eigenvalues A C (0,4+00) and
that the family of associated eigenvectors {¢y}rca forms a complete family in the state
space. Then, the control u € L?(0,T;U) is such that y(T) = 0 if and only if

T
2) / <u(T — 1), e”\tB*gb)\>U dt = —e T (yo,dy),  VYA€EA.
0

Thus, an appropriate generalization of biorthogonal families to the time exponentials is a
family {g,},en C L*(0,T;U) such that

T
(3) [ {areB6r) dt=6,  wauen
0 U

where ) , denotes the Kronecker delta function. As noticed for instance in [23], when the
family of eigenvectors {¢)}ca forms a Hilbert basis of the state space, then gives that
spectral null controllability in time 7" (that is when the initial condition is any eigenvector)
implies the existence of a biorthogonal family satisfying and every bound on the control
cost translates into bounds on this biorthogonal family. Thus, for example, if € is any
smooth domain in R", A is the Laplace-Dirichlet operator and B = 1,, with w C  an open
set, then for any T' > 0 a biorthogonal family in the sense of exists and satisfies

lgrllz2((0,7)xwir) < CeCVA, VA€ A.

More generally, following the Lebeau-Robbiano iteration scheme (see [2I]) this holds in
any setting where {¢)} ca is a Hilbert basis and the following so-called Lebeau-Robbiano
spectral inequality holds

> area <N axea

VASN L2(:R) VASN L2(wiR)

for any N > 1 and {a)}rear C R.



Our goal is thus to prove the existence of biorthogonal families as defined in with
suitable estimates but under weaker assumptions. Namely, we consider Q = Qy x (0,7)
and the underlying evolution operator is assumed to be tensorized. A precise formulation
of the assumptions is given in Section We still assume such a spectral inequality but
only for the eigenvectors associated to the transverse operator. In the tangential variable,
we will use results from [5]. Thus, our assumptions on the eigenvalues of the adjoint of
the tangential operator include the summability of the series of their inverse as well as a
weak-gap condition (see ([13)).

Let us insist on the fact that our main result, Theorem[T} is about biorthogonal families.
Though the moment problem (and thus the definition of biorthogonal families in )
comes from the null controllability of system , the study of these biorthogonal families
is of interest regardless of the controllability properties. For instance, at a given final time
T > 0, problem might not be null controllable whereas at the same time a biorthogonal
family in the sense of does exist.

To avoid drowning the ideas into technicalities and notation, let us present our strategy
of proof on the following example. Let Q = (0, 7)? and

Oy — Ay = 6501 (2u(t, 2’ 2), (t,2',2) € (0,T) x Q,
(4) y=0, on(0,7) x 09,

We emphasize that our study is not limited to this particular example but encompasses
the abstract setting described in Section

In , the control has its support located on a segment parallel to one of the axes.
This generalizes the study of [12] for the one dimensional system

Oy — Oy = Ogou(t,z), (t,x) € (0,T) x (0,7),
(5) y(t, 0) = y(t7 1) =0, te (O,T),
y(O,x) - y0($)7 T € (077)'

There it is proved that the minimal time for null controllability in H—1(0,m; R) is

. —In|sin(kz
To(zp) = limsup |k:2(0)|'
k——+o0

In [26], the author proved that the 2D system (4)) is null controllable in any time 7" > 0 un-
der assumptions on xg that implies that Ty(xg) = 0 and that the cost of null controllability
in small time of is dominated by ¢¢/T.

His strategy consists in proving first the null controllability of when w = (0,7)
using the null controllability of the associated one dimensional system and the fact
that {2/ — sin(ma’) };m>1 is a Hilbert basis of L2(0, 7; R). Then, using a Lebeau-Robbiano



like strategy inspired by [4], this null controllability is transferred to (4)) with w an open set
in (0, 7). This step uses, in a crucial way, that the associated one dimensional problem
is null controllable in any final time 7" > 0, as well as the estimate on the cost of null
controllability.

The general construction of a biorthogonal family given by Theorem [I] applies to the
moment problem associated with for any zo € (0,7) such that 22 ¢ Q, which is a
necessary and sufficient condition for the approximate controllability. The estimates on
this biorthogonal family given in Theorem (1| imply that Ty(xp) is also the minimal null
control time for system from H~1((0,7) x (0,7);R). To the best of our knowledge,
such a result is not known and, at present, not attainable by other techniques than the
moment method.

Let us present our construction of a biorthogonal family associated to the problem .

e Notion of biorthogonal family.

In this case the eigenvalues of (the adjoint of) the evolution operator are explicitly
given by
A={kK4+m?: km>1}

and for k,m > 1 an eigenvector associated to k? 4 m? is given by
Omi (2, 2) € (0,7)% > sin(kz) sin(ma’).

Thus, the moment problem ([2)) reads as follows: the solution y of (4] satisfies y(7') = 0
if and only if for any k,m > 1,

)
/ / u(T—t,:U')e_(k2+m2)t sin(ma') sin(kxo)dx'dt = — e~ (R Hm)T (Y0, k) -1 HL
0 w ’

Thus, we look for a biorthogonal family {Qum x }k.m>1 C L?((0,T) x w; R) in the sense
that

T
(7) sin(kxo)/ /ng(t,x’)e(kQ*mQﬁ sin(ma’)dz'dt = Spedpmn,
0 w

for any k,£ > 1 and any m,n > 1.
In the general setting we will look for a biorthogonal family to F U ,)k as defined by .

m

o A simpler problem.

In this article we were strongly inspired by [I5]. There, the authors design biorthog-
onal families to {t+ e '} \ep 1D L?(0,T;R). Following [27], their strategy first
consists in solving the simpler problem to find a biorthogonal family in L2?(0, +o00; R)



and then to deduce a biorthogonal family in L?(0, T; R) studying the properties of the
restriction operator on appropriate spaces. We follow this idea but with a restriction
in the 2/ variable instead of the time variable.

Thus, a first step is to design a biorthogonal family in the sense of but in the
simpler case where w = (0, 7). From previous results (for instance [5, [18]), for any
fixed m > 1, there exists {gm},~, C L*(0,T;R) such that

T
sin(kxo)/ c?mx(t)e_(kumz)tdt =0y, VEL>1,
0

and
eC\/ k2+4+m?

q, R (R > 1.
”qm,k||L2(0,T,R) = C‘ Sin(k.%'o)" Vk>€ =

This step crucially uses that the series of the inverse of the eigenvalues of (the adjoint
of) the tangential operator converges. The general version of this result is Proposi-

tion [I8

Then, we define
gmi : (6,2") € (0,T) x (0,7) = @mx(t) sin(ma’), Vk,m > 1.

Thus, for any k,¢ > 1 and any m,n > 1, we have
T k.2 2
sin(kxo)/ / qn,g(t,x')e_( +mo)t sin(ma’)dz'dt
0
T N 9 R s
:sin(kxo)/ ﬁn,g(t)e*(k m )tdt/ sin(na’) sin(ma’)da’
0 0

T

=6 sin(kzo) / G (t)e” FFmt gt
0

:6mn5k€

and
6C\/ k2+m?

gm. k|l L2 0,7y x (0,7);R) < CW’ Vk, > 1.

This step crucially uses orthogonality of the eigenvectors of the transverse operator
which allows to consider a biorthogonal family to {t — 6_(k2+m2)t}k>1 for every fixed
m > 1. -

The general version of this construction of a biorthogonal family in L2((0,T) x Q1;Us)
is given in Proposition [I2]



e The restriction operator.
Now, following the strategy developed in [15, 27], we prove that the restriction oper-
ator
Ru @ = 9w
is an isomorphism between appropriate spaces. Having in mind integrated observ-
ability inequalities (see for instance [22], Section 3.3], which was the other great source

of inspiration for the present paper), we introduce a weight function and prove that
for a > 0 sufficiently large we have

T pm T
(8) / / e T ‘PN(t,x')‘2 da'dt < C’/ / e T ‘PN(t,x’)|2 dx'dt,
0o Jo 0

w

for any N > 1 and any Py given by

Py (t,a') = Z amyke_(k2+m2)tsin(mx’).
k,m<N

The weight function in the left-hand side of led us to modify the biorthogonal
family designed in the previous step requiring that it vanishes near ¢ = 0.

The proof of is too technical to be completely detailed in this introductory section
but let us present the main ingredients. It relies on the fact that the eigenvectors in
the transverse variable {z’ — sin(ma’)}, -, satisfy the spectral inequality

2 2

/ Z by, sin(ma’)| da’ < CeCN/ Z by, sin(ma’)| da’

0 |m<N “Im<N
and the identity
T T
/ / P (t, 2" ) gm (t, 2")da'dt = ap, g
o Jo

where {qu}k’m>1 is the biorthogonal family designed at the previous step. The
estimate of the norm of this biorthogonal family allows to estimate the coefficients
A, With the norm of Py (see Lemma (7] in the general setting). Then, the proof
of amounts to estimate the rest of a converging series (see ) which converges
since the dissipation speed in the transverse variable is stronger than the cost coming
from the spectral inequality. Hence, the proof of uses the same ingredients as the
classical Lebeau-Robbiano strategy, especially from the point of view of observability
as developed in [22], but without using a partition of the time interval that usually
requires controllability (or observability) in arbitrary small time.

Then, inequality implies that the restriction operator

Ru o= o

7



is an isomorphism between appropriate Hilbert spaces (see (34)). This gives, from
{Gm.k}y > (the biorthogonal family in L?((0,7") x (0, 7); R)) the sought biorthogonal

family satisfying

COVRTFm?
< C—r— > 1.
1Qm.kll 200, 1:m) < C|sin(kx0)|’ VEk 0 >1

The general version of is given in Theorem [2| and the general version of the
isomorphism property is given in Theorem

1.3 Structure of the article

To end this introduction, let us present the structure of this article.

In Section [2| we precisely state our assumptions and our main result (see Theorem
concerning the existence and estimate of biorthogonal families.

Section [3|is devoted to the restriction operator in the variable ’. We state (see Theo-
rem [3) and prove the needed isomorphism property between appropriate spaces.

Then, in Section [ we prove Theorem [T} we design biorthogonal families in the simpler
case w = {1 in Section and detail how the isomorphism property of the restriction
operator allows to conclude (see Proposition .

We provide in Section [5| an application of this abstract construction of biorthogonal
families to the characterization of the minimal time for simultaneous controllability of two
linear parabolic partial differential equations.

In Section [6] we provide an extension to the resolution of moment problem associated
with operators with geometrically multiple eigenvalues.

In Appendix |A| we recall the construction of biorthogonal families obtained in [§].
Finally, in Appendix [B], we revisit the classical Leabeau-Robbiano construction from the
point of view of biorthogonal families. In particular, we prove that the obtained estimates
on the restriction operator are sufficiently sharp to recover the bounds given by Miller
in [22] on the cost of null-controllability of the heat equation in small time.

2 Main results

Let us fix d > 2, T >0, Q = Q; x (0,7) C RY, with Q; € R a bounded domain with
boundary 99, € C!, and w C €, an arbitrary non-empty open set of R4~

Let us fix some general notations that will be used all along this work. First, we will
write

(©) { («/,z) € RY,  with 2’ = (z1,--- ,24_1) € ; and z € (0,7),

Qr:=(0,7)xQ and Xp:=(0,T) x 0.



Secondly, if S C (0,00) is a sequence, we will use the notation Ns for the counting
function associated to S, i.e., for the function Ns given by

(10) Ns(r):=4{ eSS :A<r}, re(0,00).

The main result of this paper establishes the existence of a biorthogonal family to an
appropriate sequence of functions in L?(Qr). Before stating it, let us introduce the main
hypotheses of this work.

2.1 Assumptions

Let us consider two real non-decreasing sequences A; C (0,00) and Ay C (0, 00) satisfying
the following properties:

Aq1: There exist positive constants k1 and 67 such that
(11) Na, (r) < kir?, Vre (0,00)

where Ny, is the counting function associated to Ay, see . We denote the elements
Of A1 by A1 = {/’Lm}mZI‘

Ag: There exist two constants k£ > 0 and 6 € (0, 1) such that
(12)  Wa(m) Nyl <5 (Lt o —mol’) . Vim € (0,00),

where Ny, is the counting function associated to As.

Notice that implies the weak-gap condition: for any p > 0 and any x > 0

FAs N (2 — p/2,2 + p)2)] < N, (a:+ g) ~ N, (m - g) < k(1 + ).

In all what follows we consider p > 0 fixed and p € N such that
(13) {2 — p/2a+p/D] <p, Vo >0,

Following [8, Proposition 2.2], if the sequence Ay satisfies there exists a countable
family {Gy};>, of disjoint subsets of Ag satisfying

(14)  Ao=|JGr Gi= {A,S’,...,A}jk)}, AN <A@ plo),
E>1

(15) g <p, maxGp—minGp <p, C(p,p) <minGpi; —maxGy, Vk>1,

with C(p, p) a new positive constant only depending on p and p.



Let By := {¥y,}, ~, be an orthonormal basis of L*(Q1).
Let U be a Hilbert space with inner product and associated norm respectively denoted
by (-, -)u, and || - ||zs,- Let us also consider an operator

€y € LIH?(0,7m) N HL 0, 70),Us).

Let us assume that, associated to the sequence Ay given by , we have Bo C L?(0,7), a
family of L2(0, 7), given by

(16)  By:=|J By Bi= {¢,gl>, . ,qﬁ,(fk)} C H2(0,7) N HE(0,7), Vk>1,
k>1

and satisfying
(17) € £0, Vk>1landj:1<j< g

Finally, we assume that there exists 5 > 0 and ¥ € (0, 1) such that the following inequality

(18) /Q

holds for any A € (0,00) and any G, € Span{&qﬁ,&j) k>1,1<5< gk} for any m > 1.

2 2

> Gutn(@)| o’ < [ 157 Grn(a)| a,

1 <A 1 <A

[Z5) Uz

Remark 1. For applications to the study of null controllability for parabolic problems the
main settings we have in mind are boundary control or distributed control that is to say,
respectively,

. . /
Uy=R  and €l = — (qb,(j)) (0)

or
Up=L*(0,7)  and €0 =10

with 0 < a < b < 7. Let us mention that, in these two settings, the validity of inequal-
ity is a direct consequence of the following so-called spectral inequality associated with
Bli

2 2

! / BA / /
(19) /Ql D bmtm(a’)| da’ <e / ;/\bmwm(af) dz’,

(8, <A v
for any A € (0,00) and {b},,>; € £*. This will be detailed on actual examples in Section

The above hypotheses can be written more concisely as follows:

10



Assumption 1. We have two positive real sequences A; and Ay, an orthonormal basis B;
of L?(£21), a sequence Bo in L%(0, ), a Hilbert space Us, and an operator €3 € L£(H?(0,7)N
H(0,7),Us) such that

A4 satisfies with k1,601 > 0;
A, satisfies (|12)) and with p € N, p,x > 0 and 6 € (0,1);

Bs is given by and satisfies ;
the spectral inequality holds with 5 > 0 and ¥ € (0,1).

The sequence As is labeled accordingly to the grouping , .
Remark 2. Notice that assumption also implies
(20) N, (r) <2679 Vr e (1,00).

From Weyl’s law, this explains why the tangential variable x is one dimensional in our
study. To fit into the framework of [§], we will write Ao € L(p, p, 0, k), where

(21) L(p,p,0,k) :={A: A C (0,00) is a sequence satisfying and (12)}.

2.2 The main result
With the notations of Section (see Assumption , let us consider
eD(t) = e 100 € ty, Vk>1andj:1<j< gy

(22) () 29 4 () ~ .
emp(l) =€ "k &g €Uy, Vm,k>1and j:1<j<gy,

where t € (0,7) and )\g)k is given by

m

(23) A =t + AP, (k) eN? 1< < g

We will also use the sequence F := {F T(rf )k} mi>1 Of elements of Us given by

1<5<gxk

(24)  E9 (0,0 = €9 (O (@) = e Ml (2)Ca0l), (') € (0,T) x O,

m,k

for any m,k > 1and j:1 < j < g, where )\g)k is given by . For any k > 1, we define
the matrix

9k
(25) My =" Gramy, (3},€20{",..., 6,200
/=1

11



where

flao=1  V1<j<g.
(26) ) /—1

fe=TIO0 ).

=1

From [8, Proposition 13], we have that assumption implies that the matrix M} is
invertible.
The main result of this paper establishes the existence of a biorthogonal family associ-

ated to the sequence {F,Sf)k} mk>1
7 1<7j§_gk

norm of its elements. It reads as follows:

in L2((0,T) x w;Us) and provides an estimate of the

Theorem 1. Let us assume that (A1, By, Ao, Ba,Us, €2) satisfies Assumption . Then, there
exists a constant C > 0, only depending on p, p, 0, k, 5, ¥, 01 and k1, such that for any

T > 0, the sequence {Fr(i)k} mk>1 (see ) admits a biorthogonal family {Q%?k} mk>1

1<j<gx 1<5j<g
in L?((0,T) x w;Us), i.e., such that for any m,n > 1, any k, £ >1, anyj:1<j < gx and
any 1 :1 <1< g, we have

T , .
/0 / <Q1(1]1?k(t’ :E/), Frgg(t, :L"/)>u2 dz'dt = 5mn5k£5ji7
that satisfies

(27) b
c ¢ (1) 17+ (1) 1
L2((0,T) xw;ilda) < Cexp <Tb T"’) exp (C [Amk} +C [)\ ] (Mk )j,j ’

o5
foranym,k>1and j:1<j < gr, where My is the matriz defined in and ' is given
by

(28) o =

and b is given by and

(29) b:zﬁmax{l 1}‘

The proof of Theorem [1| will be done in the next two sections. First, the idea consists
in proving that the sequence F (see (24])) has a biorthogonal family in L2((0,T) x Q1;Us).
In this step we will use that the set {t)m},,>; is an orthonormal basis of L*(€1) (see

Section .

12



Then, the main argument in the proof of Theorem [I]is the following one: we define the
restriction operator from the closed subspace of L%((O, T) x Q1;Us) (with an appropriate
weight function which blows up near ¢ = 0) spanned by F into E“, the subspace of
L2((0,T) x w;Us) spanned by the restriction to w of the elements of F. We prove that this
operator is a bi-continuous bijection between the two spaces (see Section [3) which allows
to deduce that F has a biorthogonal family in L?((0,T') x w;Us) (see Section [4.2). In fact,

this biorthogonal family {Q%)k} mi>1 pelongs to the space E“ and, in consequence, is
1<j<gx

unique and optimal.
Remark 3. From the expression of the constant b (see (29)), we deduce:

o If ¥ <6 then b= 15 <6 and

T +b < #. In this case, inequality (27]) becomes
<Cex
(70

C ) exp <c {)\g)kr) (M1,

H@mk\

for a new positive constant C and any m,k > 1and j:1<j < gi.

L2 0 T)XUJ Z//Q)

e If ¥ >0 thenb= 155 >6 and § < In this case, inequality becomes

1+b

¢ ORED —1
L2((0,T) xw;lUsa) < Cexp <T ) b (C [Amk} > (Mk )j,j’

for a new positive constant C and any m,k > 1 and j:1 < j < gg.

o !

Remark 4. The formulation of assumption can be compared with [22] Assumption
(6)]. Roughly stated, in [22], the author proves that

e if observability holds in any time for a reference operator

e and the considered observation operator and this reference operator satisfy a spectral
inequality [22 Assumption (6)]

then observability holds in any time for the considered operator.

Theorem [1| can somehow be seen as the analogous of [22] for biorthogonal families.
Indeed our assumptions on Ay implies the existence of biorthogonal families in L?((0,7T) x
Qy;Us) and the spectral inequality allows to transfer it to a biorthogonal families in
L2((0,T) x w;Us).

The geometrical setting we consider is less general than the one of [22] but our assump-
tions are weaker since the spectral inequality is only assumed for the eigenvectors of the
transverse operator. Also our results allow to study null controllability for a fixed given
final time T > 0 and is not limited to situations where null controllability holds at any
time. Thus our results are not contained in [22] and conversely they do not completely
cover the setting of [22]. Nevertheless, our method allows us to obtain some of the results
of [22]. This is illustrated in Appendix [B| where, for simplicity, we only treat a particular
case. The method can be extended to more general cases.

13



2.3 Notation
We gather in this section some notation that will be used throughout this article.

Divided differences.

In all this manuscript the notation f[xi,...,x,] denotes divided differences. For
pairwise distinct z1,...,z, € R and fi,..., f, in a real vector space, the divided
differences are defined by

f[xl]:fh Vie{lw"?n}

and then recursively for any k € {2,...,n}, for any pairwise distinct iy,...,ix €
{]'7"'?”}7 by
S ma ] = flEe, 3]
f[xil,...,x,-k]— .
l‘il — (L‘ik

We will use the mean value theorem for divided differences. It states that if f is a
n times differentiable function then, for any k € {2,...,n}, for any pairwise distinct

i1,...,1 € {1,...,n}, there exists z € Conv {z;,,...,z;, } such that
ARG
fl:xll,7wzk] — W

where f; = f(z;).
Linear combination.
Recall that Fr(,i)k is defined in by

. ) .
FO (8, 2') = e Pmklap, () 820 € Us,

for (t,2') € (0,T) x Qy, m,k>1and j: 1< j < gi. In this article we will often deal
with elements of ‘
span {Fg)k:k,mZI, j:lgjggk}.

These finite combinations of the functions Frgf )k will be denoted by

gk . .
(80)  Py(ta)i= Y doap Bl = Y G0 (),

pin k<N =1 P <N
where (t,2') € (0,T) x Q1, )\%)k is given in (23),
S () O~ V) ADyt g )
(31) G (t) = ngk(t), I ie(t) == Za,fl:k e "mkCyp)) € Uy,
k=1 j=1
and ag’g) € R, for any k,m > 1: k,,u”?;I < Nand1l<j<g.

14



Weights and functional spaces.

For any a > 0, let us introduce the function

0 ifze
(32) nala’) = N
af if 2/ € Q\w,

where $ > 0 is the constant appearing in . We also introduce the Hilbert spaces

(33) Ly, ((0,7) x Qu;lh) : { //

with b > 0 given by (29 . This space is equipped with the scalar product

22 dtdz’ < oo} ,

7704(96
(f g) ((0,T)x Q1 5Uz) / \/Q f g> dt dwl7 Vf,g S L%a((O,T) X 9172/{2)
1

We can now define the Hilbert spaces:

L2 ((0,T)xQ1;Us)

Ena:span{ (]) kkm>1, 5 1<J<gk}

)

: L2((0,7) xwildz)
E¥ = span {Fr(i)k\w:k,mZL j:lgjggk} ,

(34)

where Fr(yf’)k is given in .

3 The restriction operator

In this section we provide the main idea used in the proof of Theorem We will prove
(see Theorem |3)) that the restriction operator 1, is a bi-continuous bijection between the

closed subspace of L%a((O,T) X Q1;Uy) spanned by { ém)k} k> and the subspace of
1<j<g

L?((0,T) x w;Us) spanned by {F(j)k]w} k>1 - Recall that we are using the notations and
1< <gk
assumptions of Section [2.1] for the sequences Ay and As.

The key point to study the restriction operator is the following result:

Theorem 2. Let us assume that (A1, B1, A2, Ba,Ua, €2) satisfies Assumption . Then, there
exist « > 0 (only depending on p, p, 0, k, B, ¥ and 01) and 19 € (0,1] (only depending on
p, p, 0, k, B, ¥, 01 and k1) such that

T _ap 9 T )
(35) /0 /Qle || Py (t, 2|7, da’ dt < 6/0 /WHPN(t,;C’)HuQ o’ dt,

for any T € (0,70], any N > 1 and any Pn given by , B is the constant in and b

s given by .

15



The proof of Theorem [2]is postponed to Section [3.2]

Remark 5. When T > 0 is arbitrary, it is possible to prove a slightly different version of
Theorem [2] For the details, see Remark [0] and Theorem

The weight appearing in the left-hand side of inequality motivates the definition
of the function 1, (see (32)). From this definition, it is clear that

L2((0,T) x Qu;Us) < L2 ((0,T) x Qu;Us)

with continuous injection. On the other hand, if ¢ € L,%a((O,T) x Q1;Uz), we then have
¢|w € L2((0,T) x w;Us). Therefore, we can define the restriction operator

(36) Re: L2 ((0,T) x Qu;Us) — L*((0,T) x w;lUy)
¢ = Ru(p) = ¢lo

which satisfies R, € £ (L2 ((0,T) x Qu1;Us), L*((0,T) X w;Us)). The main result of this
section reads as follows:

Theorem 3. Let us assume that (A1, Bi, Ao, Ba,Ua, €2) satisfies Assumption and consider
To, & > 0, the constants provided by Theorem@, b given by and 1y, the function defined
n with B > 0 given in (18). Then, if T € (0,79], the operator R., satisfies

2 2 2
B7) lellzz, (oryxaian) < TR0, 1) xwin) < TNz (01)x0m6): ¥ € Ena-
Moreover, Ry, (Ey,) = E¥ and, therefore, Ry, € L (E,,, E¥) is an isomorphism.

Proof. Let us take o, 79 > 0 provided by Theorem [2f and b > 0 given by . With these
constants, it is possible to apply Theorem [2l As a consequence, let us first prove that

2 2 2
(38) IPNIIZ2, (0m)xuan) < TIR(PN)IZ2 (0,1 xwrr) < TIPNIT2 (01)x01200) »

for any N > 1 and Py given by , with ag’ﬁ) € R, for any k,m > 1: k,,u“’r; < N and
1 < j < gg. Using Theorem 2| we have

T aB T
||PN||%% (0.T)x142) :/ / et HPN(t,;C')HZ2 dx'dt+/ / HPz\/(t,y)HZ2 do dt
a 0 J(@Q1\w) 0 Jw

T N T
S// e HPN(t,x/)HZ dac'dt—i—/ / HPN(t,x’)HZ da’ dt
0o Joy 2 0 Ju ?

T
2
<7 [ [ Ipata)[, do’dt = TIRAPY (e -

16



On the other hand, one has
2 ’ —2f NI / 4 INIE: ’
H‘PHL?M OT)xue) = J o )e @ || p(t, )HUZ da’ dt + ; |o(t, 2 )Hu2 da’ dt
1\w w

T
(39) > / / le(t, )|, da dt.
0 Jw

for any ¢ € E,,, . Thus, holds for any Py given by .
Let us prove that R, (E,,) € E“. Indeed, first, we have

R € L (Ey,, L*((0,T) x w;lh)).

Secondly, we also have

- L2((0,T) xwilda)
E“ = span {Rw (Fr(,i)k) tkkm>1,7:1<5< gk}

Thus, if ¢ € E,, there exists a sequence {Pn}y~; (Pn given by (30)) such that Py — ¢
in L%a((O, T) x Q1;Us). In particular, R, (Py) € E“ and, from , Ru (Pn) — Ru(e) in
L2((0,T) x w;Us). We deduce therefore that R, (p) € E¥.

Let us now prove the inclusion B C R, (E,,). To this end, let us consider ¢ € E¥.
From the definition of this space, again, there exists a sequence { Py } y~; (Pn given by )
such that R,,(Py) — % in L?((0,T) X w;Us). This implies that {RW(I_DN)}N>1 is a Cauchy
sequence in L*((0,T) x w;Uy) and, from (B8), {Pn}ys; is also a Cauchy sequence in
L2 ((0,T) x Qu;Us). Thus, there exists ¢ € B, such that Py — ¢ in L2_((0,T) x Q1;Us).
Since Ry (Pn) — Ru(p) in L2((0,T) x w;ls) (see (39)), we infer that 1 = R, (¢). This
completes the proof of the inclusion.

Finally, inequality is a direct consequence of . This ends the proof of the
result. O

Remark 6. As in Remark [5 it is possible to prove a new version of Theorem [3| valid for
any 1" > 0. In this case the positive constant o > 0 depends on p, p, 0, k, 3, 9, 01, k1 and
T. The proof can be deduced using Theorem [10| instead of Theorem [2| and following the
same argument as in the proof of Theorem

The remaining part of this section is dedicated to prove Theorem [2] The proof will use
the preliminary results stated in the following section.

3.1 Preliminary results

Let us start by stating and proving a technical result that will be used below:

17



Lemma 4. Let us consider S := {vm tm>1 C (0,00) an increasing sequence satisfying
Ns(r) <Cre, Vr e (0,00),

for two constants C >0 and q>0 (the counting function Ns is defined in ) Then,
there exists a positive constant C (only depending on C and q) such that

~1
(40) Z e~ Vm <C +(O—7) —cm,

o4
Y<VUm

for any o,~v > 0.

Proof. Given o,v > 0, we can write

S e [0

Y<Um, Y
~ o0
< CO’/ r%e= " dr.
v

With the change of variable s = o(r — «y) in this last integral, we get:

e 7" dNs(r) = [e‘”/\/’g(r)]:o +o /oo e 7" Ns(r)dr
v

> e < Ce_ﬂ/ (s+07)le ds = S (F1 + o).
ol 0 od

Y<VUm
where

1 1
T = / (s+oy)e®ds<(1+ ny)q/ e *ds < (1+o07v)?,
0 0

and
Jo = / (s+oy)e®ds<(1+ J’y)q/ sle™®ds < (1+07)T(qg+ 1),
1 1

where I'(z) is the gamma function. Therefore,

(1+07)*
o4

e 77,

S e <CA+T(g+1))

Y<Vm
Finally, taking into account the inequality
(1+2)? <max {1,297} (1 +2%), Vze€[0,00),
we deduce the existence of a new constant C. , only depending on C and q, for which

holds. This finishes the proof of the result. O
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As an intermediate tool, we will use the resolution of some block moment problems as
developed in [5]. The refined estimates given in the following theorem are proved in [8]
Appendix A, Theorem 46].

Theorem 5. Let us fit p € N, p,x > 0 and 6 € (0,1). Then, there exists a constant
Co > 0 (only depending on p, p, 6 and k) such that for any T > 0, any Ae € L(p, p,0, k)

(which we will assume is given by ) and any {féj)} k1 C R, there exists a family
1<j<gx
{retis1 C L%(0,T) satisfying

T )
/ Nl (t)dt =0, Yk £>1and1<j<gp:k+¢,
0

T ) .
/ e*’\l(cj)trk(t) dt — féﬂ)’ Vk>1and1l<j<g,
0

and

- C, ~ [y1? .
17kl 20,y < Coexp (Tg'> e [A’c ] lgljzg;k {’f [A](Cl), e )\,(CJ)] )} , Vk>1,

with f [)\,(j)} = f,gj), foranyk>1andj:1<j< g, and & given in .

Actually, we will use the following moment problem. It will allow us to deal with the

blow-up of the weight ¢t — exp <%ﬁ> near t = 0 and to obtain uniform estimates with

respect to m.

Corollary 6. Let us fit p € N, p,k > 0 and 0 € (0,1). Then, there exists a positive
constant Cy (only depending on p, p, 0 and k) such that for any T > 0, € € (0,7/4),
m > 1, Ay € L(p,p,0,K) (given by ) and {ffnj)k} p>1  C R, there exists a family

1<j<gx
{T’E”’k}kx C L%(0,T) satisfying

LG
/ e_)‘wjlvktrfn’e(t) dt=0, Vkfm>1andl1<j<gp:k#L,
(41) 0

LN ;
/0 e_)‘wjhktrfn’k(t) dt = fg)k, Vk,m>1and 1 < j < g,
()\g)k is given in ([23)) and

Tk = in (0,¢),

(42) C C )\(1) e
‘LQ(O,T) S CO exp < 0 ) e O|: m,k] ee‘umlcihkj

€
m,k

Hr TO’
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for any (m, k) € N2, where

(43) K5, = max {’fmg[ . A(J)H}, Vk > 1,

1<5<gx
()
with fom.e { } — N f ,foranyk>1and j:1<j < g, and 0" given in

Proof. Let us consider the positive constant 50 associated top € N, p,k > 0 and 0 € (0,1)
provided by Theorem [5| Let us also consider Ay € L(p, p,0, k) (given by (14)) and pm, €
(0,00). Thus, the sequence

(m) _ _ G
A prn - o {/\m”“}kzl,lgs%

satisfies A(™) € L(p, p,0, k). Indeed, condition holds for the parameters p > 0 and
p € N. On the other hand, it is not difficult to check

B 0 if r e (Oy,um]a
NAU”)(T) - { NAQ(T _ Mm) ifre (,U/maoo)7

and, therefore, A" satisfies for the parameters £ and 6 € (0, 1). Finally, let us check
condition for A(™). This condition is direct if 1,79 € (0, ). If 71,72 € (0,00) are
such that r1 < py,, < 79, then

Naom (1) = Nyom (12)] = Ny (r2 — pm) < K(r2 — pm)? < 5 (1 + (rg — 7’1)9) :

Now, if 71,79 € (tm,00) one has:
N (11) = Nyon (72)] = Wiy (71 = pim) = Ng (r2 = )] < 5 (14 Iz = 1 |”)

If we fix T'> 0, £ € (0,7/4) and a sequence {fg)k} w>1 C R, we can apply Theo-

1<j<gr
rem ([5) to the sequence A and obtain the existence of a family { T k}k>1 C L?(0,T—¢)
satisfying a

and




with K¢ given in . Finally, it is not difficult to check that the function r{ , given by:

- ) = 0, if t € (0,¢],
kT R (b e), ifte (s, T),

satisfies and for Cy = (%)el 50. This ends the proof. O]

Using the resolution of block moment problems given by Corollary [6] we obtain the
following estimate.

Lemma 7. Let us consider (A1, B1, As, Bo,Us, €2) satisfying Assumption . Let us also
consider Cy > 0 and B > 0 the constants provided, resp., by C’orollary@ and inequality .
Then, forany N >1,T > 0,¢ € (0,T/4), 7 € (¢,T), a,b > 0 and (m, k) € N> : ¥, k < N,
if Py is given by , we have:

1/2
@) o0 < Ao T) L P - </ / = || vt )%, da’ dt) 7
) Us 0

where )\S)k, gglN,Z, and 0" are respectively given in , and , and

Proof. Fixed T' > 0, ¢ € (0,7/4) and 7 € (¢,T), let us consider the constant Cyp > 0 and
AG)

the family {r;fk}k>l C L%(0,T) provided by Corollary |§| associated with fg)k = ¢ AmiT,
On the other hand, we define:
Rm k(t x ) flg(t)wm(x,)v V(m, k) € N2> (t,ﬂfl) € (OaT) X Ql-
Let us first note that, from the properties of r;fk (see Corollary @, we deduce:
Rmk =0 in (0,e) x Qy,

w 1°
H < Cyexp < Co > o0 |:>\m k] eHm e

TY
for any (m, k) € N?, where

0 T XQl)

K™ — max {‘f;@ [A,S),...,A,(j)”}, Vk > 1,

mk 1<5<gk

) _ (J) . . . .
with f7, . { ])} = M e kT forany k > land j: 1 < j < gg. Using the expression ,
we can erte

IC:)fk =e "7 max {
’ 1<5<gx

fre PR} vk,

21



with fr . [)\,(vj)} = e_(T_a)’\l(ej), forany k> 1and j:1<j < gg. If we introduce the function
fre iz — e~(7=9)% then, from the mean value theorem for divided differences, for any
Jj:1<j < gy there exists & € ()\,(61), A,E/,”) such that

i-1e— (=

xi—1

sz-:|: 7_”’)\](3)” ‘d fm@)g

Taking into account , we deduce

- _ _ (2 (D)
Kree < max{1, TP }e #m7e” N vk > 1,

and

m,k

(45) HR”

C W17 @
< Copmax{1, TP~ 1}exp( 0 > eco[’\m’k] e TNk

L2((0,T)x ) TY

for any (m, k) € N2
Let us now demonstrate the result. To do so, let us consider N > 1, Py given by
and «,b > 0. Using successively the orthonormality of the sequence By = {¢p,},,~; in

; )
L?(£21) and the block moment problem (remember that fg)k = e_)‘ﬂj%’f) we get

/ QlR” (t,2)Py(t,2") do’ dt = Z 3 / D (2 )b (2 )d:v/ e (gt (t) dt

k'=1 79 ,<N

N 9w ) NGO ,
=SSl [ et reas))

k'=1j5=1

: €)] ;

N = J

= Z a‘anke m,kTQ:2¢I(€ )
=1
(N)

= gm,k(7)~

Then, recalling that R, =0 in (0,£) x £ we obtain

1
(/ / etb da:dt) (/ / - HPNta? Hu dxdt)2
Ql Q1
a8
< e2eh (/ / -5 HPN (t, 2 Hu dx’ dt> HRmk

for any (m,k) € N2 : ¥ k < N. This inequality together with provide and the
proof of the result. O

(N)

t:c)

Joni

L2((0,T)x)
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3.2 Proof of Theorem [2]

In what follows, we will prove Theorem To do so, we will work with a,b > 0 (to be
determined below). We will first assume that «, b, N and T satisfy

1
A\
— T
( N ) <h
and we will divide the proof into two steps. See Remark [7] for the case T' < (/N )%

First step: working on (O, (oz/N)%> . This step is devoted to the proof of the following
result:

Lemma 8. Under the conditions of Theorem@ for any o,b > 0 and T > (oz/N)%, we
have:

o

N

S

@

(46) /O(N) /91 e |Px(t,2)|;,, da'dt < /0(

where Py 1s given by .

1
b
) /w | Pt )2, do’ dt,

Proof. Let t € (O, (a/N)%> be fixed. This implies that N < 5.
Using the expression , we can apply to Py the spectral inequality with bg)k =

o G)
a(]’]];/)e Am,kt and )\ =N to Obtain

m,

/Q [Py (t.a")|7, da’ < eBN/ | P (t, 2|}, da’ < exp (Ot‘f) / [P (2|, da.
1 w w

Thus,

e (=90) [ mveal, ar' < [ evealf, aot vee (0.(5)).

1

Integrating with respect to t in (O, (a/N )3>, we deduce inequality . This ends the
proof. O

Remark 7. It is interesting to note that if 7' < (a/N)% then the proof of Theorem [2] is

straightforward. Indeed, if t € (0,7), in particular, t < (a/N )% and inequality holds
for any t € (0,7). Again, integrating with respect to ¢ in (0,7"), we deduce the proof of
Theorem [2
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Second step and main argument: working on <(a/N )% ,T). In this part we will
work with ¢ in the interval ((a /N )% ,T ) and prove an estimate similar to but in the
open set ((a/N)% ,T) x Q1. One has:

Lemma 9. Under the conditions of Theorem [3, let us consider the positive constant b
given by . Then, there exist positive constants C1 (only depending on p, p, 0, k, 61 and
k1) and oy (only depending on p, p, 0, k, B, ¥ and 61) such that for any T € (0,1] and
a > aq satisfying (a/N)% < T, one has

(48) /(fv‘ll;/ thPNtxHu dxdt<3/a ;/HPN“’HM da’ dt

N

L Cre™ H(a, BT // [Pt 2|, do’ dt,
Q1

for any Py given by . In , Co>0, 8>0 and @ are the constants provided, resp.,
by C’orollary@ mequality and , and H(e, B,T) is given by

_ ab a i _ _Cﬁ — 1 1 —
(49) ’H(a,ﬁ,T)—(T —l—aﬁ)caexp( Ca)exp< T“)’a_max{l—ﬁ’l—ﬁ 1,

and

(50) Co = % <a1/0 —4baf —2(1 - 0)CF = (49)’ )

[\.')M—t

Proof. Fix t € (0,T). Using orthogonality of the sequence By = {tm, }m>1 in L?(€1), we
can write (see and (31)):

/Ql | Patt )|, da:':/Ql S ()| do’

m Z,{2

+ | X eoune)|

9
A<pm, <N Us

for any A € (0,N) and t € (0,7). The first sum in is estimated by applying the
spectral inequality . It follows that:

2 2
/ S GO (m(a’)|| da’ < e / S G (1) da,
= 1 <A Us “ B <A Us
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for any t € (0,7). Using orthonormality of the sequence By = {t; }m>1 in L?(Q1), the
second term in writes

2

/Q > VW) d' = Y 6w

2

A<pl <N Us A<py, <N “e
But,
2
/ G ()| do’
<N A<w’;n<N Us
2 2
<2 |3 @) a2 / > G| da
@ |2, <N n M| a<pd, <N Us
<;ﬂmwxmdmm > e

A<l <N

Thus, one obtains:
2

/Q1 PORESIGUMED dx’§2eﬁ/\/wHPN(t,:L")H;2 da’!

1 <A Us

i

Y HG%V)(t)2

Uz
A<ud <N

for any A € (0, N) and ¢ € (0,T). Inserting this last inequality in and dividing by e
we get:

Y

a@/wwmwiwgs/w%mwum+ > e
951

A<pl <N

Uz

for any A € (0,N) and t € (0,7).

From now on we restrict ourselves to the case t € ((a /N )% ,T> (recall that b is given
by (29)). If in the last inequality we take A = #» then A € (0, V). Introducing the notation
(51) 2™y = Y HG(N) ol te ((O‘)%’ T)

" Us’ N )
F<un<N
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this becomes
(52) e—i‘f/ [Px(t, 2y, do’ <3 (/ [Px(t, 2|y, do'+ E(N)(t)) :
(951 w

for any ¢ € <(04/N)% ,T).
Our next objective is to provide an estimate of X(V)(¢) for t € ((a/N)% ,T). Let us

start with G%V). Using and estimate in Lemma [7| for o > 0, b given in ,
e=1t/4€(0,T/4) and T =t € (t/4,T), we infer

404/6’
-1
somn o (G ) ([ ¥ il )

for any ¢ € <(a/N)

lew

o=

) where

Ay = Zexp <_4Ag 4 Co [Ag;r)

and the constants Cyp > 0, 8 > 0 and ¢’ are provided, resp., by Corollary @ inequality
and . If we now use the inequality
0 t L !
Co [AGL] = PR+ a—0cT (10 5,

valid for any ¢ > 0, we deduce

ew2e,,

1
T "y 3
<Cp max{l,Tp_l}e%H“e_%“mtsz(t) </ / e HPN(t,x/)Hi& da’ dt> ,
0 JO

forany o >0 and t € ((a/N)% ,T), where

- /
4baf L2 0)Ci (40)" 20 Ze,wnt

Hy = m 1 + o and Sy(t

k>1

We can now estimate X(V)(t) for any t € ((a/N)% > and N > 1 (see (b1)):

T [e3
M) < c? max{l,Tp_l}QeHo‘Sl(t)Sg(t)Q/ / e HPN(t,;c’)HZ2 da’ dt,
0 JO
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where
Si(t) == Z e Hmt
5 <H,

We can bound the series appearing in the previous inequality using Lemma @ Indeed,
1/

the sequence {pm},,~, satisfies . From inequality applied to ¢ = 01, v = ST > 0
and 0 =t > 0 (b is given in (28)), we can write

91
a0 4 al/? a\
— - mt
Sl(t)— E e K Scl Wexp <— fa 5 Vt € ((N) ,T),

1/9
S0 <Hm

where o > 0,

b 1 1
a:ﬁ—lzma){{l_ﬁ71_0}—1,

and 51 = CAl(m, 01) > 0 is the constant provided by Lemma
On the other hand, the sequence Ay satisfies . Thus, again using Lemma and

inequality , we get
Sy(t) = Ze*ékg)t <Y eM< Ca Vt >0
2 — = = tgv )
k>1 AEAg

where é\Q is a positive constant depending on « and 6.
Coming back to the estimate of (V) (¢), we deduce

ol/9
td

91
C t a7V
(N) “ 12 Hot ~ T _
YWt < 3 max{1, TP " }*e (@16 520 P (

/T/ e~ || P (t a:’)H2 dz’ dt
0o Jo, 7 U

T (e}
= S, 172 he) [ F |[Patean)|}, df ar

0 J

for any a > 0, t € ((a/N)% ,T) and x € (0,7), where a and b are given in and ([29),
C; is a new positive constant, only depending on p, p, 0, k, 61 and x1, and h is the function

tah 4o A B aot/?

.
(53) h(t) = m exXp t? — a ) N A= 46066, B = 2(1 — 0)66_9 (49)9 s

with ¢ € (0, 00).
Going back to , we get:

e—i‘f/ |Pxtt )2, dm’§3/ | Pxt a2, da
(951 w

29 Tr _as
+Cy max{1, TP~ }2e 7 h(t) / / e || Pu(t, ')y, da dt,
0 JO
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for any @ > 0 and t € ((oz/N)ﬁ ,T).
At this point, as 1/¢ > 1, we can choose oy = «ag(3,60,9,Cp) > 0 (Co > 0 is the

constant provided by Corollary @ sufficiently large such that o'/? — A — B =2C, > 1 for
any a > «q (see ) Using the expression (53)), we deduce that h € L'(0,7T). Integrating

1
the previous inequality with respect to ¢ in ( (a/N)? ,T), we obtain

N

4 —of / 2 / T / 2 /
(54) /(a)é/§21 et HPN(t,$ )Hu2 dz' dt < 3/(]%)}7/&) HP]\/(t,a:)HM2 dx' dt

—112 % T —=f "2 /
+ Cymax{1,TP" }%er? T e o || Pyt )Hu2 dx’ dt,
0 J

T
I::/0 h(t)dt,

and h, A and B are given in and b > 0 in . Let us estimate Z and, to this end, let
us assume that 7" < 1. Thanks to the expressions of a and b (see and (29)) one has
a>band a> 60 (see (28)). Thus, we deduce

where

h(t) <

0
T9% + a7 2,
= Jlatno 20 FP

_ta> , Vte(0,7), Va> a,
(Cq > 1 is given in (50))), and,
T ab a
TYr + 2C,
IS/O t(a+1w1+29eXp<_ @ ) d
T
(2 1 C
SM(TG91+aﬂ>A taﬁeXp <_t2> dt

=M (T“Bl —1—04%1) %exp <—§f;> ,

where
1

]. Ca .
M= tESElOI’)l) m exp <_ta> = exp (—Ca) , if Ca > a ((CL + 1)(91 — 1) + 20) .

Summarizing, there exists a new constant a; > 0 (only depending on p, p, 0, k, 5, ¥
and 67) such that for any 7' < 1 and o > «1 one has

I< (Tael + a%l> % exp (—Cq) exp (—5%) .

Coming back to , we obtain for a new positive constant Cy, only depending on
p, p, 0, k, 01 and k1. This completes the proof of the result. O
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Remark 8. In the proof of Lemma [J] we have assumed that 7' € (0,1]. In this case, the
constant a1 > 0 provided by this result is independent of T'. In the general case T > 1,
it is possible to prove a slightly different version of this result. Indeed, let us consider
inequality with & > a (recall that if @ > ap, one has that C, > 1/2, see (50))). In
this case, h € L'(0,T) (see (53)). The goal is again to obtain an estimate of Z. To do so,
we rewrite

1
Ta91 - A B 1/9
h(t) < o o exp (tb + - O‘) = (T + 0 ) i(Dha(t), Ve e (0,T),

— ¢(a+1)01+20 0’ ta
with
1 Co 1 o
1 Ca A B a'/? 1
ha(t) = o exp <ta> exp (tb+t6”ta , y=(a+1) (912) + 26.
Thus,

55) 7= /OT h(t)dt < (Tael n a%) </0T B (1) dt)l/z </0T ho(1)2 dt)

On one hand,

T
On the other hand, F': a € [ag, o0) — F(a) € R is the function

I, = exp( Ca), Ya > ag.

T
F(a) = /0 ha(t)? dt,

which is well defined when o > . Then, F is differentiable in any compact set of [ag, 00)
and

T
F'(a) = / E ho(t)? <2 qbpra=b —4bg 1a119_1> dt
, fa 9
bapa—b  gbp L 14 [T 1 2
< (2-4°6T —4,8—5(179 ; —ha(t)*dt <0, Vae [ai(T),c0),

with 5
&1(T) = max {ao, [4*’519 (2TH _ 1)] “9} .

29



Coming back to , we deduce therefore
T < (1% +a%) F(@ (1) > exp _C v s a1,
- 2aCq T -

when T > 1.
From , we infer the existence of two constants C; > 0, only depending on p, p, 6,
k, 8,9, 01, k1 and T, and a; > 0, only depending on p, p, 6, k, 8, ¢ and T, such that for

1
any « > &y satisfying (a/N)? < T, one has

T
%)Al/ Mﬁwﬂbm&qﬂy/wmeMw
a \p @
N

+€1Tp_1eT9’ A a, 8, T / / - HPN (t, o Hu dx’ dt,

Sl

with Py g@\'/en by (30} In Co > 0, 8 > 0 and 0" are the constants provided, resp., by

Corollary 1nequahty and , and 7—[( ,3,T) is given by
77 o a1 9 1 7670!
(57) H(a, B,T) = <T +oz19) \/Cjexp< T“) )

and C, > 1/2 by (50)).
We are now in a position to prove Theorem [2}

Proof of Theorem [ We will prove this result as a consequence of Lemmas [§] and 0] Let
us first take a final time 7" € (0, 1] and « > 0 satisfying (50). We prove the result for any
N > landPNgwenby Wltha( k) eR, forany k,m >1:k,pl, < Nand1l <j < gy.
If T < a/N then the proof of Theorem I can be deduced reasoning as in Remark [7] I
Let us now assume that 7' > «/N and consider the constants C1,a; > 0 provided by
Lemma @ Combining inequalities and , for any a > a1, we get:

T N T
m)//a@%@mﬁwﬁg//mmw%wm
0 J

—i—CleTG’ a,B,T / /Q - HPN (t, ' Hu dx’ dt,
1

where Cp > 0, 5 > 0 9’ b and C, are the constants provided, resp., by Corollary @

inequality (18), (28), (29) and ([49)), and H(«a, 8, T) is given by (49).

Let us remember that Co > 1/2 for any a > . On the other hand, there exists a new
positive constant as > oy (only depending on p, p, 6, &, 3, ¥ and ;) such that C, > 2Cy+1
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for any a > «ay. In particular, if we take into account that 0 < 7' < 1 and ¢’ < a (see
and ([49)) and take o = s, from the expression of H(«, 3, T), we deduce

T g ) T )
/O/Qle o N A d:c’dt§3/0 /wHPN(t,:U’)HuQ da di

T (3
+ Ho(T) / / e |[Putt, )|, do d,
0 J

where .
/]
Ho(T) = Cy (T“91 + oﬁl) exp <—Ta> :

and Cy > 0 is a new constant only depending on p, p, 0, k, 3, ¥, 61 and k1.
From the previous expression, it is clear that there exists 7y € (0, 1], only depending on
p, p, 0, k, B, Y, 01 and k1, such that

Ho(T) < =, VT € (0,7).

1
2 b
This implies that the following inequality

T a8 9 T )

(59) /0 /916 ) HPN(ze,ac')Hu2 dx’dtg?)/o /WHPN(t’x/)HuQ da’ dt
+1/T/ || Put, )|, da dt
2 0 Ql Nib Z/{Q ’

holds for any 7" € (0, 79] with o = ap. This concludes the proof of Theorem O

Remark 9. Taking into account Remark [§] it is possible to prove a version of Theorem [2]
valid for any 7' > 0. Indeed, let us take T > 0, N > 1 and Py given by ., with
( )GR for any k,m > 1:k,p2 < Nand 1< j < g AsmtheproofofTheorem
1f T < a/N then we can reason as in Remark [7] If T’ > a/N we take a > a; and we
combine inequalities (46]) and | . We obtain an inequality as with the constant

2Cq

ClTp leTel ( Ba )

2Co ~
instead of Cre? H(«, 8, T) where H(«, 5,T) is given in . We can argue as in the proof
of Theorem [2| and obtain a new positive constant as > @; (only depending on p, p, 0, &,
B, ¥, 01, k1 and T) such that

2Cy 1
CiTP 1eT6' Ha, B, )_5, Yo > Q.

In particular, taking o = ay we deduce the following version of Theorem [2| which is valid
for any T > 0:
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Theorem 10. Let us assume that (A1, Bi, Ag, Ba,Ua, €2) satisfies Assumption . Then,
there exists o > 0 (only depending on p, p, 0, k, 3, ¥, 61, k1 and T') such that

T a8 ) T )
/0/916 N oA dz’dt§6/0 L;|pN(t,xf>\\u2 da' dt,

for any T > 0, any N > 1 and any Py, where Py is given by , B is the constant

m and b is given by .

4 Proof of the main result: Existence of biorthogonal fami-
lies in L*((0,T) x w;Us)

We devote this section to prove Theorem [I} Its proof is done in two steps. First, we design

a suitable biorthogonal family to {Fg)k} m>1 (see (24)) in L*((0,T) x Q;Us) using in
1<j<gy
a fundamental way the biorthogonal family coming from Appendix [A] This is done in

Section [4.1] (see Proposition

Then7 in Section 4.2 we deduce the existence of a biorthogonal family to {Fr(rf)k} mk>1

1< <gs

in L2((0,T) x w;Usz) and end the proof of Theorem [1] I thanks to the following consequence
of Theorem [3

Proposition 11. Assume that (A1, By, Ao, Ba,Us, €3) satisfies Assumptz’on and consider
To, &« > 0, the constants provided by Theorem@ b given by and 1y, the function defined
n with B > 0 given in . Assume that T' € (0, 19).

For any q € L*((0,T) x Q1;Us) such that

T Wa(z 2
(60) / / o q(t, 2’ Hu2 da'dt < +o0,
0o Jou

there ezists Q € E* C L*((0,T) x w;lb) (see (34)) such that, for any (m,k) € N? and
J:1<5< g,

(61) /O ! /w (L), Q(t,x’)>u2 d'dt = /0 ! /Q <Fg7)k(t,x’),q(t, x/)>u2 dz'dt

and

(62) ||QHL2 (0.7)xwihy) = / /Ql

Proof. We proved, in Theorem 3| that the restriction operator R, € L (E,,, E¥) is an
isomorphism satisfying or, equivalently,

dm dt.

(63) 1< HRSIHZ(EW,EM) =T
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Recall that the Hilbert spaces E;,, and E“ are given in and consider
Pro : L7 ((0,T) x Qu;Us) — By, ,

the orthogonal projection operator.
Let ¢ € L2((0,T) x Q1;Us) and define

na(zl)

q:(t,2") € (0,T) x Qe & qt,a).

From (60), we have that ¢ € L%a((O,T) x Q1;Us). Finally, we set
V=P, (@ and Q:= (R, (¥) e B

Then, implies

2

QN 20,7y xwitts) = H(RZI)*P% @‘ ST 1Pna @H%%Q((O,T)xm;uz)

L2((0,T) Xw;Uo
~112
< Tlallzz_ (or)x0i20)

which proves . We now prove . For any (m,k) € N2 and j:1<j < g,

T . T o (z)) . a(z’)
// <Fr(rz)k(t7x/)aQ(t7l’,)> dx’dt:// e <F7(rz)k(t,xl),€ntb Q(t,x/)> da'dt
0 Jo ’ Uz 0 Jm ' Us
= (F9.a

() =
= |F
( m,k?PﬁaQ> L%a ((0.1)x 1 Us)

q) L%& ((O,T) XQl ;UQ)

- (R‘?Rw (FT(’{)’C) ’ )L%a((O,T)xﬂl;Ug)

- (Rw <F7(”J)’f) ’ (RJI)* (\II)>L2((O,T)><w;U2)

_ /0 ' /w (R4 (t.a"), Q. x’)>u2 da'dt

which ends the proof of Proposition O

4.1 Existence of biorthogonal families in L*((0,7) x Qy;Us)

Let us consider the sequence {Ff(g)k

}m p>1 given by . Our first objective will be to
1<j<gn

prove the existence of a biorthogonal family to it in L?((0,T') x Q;Us) and give a bound on

its norm. More precisely, to deal with the weighted norm appearing in the assumption ,

we prove the following stronger result.
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Proposition 12. Let us consider (A1, Bi, Ag, Ba,Us, €2) satisfying Assumption . Then,
there exists a positive constant Co such that for any T > 0 and € € (0,T/4), the family

{Fg)k  mits o biorthogonal family {q;%)} mis1 1 L2((0,T) x Qu;Us) satisfying
1<j<gx s
q;%)(tv ) =0, Vte (075)7
2

64 1 1° _
oy ‘ < Cpexp <;2/> o] 2ol (M)

qm,k ‘

L2((0,T7)xQ13U2) Jig’
for any (m, k) € N? and j : 1 < j < gp where ¢ is defined by and My is the matriz
given by .

Proof. Let C1 > 0 be the constant given by Proposition Let us fix T'> 0, ¢ € (0,7/4)

and m > 1. Applying Proposition[L8|on the time interval (0,7 —¢) we deduce the existence

of a biorthogonal family {c}ijr)nk} p>1 O {e%)k} v>1 (see 22)) in L2(0,T — &;Us)
T 1< " 1<

satisfying

~(4)
qs,m,k

35

’ G exp G ) B
L2(0,T—5Uy) < Crexp ((T _ 5)9’> ¢ (M)

1 0
< Cyexp < Co > 0 [Ain)k] (M)

T J3’

for any £k > 1 and j: 1 < j < gg, where Cy = (%)9/51.
~&,(j)

Let us consider the function g4 given by:
e -{ " e
" eg’\m,k?]éjgl L(t—e), ifte(eT).

Then,

T .
A9 /() ~(9)
= [ (0.0, (-9,

11 6) gy 20
,(7
_ / <eé7k(t),qmyz (t)> dt,
0 Uz
forany k,f € Nand i,5:1 < j <gg, 1 < < gp. The previous formula proves that, for any

m e N, {afn(i)} p>1 s a biorthogonal family to {eg)k} p>1 N L?(0,T;Uy). Moreover,
R ESE PR
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qm(fc)( t) =0 for any ¢ € (0,¢) and
_ eZsz\Si?k
L2(0,T;Us)

(1) 6 .
(65) < Cpexp (;g,) L0 [\oe] 2 (MY,

757

El(j)

e,m,k

qu k ‘ L2(0,T—elhs)

for any (m,k) € N> and j : 1 < j < gp.
Finally, let us define

W (ta') = D Odm(a), V(ta') € (0,T) x

with (m,k) € N2 and j : 1 < j < gg. Using that By := {¥m}m>1 is an orthonormal basis
of L?(Q;) and the expressions of eg)k and F T()f )k (see and (24)), one has:

T . .
// <Fr(,i,)k(t,$’),qi”(g)(t,x/)> da’ dt
0 Ql Uz
T, . .
~([(hm.zPo), @) ([ vn@ine) i) = smbis,
0 2 Q1

for any (m,k),(n,f) € N> and 4,5 : 1 < j < g&, 1 < i < g On the other hand,
property is a direct consequence of . This ends the proof of Proposition ]

4.2 Existence of biorthogonal families in L((0,7T) x w;U,)

We are now in position to prove Theorem

Proof of Theorem[1]. Let us first assume that 7' € (0, 79], with 79 > 0 the final time provided
by Theorem [2| Let us also consider a > 0, the constant provided by Theorem [2 and 7,
the function defined in ([32)).

Let us construct a family {QS)E} ne>1 biorthogonal to {Fg)k} mi>1 (see (24)) in

1<z<gz 1<]<g,C
L2((0,T)xw;Us). To this end, we are going to apply Proposmlonm in order to construct an

appropriate sequence {qm(k)} mr>1 (depending on a parameter € € (0,7/4)) biorthogonal

1<5<gs
to {F(j)k} mk>1 i L?((0,T) x 21;Us). From this sequence and as a consequence of Propo-
1<5<gx
sition 11} we will construct the family {Qg)k} mi>1 C B, biorthogonal to {FT(rf)k} mk>1

1<j<gk 1<j<gs
in L2((0,T) x w;Us). Observe that this family belongs to E¥ C L?((0,T) x w;Us) (for the
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definition of E¥, see ([34])) and, therefore, is unique and optimal in the following sense: if

{@S@)k} m>1 is biorthogonal to {an)k} mk>1 0 L2((0,T) x w;Us), then
1<j<gx 1<i<gr

2 ~) 112
<H J Vm,k>1and j:1<j < gg.

L2((0,7)xwilda) ~—

o

Bl L2(0,1) xwithe)

Thus, the family {QS)Z} no>1 C E¥is independent of €, but not its estimate which comes
1<i<g,
from Proposition [I2] To optimize this estimate, we will make a convenient choice of the

parameter €. More precisely, let us fix (n,£) € N> and i : 1 < i < gy, We begin by applying
Proposition [12| for ¢ = 553 € (0,7/4) given by

=
(66) ) _ %v 1 if % < ()\S)O 1+1b |
(Afﬁz)ﬁb it % - (A%);—%

where b is given in . We deduce then the existence of a biorthogonal family

(4)
nes(7)
{qm ¢ } m 21

1<5j<gk

in L2((0,T) x Q1;Us) to {F}nj)k} m>1 that satisfies for 553
1<j<gk

(D .
Since g, "f’( D Z 0 for any t € (0, 8(1)) we obtain that g, ”Z’( " satisfies the assumption .

(2) .
Thus, applying Proposmonto q, "é’(l) , it comes that there exists Qs)e € E¥ C L*((0,T) x
w;Us) such that, for any (m, k) € N2 and j:1<j < gk, one has

T , ()
/ / F(J) (t,z") ()(t,x')> dx’ dt :/ / <F7(r{)k(t,x’) qn"e’( )(t x )> da’ dt
Uz 0 J ’ . Uz

= OmnOkedij-
Hence, we conclude that the family {Q%)k} mi>1 18 biorthogonal to {Fr(rf)k} m>1 1D
"< " 1< <o
L?((0,T) x w;Us). To finish the proof, let us check that {an)k} mi>1 Satisfies . From
1<j<gy
estimate , it comes that
na() ) () 2
Q ‘ <Tlle @ g
H "N L2 (0T xwitds) " L2, ((0,7)xQ1Ua)



where 1, and b are given in and . From we obtain

()

2
emtlb(‘)q i) / / na(z m’“’(J) dx’ dt
" L2, ((0,T)xQ15Us) o5 Uy
<exp 704,5 7 'qmmﬁ o
(5%) L2((0,T)x 1 o)

C M 1% 5.6) &)
<Cyexp _oB 7 | exp < 0 ) 0 P\m’k} eZmi Pk (M,;l) .
<€(j)> I
mk
forn,d>1andi:1<1i<g.
;1
When T'/4 < ()‘%)k> '** the previous inequality provides (see )

gbap Co\ co[a) ] [/\m }% .
< 7Cyexp < > exp < > e Limk (Mk )

b TY

Jon

L2((0,T) xwildy) 337

;1
for any (m,k) € N* and j : 1 < j < gr. On the other hand, when T'/4 > ()\%)]J Y we
infer

b L
() 5 C C >\£rll> )\(J) +b _
Hka‘ L2 (0.7 wide) < 7Co exp (Oéﬁ |:)\'rizk’:| Hb) exp <T2’> e of k] 2] ™ (M, 1)“7

for any m,k > 1 and j : 1 < j < g,. Taking into account , from the two previous
inequalities we deduce inequality when T € (0, 9]

The case T' > 79 can be easily deduced reasoning as follows: We consider a family

{Qg)k} m>1 biorthogonal to {Frg)k} > i L2((0,79) x w;Us) satisfying for a
1<5<gk 1<5<gk

positive constant C. It is clear that the extension by zeros of Qg)k

é(j)k(t ) _{ Qg?k(t,.) if t<m,
m, ? 0

if t> 1,

is a biorthogonal family to {Fg)k} ps>1 i L2((0,T) X w; Us) that also satisfies (27). This
1<j<gs,
ends the proof of Theorem O
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5 Application: Null controllability of a coupled parabolic
system

In this section we use the biorthogonal family designed in Theorem|I]to study simultaneous

null controllability for a system of two parabolic equations. This system is the extension

in higher dimension of the system studied in [24]-[25].

Let 7> 0 and Q = Q; x (0,7) C R? with Q; ¢ R¥! (d > 2), a bounded domain with
boundary 9, € C'. In Section we address the boundary null controllability problem
for the following diagonal system of two coupled parabolic equations

6ty+Ay: 0 in QT:
(68) y = bulyyy on X,
y|t:0 = Yo, in Qa

where w C € is an arbitrary non-empty open set of R“1, 4 = (y1,42) is the state and

_ bl 2 _ —A 0
(69) b—(b2>€R, A—( 0 _A+q>,

with ¢ € L?(Q) satisfying
(70) q(z',z) = q(z), ae. in Q.

For a given initial condition yo € H~1(£2;R?) the question is the possibility of finding a
control u € L2((0,T) x w) such that y(T') = 0.

Similarly, in Section [5.3, we address the internal null controllability problem for the
following diagonal system of two coupled parabolic equations

Oy + Ay = bU1w><(a,b) in Qr,
(71) y=20 on X,
y‘t:o = Yo, in Q7

where 0 < a < b < 7 and yo € L?(;R?).
First, in Section we prove that these systems fit into the framework of Theorem

5.1 Moment problem and spectral assumptions

Boundary control moment problem. First, let us deal with the boundary control

problem (68)).
The operator —A with domain D(A) = H?(Q;R?) N H} (2 R?) is self-adjoint and
generates a C”—semigroup on L?(Q; R?). Thus, given yo € H1(Q;R?) and v € L?((0,T) x
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w), the initial value problem has a unique solution y € C° ([0,T]; H~(;R?)) that
satisfies

T
- b10: —(T—
<y(T)7Z>H—1,H(} —(yo, ¢ TAZ>H71 H} _/ /U(ta a’) ((bla ) e tMZ) (2') dz'dt
770 0 w 20z |x:0

for any z € Hg(Q;R?). Thus, y(T) = 0 if and only if v := u(T — -) satisfies

T
-TA . blax —tA
= _/0 /w”(t’x,) <<bzax> o Z> - (') do'd

for any z € H(Q;R?).

Spectral analysis. Let us introduce some notations. First, A1 : L?(Q) — L?(Q) is the
Dirichlet-Laplace operator on the open set ; C R4 defined by:

d—1
62
Al =-A1=—-Y —, D(A)=H*)NH(Q).
1 1 kzl 8:6,3 (A1) (1) 0(€21)

We denote its spectrum as (A1) = A1 := {tm tm>1 and By := {¢m }m>1 is the associated
sequence of normalized eigenfunctions in L?(). Secondly, we will also consider

Ao = A UASY

where Agl) = {V’(‘Cl)}kn and Ag) = {V£2)}k>1 are, resp., the sequences of eigenvalues of
the operators —0‘9—; and —88—; +¢ in (0, 7) with homogenous Dirichlet boundary conditions.
To fit in the framework studied in this article we assume in all what follows that

(73) 1/,(:) #* V(Q), Vk (> 1,
We will denote

_ {404 2 |
By = {0l 0"} | € H(0.m) N H}(0.7),

the corresponding eigenfunctions associated to the previous operators satisfying

(74) (¢§j>)/ 0)=1, forj=1,2
In fact,
(75) =k V(@) = %sin(kx), ze0,7), Vk>1,
and, from [20], Theorem 4.11, page 135, one has:
(76) V,iz) = V](:) +q+&, VE>1, q= 71r/07r q(x) dz,

where {§k}> € 2.
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Remark 10. In order to study the controllability properties of system , we can assume,

without loss of generality, that ¥ := infj>; 1/]({2) > 0. Indeed, if 7 < 0, we can perform in

problem the change § = e~ “'y with ¢ = —7 + 1 > 0. This change transforms into
the equivalent null controllability problem for :

6@—1—(/14—6)3720 in Qp,
y= be_Ctule{O} on X,

Yi=0 = Yo, Yu=r =0 in Q.

This is equivalent to adding the constant ¢ > 0 to the sequences Agl) and A§2). The same
remark holds for system .

For the operator , thanks to , one has that its spectrum is given by
(77) o(A) = {yg)k =l + V,E:l), fo)k =l + V,?) :(m, k) € NQ}.

The associated eigenfunctions of A are defined on 2 by

/ N (5 , 0
o), (@',2) = (W 1 >> ) = (wm@f)qs?)(x)) |

for any m, k > 1. Thus, getting back to , it comes that the solution y of satisfies
y(T) = 0 if and only if

©) ; T ©)
(78) — e VT <yo, @%)k> = bj/ / v(t, x')eil'"jbvkti/}m(:c’) dx'dt
"/ H-Hg 0 Jw
for any m,k > 1 and j:1 < j <2, where we have used the normalization condition .

Internal control problem. For the internal control problem, we consider the normal-
ization condition

(79) /a b (¢§j)(x)>2 dr =1

instead of . Then, the solution y of satisfies y(7T") = 0 if and only if

) - T b G) -
(80) —e‘”"iva<yo,<1>§fl?k>L2:bj /0 / / v(t, 2!, x)e " mk (1)) (z) drda’dt

forany m,k>1land j:1<j5<2.
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5.2 A boundary controllability problem for a coupled parabolic system

In this section we analyze the boundary null controllability problem associated with
with a particular focus on the minimal final time 7" needed to achieve such property.

The one-dimensional version of this question (d = 1) has been analyzed in [24]-[25].
Let us describe the results obtained in this work. First, in order to solve the null control-
lability problem associated with (d=1and Q = (0,)), it is necessary to impose the
conditions and

(81) bi1bs # 0.

It is clear that conditions and are also necessary to solve in the general case
d > 1. In fact, and are equivalent conditions to the corresponding approximate
controllability property for the parabolic system associated to the null controllability prob-

lem . Secondly, in [24] the author analyzes problem when d = 1 and and

holds. Setting

—log ‘V,(f) — V’gl)

(82) To(q) = limsup @D
k——+oco vy,

‘ € [0, 00],

the author proves, using the moment method, that:

o if T' > Ty(q), for any yo € H~1(;R) there exists u € L?(0,T) such that the solution
y of problem (with d = 1) satisfies y(T') = 0.

o if Ty(q) > 0 and 0 < T < Ty(q), then there exists yo € H~1(2;R) such that for any
u € L*(0,T) the solution y of problem (with d = 1) satisfies y(T') # 0.

Notice that when § # 0, one has Tp(¢) = 0 and, under assumptions and , null
controllability for problem (with d = 1) holds for any time 7' > 0.

However, when ¢ € L?(0, ) satisfies § = 0, the elements of the sequence {I/]gl), V,(f) }k>1
condense:

2 =P =l = 0

and it can happen that Tp(q) > 0. More precisely, for any 79 € [0,+o0], there exists
q € L*(0,7) such that Ty(q) = 7.
This result has been extended in [25] to the case d > 1 in two particular settings

e first, where w = 2 in [25 Section 4.1]. In this case, the problem remains roughly
one-dimensional and the proof uses the study in the one-dimensional case and the
fact that {¢m}m>1 is a Hilbert basis of L?(€2;).
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e then, the case where w C € in [25] Section 4.2] but with extra assumptions ensuring
that To(q) = 0. In this case, the proof uses in a fundamental way the cost of null con-
trollability in the one-dimensional setting to develop a Lebeau-Robbiano’s iteration
scheme as in [4].

Our objective is now to generalize this controllability result to the setting described at
the beginning of Section [5| In this sense, one has:

Theorem 13. Let Q and w be as defined at the beginning of Section[J. Let b and A defined

by with q¢ € L?(Q) satisfying and assume conditions and . Consider
To(q) € [0,00] given by (82). Let T > 0. Then,

1. if T > To(q), for any yo € H~1(;R?) there exists u € L*((0,T) x w) such that the
solution y of problem satisfies y(T) = 0.

2. if T < To(q), then there exists yo € H1(2;R?) such that for any u € L*((0,T) x w)
the solution y of problem satisfies y(T') # 0.

The proof of Theorem item 2. is a direct consequence of the results obtained in [25],
Section 4.1]: if problem is not controllable with w = §2; it cannot be controllable in
the more restrictive setting w C ;.

Theorem [I3] item 7. will be proved applying the moment method. It strongly relies
on the biorthogonal family designed in Theorem [I| applied to the framework described in
Section [B.11

In order to prove it, let us first establish the existence of a biorthogonal family in
L?((0,T) x w) of the sequence F := {ﬁr()f’)k}m’@l given by

J=1,2

~(s ()
(83) FO (t,2) = e ity (a’),  (t2)) € (0,T) x Q,

with m,k > 1 and j = 1,2 (I/(j) is given in ([77))). One has:

m,k

Proposition 14. Under the previous notations, let us assume that ¢ € L*()) and the
sequence {V,il),u,£2)}k>1 satisfies (70) and . Then, there exists a constant C > 0, only

depending on q, such that for any T > 0, the sequence {ig)k}mk>1 (see ) admits a

1<5<2
biorthogonal family {Q%)k‘}mk>1 in L?((0,T) x w) that satisfies
T 1<%
50) ¢ () 1
4 < — .
(84) Hka‘ L2((0,T)xw) — Cexp <T> P <C me’“> ‘Vél) _ V;g) ’

foranym,k>1andj:1<j5<2.
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Proof. Let us consider Us = R and €, the linear operator
Cy: ¢ € HA0,7) N Hy(0,7) — € = ¢/(0) € R,

which satisfies € € L(H?(0,7) N H}(0,7),R). Let us also consider (A1, By, Ag, Ba) given
in Section To apply Theorem let us check that (A, Bi,Ag, Ba,Us, €2) satisfies
Assumption

Using Weyl’s law, it is classical that the sequence {pm},,~, satisfies

N, (r) < mr%, Vr € (0,00).

for a positive constant 1, only depending on Q; C R4"! and d (the definition of Ay, is
given in (10)). So, holds for k; and 0; = (d — 1)/2.

Let us now check conditions — for sequence As. Recall that Ay = Agl) U AgQ)
with (see and ([76))

Ag) - {Vlgl)}kzl and Agl) - {V’?)}kzl'

Using a general result for Sturm-Liouville operators (see for instance [6, Theorem IV.1.3]
we can deduce that, for i = 1,2, Ag) € L(1, pi,1/2, k;) for appropriate constants p;, k; > 0
(recall that the class £ is defined in ) In our particular case and using and ,

it is not difficult to see that
MY er,3,1/2,1) and AP € £(1,p,1/2, k)
with pg, k2 > 0 only depending on ¢. Now, from [0, Lemma V.4.20], we deduce
Ay € L(p,p,0,k) with p=2, p=min(3,p2), 6=1/2, k=2(1+kK2).

Using [8, Proposition 2.2] we deduce the existence of a countable family {G}},~, of disjoint
subsets of As satisfying and . In the same way, we can also rearrange the elements
of By in such a way that we have . Condition is a direct consequence of the
normalization condition .

Finally, inequality is a consequence of a result of Jerison-Lebeau (see [19]): If
0 € R is a bounded domain with boundary 0€; regular enough, and w C € is
an arbitrary nonempty open subset of R%~!, then, there exists a constant 8 > 0, only
depending on w and €2y, such that for any sequence {b,},,~; C C and any X € (0,00), one
has

2 2
(85) LS bne)] @< [| 50 bunle!)| o'
| i< @ | <A
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As already noticed in Remark [T, applying the previous inequality to

g
b= Z b, €20y

k<) j=1

implies the validity of with 8 > 0 and ¢ = 1/2. We have therefore proved that
(A1, B1, Ao, By, Us, €5) satisfies Assumption

We now apply Theorem|l|to obtain a biorthogonal family {Qg)k} s> to {Fr(rf)k }m E>1

1<j<2 1<j<2

in L2((0,T) xw) satisfying (27). To prove the estimate it thus only remains to estimate

(M N 1)].7]. where M, is the matrix given in . For any k > 1, we consider the two possible
cases.

o If G = 2 then there exists £ > 1 such that G = {yél),yf)}. Then, from ,
using the normalization condition we have

1 1
M = 2.
S

Thus, for any j € {1,2}, we have

2
(), <

k Jjg = ‘Vél) _ V(gz)f

e If §G; = 1 then there exists ¢ > 1 and ¢ € {1,2} such that G = {yt@}. Then,
from , we have M = 1.

To obtain an estimate valid in both cases, notice that, from it comes that there
exists C' > 0 depdending on ¢ such that

(86) R S EY S /=
Thus,
vl ie €
-
Gathering both cases proves and ends the proof of Proposition O

We now have all the ingredients to prove Theorem
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Proof of Theorem[13 The proof of item 2. follows from the study done in [25, Section
4.1]: if problem is null controllable with a control u € L?((0,T) x w) then it is null
controllable with a control u € L2((0,T) x Q). The latter property does not hold if
T < To(q).

The proof of item 1. relies on the moment method. Let T > Ty(q) and yo € H (2, R?).
Let {Q( ) }m k>1 be the biorthogonal family designed in Proposition (14, Let us consider

1<5<2
v given by the formal series

CONETITRIIES 3 9) Dl ("R N I AT}
» o

m>1k>1 j=1

There exists C' > 0 such that ||1/JmHHé(Q1) < O/l for any m > 1. Applying classical
results for Sturm-Liouville operator (see for instance [I, Lemma 2.3]), taking into account
the normalization condition , there exists C' > 0 depending on ¢ such that

. 1 2 C
‘¢;(cj)($)’ (¢(])) (x)‘ <G Vee(Om), VE>1Vj:l<j<2
Vg
Thus, we deduce that
G |1 Hm . .
H@m,kHH& <C (1 + u,i”) . Ymk>1,Vji1<j<2

From we have

@

¢ %) 1
r(omy = O (T> op <C Vm"“) i =2

for any m,k > 1 and j : 1 < 5 < 2. Recall that Ty(q) is defined by . Then, since
T > Tp(q), it comes that the series converges in L?((0,7T) x w).

Using the biorthogonality property we directly obtain that v solves the moment prob-
lem which ends the proof of Theorem O

5.3 A distributed controllability problem for a coupled parabolic system

In this subsection we give the adjustments with respect to Section to study the null
controllability with a distributed control problem given in (71). Recall that the associated
moment problem is given by and we considered the normalization condition ([79)).
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The following one-dimensional version of this question (d = 1)

atyl — &;xyl = bll(a,b)uy in (O,T) X (0,71'),

Ory2 — Ozzy2 + qya = b2l (g pyu, in (0,7) x (0,7),
yj(t,()):yj(t,ﬂ):(), tE(O,T),j:1,2,
yj(oali) = yé(m), T € (O’ﬂ-)’ J=12

(83)

has also been analyzed in [24] in the particular case
Supp(q) C (0,a)  or  Supp(g) C (b,7).

Then, under conditions and , she proved that Ty(gq) defined by is the minimal
null control time for system from L?(; R?) with controls in L2((0,7T) x w x (a,b)).
In the general setting, we prove the following result.

Theorem 15. Let 2, w be as defined at the beginning of Section[5 and let 0 < a < b < .

Let b and A defined by with ¢ € L*(Q) satisfying and assume conditions (|73|)
and . For any k> 1 let

Gy = GramLz(mb) <¢§{;1)7 (z)/(f))

and set
2
—log \/det g + ‘1/152) — 1/,5,1)‘
(89) To(q, a,b) := limsup T € [0, 0] .
k——+oo 1/1(C )
Then,

1. if T > To(q,a,b), for any yo € H H(Q;R?) there exists u € L?((0,T) x w x (a,b))
such that the solution y of problem satisfies y(T) = 0.

2. if T < Ty(q,a,b), then there exists yo € H1(Q;R?) such that for any u € L*((0,T) x
w % (a,b)) the solution y of problem satisfies y(T') # 0.

Here again, the proof of item 1. will follow from the moment method and particularly
the use of the following biorthogonal family.

Proposition 16. Under the previous notations, let us assume that ¢ € L*(Q)) and the
sequence {V’gl), V,£2)}k>1 satisfies and . Then, there exists a constant C > 0, only
depending on q, such that for any T > 0, there exists a family

(@D} her © IO, T) x w x (a,1))
1<5<2

46



that satisfies the biorthogonal property

(90) / / / QU (t, 2, ) i ()00 (@) dtda’ d = Spumreds

foranym,k>1andj:1<j<2and

C ) > 1
<Cexp| = |exp|Cy/vY )
L2((0,T) xwx (a,b)) P (T> P < m.k det Gy, + ’V’g) _ V’gl))z

on @

foranym,k>1andj:1<j5<2.
Proof. Let us consider Us = L?(a,b) and € the linear operator
¢y ¢ € H*(0,m) N Hy(0,7) = Ca¢ = 11,50

The proof follows the lines of that of Proposition . To obtain that (A1, By, Ag, Ba,Us, €3)
satisfies Assumptions [1|it only remains to prove the spectral inequality . As stated in
Remark (1] it follows from the spectral inequality . Applying it for any fixed = € (a,b)

with
() ()
mzzzbé,kﬁbk ()

k<A j=1
gives

2 2

9k ) )
[ S Slhunerd@w| ar < [| 5 S ioneiid o) ar
Vm k<X j=1 Y k< =1

Integrating with respect to z € (a,b) proves (18). Thus (A1, Bi, Ag, Bo,Us, €3) satisfies
Assumption [T}
~)

We can now apply Theorem [1|to obtain a family {Qm k} m.k>1 Satisfying the biorthog-

1<5<2
onal family and the estimate . To prove the estimate it thus only remains to
estimate (Mk_ )jj where M}, is the matrix given in . For any k > 1, we consider the

two possible cases.

o If G, = 2 then there exists £ > 1 such that G = {1/{51),1/22)}. Then, from ,

using the normalization condition we have

1 (2
1 )
M, = <¢‘ % >L2(a,b)2

(6,62 L+ (o =)

L2%(a,b)

47



Explicit computations yield

det My — 1 — <¢§1)7¢22)>;(a7b) n ( (1) _ (2)>2

2
(92) =det G, + (Vél) - Vé2)>

()

= det Mo 1) (2
R\,

(93) Mt

Thus, for any j € {1,2}, we have

_ 1+ p?

1

(M), < I
det Gy + ‘Ve -y, ’

If G = 1 then there exists £ > 1 and ¢ € {1,2} such that G = {Véi)}. Then,
from , we have M = 1.

Asin Section let us formulate an estimate valid in both cases. Using estimate (86))
and the normalization condition , it comes that

2
detgk+‘u,§1)—u,§2)‘ <14+C%  VE>1

Thus we obtain
14 C?

-1
Mo =1= M
det Gy + ‘I/g Sz

2)’2'

Gathering both cases proves and ends the proof of Proposition O

We now turn to the proof of Theorem

Proof of Theorem[15. The proof of item 1. follows the line of the proof of Theorem
replacing the biorthogonal family coming from Proposition with the one coming from
Proposition |16] and is not detailed.

We now turn to the proof of item 2. Let T > 0 and assume that for any yo € H~!(Q;R?)

there exists u € L2((0,T) x w x (a,b)) such that the solution y of problem satisfies
y(T) = 0. As in the proof of Theorem if system is null controllable then it is also
null controllable with controls in L2((0,T) x €1 x (a,b)). This implies

T > fO(qa a, b)
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where Ty(q, a, b) is the minimal null control time of the one dimensional problem from
L?(0,7) with controls in L?((0,7T) x (a,b)).

From [8, Theorems 11 and 18], considering the particular initial condition y(l) =0 and
Y9 = qS,(f) for system (88)) it comes that

~ log (M, !
TU(q7 a, b) > lim sSup ((;)2’2
k—4o0 vy,

where the matrix M, ! has been computed in . Finally, using the expression of det M,
given in and the asymptotic we obtain

2
~log \/ det Gy + v — v}
T > limsup i
k—+o0 Vlg )
which ends the proof of item 2. O

6 Moment problems associated with geometrically multiple
eigenvalues in A,

In this section we extend Theorem [I| to the case where the moment problem involves
geometrically multiple eigenvalues.

As it appears in the application of our strategy to explicit examples in Section [5] our
assumption on By is only valid for geometrically simple eigenvalues in the 1D variable.
However this assumption is not necessary and our strategy also apply with geometrically
multiple eigenvalues. The price to pay is the introduction of extra heavier notation. To
lighten the article we chose to present this extension and indicate the modifications in the
proof in this subsection.

We stick with every assumption except for the assumption concerning Bs. We now
assume that we have Ba C L?(0,7), a family of L%(0, ), given by

99  Br=|J) U By Bij= {¢,§"1),..., fj’”’“”} c H2(0,7) N HE (0, 7),
k>11<j<gi

and satisfying

(95) {(’:gqﬁg’i)}l<< is linearly independant in Uy, Vk >1and j:1<j5 < gg.
S1SVk,j

More precisely, our main assumption is now the following.
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Assumption 2. We have two positive real sequences A; and Ay, an orthonormal basis B;
of L?(€21), a sequence Bo of L?(0, ), a Hilbert space Us, and an operator €3 € L£(H?(0,7)N
H(0,7),Us) such that

Ay satisfy and with k1,60, and ¢ € (0,1);
Ay € L(p, p, 0, /1) peN, p,k>0and 6 € (0,1), satisfying (|14 .,
By is given by (94) and satisfies ; inequality . ) holds with 5 > 0.

Let us consider the sequence
.F::{Fr(rf’) m,k>1, 1<j< g, 1<2<’Yk]}
of elements of Uy given by

(96)  FYUD(t,a') 1= €9 (1) (af) = e mitip () €200, (t,27) € (0,T) x O,

We now consider the matrix M} given by

(97)
9k

My =Y Gramy, (6,660, . 6L, €20 7, 6@ ot )
(=1

where (51’4 is given by . We consider the associated renumbering function
(98) R:(j,4) € N* X N" = g1 4+ i1 + 14,

with the convention 740 = 0.
With these notation we obtain the following theorem.

Theorem 17. Let us assume that (A1, Bi, Ao, Ba,Usa, €2) satisfies Assumption . Then,
there exists a constant C > 0, only depending on p, p, 0, k, B, ¥, 01 and K1, such that for
any T > 0, the sequence F (see ) admits a biorthogonal family

{QUY  mk=1,1<j < g 1< <y}
in L?((0,T) x w;Us), i.e., such that for any m,n > 1, any k. £ > 1, any j: 1 < j < g any
J 1< <gp,anyi:1<i<~g;andany i :1 <4 <~ 5, we have
o6 (')
(2 1
/ / <an£,k (t2'), B (¢, $/)>u da'dt = 6ynded sy dii
0 w 2

that satisfies
(99)

o

c, ¢ (1) 1745 W) 1%\ (11
(0m)xwil) = P <Tb+T9> exp (C o] T L] ) 1) gm0
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forany m,k > 1, any j : 1 < j < g and any i : 1 < i < g5, where My, is the matriz
defined in , 0" and b are given by and and R is the renumbering function
defined in .

Proof. The proof of this theorem follows the same steps as that of Theorem [I] Let us
briefly explain the necessary adjustments.

e Theorem [2| Following the lines of the proof of Theorem [2| directly gives

T N T
(100) // e || Pat )| dx’dt§6/ / |Py(t.a)|2, e dt,
0 J 2 0 Jw 2

for any T' € (0,70, any N > 1 and any Py given by

gk Vk,j

(101) = Y Y S dPVER ), (') € (0,T) x Qi

ud k<N j=11i=1

where § is the constant in and b is given by . Indeed the key estimate given
by Lemma [7] still holds with the same proof taking into account the new definition

of gT(nN,g given by

LN i
g;lng(t) :—Z A tZa] Mg )EMQ.

Jj=1

e Theorem [3| Replacing the spaces F,, and E“ by

— L2 ((0,T)x;Uo)
E,,, = span {Fr(rf”l?:k,mZL 7:1< 73 < g, z’:lgz’g%j} ,

. P07 <ty
B =span {FSPL i hom > 1, ji 1< < gp, i1 < < ) ,

we obtain that Theorem [3| holds without any modification. Notice that neither The-
orem [2[ nor Theorem [3| uses the assumption (here replaced by )

e Theorem Finally the proof of Theorem [I] combines two steps: the existence
(with estimates) of a biorthogonal family in L2((0,T) x £1;Us) and the isomorphism
property of the restriction operator coming from Theorem [3] The latter and its use
to deduce a biorthogonal family in L((0,T) x w;Us) given in Proposition (11| remains
unchanged.

The existence with suitable estimates of a biorthogonal family under Assumption (|2))
follows the line of Section replacing the use of Proposition 18| by [8, Theorem 51].
Here it is necessary to assume .
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O]

Notice that the use of such biorthogonal families allows to prove that the minimal null
control time for system given in Theorem still holds replacing condition by
the approximate controllability of system .

A Biorthogonal families in L*(0,T;U,)

Recall that we have defined in the following functions

eV it e Mnrteye) ey, Ymk>1and j:1< )< g

In the setting considered in Assumption using results proved in [8], we obtain a biorthog-
()

m,k

} p>1 D L?(0,T;Usy). More precisely, we obtain the following result.
1<j<g

Proposition 18. Let A; C (0,00). Let (Ao, Ba,Usa, €2) satisfying Ao € L(p, p,0, k),

and . Let (G)k>1 be a grouping satisfying and . For any k > 1, let My, be

the matriz defined by . There exists a positive constant Cy depending on p, p, 0 and k

onal family to {e

such that for any T > 0, for any m > 1, there exists a biorthogonal family {qg)k} E>1
1<5<gx

to {eg)k} g1 0N L2(0,T;Us), i.e., such that
1<j<gk

T . .
/ (a2 (0), e Oty 0Dy b = Sy, V£ 1 and 1< g 1< < g
0 2

satisfying the following estimate
(102)

~ C\ a [A(l)—i-u ]9 1
< Ciexp e LTk (Ml;)jj’ Vk>1and1l<j<g,

o2 7 ,

L2(0,T;Us)

with 6 given by (28).

Moreover, there exists a positive constant Cy depending on p and inf Ay such that for
any T > 0, for any m > 1, any biorthogonal family {qm } p>1 1o { g)k} p>1
1<5<gi RS EEN
L?(0,T;Us) satisfies

>Co (MY, ., VE>1and1<j< g
L2(0,T;Us) 2 (My )JJ’ = et =g =0

o]
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This proposition is exactly [8, Theorem 51]. The only assumption to check to apply [8,
Theorem 51] is that

Aém) = Uy + Ao = {)\,(cj) + um} p>1 € L(p,p,0,kK)
1<j<gk

for any m > 1 which we proved in the proof of Corollary [6]

Notice that in the particular case Us = R, then we are dealing with classical biorthog-
onal families to time exponentials and, in this setting, Proposition is a consequence
of [18].

B A Lebeau-Robbiano construction

In this appendix we revisit the classical Lebeau-Robbiano strategy from the point of view of
biorthogonal families. Using the restriction operator of Section [3, we prove in Theorem [24]
that the spectral inequality implies the existence of biorthogonal families with estimates
allowing to recover null controllability in arbitrary time without any geometrical extra
condition on the space domain.

In [22] L. Miller was interested in an adaptation of the Lebeau-Robbiano strategy for the
proof of an inequality of observability of heat-like semigroups. In particular, he considered
the Dirichlet-Laplace operator in L?(§2), where  is a sufficiently smooth bounded domain
of R% with d > 1. Let us denote by {etA} ¢~ the semigroup generated by this operator
in L2(€2) and {fm, Ym}y,>q, its eigenelements ([[¢mllr2(q) = 1). Using that {¢m},,5,
satisfy , with Q; replaced by Q and w C € an arbitrary nonempty open subset, i.e.,
using

2 2
(103) / > bmthm(@)| da’ < P / > bmthm(a)| da,
] Jm<n | m <A

for any {by, }m>1 € €2, L. Miller proved that, for all T' > 0, the observability inequality

T
2 2
(104) 4 sy < KT) [ [ fes?, s e 220,
holds for a positive constant IC(T,w) satisfying

(105) limsup (T In(K(T,w))) < 26°.
T—0

It is well-known that the observability inequality (104)) is equivalent to the null control-
lability property for the heat equation at time T > 0 together with an estimate of the

93



associated control cost: for all yo € L%(Q), there exists u € L? (Qr) (Qr := (0,T) x Q)
satisfying

(106) Hu”%Q((QT)Xw) < ’C(TM)HZJO”%%Q)a
with K(T,w) the constant in (104)), and such that the problem

Oy — Ay = 1 u, in Qr,
(107) y =0, on X7 := (0,T") x 09,
y(07 ) = Yo, y(T7 ) = 05 in Qa

admits a weak solution y.

The purpose of this appendix is to prove the null controllability result (107), with
controls u satisfying (106) for a constant K(T,w) fulfiling (105). To be precise, we will
prove:

Theorem 19. Let us assume that Ay = {pm}m> satisfies for 61 > 0 and that
Bi = {¥m}m>1 is an orthonormal basis of L*(Q) that satisfies (103)). Let T > 0. Then,
there exists a constant K(T,w) > 0 satisfying (105) and such that the null controllability

problem (107) has a solution u € L?((0,T) x w) satisfying (106)).

To this end, we will use a different approach to that of [22]: we will solve (107) by
solving the associated moment problem. This will entail the construction of a biorthogonal
family in L2((0,T) x w) to the sequence {Fmt >t given by

(108) Fu(t,z) = e "ty (x), (t,x) € Qr, m>1,

with an explicit estimate with respect to T' > 0 of the norms of the elements of this family.
In order to construct an appropriate biorthogonal family in L2((0,T) x w) to {F},, 5
we will use the restriction argument of the previous sections. In fact, this restriction
argument will allow us to construct the unique optimal biorthogonal family to {F,}m>1
in L2((0,T) x w).
As a first step, we begin by the following result:

Proposition 20. For any ¢ € (0,T), there exists a sequence {f:,},,~, biorthogonal in
LQ(QT) to {Fm}m21, F,, given by (108)), satisfying

Supp (f5,) C [e,T] x Q,

(109) 2 1 2
1fmllz2p) < ¢ T thm)e shm,

for any m > 1, with ¢ = 2e.
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Proof. Let 7 > 0. Using the orthonormality of the sequence {1, };n>1 in L?(9), a natural
choice of a biorthogonal family {7 },u>1 to {Fm}m>1 in L? ((0,7) x Q) is a sequence of
the form

1 T
g (t,x) = C—Te*“mtl/}m(x), with C] = / e 2tmtdt, m > 1.
0

m

Now, for any € € (0,7, we choose 7 =T — ¢ and we define

. ift € (0,e], ze€Q,
fm(t’x) = epum 1 —e :
ehmg "t —e,x) ifte(e,T), x€l,

for any m > 1. It is not difficult to check that the sequence {f7,},,~; is biorthogonal to
{Fm}le in L?(Qr) and satisfies the first condition in (T09). On the other hand,

Voo = oo o > 1
mIlL2(Qr) — Cg;—ﬁ = -

If 24, (T — €) < 1, then
T—e T—e
ore — / et gy > / eldt=e (T—¢), Ym>1.
0 0

If 20 (T — €) > 1, then

T—e S e !
o= = / e 2Hmt gt > / e mtgt > — Ym > 1.
0 0 2pm

The two previous inequalities together with the expression of || f5, || L2(Qp) Proves the second
condition in (109])). This ends the proof of the result. O

For N > 1, let us define

(110) Py (t,x) := Z dME,(t,x) = Z a\Me=rmty, (),
N VAm<N

where aﬁ,ﬂv) € R, 1 <m < N. The second step in our approach is:

Proposition 21. For all o > 25 (B is the constant in (103)), any integer N > 1 and any

Py (see (110) ), one has
(111)

// e~ |Py(t,z)? dodt < <3||PN||%2((O,T)><W) + M, T) // % Pa(t,)f dxdt)’
T T
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where ,
X(T, «) L

(a2 _ 2a6)291+1
X(T,a) = (; + 1) {T‘”H (1 +T91+1) +01291+2} ’

M(a,T)=C

)

01 =d/2 and Cisa positive constant only depending on 0.

Proof. The proof follows the steps of the proofs of Lemmas |8 and |§| (b=1). Given N > 1,
o and T > 0, we will assume T > o/N. See Remark [7|when T < a/N.
Recall that for all N > 1 and Py given by (110|), one has

/]PN(t,ac)\2 dx = Z ‘a%!Qe_Qumt, vVt € (0,T).
Q

Vim<N
The spectral inequality (103) gives (see the proof of Lemma
N[ _ap 9 ~ 9
(112) / / et |Py(t,z)|” dedt < / / |Pn(t,z)|” dzdt.
0 Q 0 Jw

Reasoning as in the proof of Lemmal9] (see with b = 1 and 9 = 1/2), on the interval
(a/N,T), one has:

(113) e_atﬁ/\PN(t,m)]Q dx <3 /PN(t,:r)|2 ot S Ja ezt |

for any t € (a/N,T). Now, using Proposition with € € (0,7T), we obtain

|a%}2 = -5 Py (t,z)er fm(t x) dwdt

/PN (t,z) fr(t, ) dxdt

a 1
< ceTB ( + Mm) eZeHm // e~ \PN(t,x)] dx dt.
T - T

Let us choose € =t/2 € (0,T). Thus, the previous inequality implies
(114)

2 a 2
Z ‘a,(flv)‘ e~ 2Hmt §06¥ Z <2T -l—um)e ”mt//T —F |Py(t,z)|* dxdt,

%<\/Nm§N <\/

S ta// *t]PNtx)| dx dt,
T

for any t € (a/N,T), with



In what follows C will denote a generic positive constant only depending on #; and
whose value can change from one line to the next.

We can bound the series appearing in S(¢,«) using Lemma Indeed, the sequence
{ttm},,>; satisfies for k1 > 0, only depending on Q@ C R? and d, and #; = d/2 (Weyl’s

law). From inequality applied to ¢ =01, v = %22 >0and o =t > 0, we can write

’\tel + Oé291 a2
o —pml -5
Sl(t) = Z e M SCT(? t, Vit € (O,T)
F<VBm
An adaptation of the proof of Lemma [ leads to the existence of a new positive constant
C such that

B /\t91+1+04261+2 a2
SQ(t) = Z HUm€ pamt < C we t, Vit € (O,T)
T <VHm

Then, for a new constant C > 0 we deduce

- 61+2 201 42 61+1 2601 +2 o2
S(t,a)§c<;+1><t + a2 4l g )e_t

t261+2
- 1 T91+2 +O[201T2 +T91+1 +Oé2€1+2 o2
<C (T + 1) < P ) e” v, Vte(0,7).

In order to get a simpler estimate of S(¢,a), we will use Young’s inequality as follows:

b—a

TO—1.7°% < 1ﬁ+%Tbg1+Tb, Va,b:0<a<b,

0 1
0[201 T2 < 1 a291+2 +

< 9 +1 9 + 1T291+2 S a291+2+T291+2,
1 1

for any T' > 0. Thus,
TOH2 | 02002 4 TO+1 4 (20142 < i+l (T Lophtl 1) 1 9a201+2
<2 (T"l“ (1 + T91+1) + a291+2> :

Coming to the last estimate of S(t,a) and (114]), we obtain

2 —~ a
(115) > e[ em <examan [[ e pyita)? dot
& <\im<N T

for any t € (/N, T), where C > 0 is a new constant, x(T,a) is given in the statement of
Proposition 21] and

_ a2720¢6
t

h(a,t) =t~ (2112 , te(0,7).
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The function h is clearly bounded on (0,7) if « > 23. Therefore,

04272(15
=201~ T a2 - 2a a?—2a8
hatdt<2max —5 / 7266_ 2t dt
t(0,T) a? —2ap 0 2t
7042—20([3
e 2T

=¢ (a2 — 2a8)201 1’

with C > 0. Going back to (L15]), we get
/ Z ‘ (N)‘ “2umt gt < M(a, T) // |PNt:L')| dx dt,
N <\/7<N

where M(a, T is given in the statement of Proposition

To summarize, if a > 20, after integrating (113)) on (%, T), we have

/L/ zmeHMﬁ<GUMm Xm+MaT// —|m@@|Mﬁ>
T

Adding the previous inequality and inequality (112))) we get (111)). This ends the proof. [J

Let us continue with our reasoning. The following result is our third step (see Theo-

rem [2)):

Proposition 22. For all T > 0 there exists ag(T, 3) > 0 satisfying
116 li T,5) =28,

(116) A oo(T, B) =28

and such that any N > 1, any Py given by (110) and for all « > ag(T, ), one has

T
(117) //eﬁﬂm@@FMﬁga//ﬁm@@FM@
T 0 Jw

Proof. Let us first take a > 28 and consider the expressions of M(«,T") and x(T, ) in
the statement of Proposition If we take o = 28 + V0T, with § > 1 to be determined,

one has a? — 208 = <2ﬁ + V6T ) VT and we can write

T91+1 1+T91+1
(26+\(/ﬁ)291+1) +26+VoT

M(a,T) =C (T + 1) . i VE
T (6T)" 2
ST +1

<C 3P%<1+Tﬂ“>+25+Tﬂe—
T91+§

[SIEY
[N

=B(B,T)e 2, VT >0.
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Recall that C > 0 is the constant provided by Proposition only depending on 6.
From the previous inequality, it is clear that taking ag (T, 5) = 28 + /Too(T, B) with

do(T,B) = max{1,2In (2B(5,T))}

one has (116)). In addition, M(«a,T) < 1/2, for any a > ap(7,5) and inequality (111])
implies (117)). This finalizes the proof. O

Let 7o and L7 _((0,T) x Q) the function and the space defined in and with 4
replaced by Q. As in , we define

Ly (Qr)
(118) E,, =span {F, :m>1}" ,

2
E¥ =span {Fp|, :m > 1}L (O.1x),

where the function F, is given in ((108). As a consequence of Propositions and
we can prove a result as Theorem [3| in our framework. One has:

Theorem 23. Let us assume that Ay = {fm }m> satisfies and that By = {{m }m>1 is
an orthonormal basis of L*(Q) fulfilling (103)). Let T > 0 and let us consider the constant
ao(T, B) provided by Proposition . Then, for all « > (T, 3), the operator

Re: L2 (Qr) — L*((0,T) x w)
@ = Rulp) = olo

satisfies
2 2 2
H‘PHL%Q(QT) <7 HRw(SD)HH((o,T)xw) <7 H(p”L%a(QT) , Vo€ By,

and, therefore, R, € L (Ey,, E¥) is an isomorphism.

The proof is analogous to the proof of Theorem |3 and will be omitted.

Let us now prove a result which plays the role of Theorem [I] in our framework. One
has:

Theorem 24. Under the assumptions of Theorem there exists a positive constant C
such that, for any T > 0, the family {Fy,}m>1 (see (108))) has a unique biorthogonal family
{Qm} st C E¥ in L*((0,T) x w) that satisfies

—~ 1 B g,
(119) ||Qm||%2((O,T)><w) S C <H + Nm> e« +2 Nm7 Ym Z 1,

for any e € (0,T) and o > ao(T, B) (cwo(T, B) is the constant provided by Proposition [29).
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Proof. The proof is a consequence of Theorem Let us take T' > 0, o > ap(T, 5) and
e € (0,T). We consider,

oy’ a(z)
fa(t,) =t fo(t,x), V()€ Qr,
Qm = (RS Py fo, € B, m>1,
where he sequence {f5},,~; is given by Proposition [20| and satisfies E,, in (118), R,
is the restriction operator defined in Theorem [23|and P, is the orthogonal projection from
L%Q(QT) to Ey,. As in the proof of Theorem [I| (see Section , the sequence {Qm }m>1
belongs to E¥. This will imply the uniqueness (and therefore, the independence with

respect to the parameter ¢) and the optimality of this family.
Observe that f5 € L%Q(QT) and, for any m > 1,

‘ 2 _/T/ e | £ (¢ x)’dedt<c<1+ )eaﬁﬂwm
L%a(QT) B Q m\Y < T Lim 7
thanks to (109)). On the other hand,

S :/ . Fo(t,x) f5,(t,z) do dt = (Fn’f;)L%a(QT) - (F”’P”a (N’i‘»Em

fo

= (RORuEnPo (11)),, = (ReFo (RS P (T,

))LQ((O,T)Xw)

Na

T
—/ /Fn(t,x)Qm(t,x)dxdt, Vn,m > 1.
0 Jw

Therefore, the family {Q},,>; is biorthogonal to {F,}m>1 in L%((0,T) x w). Finally,

2 2

2 —1\* re re
o= <]
19l 000 = (RS Pon o oy 7 [PreFi s
~ 2
< 7’ 7 C WYm > 1.
L3 (@)
From this inequality we deduce (119). This ends the proof. O

We can now prove Theorem

Proof of Theorem[19. The null controllability problem in L2() is equivalent to a
moment problem in L?((0,T) x w) for the family {Fy,},,~; given by (108). This moment
problem can be solved by means of the biorthogonal family {Q@m},,>1 provided by Theo-
remwith a = ao(T, ) > 0. Thus, let us take the family {Qm}mzf. An explicit solution

to problem (107)) (yo € L*(9)) is

u(t,z) == e (yo, ) o) Qu(T — t,), V(t,z) € (0,T) x w.

m>1
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Therefore (see (119))), for all € € (0, 7))

ullZ2 0.y < | D2 € T 1Qml T2 0.1y xw) | W0l 7200

-~ agfB 1 _ _ 2
<Ces |2 (T—z—:+Mm>e T | ol

~ aqgfB
i=Ce + S(e,T) ol 72y, Ve € (0,7).

Using condition , it is possible to estimate S(e,T") (CA is a generic constant only
depending on 6;):

S(e,T) = / oo( ! —i—:):) e 2T=9)2 g (2)
0

T —¢

< /@1/ (:rel +2(T — 5):1:91“) e AT=9)z gy
0

A 1 ‘91+1 o0 01 91 1 75 B é\
SC(Q(T—g)) /0 (5 +¢ +>6 dg_(T_g)e‘lﬁ

Coming back to [[ul|r2((0.1)xw), We deduce

-~ agB 1
Wl < et s Iy e € (0.7).

Let us now choose ¢ € (0,7") in order to minimize the right member of the previous
estimate. To this end, we consider the function g defined on (0,7T) by:

gle)=e= (T'—¢e)?, Vee(0,T), o=0;+1.

This function achieves its minimum in (0,7") at point

eo(T, B) = \/C“(Q)B2 + 4T apo 3 — a3 _ 2T a3
R 20 VB2 + 40T apB + aofs

This expression implies the estimate (106|) for the constant (o = 61 + 1)

€ (0,7).

~ _ B 1
T = =0 (T%.5) .
KT ) = Cenot™ o gyt

Finally, let us check (105)). For this purpose, we will use property (116]). One has,

. _ . T_EO(T7B)_91+1
Tlggl+ eo(T)8) =T, Tlgg+ T2 2327
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and, then,

: . aofT :
\ Tn (K(T =1 — (01 +1) lim TIn(T —eo(T
e T 00 = g, Sy~ D g T =T 5)

= 2432,

This proves (116)) and ends the proof of Theorem O
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