
HAL Id: hal-04605503
https://hal.science/hal-04605503v1

Preprint submitted on 7 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cross-Validation for spatial data
Cristina Chavez-Chong

To cite this version:

Cristina Chavez-Chong. Cross-Validation for spatial data. 2024. �hal-04605503�

https://hal.science/hal-04605503v1
https://hal.archives-ouvertes.fr


Chapter 1: Cross-Validation for spatial data

Cristina Olimpia Chavez Chong

June 2024

In this chapter, we delve into the topic of spatial cross-validation, a well known
method for model assessment and parameter selection. We begin by providing
key definitions of classical cross-validation (CV) using the regression frame-
work, setting the foundation for understanding the subsequent discussions. We
also conduct a literature review to explore the main spatial cross-validation
methods proposed in the field. Furthermore, we highlight the main drawbacks
associated with each method, shedding light on the challenges and consider-
ations researchers face when implementing spatial cross-validation techniques
and serving as motivation and starting point for the rest of the thesis.

1 Statistical framework

Let us recall some basics of cross-validation. We consider some sample Dn =
{(Xi, Yi), i = 1, . . . , n}, with (Xi, Yi) i.i.d., where for i = 1 to n, Xi ∈ Rp

(X1,i, . . . , Xp,i) and Yi ∈ R is the variable of interest. Under the general regres-
sion setting we write ,

Yi = f(Xi) + εi (1)

Here f is an unknown regression function and εi is the error term. The goal
is to estimate the function f and assess the goodness of fit; if we are interested
in forecasting, we wonder how reliable are the predictions and it is essential to
assess the risk of the estimator leading to these predictions. This is achieved
by minimizing the predictive risk of f given a certain loss function (or cost
function) l,

R(f) = E[l(f(X),Y(1))] (2)

where Y(1) is an independent copy of Y.
From now, let us consider the framework of linear regression and write again

(1) as
Yi = Xiβ + εi, i = 1, . . . , n (3)

where β is a (p + 1)-dimensional vector of parameters to be estimated. Using
matrix expression, equation (3) can be written as,

Y = Xβ + ε (4)
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where Xi is a vector of p covariates and the constant, Y = (Y1, . . . , Yn)
T, we

will denote by AT the transpose of a matrix from now on, X is a n × (p + 1)
matrix and ε = (ε1, . . . , εn)

T.
Typically l is the quadratic loss function and the risk (2) is defined by

R(β) = E[∥Y(1) −Xβ∥2] (5)

and for an estimator β̂, the associated risk is

R(β̂) = E[∥Y(1) −Xβ̂∥2]. (6)

Let us also define the empirical risk

Rn(β̂) =
1

n

n∑
i=1

(Yi −Xiβ̂)
2. (7)

It is interpreted as the mean prediction error on the sample Dn. The empirical
risk is an unbiased estimator of the true risk, meaning that for the estimator β̂,
the expected value of the empirical risk is equal to the true risk:

E[Rn(β̂)] = R(β̂) (8)

The objective in model selection problems is to find the parameter that
minimizes the empirical risk, whereas in model assessment, the goal is to ac-
curately estimate this risk. Among the various techniques for risk estima-
tion, cross-validation is particularly favored for its universality in data-splitting.
This method fundamentally assumes that the data are identically distributed
and that the training and validation sets are independent. Therefore, cross-
validation’s versatility makes it suitable for nearly any model assessment sce-
nario. In the following section, we will explore the main cross-validation methods
and their associated risk estimates.

1.1 Classical Cross-validation

We start by the so-called hold-out procedure. Let us divide the sample set
Dn into two separated independent non-empty subsets Dt

n and Dv
n such that

Dt
n ∪ Dv

n = Dn and Dt
n ∩ Dv

n = ∅. Dt
n is called the training set and is used to

estimate; Dv
n is called the validation set and is used to estimate the risk.

We estimate β by β̂t using observations lying in Dt
n, typically by minimizing

1

Card Dt
n

∑
(Xi,Yi)∈Dt

n

(Yi −Xiβ)
2.

Note that we could we write β̂t
n instead of β̂t to maintain an easier notation.

Then we test the model’s prediction ability induced by β̂t by computing the
hold-out empirical risk, defined by

Rv
n(β̂

t) =
1

Card Dv
n

∑
(Xi,Yi)∈Dv

n

(Yi −Xiβ̂
t)2, (9)
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We note here that the hold-out empirical risk depends on how the data has been
split into the training and validation sets.

TheK-fold cross-validation algorithm is closely related to the hold-out method.
It partitions Dn into K subsets {D1, . . . ,DK}, the observations being randomly
assigned to each subset, but ensuring that the cardinals of the subsets are more
or less equal. For m = 1, . . . ,K, successively, the hold-out risk (9) is calcu-

lated on Dv
n = Dm, β being estimated by β̂tm on Dt

n =
⋃

i ̸=m Di. The K-fold
cross-validation risk is the average of the hold-out risks:

RKCV
n (β̂) =

1

K

K∑
m=1

Rvm
n (β̂tm). (10)

K-fold cross validation is usually preferred to hold-out because it gives the
opportunity to train the model on K training-validation subsets splits. This
provides better indication of how well the model behaves on unknown data.
Moreover it is shown that the estimates obtained by minimizing (10) improve
in terms of both bias and variance compared to the ones obtained via simple
hold-out (see for instance [1]).

When K = n, K-fold is called leave-one-out (LOO). In each iteration of
LOO, one observation becomes the validation set and the remaining n − 1 ob-
servations are used for training the model. Then we obtain, for m ∈ {1, . . . n},
Dtm

n = {(Xm, Ym)}c the complementary subset of the singletonDvm
n = {(Xm, Ym)}

and

RLOO
n (β̂) =

1

n

n∑
m=1

Rvm
n (β̂tm) =

1

n

n∑
m=1

(Ym −Xmβ̂tm)2. (11)

1.2 What can be difficult for spatial data?

As stated in the first law of geography and fundamental principle in geostatisti-
cal analysis according to [2], ”Everything is related to everything else, but near
things are more related than distant things”.

There are two main drawbacks when adjusting a model using data with
internal dependence structures:

• Non-independence of the residuals in the context of regression, which vi-
olates the critical assumption present in many models and methods, see
[3].

• Overfitting to the dependence structure. It refers to a scenario where a
model inappropriately captures the residual variation due to structural
dependencies, rather than the actual signal. This occurs when the model
confounds the effects of covariates with the spatial dependencies present in
the residuals. In essence, the model might attribute variations that are due
to inherent dependencies in the data to one or more explanatory variables.
This misattribution can obscure true relationships and mask the non-
independence of residuals, leading to a misunderstanding of the underlying
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model’s adequacy. Additionally, this type of overfitting complicates the
detection of model misspecification. Since the dependence structure is
absorbed into the covariate effects, standard diagnostic tests that check
for the independence of residuals may not reveal any issues, thereby hiding
the underlying problems in model specification.

The standard statistical approach to account for spatial dependence in data
is to use parametric models that incorporate the corresponding dependence
structure, as exemplified in [4]. However, in practice, the use of such models
can suffer from specification error and structural overfitting, leading to poor
performance in model evaluation. Therefore, to address these issues, there is a
need for robust methods for validation, selection, and assessment of predictive
accuracy in models that involve dependent data.
As previously discussed, classical cross-validation involves repeatedly dividing
the data into independent training and validation sets. This partitioning is
typically performed at random, which becomes problematic in the presence of
dependence structures among the data. Such scenarios often lead to models that
appear to perform well, but yield overly optimistic predictions for the users.

[5] recently showed that CV with random selection of the validation set
can provide less biased estimates of the root mean squared error (RMSE) than
Spatial Leave-One-Out and Spatial Blocked Cross-Validation, which are cross-
validation procedures adapted to spatial data to be defined later on, when the
sample data adequately represent the prediction area, for example, when sam-
ples are uniformly distributed across the prediction area. However, ensuring
that the available data accurately represent the prediction locations can be chal-
lenging in practice. This difficulty is compounded by the tendency for samples
to exhibit spatial clustering, for example [6] note that air quality observations
are usually clustered in urban regions. This phenomenon of clustered sampling
is especially prevalent on a global scale as mentioned by [7]. When data are
clustered, the regions from which samples are collected tend to be overly repre-
sented. This leads to an under-representation of other regions in the prediction
locations as shown by [8]. This is a commonly observed feature in spatial data;
examples can be found in various fields, like ecology (see for instance [9]), air
quality research ([10]), or soil data analysis ([11]).

Also, a good prediction model will likely be needed to be applied to new
locations, this means that it need to be able to extrapolate. In our work the
objective is not to test the extrapolation ability of models, for example we will
not consider kriging.

Several approaches have been proposed to circumvent the limitations inher-
ent in classical cross-validation when applied to spatial data. Before defining
them precisely, let us introduce the basic principle of spatial cross-validation.

Let us consider a spatial domain Sn = {s1, . . . , sn} ⊂ Rd, where our sample
data Dn = {(X(si), Y (si)) | si ∈ Sn} is collected. Spatial CV needs to redefine
the partitions within this domain.

The core modifications revolve around the principle of ”point separation”,
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that is, strategically removing observations from the training set to achieve ’in-
dependence’ between the training and validation sets. We do this by considering
three spatial domains, the validation domain, the training domain and one that
separates them enough to achieve (more or less) independence between them.
Let us note h the necessary distance between the validation domain and the
training domain that satisfies the independence assumptions. Specifically, for
a chosen validation domain Sv

n ⊂ Sn, we delineate a new subset of sites SD
n,h

defined by SD
n,h = {sj /∈ Sv

n| ∃ si ∈ Sv
n : d(sj , si) ≤ h}. We shall call this domain

the ”dead zone”. The remaining sites compose the training domain St
n,h. This is

the set of all sites not in either Sv
n or SD

n,h, symbolized as St
n,h = Sn\(Sv

n∪SD
n,h).

Let us note that the distance h is pivotal therefore its determination is one of
the objectives of this dissertation.

The process can be algorithmically outlined as follows. Considering we have
determinated h , we proceed with the m-th iteration of the cross-validation
procedure in three steps:

1. Select the validation set: We first select the validation domain Svm
n for

this iteration, and thus we define the validation setDvm
n = {(X(si), Y (si)) |

si ∈ Svm
n }.

2. Establish the ”dead zone”: SDm

n,h .

3. Define the training set: The corresponding training set is then Dtm
n =

{(X(si), Y (si)) | si ∈ Stm
n,h}, where Stm

n,h is the training domain for this
iteration.

It is important to note that the specific structure of the validation domain is
not defined here. However, once the distance h is determined, the process for
selecting the ”dead zone” and the training domain remains consistent. This
implies that the various adaptations of principal cross-validation methods can
be distinguished by how they define the validation domain. The framework
described before is particularly tailored for the isotropic case, wherein distances
and separations are uniformly defined in all directions. Consequently, a single
value of h suffices to delineate the minimal separation requisite between the
validation and training sets to guarantee their independence. In the context of
anisotropic scenarios, where the strength of the spatial dependence vary with
direction, a simplistic approach with a single value of h may not suffice. Instead,
a more nuanced approach is required, potentially involving two or more values
of h to accurately capture the differences in spatial relationships. Figure1,
illustrates the ”dead zone” taken around one point in the case of anisotropy
in horizontal and vertical directions and in the isotropic case. On the left, the
elliptical blue contour delimits a ”dead zone” surrounding a central point under
anisotropic conditions. We assume that the dependence is expressed differently
in the vertical and horizontal directions, therefore one has to determine both h1

and h2. In contrast, the ”dead zone” under isotropic condition is delimited by
the red circular contour, necessitating only the radius h.
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Figure 1: Example of ”dead zone” under anisotropic and isotropic conditions.

We present hereafter the adaptations of main CV procedures to the spatial
context.

2 Spatial cross-validation methods

2.1 Spatial leave-one-out

We start by presenting Spatial leave-one-out (SLOO), which will be the main
method that we shall use later in the dissertation. [12] presented this spatial
cross-validation procedure for model selection purposes. Back in 1994, [13]
introduced a modification of leave-one-out cross-validation to deal with general
stationary data, they called it h-block cross-validation and it contains the basic
ideas behind spatial leave-one-out. As said before, the main idea of SLOO is
to remove optimistic bias from the training set due to spatial dependece by
omitting data points ”close” to the one held out for validation from the training
set, see figure 2.

Let us precise the Spatial leave-one-out procedure in our regression frame-
work and under the assumption of isotropy. Let us assume that we the know
the distance h required to satisfy independence between validation and training
sets. At the m−th iteration of SLOO only one site is selected as the vali-
dation domain Svm

n = {sm} and Dvm
n = {(X(sm), Y (sm))} is the validation

set. We define the dead zone around {sm} as a neighbourhood of radius h,
SDm

n,h = {sj ∈ Sn|j ̸= m and d(sj , sm) ≤ h)}; the remaining points form the

training domain, Stm
n,h = {sj ∈ Sn : d(sj , sm) > h} and then the corresponding

training set is Dtm
n = {(X(sj), Y (sj))|sj ∈ Stm

n,h}.
The predictive empirical risk is given by

RSLOO
n,h (β̂) =

1

n

n∑
m=1

Rvm
n (β̂tm

h ) =
1

n

n∑
m=1

(Y (sm)−X(sm)β̂tm
h )2 (12)
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Figure 2: Dataset partition for one iteration of spatial leave-one-out (SLOO)
with buffer of radius h = 8

where we note β̂m
h the estimator computed on the training set Dtm

n,h, whose
expression is,

β̂m
h =

(
XT

m,hXm,h

)−1
XT

m,hYm,h, (13)

with Xm,h and Ym,h denoting respectively the matrix X and the vector Y

whose elements related to Svm
n ∪ SDm

n,h have been deleted.
The spatial leave-one-out cross-validation method is widely used in practice and
has been shown to produce reliable estimates of predictive error. Many works
have provided evidence of its superiority to ordinary LOO cross-validation in
the spatial context. For example, [14] found that SLOO provided the most unbi-
ased estimates of predictive error across a range of sample sizes when compared
with ordinary K-fold CV and LOO cross-validation. [15] also provided evidence
of the superiority of SLOO when compared to LOO when modelling mapping
seabed sediments using random forest.
Given its popularity, several extensions and modifications have been proposed
to improve its performance and applicability in different settings. [15] proposed
a method called spatially resampled leave-one-out cross-validation which ex-
tends the SLOO approach by considering a spatial buffering procedure not only
around the validation domain but also from each point on the training domain,
this ensures that no adjacent points are used for model fitting or validation.
This modification enhances the method’s ability to account for spatial auto-
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correlation and avoid biased estimates of model performance. [16] proposed
a new method for map validation called Nearest Neighbour Distance Match-
ing (NNDM) LOO CV. The NNDM algorithm refines the LOO cross-validation
process for irregularly distributed locations. At each iterations they consider
the distance of the validation point to its nearest neighbour.

2.1.1 Limitations

SLOO inherits two limitations from the classical leave-one-out method. Firstly,
it can be computationally expensive, especially when dealing with large datasets
or complex training models and learning algorithms. The process of iteratively
training and validate the model for each individual point in the dataset can
require significant computational resources.
Furthermore, SLOO tends to exhibit high variance in the hold-out estimations.
This is because the validation set in LOO and SLOO consists of only one data
point, leading to increased variability in the performance metrics, compared to
methods that use larger validation sets.
As underlined before, the efficacy of critically depends on the accurate selection
of the spatial buffer parameter, h. Selecting an optimal h value requires a care-
ful balance: it should be large enough to maintain sufficient observations in the
training set for effective model calibration, yet adequately expansive to achieve
the necessary independence from the validation set. Several researchers have
offered different strategies for setting this spatial parameter. roberts2017cross
recommend determining the separation distance by the range at which resid-
ual spatial autocorrelation is nullified. le2014spatial and telford2009evaluation
propose to set h equal to the range value of the variogram calculated from the
model’s residuals. Meanwhile, karasiak2022spatial estimate the spatial depen-
dence at distance h using Moran’s Index:

I(h) =
n

S0

∑n
i=1

∑n
j=1 wi,j(Y (si)− Y )(Y (sj)− Y )∑n

i=1(Y (si)− Y )2
(14)

where wi,j = 1 if d(si, sj) = h and equals 0 otherwise, and S0 =
∑n

i=1

∑n
j=1 wi,j .

They plot Moran’s I as a function of the distance h and they advise to choose the
threshold at which the index is not significant to ascertain the appropriate sep-
aration distance. This method can be very time-consuming due to the necessity
of computing pairwise distances for all data points and to repeatedly update the
binary weight matrix W for different values of h. Additionally, each calculation
of Moran’s I requires complex aggregation and summation across large datasets,
and the need for iterative computation to identify non-significant distances. Sta-
tistical significance testing of Moran’s I, which may include permutation tests,
further increases the computational demand, making the process particularly
challenging for large spatial datasets.

Overall, while SLOO offers a spatially aware approach to cross-validation, it
is important to consider its computational demands, the increased variance of
hold-out estimations, and the careful selection of the spatial bandwidth param-
eter to ensure its effectiveness in model evaluation and prediction.
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Figure 3: Dataset partition for one iteration of Spatial K-fold cross-validation
with buffer radius h = 8 and K = 200

2.2 Spatial K-fold cross-validation

Spatial K-fold cross-validation (SKVC), is a modified K-fold CV method pro-
posed by [17],
We follow the notations of section 1.2. Let K be the number of folds, the set
{Sv1

n , . . . ,SvK
n } is the set of CV folds defined such that for each m : 1 ≤ m ≤ K,

the locations in Svm
n are selected randomly, Card (Dvm

n ) = nm, [n/K] ≤ nm ≤
[n/K] + 1), ∩mSvm

n = ∅ and ∪mSvm
n = Sn.

In the m−th step of the SKCV algorithm, given validation domain Svm
n , the set

of dead points is SDm

n,h = {sj /∈ Svm
n |∃ si ∈ Svm

n : d(sj , si) ≤ h} and the training

domain is Stm
n,h = {s ∈ Sn|s /∈ Svm

n ∪ SDm

n,h }.
The SKCV predictive empirical risk is given by:

RSKCV
n,h (β̂) =

1

K

K∑
m=1

Rvm
n (β̂tm

h ). (15)

where we β̂tm
h is the estimator computed on the training set Dtm

n,h. Figure 3
illustrates an example of SKCV. Sn is a lattice of size n = 80× 60, we consider
K = 200 folds of cardinal 24 and h = 8

Significant research related to SKCV has focused on modifying the type of
distance used to define the ”dead zone”. For instance, [18] considers spatially
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disjoint partitioning for image data, which accounts for topological constraints
arising from the spatial arrangement of features.

Furthermore, [19] argue that the Euclidean distance may not be the most
suitable measure for determining the deadzone in urban environments. As an
alternative, they recommend calculating the ”dead zone” based on road distance
and travel time, providing a relevant approach for the complex spatial dynamics
of urban areas.

2.2.1 Limitations

When utilizing spatial K-fold cross-validation, one potential drawback is the
removal of a large number of training data points. This can introduce an addi-
tional pessimistic bias in the prediction performance. To investigate this bias,
[17] conducted a study where they randomly removed the same number of points
as those removed during SKCV and compared the results. Their findings in-
dicate that random removal of training data points has a negligible impact on
prediction performance compared to spatial-based data removal.
In addition to the issue of data removal and similarly to SLOO, the performance
of SKCV is also influenced by the selection of the buffer radius.
Furthermore, the number of folds used in the SKCV procedure can exacerbate
the challenges mentioned above. Depending on the size and spatial distribu-
tion of the data, it is possible that a significant portion of the training data
is removed due to the combined effect of dead zones. Therefore, selecting an
appropriate number of folds is crucial to strike a balance between capturing spa-
tial dependencies and maintaining an adequate sample size for model training.
To optimize the performance of SKCV, careful consideration should be given to
both the selection of buffer radius and the number of folds.

2.3 Blocked cross-validation

A well known spatial cross-validation technique is blocked cross-validation. The
technique is similar to SKCV but the locations in each fold are not selected
randomly but chosen following a block pattern. Partitioning the spatial domain
into blocks for cross-validation is particularly advantageous when the objective
is to identify causal predictors or to forecast within novel dependence frame-
works. This is because each block can encapsulate a unique segment of the
spatial domain, characterized by potentially distinct features. [20] conducted
a survey on blocked cross-validation for dependent data. They concluded that
besides the common objectives of spatial cross-validation, block cross-validation
performs well to measure the ability of a model to extrapolate to independent
data.
This spatial cross-validation method can be considered with and without spa-
tial buffering, in what follows we will refer to Spatial blocked cross-validation
(SBCV) when considering h > 0 and blocked cross-validation otherwise (BCV).
Let B be the number of blocks, we can keep the same notation as for SKCV with
K = B. The difference is that the random configuration of the folds is replaced
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Figure 4: Dataset partition for one iteration of Spatial blocked cross-validation
with buffer of radius h = 8 and square block of size 4× 6.
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by blocks consisting of neighbour locations. Figure 3 illustrates an example of
SBCV. Sn is a lattice of size n = 80 × 60, we consider B = 200 blocks of size
6×4 and h = 8. At this point it is worth mentioning that although, the number
of locations included in the validation set in figures 3 and 4 is the same, the
cardinal of SD

n,h is 310 for SBCV and 3074 for SKCV.
The risk estimate for SBCV is given by:

RSBCV
n,h (β̂) =

1

B

B∑
m=1

Rvm
n (β̂tm

h ). (16)

It is important to note that unlike SBCV, the risk estimate for BCV, RBCV
n (β̂),

does not depend on h, because there is no ”dead zone”.
In the context of SBCV, the structuring of partitions ensures that the quan-

tity of points encompassed within the ’dead zone’ is considerably less than that
observed in SKCV. If we compare figures 3 and 4 this difference becomes obvi-
ous, though the validation domain in both methods include an identical number
of locations (24). This distinction underscores the methodological advantage of
SBCV in minimizing the impact of the ”dead zone”, thereby enhancing the in-
tegrity of the validation process. Blocked cross-validation can be seen as a large
class of cross-validation methods due to the variety of ways to define blocks. [20]
discusses oblong blocks as well as a checker board structure for a hold out kind
of spatial cross-validation. [21] proposes a blocked cross-validation with and
without spatial buffering where the blocks are constructed using the K-means
algorithm. Another variant is to consider more than one block at each iteration
of the algorithm.

2.3.1 Limitations

When employing blocking techniques, it is important to consider the poten-
tial implications on the characteristics of the data. Grouping similar structural
units together through blocking may inadvertently remove unique features and
introduce extrapolation issues, especially in situations where the models are in-
tended to interpolate, see for example [22].
An additional critical consideration in SBCV involves determining the optimal
block size for regular blocks. roberts2017cross recommend estimating a vari-
ogram of the dependent variable and adopting its range as the block size. Con-
versely, in the blockCV package, valavi2019blockcv suggest selecting the block
size based on the median of the ranges obtained from the variograms computed
on the covariates.
Furthermore, defining effective regular blocks can be challenging when dealing
with data clusters resulting from irregular sampling patterns. In such scenarios,
alternative approaches can be considered. One solution involves using irregu-
larly arranged but similarly sized blocks, which can help capture the spatial
structure while accounting for the data distribution. Another approach is to
employ irregularly shaped blocks, tailored to match the spatial clustering of the
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data, providing a more accurate representation of the underlying spatial pat-
terns.
In summary, when applying blocking techniques, it is crucial to balance the size
and the structure of the blocks to minimize the loss of unique characteristics,
utilize as much data as possible for training, and consider alternative strategies
when dealing with irregular data clusters.

2.4 Comparison between spatial cross-validation strate-
gies

We conduct a simulation study to compare the different cross-validation esti-
mates of the empirical risk. Let Sn be a rectangular lattice of size 80 × 60,
with n = 4800 sites. We consider a non stationary trend, linked to the spatial
location on the domain. We consider the regression model

Y (s) = X(s)Tβ + ε(s), (17)

ε is generated according to a zero-mean Gaussian spatial process model with
isotropic (in both vertical and horizontal directions) exponential covariance
function defined by C(h) = σ2 exp (−h

θ ). We choose this covariance functions
because it is a well known model. We consider σ2 = 1, and different values of
θ = (3, 6, 9, 12, 15, 20) which determines the strength of the spatial dependence.
For the trend we consider the following design; denoting s = (s1; s2) ∈ Sn, we
define

X(s)T = (1; s1 − 40; s2 − 30)

We calibrate β = (β0, β1, β2)
T = (0.9, 1/32, 1/24), β1, β2 are chosen following

the procedure described by [23]. It ensures that the deterministic term exhibits
a comparable empirical variance to the one of the error term. The value of β0 is
selected to obtain a similar coefficient of variation as β1 and β2. Let us note that
in our model, though the expectation of Y (s) is not constant, the covariance
between Y (si) and Y (sj) depends only on d(si, sj). Figure 5 shows a realization
of Y with θ = 9.

Our estimation scenario ignores the spatial dependence structure; we esti-
mate the empirical risk associated to the ordinary least squares (OLS) estimator
by the different cross-validation methods.

We consider the following cross-validation methods:

• Ordinary Leave-one-out

• Ordinary K-Fold Cross Validation: The dataset is divided into K =
200 folds.

• Spatial Leave-one-out: Here we consider different buffer sizes of h ∈
{5, 10, 15, 20}.

• Spatial K-Fold Cross Validation (SKCV): We keep K = 200 and
h ∈ {5, 10, 15, 20}.
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Figure 5: Simulated data generated following model 17 with θ = 9

• Blocked Cross Validation (without spatial buffering): Here we
consider B = 200 blocks of size 6 × 4 which aligns with the number of
folds and the size of the validation set in each iteration with those used in
KCV. And later also consider block sizes 8× 12, 15× 16 and 20× 20.

• Spatial Block Cross Validation: We add spatial buffering around each
block with h ∈ {5, 10, 15, 20}.

The cross-validation estimates of the risk are compared to an ideal risk.
Given M = 100 independent realizations Y (1), · · · , Y (M) of Y , let Y (l) be the
l−th copy. We define the empirical ideal predictive risk for Y (l) as

RI(l)
n =

1

M − 1

M∑
j=1
j ̸=l

1

n

∑
s∈Sn

(Ŷ (l)(s)− Y (j)(s))2, (18)

where Ŷ (l)(s) = X(s)β̂(l) with β̂(l) = (XTX)−1XTY(l) . This ideal error is
obtained by the principle of predicting onto the other independent realizations.

Let’s first compare SBCV and SKCV with respect to the size of the ”dead
zone” SD

h and the training domain St
h for a fixed size of the validation domain

Card(Sv
n) = 24. Table 1 gives the average of the number of points and the

associated percentage with respect to n = 4800 for both subsets and for different
buffer sizes. We observe that on average, for SKCV a staggering 93.61% of the
spatial domain is categorized as the ”dead zone” for h = 15. This occasionally
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leads to scenarios where the training set is entirely vacated. Even at h = 10,
the model is trained on merely an average of 25% of Sn, a stark contrast to
SBCV’s utilization of approximately 91.15% of Sn for training, despite Sv

n being
equivalently sized as in SKCV. This disparity highlights the potential limitations
of SKCV in spatial contexts and accentuates the efficiency of SBCV in leveraging
available data for model training.

Table 1: Comparison of sizes of dead zone and training domain for SBCV and
SKCV for Card(Sv

n) = 24, showing percentages of spatial domain n = 4800

Method h ave(Card(SD
n )) (%) ave(Card(St

n)) (%)

BCV
0

0 (0%) 4776 (99.5%)
KCV 0 (0%) 4776 (99.5%)

SBCV
5

143.7 (2.99%) 4632.3 (96.51%)
SKCV 1502 (31.29%) 3272 (68.19%)

SBCV
10

400.96 (8.35%) 4375 (91.15%)
SKCV 3588 (74.5%) 1188 (24.75%)

SBCV
15

746.72 (15.56%) 4029.28 (83.94%)
SKCV 4493.14 (93.61%) 282.87 (5.86%)

SBCV
20

1157.04 (24.11%) 3618.96 (75.39%)
SKCV 4713.56 (98.20%) 62.45 (1.3%)

Figure 6 showcases the risk estimates from various estimation methods and
the ideal risk for the different spatial dependence strengths indicated by θ. We
considered different buffer sizes h as said before, h = 0 corresponds to the meth-
ods without spatial buffering.
Across all examined values of θ, it is evident that the Leave-One-Out, K-fold
Cross-Validation and Blocked Cross-Validation without spatial buffering meth-
ods yield the most optimistic risk assessments. This consistent optimism in risk
estimates may suggest a potential underestimation of true risk in non-spatial
cross-validation methods.

As θ increases, we see a corresponding rise in both mean and variance of
the ideal risk, signaling the mounting challenges in modeling the data with
linear regression using OLS estimation amidst stronger spatial dependencies.
Analogously, the risks estimated by (spatial and non-spatial) cross-validation
methods increase in variance with θ.

As expected, the need of a spatial aware cross-validation method becomes
more obvious as θ increases as well as the necessity of a larger buffer size. Par-
ticularly at higher values of θ, we observe that none of the estimation methods
manage to meet the ideal risk, underscoring a collective limitation in the face
of high spatial dependence. Indeed we could not consider larger buffers because
we would lose too many points in the ”dead zone” and consequently keep not
enough points for accurate training. In particular, we note the computational
limitation encountered with Spatial K-Fold Cross-Validation at higher values
of h, specifically h = {15, 20}, where the training set was rendered empty post
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the exclusion of validation and dead zone areas.
Upon examining the spatial cross-validation methods more closely, we note

an upward trend in risk estimates as h increases. Additionally, the variabil-
ity of these estimates grows with h, indicating greater predictive uncertainty at
larger spatial separations for a constant θ. Comparing SLOO and SBCV, the re-
sults are generally similar, with SLOO typically providing marginally lower risk
estimates than SBCV for the same h, but exhibiting slightly reduced variabil-
ity. This resemblance suggests that both methods react similarly to the spatial
structure of the data for the given block size. These findings are supported by
Figure 7, which illustrates the accuracy of risk estimates for SLOO and SBCV
relative to the ideal risk, computed as follows:

δ(h) =

(
1

M

M∑
l=1

(R(l)
n,h −RI(l)

n )

)2

(19)

The variance of these estimates in relation to their mean risk is also analyzed,
calculated by:

σ2
Rn,h

(h) =
1

M

M∑
l=1

(
R(l)

n,h − R̄n,h

)2
(20)

where R̄n,h = 1
M

∑M
l=1 R

(l)
n,h. These two measures are presented in the spirit

of a bias-variance decomposition, although δ(h) is not formally a bias. We still
observe the increase of variance with h and the necessity of introducing spatial
buffering in cross-validation, especially for large values of θ. Also, SBCV has
generally higher variance and lower accuracy than SLOO.

To further explore the influence of block size, we examine four distinct con-
figurations: block sizes of 4× 6, 8× 12, 16× 15, and 20× 20, which respectively
comprise 1%, 2%, 5%, and 8% of the total sample size. Figure ?? displays the
risk estimates from SBCV for these block sizes alongside the ideal risk, catego-
rized by varying levels of spatial dependence denoted by θ. A consistent trend is
observed where risk estimates increase with the enlargement of block size. No-
tably, in scenarios with minimal spatial dependence (θ = 3), the risk estimates
for the largest block size (20 × 20) are excessively pessimistic. Furthermore,
the variance of these estimates tends to increase with block size. Finally, the
necessity of using spatial buffering remains present, especially as the strength
of spatial dependence intensifies, even for the largest block size considered.

In summary, SKCV should not be considered due to the loss of observations.
SBCV and SLOO emerge as superior methods for risk estimation, producing
results that align more closely with the ideal risk. When selecting between
these two, it is crucial to recognize the importance of appropriately determining
h. A first point of distinction lies in computational efficiency; SBCV offers
a notable reduction in computation time compared to SLOO, requiring only
200 iterations against SLOO’s 4800, which translates to a significant decrease
in computational demand. However, for SBCV, one needs to determine the
appropriate shape and block size, which serves as an additional parameter and
needs to be selected.
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Figure 6: Risk estimates derived from 100 replications of the response variable
Y , compared across different cross-validation methods. The results are grouped
according to the value of the parameter θ, of the exponential covariance function
in the simulation. For h = 0 SLOO, SKCV and SBCV become LOO, K-fold
cross-validation and block cross-validation.17



Figure 7: Comparative accuracy of risk estimates for SLOO and SBCV relative to the ideal risk across varying values of θ.
The plot also illustrates the variance of these estimates in relation to their mean risk.
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Figure 8: Risk estimates from SBCV based on 100 replications of the response
variable Y , compared across various block sizes and against the Ideal risk. Esti-
mates are grouped by the parameter θ from the exponential covariance function
used in the simulation.
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