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Abstract

Quantum annealing emerges as a viable solution for solving complex problems
such as the resource-constrained project scheduling problem (RCPSP). We ana-
lyze 12 Mixed Integer Linear Programming (MILP) formulations for solving the
RCPSP, and convert the most qubit-efficient formulation into a Quadratic Uncon-
strained Binary Optimization (QUBO) model. We solve this QUBO model using
the D-Wave Advantage 6.3 Quantum Annealing machine and compare its perfor-
mance with that of classical computer solvers. This pioneering effort marks the
first use of quantum annealing for RCPSP, showing promising results, especially
for smaller to medium-sized instances.

Keywords: Resource Constrained Project Scheduling Problem, Quantum
Optimization, Quantum Annealing
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Introduction

In the realm of computational methodologies, quantum computing has emerged as a
groundbreaking approach, promising revolutionary solutions to intricate optimization
problems. At the forefront of this second quantum revolution is the paradigm of quan-
tum computing, a computational architecture harnessing the principles of quantum
mechanics. At the core of quantum computation lies the quantum bit, or qubit, which
exhibits unique properties such as superposition and entanglement, paving the way
for unprecedented computational capabilities. Currently residing in the NISQ[1] era
(Noisy Intermediate-Scale Quantum), quantum computing is marked by its exploration
of limited-size and noise-sensitive quantum machines. The NISQ era acknowledges
the ongoing challenges in quantum hardware but emphasizes the potential for valu-
able research and exploration of quantum advantages, even within the constraints of
current technology.

In the landscape of optimization, two prominent approaches dominate the quan-
tum computing arena. Universal Quantum computers, operating on the logic circuit
gate model, with proven advantages in algorithms such as Shor’s [2], Grover’s [3] and
Creemers et al.[4, 5], but with limited sizes (as of 2023 the biggest Universal Quan-
tum computer has 433 qubits [6]). On the other hand, adiabatic quantum computers,
grounded in the principle of adiabatic quantum computation, exhibit promising exper-
imental results, particularly in optimization problems leveraging the ability to map
them as energy minimization problems and the natural tendency of the universe to
seek states of minimum energy.

Diverging from gate-based quantum computers, quantum annealers carve a niche
with a more focused application scope. These systems boast a higher qubit count
(+5000) and enhanced noise resilience, fueling extensive research from both industry
and academia. The versatility of quantum annealers is illustrated in their application
to complex problems like graph partitioning[7, 8], transportation problems[9][10], Job-
Shop Scheduling Problem (JSSP) [11, 12], and many others applications[13][14][15][16].

This paper delves into the realm of adiabatic quantum algorithms, with a spe-
cific focus on quantum annealing, to tackle one of the most challenging NP-Hard
scheduling problems—Resource Constrained Project Scheduling Problem (RCPSP).
The significance of this choice arises from the inherent complexity of the problem, its
broad applicability in projects’ makespan minimization, the non-trivial nature of its
formulation as input of the quantum machine. Notably, this work represents the first
exploration of applying quantum annealing techniques to the RCPSP.

The primary objective of this research is to present a comprehensive analysis
of the potential and limitations of the current Quantum Annealing technology. Our
study meticulously outlines a step-by-step approach to solving the RCPSP on the
cutting-edge D-Wave Advantage quantum annealer featuring 5640 qubits. Through
this exploration, we aim to contribute not only to the theoretical understanding
of quantum annealing but also to the practical application of this technology in
addressing real-world optimization challenges. Fig. 1 provides a comprehensive visual
representation of the methodology and key processes employed in this study.
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Fig. 1: Visual Abstract: A schematic overview of the methodology employed in this study

This paper provides an in-depth exploration of quantum annealing’s theoretical
and practical aspects, specifically in relation to the RCPSP. Initially, we examine the
quantum annealing fundamentals, focusing on the problem-embedding process into
the annealer’s qubit graph. We then introduce the RCPSP and explain the methods
used in this study, including the selection of instance generators from existing litera-
ture, the adoption of metrics like “Time-to-Target”[17] (TTT) and Atos q-score, and
strategies for utilizing a quantum annealer for RCPSP (annealing time, shots, reverse
schedule). The Results section, preceding the conclusion on open research questions,
presents the first QUBO model of RCPSP, derived from an analysis of 12 existing
MILP formulations. Subsequently, we conduct an extensive computational experiment
to assess the efficacy of quantum annealing in solving RCPSP, discussing key factors
such as solution sampling, annealing duration, chain strength, and the use of advanced
controls like Reverse Annealing.

Quantum Annealing and D-Wave machines

Quantum Annealing (QA) stands as a quantum metaheuristic designed to tackle com-
binatorial optimization problems by leveraging the principles of quantum mechanics
[18, 19]. This approach draws inspiration from simulated annealing [20], a classi-
cal metaheuristic, where a system systematically cools to reach a state of minimum
energy. In quantum annealing, quantum phenomena such as superposition and quan-
tum tunneling [21] are harnessed to navigate through local minima efficiently, aiming
to pinpoint the global minimum of a cost function. The efficacy of quantum annealing
compared to its classical counterpart can vary depending on the specific problem and
hardware employed. The literature offers both theoretical proofs [18], highlighting the
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advantages of quantum annealing, as well as contrasting perspectives—particularly in
comparison to Simulated Annealing [22][23][24].

At the core of quantum annealing lies the profound concept of the natural ten-
dency of the universe to seek systems of minimum energy. This method is grounded
in the ”adiabatic theorem” of quantum mechanics [25, 26] and the time-dependent
Schrödinger equation [27]. It describes the evolution of any quantum system, encap-
sulating the dynamics of its quantum states. The Hamiltonian, typically represented
as a matrix, encapsulates all the information about the quantized energy states avail-
able to a quantum system. The adiabatic theorem of quantum mechanics asserts that
if a quantum system undergoes a slow and continuous change in its Hamiltonian,
it will persist in its instantaneous eigenstate throughout the transformation. In sim-
pler terms, if the system initiates in its ground state and the Hamiltonian changes
sufficiently slowly, the system will maintain its ground state.

Applying the adiabatic evolution theorem to optimization problems involves initi-
ating the process with a ”simple” initial system represented by the Hamiltonian H0,
for which the ground state can be easily determined. The system is then gradually
transformed into the problem Hamiltonian H1, an energetic mapping of an optimiza-
tion problem E . At the conclusion of the adiabatic evolution, the system originally
described by H0 would have transitioned into the ground state of the problem Hamil-
tonian, representing the minimum value solution to the optimization problem E . The
QA algorithm is physically implemented using analog control devices to manipulate a
collection of qubit states, following a time-dependent Hamiltonian represented as:

H(t) = A(t)H0 +B(t)H1

This algorithm orchestrates a gradual transition from an initial ground state in H0

to a state described by the problem Hamiltonian H1. The H1 Hamiltonian mirrors the
energy function of the optimization problem, ensuring that the ground state for H1

corresponds to a minimum-cost solution to the optimization problem E . Propounded
by Farhi et al. [28], Quantum Annealing and in more general the Adiabatic Quantum
Model of Computation demonstrates that if the transition is executed slowly enough,
the algorithm will, with high probability, converge to a ground state, i.e., an optimal
solution.

Quantum Annealing D-Wave implementation

The D-Wave Quantum Annealing processors are purposefully engineered for the spe-
cific task of identifying minimum-cost solutions to the Ising Minimization problem
or, indirectly, to an isomorphic problem: the QUBO. The Ising problem, defined on a
graph G = (V,E), entails the assignment of values from {−1,+1} to spin variables si
with the objective of minimizing the following energy function H1:

H1 =
∑
i

hisi +
∑
i,j

Ji,jsisj

Where h = hi : i ∈ V denotes weights, and J = Jij : (i, j) ∈ E represents coupling
constants. In the physical context, spin variables si can be construed as magnetic
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poles, with negative Jij indicating ferromagnetic interactions and positive values sug-
gesting antiferromagnetic interactions. The optimal configuration of spin variables si
that minimizes the energy function is denoted as a ground state, while alternative con-
figurations are classified as excited states. Broadening the computational scope, Ising
problems effortlessly transformed into Quadratic Unconstrained Binary Optimization
(QUBO) problems via the equality si = 2xi−1. This modification involves associating
binary variables xi ∈ {0, 1} with spin variables si ∈ {−1,+1}.

A D-Wave Quantum Processor Unit (QPU) maintained at temperatures around a
few millikelvin exhibits quantum properties such as superposition and quantum tun-
neling. Despite the presence of a Faraday shield, the QPU remains susceptible to
interference which generally reduces the likelihood of attaining a ground state. Conse-
quently, we categorize any D-Wave processor as a heuristic solver, requiring empirical
methods for performance analysis. The current most advanced D-Wave processor
(Advantage 6.3) has more than 5000 active qubits, a qubit connectivity of 15 qubits
(qubits are not filly connected) and 35000 active couplers, which are made of micro-
scopic loops of niobium. These couplers are connected to a sophisticated analog control
system through a network of Josephson junctions [29–31]. Table 1 lists the properties
of the different topologies made available by D-Wave: Chimera, Pegasus, and Zephyr.

Table 1: Characteristics of available D-Wave Quantum Devices.

Topology Chimera Pegasus Zephyr
Device Designation 2000Q Advantage6.3 Advantage2 (Prototype)
Active Qubit Count 2041 5616 563
Connectivity Measure 6 15 20

Connectivity and Embedding

Besides noise and interference, another major challenge is qubit connectivity. In order
to solve a problem on a quantum annealer, the problem graph (QUBO/Ising) must be
mapped into the physical hardware, which has a limited number of qubits and intercon-
nections. Consequently, it may be necessary to alter the structure of the QUBO/Ising
problem to fit within the constrained topology of the quantum annealer. This involves
mapping the model onto a larger qubit graph, a critical step that stresses the impor-
tance of the machine’s inherent topology. This non-trivial process is known as ’minor
embedding’. Heuristics exist in the literature and the search for better embedding
algorithms remains an active area of research [32][33][34][35]. For this work minor
embeddings are going to be found using the available minor-miner D-Wave heuristic
[36].

Fig. 2 shows an example of the embedding process with the ”Pegasus” Topology.
During the minor embedding process when qubits are not directly connected, but the
original problem graph requires them to be, then the embedding process requires the
creation of a so called ”chain”. In this scenario, a logical variable is represented by a
chain of multiple physical qubits entangled between themselves. To maintain solution
consistency, it is imperative that all physical qubits within a chain have the same
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value once measured; if not, the chain is considered broken. The chain strength is a
parameter introducing a trade-off: if set too low, it may lead to many broken chains,
but if too high, it can impede the qubits’ ability to change states.

(a) Pegasus topology of the QPU.
(b) RCPSP problem mapped into the
QPU pegasus topology.

Fig. 2: Minor embedding process with the pegasus topology.

Anneals and Reverse Annealing

Once the minor embedding process is successfully completed, the annealing process
is initiated. While the adiabatic theorem suggests a potentially lengthy annealing
duration to ensure the system stays in the ground state, practical constraints arise
due to noise, which can elevate the system to higher energy states. Consequently,
a brief annealing is conducted and repeated multiple times in a stochastic process
that samples from the energy distribution of the problem. Determining the optimal
annealing time and the number of samples is contingent on the specific problem and
its energy distribution. Typical values fall within the range of 10 to 100 microseconds
for annealing times and 1 to 10,000 for the number of samples.

While the traditional Quantum Annealing starts from the ground state of the
”Ising Transverse field” Hamiltonian H0 and thus from an initial uniform superposi-
tion and evolves towards the target problem Hamiltonian H1, a more sophisticated
evolution approach can be applied. In Reverse Annealing (RA), the process departs
from an already available solution. Operating in reverse, RA reintroduces partial seg-
ments of H0, thereby reinstating a partial quantum superposition. This unique reverse
progression is employed to iteratively refine the initial solution [37][38][39][40].

Resource-Constrained Project Scheduling Problem

The RCPSP is perhaps one of the most extensively studied scheduling problems and
perhaps one of the easiest to describe; but despite this apparent simplicity, the RCPSP
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conceals its true complexity, as demonstrated by Blazewicz et al.[41], who categorized
it as an NP-hard problem.

This inherent complexity renders the RCPSP one of the most intractable combi-
natorial optimization problems, in fact similar to the JSSP [42, 43] the RCPSP falls
into the category of problems classified as NP-hard “in the strong sense” [44].

In essence, the RCPSP involves the scheduling of a single project comprising n real
activities, subject to precedence and resource constraints, with the overarching objec-
tive of minimizing the project makespan – the total time required for the completion
of all activities. The RCPSP is typically represented by a graph G(A, E) with each
node A = {0, 1, ..., n+1} that corresponds to the different project activities and each
edge (i, j) ∈ E equivalent to a straightforward finish-to-start precedence relationship,
which means that the start of a successor activity j must await the conclusion of it’s
predecessor activity i. Nodes 0 and n+1 serve as symbolic milestones, representing the
“project start” and “project finish,” respectively, these milestone activities are often
referred as “dummy activities”. Each activity j ∈ A has a duration pj and resource
consumption’s bj,k where k belongs to a set of renewable resource R. Each resource k
has a maximum capacity Bk.

A feasible solution to the RCPSP corresponds then to a project schedule S =
{S0, S1, . . . , Sn+1} comprised of the start times Si for each activity j ∈ A, that respects
both the precedence and the resources constraints.

An inherent characteristic of the RCPSP is the non-preemptive nature of activities,
signifying that once an activity commences, it cannot be interrupted.

Fig. 3a, depicts the graphical representation of an small RCPSP instance (known
as a network diagram) composed of three activities (plus two “dummy” activities) and
two renewable resources. The activity duration, denoted as pj , and resource consump-
tion bj,k are presented above and below each node j, respectively. Both renewable
resources have a maximum capacity of three units. Fig. 3b. shows the optimal schedule
S = {S0 = 0, S1 = 0, S2 = 1, S3 = 1, S4 = 3} for this instance.
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(a) Network Diagram.
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Fig. 3: RCPSP instance example: a) RCPSP instance graph G(A, E) 3 activities (plus “dummy” Start
and End) 2 resources b) Solution Schedule for the instance c) Resource consumption for resource 1 d)
resource consumption for resource 2.

Mixed Integer Linear Programming formulations

Given the intrinsic significance of the RCPSP, it is unsurprising that the literature
dedicated to Mixed Integer Linear Programing (MILP) formulations for the RCPSP is
both prolific and dynamic, offering a myriad of approaches. For a given optimization
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problem, multiple formulations can be devised, they can be distinguished primarily
by the formulation size, notably concerning the number of variables, secondly by the
number of constraints they involve, and thirdly by the strength of their Linear Pro-
gramming (LP) relaxation. Typically for a given problem a discernible correlation
often exists between the problem size and the quality of the LP relaxation. Tradi-
tionally it has been the case that to enhance the quality of the LP relaxation, a new
extended formulation introduces additional variables and constraints, increasing thus
the problem size. With the remarkable advancements of LP algorithms, which can
now efficiently solve instances involving millions of variables [45],[46],[47], it comes as
no surprise that, in the context of MILP formulations for the RCPSP, a significant
emphasis has been placed on advancing and refining the quality of the LP relaxations
[48, 49].

Broadly classified, formulations for the RCPSP fall into three distinct families,
as illustrated in Fig. 4. The first category encompasses time index formulations
[50–56], including works by Pritsker et al. 1969 (PRI69), Christofides et al. 1987
(CHRI87), de Sousa and Wolsey 1997 (SOUWO97), Mingozzi et al. 1998 (MINGZ98),
Klein and Kaplan 1998 (KLEIN/KAPL98), Klein 2000 (KLEIN00 1 and KLEIN00 2),
Demeulemeester and Herroelen 2002 (DEMHER02), and Bianco and Caramia 2013
(BIACAR13) . This is followed by sequence-based formulations [57, 58], exemplified
by Tamarit and Valdés 1993 (TV93) and Artigues et al. 2003 (ART03) . Lastly, the
third category comprises event-based formulations [59, 60], including works by Kone
et al. 2011 (KONE11) and Artigues et al. 2013 (ART13). An analysis by Kone and
Artigues [60, 61] reveals that sequence and event-based formulations tend to be more
compact, requiring fewer variables, while time index formulations, although larger in
scale, offer superior Linear Programming (LP) relaxations. It is noteworthy that the
majority of time index formulations tend to be binary formulations, utilizing exclu-
sively binary variables, while event and sequence-based formulations employ a mix
between integer and binary variables.
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Fig. 4: Multiple RCPSP MILP formulations reported in the literature categorized by their family type

In the context of employing a quantum annealer for solving the RCPSP, a pertinent
question emerges: among the various available formulations, which one to choose?
Specifically, which formulation aligns most effectively with the capabilities of current
commercially accessible quantum annealers? Addressing these inquiries necessitates
an investigation into the transformation of these formulations into their corresponding
Quadratic Unconstrained Binary Optimization (QUBO) form. This evaluation involves
assessing each formulation based on factors such as the resulting QUBO size, the need
for additional slack supplementary variables, and the sparsity of the QUBO graph
associated with each. These characteristics play a pivotal role in determining the
suitability of each formulation for solving the RCPSP, particularly within the confines
of Noisy Intermediate-Scale Quantum (NISQ) era quantum annealers. This study aims
to provide comprehensive insights to answer these critical questions.

Methods

In the following section we explain different aspects of the experimental methodology
followed in this study.
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RCPSP instance selection protocol

A classical optimization study related to the RCPSP would normally involved instance
froms the well-recognized PSPLIB dataset of Kolisch et al. [62, 63] or perhaps the more
recent CV dataset of Coelho and Vanhoucke[64]. Both datasets offer a plethora of hard
instances of varying sizes (number of activities, ranging from 20 to 120 activities).
However, considering the limitations on the number of available qubits in the D-wave
advantage 6.3 quantum annealer, we decided to utilize the Rangen1 instance generator
proposed by Demeulemeester, Vanhoucke and Herroelen [65, 66]. This generator allows
the creation of random instances with varying levels of difficulty.

The instances used on this work were generated following the well established
protocol proposed by Baptiste and Le Pape [67], which involves constructing both
disjunctive and cumulative instances. Disjunctive instances are characterized by dom-
inance of precedence constraints, resulting in a highly sequential schedule with limited
opportunities for parallel execution. On the other hand, cumulative instances exhibit
fewer precedence constraints, providing ample opportunities for parallelism and posing
a greater challenge for solving.

Start

1

2

3 4 End

(a) Disjunctive.

Start

1

2

3

4

End

(b) Cummulative.

Fig. 5: Baptiste and Le Pape instance types: a) The left graph corresponds to a disjunctive RCPSP
instance, dominated by precedence constraints E b) Right graph corresponds to a cummulative RCPSP
instance, with opportunities for parallelism.

The Rangen1 generator facilitates the generation of both disjunctive and cumula-
tive instances through a parameter called ”Order Strength” (OS), ranging from 0 to
1. A value of 0 indicates a fully cumulative instance as in Fig. 5b, while 1 represents
a fully disjunctive instance as in 5a. The generator also allows the tuning of resource
constraints by specifying the number of resources, along with the level of constraint for
renewable resources, this is done via a parameter called “Resource constrainedness”
(RC) that again ranges from 0 to 1 where 1 means that all activities consume the
maximum resource capacity Bk, while 0 means that there is no resource consumption
by the project activities.

In our study, we utilized Rangen1 to produce instances of the RCPSP across various
dimensions, determined by the number of activities 3, 4, 5, 6, 7, and 8, excluding
dummy activities). Within each size category, we generated three distinct instance
types characterized by Order Strength (OS) values of 0.1, 0.5, and 0.9. Each instance
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featured two renewable resources (k = 2) with a RC set to 0.5. The activity durations
pj , and resource consumption values bj,k, were constrained within the range of 1 to
2 units, to further limit the number of qubits required by the quantum annealer.
Furthermore, for every instance, the maximum resource capacity Bk was uniformly
established at 3 units.

Benchmarking metrics for quantum optimization

Benchmarking metrics play a pivotal role in the evaluation of adiabatic evolution
computing algorithms and particularly for quantum annealing. In the context of bench-
marking there are inherent challenges that arise from the unique nature of quantum
annealers. First QA blends quantum and analog elements, that are devoid of dis-
crete instructions or basic operations that lend themselves to conventional counting,
as observed with classical computers. Consequently, resorting to runtime becomes a
pragmatic yet intricate solution, given the transient and unstable nature of QA.

A further complication arises from the juxtaposition of hardware-implemented
quantum annealing algorithms against their software-implemented counterparts (sim-
ulated quantum annealing). Traditional benchmarks for computer platforms, software,
and algorithms often fail to account for this mixed scenario, leading to a deficiency in
standard guidelines for robust benchmarking.

Unlike classical benchmarks that often distill performance into a single metric,
the evaluation of adiabatic evolution algorithms, particularly in the quantum realm,
necessitates a more nuanced approach. The performance of a heuristic on a given
input is aptly described by a curve delineating the trade-off between computation
time and solution quality. This nuanced perspective requires a repertoire of metrics
for comprehensive evaluation.

In the empirical evaluation of quantum annealing and adiabatic evolution algo-
rithms, several performance metrics have surfaced in the literature. Notable among
these are ”Time-to-Solution” [68] (TTS), which centers on the total time required for
a solver to identify a ground state (optimal solution) with a sufficiently high probabil-
ity. One of the biggest disadvantages of TTS, is that it relies on a priori knowledge of
the optimal solution, potentially overlooking benefits derived from near-ground state
solutions.

Alternatively, “Time-to-Target” (TTT) [17] becomes relevant, focusing on the over-
all time required by solvers to attain a target solution energy, determined by the
energy distribution of the quantum annealing processor. This metric provides a more
versatile evaluation, acknowledging solutions that may not align with a predetermined
optimal outcome.

Another recent interesting metric is the ”q-score” [69] conceived by the technology
consulting company Atos. The q-score measures the maximum number of qubits effec-
tively employed to solve combinatorial optimization problem. Originally the q-score
was developed to evaluate the solution of the Max-Cut problem using the Quantum
Approximate Optimization Algorithm [70] (QAOA), howver this metric can be read-
ily adapted to assess the performance of quantum annealing as it was shown by Van
der Schoot et al. [65]. The q-score of a given problem can be then calculated by:

12

Electronic copy available at: https://ssrn.com/abstract=4689017



n∗ ≡ max{n ∈ N, β(n) > β∗} (1)

With β∗ = 0.2 (obtained empirically by studying the behavior of QAOA). and
β(n) determined by the following ratio:

β(n) =
C̃(n)− Cr(n)

Cmax(n)− Cr(n)
(2)

Where C̃(n) is the average energy output obtained from QA, Cr(n) is the average
output value obtained from solving the QUBO/Ising problem with a random sampling
method, and Cmax(n) equal to the energy of the ground state (optimal solution).

For the specific focus of this paper, the metrics of interest include TTT and the
q-score. By concentrating on these metrics, we aim to ascertain the potential for speed-
ups and determine the largest instance of the RCPSP, measured in terms of the number
of project activities, that can be effectively addressed using the current advantage 6.3
quantum annealing system from D-Wave.

QUBO Penalty selection strategy

Adjusting the values of the multipliers weighing the penalties due to relaxed con-
straints is an important but difficult step. Given a QUBO problem of energy
minimization where E(x) = xTQx, with a number of n binary variables xi,∀i ∈ X
we can further decompose this problem into two portions E(x) = v(x) + λc(x) where
v(x) corresponds to the energy contribution to the objective function and c(x) cor-
responds to the energy contribution due to the problem constraints and λ equal to
the penalty weight. The main goal then is to find the value of λ such that the opti-
mal solution to the penalised objective function is the optimal solution of the original
constrained problem. Multiple strategies have been proposed in the literature, each
offering a unique approach to determining the most effective penalty coefficients.

One of the earliest and simplest strategies was proposed by Lucas in 2014 [71].
This method involves utilizing the upper bound of the pure objective function, which
is mathematically represented as λ = xTQx, where xi = 1,∀i ∈ X . This approach
provides a straightforward and easily computable penalty.

Lucas also introduced another possibility for penalty selection, which involves using
the maximum QUBO value, denoted as:

max(Qi,j) ∀ (i, j) ∈ X 2 (3)

This method takes into account the highest interaction value between the variables,
ensuring that the penalty is significant enough to enforce the constraints effectively.

More recently, Verma and Lewis in 2020 [72] proposed a more sophisticated
method. Their approach estimates the potential gain or loss in the objective function
value that could result from switching a particular bit on or off. This method provides
a more nuanced and dynamic way of calculating penalties, potentially leading to more
accurate and efficient solutions, especially in complex scenarios where the impact of
each binary variable on the objective function is not uniform.
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Wc =
{
−Qi,i −

∑n
j=1
j ̸=i

min{Qi,j , 0}, Qi,i +
∑n

j=1
j ̸=i

max{Qi,j , 0} ∀i ∈ X
}

(4)

λ =
n

max
i=1

Wci (5)

The array of strategies discussed underscores the dynamic and continuously evolv-
ing landscape of penalty selection in QUBO problems. Each approach, distinct in its
methodology, brings its own set of strengths and is tailored to suit various problem
types. As penalty selection stands as a vibrant and ongoing field of research, our study
opts for a more foundational approach. We have chosen to employ a simple penalty
selection method where the penalties are just a multiple of the sum of activity dura-
tion’s pi, λ =

∑n
j=1 pi, leveraging the upper bound strategy, to ensure clarity and ease

of implementation in our analysis.

Experimental setup

The experimental results presented in this study were derived from the utilization of
the D-Wave Advantage 6.3 quantum annealer, featuring 5640 qubits and a connectivity
of 15 connections per qubit. The Minor embeddings were established employing D-
Wave’s ”minor-miner” heuristic. Each instance from section 3 underwent execution
on the QPU with a specific annealing time of 20 µs (the decision to use 20µs is based
on the analysis conducted on section 3 and it is explicitly showed in Fig. 16), and for
every instance, 10,000 samples were recorded. It is crucial to note that the mentioned
annealing time exclusively pertains to quantum annealing and does not extend to
reverse quantum annealing, since RQA uses an specific annealing schedule described
below.

Fig. 6 illustrates the implementation of reverse quantum annealing using a 4-point
schedule: [[0.0, 1.0], [2.75, 0.45], [82.75, 0.45], [83.025, 1.0]]. The schedule involves a
reverse evolution from s = 1 to s = 0.45 within the initial 2.75 µs, followed by an 80 µs
pause. Subsequently, a forward evolution of 1 µs occurs, transitioning from s = 0.45 to
s = 1. Here, the variable s represents the percentage of implementation of the problem
Hamiltonian H1 during the annealing evolution.
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Fig. 6: Reverse Quantum Annealing Schedule used for the RQA numerical results of this work

The impact of including pauses in the annealing schedule on the performance of
QA was assessed in Section 3. A annealing time of 20 µs was employed, incorporating
pauses of 2, 4, 6, 8, 12, 16, and 18 µs, respectively. The resulting annealing schedules
are visualized in Fig. 7. This analysis was comprehensive, covering all instance types
and sizes. The evaluation involved recording the relative difference between the energy
of the ground state E0 and the minimum energy value achieved by QA, denoted as

Emin. This difference is calculated as
(

Emin−E0

E0

)
. For each instance, 1000 samples

were recorded. A similar analysis was conducted to evaluate the effect of different
annealing times 1,5,10,20,50 and 100 µs in the performance of QA.
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Fig. 7: Annealing Schedules with pauses of different lengths 2,4,8,12,16 and 18 µs for fixed annealing
time of 20 µs. These pauses correspond then to 10,20,40,60,80 and 90% pause of the annealing time

To create a comprehensive benchmark for assessing the performance of Quan-
tum Annealing (QA) and Reverse Quantum Annealing (RQA) in this study, we
have selected the following classical optimization techniques: Random Sampling (RS)
and Simulated Annealing [20] (SA), along with classical solvers including GUROBI,
COIN-CBC, and GLPK.
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Results

QUBO analysis of MILP formulations for the RCPSP

In this section, we identify the optimal QUBO formulation for the RCPSP, focusing
on the one that requires the fewest qubits. The minimal number of qubits is directly
related with the number of slack variables, the type of variables, and the sparsity of the
QUBO graph. Initially, we examine these crucial elements across 3 types of RCPSP
formulations. Subsequently, from the eight formulations we have studied within the
selected type, we determine the most effective one.

Analysis of formulation types

Formulations based on Time-Index, Sequence, and Events types (see Fig. 4), once
transformed into QUBO, are compared with the data presented in Table B1. The
number of qubits required for each formulation is reported in Fig. 8. This Fig. shows
that the time index formulation “PRI69” necessitates significantly fewer qubits com-
pared to the sequence-based and event-based formulations. Moreover, the gap between
these formulations increases in instance size. These results may appear counter intu-
itive when considering the original number of variables required by each formulation,
as detailed in Table B1. Notably, sequence-based and event-based formulations exhibit
a lower number of original variables than time index formulations, this compactness
characteristic has been well-documented by Kone [61].
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Fig. 8: Number of qubits required by the different families of the RCPSP MILP
formulations. H refers to Disjunctive instances of OS = 0.9 and L refers to cummulative
instances of OS = 0.1.

The apparent discrepancy in the number of QUBO variables can be elucidated by
closely inspecting the nature of the different formulations. The “TV93” formulation
necessitates a priori knowledge of “forbidden sets” F . These are sets of activities
that share no precedence constraints and, when scheduled in parallel, violate resource
constraints. Demeulemeester and Herroelen [73] demonstrated that generating the
minimum forbidden sets entails a worst-case complexity of O(2n). Consequently, it
logically demands more qubits compared to “PRI69”, specially as the instance size
increases, since the size of the forbidden sets F increases accordingly.

In the “ART03” resource flow formulation, instead of using forbidden sets F , inte-
ger variables ϕk

i,j (where i, j ∈ V 2 and k ∈ R) are employed, each necessitating

⌊log2 ϕk
i,j⌋+ 1 binary qubits for transformation. These variables take part of multiple

inequalities for maintaining resource constraints, leading to the need for additional
slack integer variables, which also require binary transformation. Similarly, the event
formulations “KONE11” and “ART13” utilize integer variables te to represent event
start times, with “KONE11” also incorporating extra integers be,k for resource con-
sumption. These variables, also involved in several inequalities, necessitate further
slack variables for binary conversion.
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Analysis of time-index formulations

Taking the same RCPSP instances, Table B2 presents the outcomes resulting from
the conversion of 8 distinct RCPSP time-index MILP formulations into QUBO.

The number of qubits per formulation is represented by Fig. 9 which shows the
efficiency of the “PRI69” formulation of that aspect compared to the other time-index
formulations. This outcome is unsurprising given its inherent simplicity characterized
by fewer variables, a diminished count of inequalities, and consequently, a reduced
number of slack variables. The next favorable option is the “MINGZ98” formulation;
however, this choice entails the prerequisite knowledge of feasible sets A. Similar to
“TV93”, the determination of these sets A entails a worst-case complexity of O(2n).

For the other formulations, the various strategies aimed at optimizing solutions for
a classical computer prove to be costly in terms of the number of qubits required. We
can highlight a few of them here: the “CHRI87” formulation modifies the “PRI69”
formulation by replacing its precedence constraint with additional inequalities.
“SOUWO97’ introduces ’Step’ variables at the beginning, while “KLEIN/KAPL98”
considers a ’Step’ formulation based on the MILP of a preemptive RCPSP case [55].
The “KLEIN00 1” and “KLEIN00 2” formulations incorporate new ’On/Off’ vari-
ables. Additionally, “BIACAR13” integrates continuous binary variables indicating the
percentage of activity completion while “MINGZ98” , bearing similarities to “TV93”,
requires prior knowledge of ’feasible sets’ A.

10 H 10 L 15 H 15 L 20 H 20 L
0

5000

10000

15000

20000

25000 PRI69
KLEIN00 1
MINGZ98
KLEIN00 2
SOUWO97
KAPL98
CHRI87
BIACAR13

Fig. 9: Number of qubits required by the different time index MILP formulations of
the RCPSP. H refers to Disjunctive instances of OS = 0.9 and L refers to cumulative
instances of OS = 0.1.
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RCPSP QUBO

Pritsker et al.[50] provided “PRI69”, one of the first formulations of the RCPSP.
Although it may initially seem counterintuitive, we have chosen this formulation as
the basis for writing our QUBO, based on the analysis in the previous section. We use
the notations given in Table 2 to introduce the parameters.

Notation Definition
n Number of activities (excluding the two dummy activities indexed by 0

and n+ 1.)
T Maximum number of time periods.
A Set of Activities. We consider an activity i ∈ A ∪ {0, n + 1} if i can be

any real activity, the first or the last virtual activity.
H H = 0, 1, ..., T is the scheduling horizon.
E Set of edges representing the sequence from one activity to the next. E.g.,

if i and j are two activities of A, and if activity i must be finished to start
activity j, (i, j) ∈ E.

R Set of resources.
pi Processing time of the activity i ∈ A.
Bk Capacity of the resource k, k ∈ R.
bik Activity i consumption of the resource k ∈ R and its capacity Bk.

Table 2: RCPSP parameters used in the “PRI69” time index formulation.

A single type of binary decision variable is considered, denoted as xit, with i ∈
A ∪ {0, n + 1} and t ∈ H. This variable is indexed by both the activities and the
associated time. Each element xit, ∀i ∈ A∪{0, n+1} and ∀t ∈ H, takes a {0; 1} value
such that:

xit =

{
1 if the activity i starts at the period t,
0 otherwise.

We are revisiting the initial Objective function of [50], i.e., a function to minimize
that forces the last virtual activity to finish as soon as possible. This function is noted
f(x) and its expression is given by the equality (6). This is the basis of our QUBO
which will then be completed with penalties corresponding to the relaxations of the
constraints.

f(x) =
∑
t

t.xn+1,t (6)

Moreover we also consider the work of [11, 12] on the JSSP especially for the
precedence constraints and the one start constraints reformulation. For the latter, we
force each activity to start exactly one time with the following set of constraints (7).∑

t

xit = 1, i = 0..n+ 1 (7)

We relax these constraints for all activities and turn them into one penalty P1 given
by the expression (8). Here, to ensure that the search for an optimal solution penalizes
any infeasible solution, the expression is squared so that satisfying the constraint gives
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no penalty to the QUBO (i.e., equals to the value 0), and that violating the constraint
goes in the opposite direction of minimization.

P1(x) =

n+1∑
i=0

(
∑
t

xit − 1)2 (8)

We can model the precedence constraints of two consecutive activities by the
inequalities (9). ∑

t∈H

t.xj,t ≤
∑
t∈H

t.xi,t + pi ∀(i, j) ∈ E (9)

The reformulation of all precedence constraints into a single penalty, denoted as
P2, results in the expression shown in (10). Here, there is no need to square them,
since any quadratic expression involving two binary variables never yields a negative
value. It is easy to understand that the only scenario where such constraint is not
satisfied occurs when two consecutive activities erroneously start at the same time.

P2(x) =
∑

(i,j)∈E

∑
t∈H

∑
t′∈H

t′\t+pi>t′

xi,txj,t′ (10)

While the JSSP has sharing machine constraints which can also be modeled by
simple quadratic expressions giving a similar penalty of P2, the RCPSP has another
difficulty: the resource constraints. The inequalities (11) express these constraints as
modeled in [50].

n∑
i=1

bik

t∑
τ=t−pi+1

xiτ ≤ Bk ∀t ∈ H,∀k ∈ R (11)

Since we need a penalty for relaxing the resource constraints, we add slack variables
in order to reach an equality for each inequality of (11). Slack variables are noted
stk, t ∈ H, k ∈ R, as a non-negative integer for reformulating resource constraints (11)
with the quadratic penalties (12).

P3(x) =
∑
t

∑
k

(

n∑
i=1

bik

t∑
τ=t−pi+1

xiτ −Bk + stk)
2 (12)

Since this reformulation work aims to create a QUBO, the slack variables stk must
be obtained from binaries variables. Here, we can consider the minimum value of stk
as zero and its maximum value as Bk. The related binary expression is given by the
equality (13) where y is a binary vector (each yi takes value in {0,1}) and where the
integer function f(α) gives the required maximum power of 2 with α the target integer.

stk =

i=f(Bk)∑
i=0

2iyi ∀t ∈ H,∀k ∈ R (13)

We note λ1, λ2, and λ3 the multipliers balancing the penalties P1, P2, P3,
respectively. The QUBO of the RCPSP can be formulated by the Objective function
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fQUBO(x) with the quadratic constraints (8), (10) and (12) such that fQUBO(x) =
f(x) + λ1P1(x) + λ2P2(x) + λ3P3(x) as detailed by the equality (14).

fQUBO(x) =
∑
t

t.xn+1,t

+λ1

n+1∑
i=0

(1−
∑
t

xit)
2

+λ2

∑
(i,j)∈E

∑
t

∑
t′\t+pi>t′

xi,txj,t′

+λ3

∑
t

∑
k

(

n∑
i=1

bik

t∑
τ=t−pi+1

xiτ −Bk + stk)
2

(14)
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Numerical results

Fig. 10 illustrates the TTT evolution for a range of optimization methods applied to
a specific cumulative instance involving six activities (excluding the “dummy” start
and end) and two resources. Accompanying this, Fig. 11 presents the network diagram
relevant to this instance. The figures are organized into a tripartite panel, demonstrat-
ing the progression of the optimization process across different energy quantiles. This
progression is depicted from left to right, indicating a transition from higher to lower
energy levels.
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Fig. 10: TTT in seconds for a Cumulative instance (OS = 0.1) of 6 non-dummy activities and 2 resources.
The three panels show the evolution for different energy ranges, where energy decreases from left to right.
The right most panel shows the energy range for the ground state of this instance.
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Fig. 11: Network Diagram Cumulative instance (OS = 0.1) with 6 non-dummy activities and 2 resources.

It is noteworthy that QA and RQA exhibit discernible patterns, contrasting with
the random sampling behavior observed in the evolution curve of RS. This observation
suggests that QA and RQA are not mere random samplers.

In this specific case, RQA demonstrates exceptional performance, outperforming
all other optimization methods, including the widely-used commercial solver GUROBI.
This superior performance of RQA is particularly noticeable in the third panel of Fig.
10. Here, the distinctive black line marked with ’x’ symbols, representing RQA, reaches
the ground state energy faster than any other method. Furthermore, Fig. 12 showcases
the optimal schedule derived using RQA. This schedule results in an optimal project
make span of three days.
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Fig. 12: Optimal schedule obtained from RQA for cumulative instance (OS = 0.1) of 6 non-dummy
activities with 2 resources.

Table 3 presents succinct results featuring the mean TTT values for solutions at
different energy quantiles (0.9, 0.99 and 0.999). To provide further insight, Fig. 13
visually capture the distinctive mean TTT patterns, highlighting the performance
variations among the evaluated optimization methods, for all instance types. Fig.
C2, C3 and C4 from Section C offer further insight showcasing the individual TTT
performance for the different instance types evaluated in this work (cumulative, middle
OS and disjunctive).
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Fig. 13: Mean TTT, reported in seconds for all instance type, OS = 0.1, OS = 0.5 and OS= 0.9.
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Table 3: TTT (s) mean results for Disjunctive, Cumulative and Mid-
dle OS instances.

Size Method q = 0.9 q = 0.95 q = 0.99 q = 0.999 q = 0.9999

3 CBC 0.25 0.25 1.67 2 2
3 GLPK 1 1 1 1 1
3 GUROBI 0.07 0.07 0.27 0.3 0.3
3 QA 0.04 0.09 0.19 0.2 0.2
3 RQA 0.04 0.08 0.19 0.2 0.2
3 RS 0.02 57600 86400 86400 86400
3 SA 0.01 0.01 0.34 48.60 59.66

4 CBC 0.25 0.25 3.5 4.67 4.67
4 GLPK 1 1 1 4 28801.33
4 GUROBI 0.07 0.07 0.12 0.27 0.5
4 QA 0.05 0.12 0.19 0.20 28800.13
4 RQA 0.04 0.11 0.20 57600.07 86400
4 RS 57600.01 86400 86400 86400 86400
4 SA 0.02 0.02 0.06 64.20 93.92

5 CBC 0.42 0.67 40 40 45
5 GLPK 1 1 1.33 28802 57601
5 GUROBI 0.1 0.1 0.1 0.47 0.75
5 QA 0.08 0.16 0.20 28800.13 86400
5 RQA 0.08 0.16 0.20 57600.07 86400
5 RS 86400 86400 86400 86400 86400
5 SA 0.02 0.02 2.39 44.41 136.76

6 CBC 5.5 28803.17 57603 57603 57615
6 GLPK 1 1 1 57601 57610
6 GUROBI 0.12 0.12 0.12 0.38 2.17
6 QA 0.13 0.17 0.20 86400 86400
6 RQA 0.09 0.15 0.20 57600.07 86400
6 RS 86400 86400 86400 86400 86400
6 SA 0.04 0.04 0.64 71.46 159.07

7 CBC 10.75 15.08 15.08 28810.08 28810.08
7 GLPK 2 2 2.33 28820 86400
7 GUROBI 0.17 0.17 0.17 2.5 16.17
7 QA 0.13 0.18 0.20 57600.07 86400
7 RQA 0.12 0.17 0.20 57600.07 57600.07
7 RS 86400 86400 86400 86400 86400
7 SA 0.05 0.05 0.05 32.65 108.17

8 CBC 0.42 0.42 5.17 10.17 28800.17
8 GLPK 2.67 2.67 6 86400 86400
8 GUROBI 0.22 0.22 0.47 3.08 5
8 QA 0.14 0.18 0.20 86400 86400
8 RQA 0.15 0.18 0.20 86400 86400
8 RS 86400 86400 86400 86400 86400
8 SA 0.07 0.07 0.07 121.81 441.25

The results presented in Table 3 and Fig. C4, C2, and C3 reveal interesting
dynamics. It is evident that QA and RQA face challenges in maintaining superior-
ity, especially when tasked with finding ground states in instances of larger sizes.
Despite this, in mere fractions of a second, both QA and, notably, RQA demonstrate
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their capability to provide high-quality solutions, approaching the proximity of ground
states.

Overall, for the high energy quantiles GUROBI exhibits consistent superiority over
SA, QA, RQA, and other free solvers. However, this trend does not extend to certain
freely available solvers, such as GLPK and CBC, where the situation is different.
Notably, in scenarios involving lower energy quantiles, both QA and RQA demonstrate
significant advantages over these free solvers. This is particularly evident in the left
(q=0.9) and middle (q=0.99) panels of Fig. 13, where QA and RQA outperform their
counterparts in reaching lower energy states more efficiently.

Contrary to the findings reported by Carugno et al. [12] in the context of the JSSP,
our results indicate that SA surpasses both QA and RQA in terms of performance
across most instance sizes and energy quantiles. In agreement with their observations,
however, RQA does tend to show superior performance compared to QA, particularly
at lower energy quantiles.

Q-score

Adapting the Q-score methodology for QA, as proposed by Van der Schoot et al. [65],
we computed the β(n) values for various instance sizes and types examined in our
study. Analysis of Fig. 14 reveals that the β(n) values for both QA and RQA consis-
tently exceed the critical threshold of 0.2. However, it’s crucial to remind the reader
that this threshold was empirically established based on the solution of instances of
the the Max-Cut problem using the Quantum Approximate Optimization Algorithm
(QAOA). Therefore, its validity is based solely on these empirical findings, without
additional theoretical support.
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Fig. 14: β(n) for all instance size 3,4,5,6,7 and 8 non-dummy activities and all instance types (Cumulative
OS = 0.1, Middle OS = 0.5 and Disjunctive OS = 0.9)

We therefore conclude that the estimated maximum instance size of the RCPSP
that can be solved using a D-Wave quantum annealer peaks at 7 non-dummy activities.
Although the β(n) values substantially exceed the critical threshold, we observe a rapid
decline in solution quality beyond this activity count. This deterioration is evident
when examining the mean ’chain-break’ percentage reported by the D-Wave system.
For instances with sizes of 8 activities or more, the average chain-break percentage
escalates to approximately 74%, indicating a significant breakdown among the logical
qubits that were utilized to map the original QUBO graph onto the QPU topology.
With such a high percentage of chain breaks, the reliability of the annealer in solving
the intended optimization problem becomes questionable, despite the higher β(n)
values observed.

Anneal time and pausing effects

In the preceding section, our experimental approach was predicated on determining an
optimal annealing time for QA. This determination was made empirically, analyzing
the performance of QA across a spectrum of annealing times: 1 µs, 5, 10, 20, 50, and
100 µs.
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The performance evaluation of QA for each annealing time was determined
based on a relative energy difference metric. This metric juxtaposes the minimum
energy achieved through QA against the ground state energy for the given instances(

Emin−E0

E0

)
. Our analysis spanned instance sizes of 3, 4, 5, 6, 7, and 8 non-dummy

activities and for instance types (cumulative OS = 0.1, middle OS = 0.5, and
disjunctive OS = 0.9). For each configuration we collected 1000 samples.

Insights into the mean behavior of QA across these different annealing times are
depicted in Fig. 15. This line graph showcases the relationship between the instance
size (x-axis) and the relative energy differences (y-axis), offering a visual representation
of the performance variations across instance sizes.
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Fig. 15: Mean Effect of annealing time on QA performance, measured as the mean relative deviation

from the ground state
(

Emin−E0
E0

)
for all instance types (OS = 0.1, OS = 0.5 and OS = 0.9).

Complementing this analysis, Fig. 16 presents a holistic view of the mean behavior
across all instance sizes and types. Here, the annealing times are mapped along the x-
axis, and the corresponding relative energy differences are charted on the y-axis. This
graph reveals a noteworthy observation consistent with the findings of King et al.[17]
that an annealing time of approximately 20 microseconds emerges as optimal. Beyond
this threshold, there is a discernible decline in QA performance.
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Fig. 16: Overall Effect of annealing time on QA performance, measured as the mean relative deviation
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(

Emin−E0
E0

)
for all instance types (OS = 0.1, OS = 0.5 and OS = 0.9) and all sizes.

Given these findings, we elected to conduct the experiments detailed in this work
with an annealing time fixed at 20 µs. This decision was guided by the empirical
evidence suggesting that this duration strikes an effective balance in optimizing QA
performance. Figure D5, D6 and D7 show the effect of annealing times for Cumulative,
Middle and Disjunctive instance types.

Annealing pauses

In continuation of our exploration into the multiple parameters involved in QA, we
extended the investigation to assess the impact of annealing pauses on QA perfor-
mance. This analysis aligns with the relative energy difference framework established
earlier, comparing the minimum energy achieved via QA to the ground state energy
for a particular instance.

Our focus centered on a fixed annealing time of 20 µs (as determined in the previous
section), examining the effects of pauses at intervals of 2, 4, 8, 12, 16, and 18 µs please
note that these pauses correspond then to 10,20,40,60,80 and 90% of pause of the
annealing time. Fig. 7 offers a visual depiction of the annealing schedules, incorporating
these pauses.
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This investigation was inspired by the findings of Marshal et al. [74], who reported
performance enhancements in QA with the inclusion of annealing pauses. Our results,
illustrated in Fig. 17, echo this observation. Fig. presents a heat map that encapsulates
the QA performance across various instance sizes (3, 4, 5, 6, 7, and 8 non-dummy
activities) represented in the x-axis and pause duration’s showed in the y-axis as
the percentage of pause relative to the total annealing time. Each cell in this heat
map represents the average relative energy value derived from 1000 samples across all
instance types (cumulative, middle, and disjunctive), providing a comprehensive view
of the performance landscape.

3 4 5 6 7 8
Instance Size

0
10

20
40

60
80

90
P

au
se

0.066 0.61 0.78 1.6 1.7 3.6

0.2 0.72 0.79 2.2 1.7 1.6

0.066 0.26 1.3 1.1 1.5 2.5

0 0.55 0.6 1.4 1.9 2.4

0.33 0.51 1.3 2 2.1 2.2

0.2 0.33 1 0.9 2.1 2.3

0.066 0.11 0.89 1.4 1.2 3.8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fig. 17: Heatmap of the effect of pauses included in the annealing schedule vs the relative deviation

from the ground state energy
(

Emin−E0
E0

)
for all instance types (OS = 0.1, OS = 0.5 and OS = 0.9). The

y axis shows the percentage of pause in the annealing schedule, as shown in Fig. 7.

Intriguingly, Fig. 18 highlights that annealing pauses constituting 20% to 40% of
the overall schedule (equating to 4 µs and 8 µs in this context) yield the most favorable
performance. Fig. E8, E9 and E10 show the effect of annealing pauses for Cumulative,
Middle and Disjunctive instance types.
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Fig. 18: General effect of pauses included in the annealing schedule vs the relative deviation from the

ground state energy
(

Emin−E0
E0

)
for all instances. The y axis shows the percentage of pause in the annealing

schedule, as shown in Fig. 7.

It is important to note, however, that the inherent nature of RQA always incorpo-
rates a pause in the annealing schedule. Consequently, the insights gleaned from this
analysis predominantly apply to conventional QA rather than RQA.

Discussion

In this work, we have conducted a comprehensive exploration into the practical imple-
mentation of the RCPSP using quantum annealing, specifically by leveraging D-Wave’s
quantum computing technology. Our investigation encompasses a range of aspects,
from the basics of quantum annealing to advanced techniques like reverse quantum
annealing.

To the best of our knowledge, we are the first to address the RCPSP using a
quantum annealer, marking a significant contribution to the integration of quantum
computing in Operations Research. Our work underscores the importance of QUBO
modeling for solving RCPSP instances on quantum annealing machines. We have con-
ducted a thorough analysis of twelve renowned MILP formulations for RCPSP and
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their conversion into QUBO format. This includes identifying the most suitable for-
mulation for quantum annealing, specifically the “PRI69” formulation, and providing
the corresponding QUBO model.

It is worthy of highlight that the QUBO model (14) derived on this work in section
3 is flexible enough to be easily adapted to other variations of the RCPSP as in the case
of the 1-preemptive resource-constrained project scheduling problem (1 PRCPSP).
Adapting the formulation proposed by Ballest́ın et al. [75], we obtain the QUBO
f(x)1 PRCPSP

QUBO (given in F1). The problem does not suffer from the addition of new
slack variables. Indeed, the new constraints can be modeled as a quadratic product
that must remain zero to be satisfied, similar to precedence constraints.

Other versions of the RCPSP can be based on the QUBO introduced in this study
without the need to add many constraints. For example, if resources have periods
of unavailability, or if their capacity is reduced (Bk becomes Bk,t), it’s sufficient to
treat these periods as distinct activities with fixed variable values as it was shown
by Hartmann [76]. This approach can also be applied when the use of resources need
to be stopped (e.g., for maintenance operations) without a pre-determined period.
In such cases, these periods of unavailability should be considered as activities, but
without setting fixed variables. In these scenarios, it’s crucial to establish a precedence
constraint for each virtual activity to ensure that the identification of the unavailability
period is properly included in the optimization process. However, this modification
will require the inclusion of additional slack variables associated with the resource
constraint.

Continuing with the contributions of this work several instances from three distinct
categories, as defined by Baptiste and Le Pape’s protocol, have been solved using the
RCPSP QUBO (14) on a quantum annealer. Strategies such as developing a reverse
quantum annealing schedule were employed. The results were then compared with
those obtained from a classical solver. For this comparison, we conducted a detailed
exploration of multiple metrics available for evaluating the performance of quan-
tum annealing. Ultimately, we utilized the TTT and the q-score for our evaluation.
Additionally, we determined the maximum instance size achievable with a machine
equipped with 5k qubits. Another key discovery from our research underscores the
potential benefits of quantum annealing, especially in scenarios with constrained time
limits, such as those encountered in online Operations Research problems. In addi-
tion to our primary research focus, we conducted an extensive and meticulous analysis
to understand the impact of annealing times and the role of pauses within annealing
schedules on the performance of QA.

While our research offers valuable insights, it’s crucial to recognize its limita-
tions. These include using problem instances of limited size, excluding other promising
quantum computing techniques like QAOA [70] due to hardware constraints, and the
dependence on the “minor-miner” heuristic for the embedding procedure.

In alignment with the work of Venturelli et al. [11] and Carugno et al [12]. on
the JSSP, we recognize the potential for significant reduction in time horizons for the
RCPSP. This reduction can be achieved by pre-establishing upper bounds, derived
from heuristics that are calculable in polynomial time [77], which can considerably
minimize the number of required variables required by time-index formulations like
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“PRI69”. However, in this study, our focus was centered on examining the intrinsic
performance of QA and RQA without incorporating these heuristic techniques.

These aspects warrant consideration in future research. Additionally, investigating
alternative quantum computing technologies, such as neutral atoms technology by
Pasqal[78], is promising and deserves further exploration.

In conclusion, despite the acknowledged limitations, this work serves as a pioneer-
ing effort in applying quantum annealing to the RCPSP. We hope that our findings and
methodologies will act as a catalyst for future benchmarks, fostering advancements
towards practical applications in Operations Research.
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Appendix A UML Activity diagram: resolution
process with a quantum annealing
solver

The UML activity diagram of the Fig. A1 summarizes the process of solving an opti-
mization problem such as RCPSP by a quantum machine implementing QA. The
activities are divided into two sets: on the left, human activities corresponding to
problem modeling, and on the right, those automatically executed by the machine.
The machine takes as input either an Ising model or a QUBO model. If the user only
has a MILP, as is the case in this work for 12 different formulations, they must for-
mulate it either as an Ising model or a QUBO model. If the latter is provided, the
machine automatically converts it to Ising, as the two models are isomorphic. In addi-
tion, the user also provides weights corresponding to the penalties of each series of
relaxed constraints (i.e., the multipliers λi for each constraint i).

Fig. A1: UML Activity Diagram: Transitioning from the mathematical model to the
quantum annealing solution process. Each activity belongs either to the actions to
be performed by the user or to the actions to be executed by the machine. The user
provides a QUBO or an ISING model to the machine, and it replicates the QA as
many times as requested by the user, resulting in as many solutions obtained at the
end of the process.

Once the machine has an Ising model to process, the corresponding non-directed
graph must be adapted to the machine’s topology, that is, the qubits network. Thus,
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the Ising model is transformed into another non-directed graph suited to the topol-
ogy. The resulting graph is generally less dense to match the machine’s connectivity,
using more qubits for this purpose. This process, called ”embedding,” solves another
optimization problem that the machine resolves heuristically. At the end of this pro-
cess, if the machine does not find an ”embedding,” the experiment stops. Otherwise,
the QA process is applied to the mapped graph.

The number of QA replications is determined by the number of anneals and reads,
collectively referred to as samples. Users must specify two key parameters for each
QA experiment conducted on a D-Wave machine: the number of samples and the time
available for each anneal. These parameters are crucial and significantly influence the
outcome of the experiment. Given that each experiment is typically restricted to a
duration of about one second, the total time available for quantum machine access is
primarily allocated between these two parameters. The optimal balance between them
is usually determined empirically and varies depending on the specific optimization
problem being addressed.

As output, the user obtains as many solutions as there were anneals executed. Even
if all obtained solutions are feasible in the sense that the variable type is respected
(binary) and no constraint integrates the QUBO and Ising models, the feasibility of
the solutions must be verified through the constraints of the initial MILP model, an
operation that can be done in polynomial time due to the complexity of the RCPSP.
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Appendix B Evaluation of MILP Formulations for
RCPSP

Table B1: Evaluation of MILP Formulations for RCPSP.

Instance Type Family MILP n MILP n (QUBO) S (QUBO) ρ

10 H Disjunctive Time Index PRI69 570 1136 566 0.1566
10 H Disjunctive Sequence TV93 110 2321 2161 0.0073
10 H Disjunctive Sequence ART03 310 3316 2356 0.0094
10 H Disjunctive Event ART13 230 5559 5219 0.0056
10 H Disjunctive Event KONE11 111 4824 4658 0.0070

10 L Cumulative Time Index PRI69 380 830 450 0.1740
10 L Cumulative Sequence TV93 110 2328 2168 0.0073
10 L Cumulative Sequence ART03 310 3329 2369 0.0093
10 L Cumulative Event ART13 230 4724 4384 0.0068
10 L Cumulative Event KONE11 111 4235 4069 0.0080

15 H Disjunctive Time Index PRI69 990 1758 768 0.1443
15 H Disjunctive Sequence TV93 240 7681 7351 0.0022
15 H Disjunctive Sequence ART03 690 9859 7729 0.0035
15 H Disjunctive Event ART13 495 17678 17003 0.0021
15 H Disjunctive Event KONE11 241 15360 15023 0.0026

15 L Cumulative Time Index PRI69 1035 1851 816 0.1526
15 L Cumulative Sequence TV93 240 7699 7369 0.0022
15 L Cumulative Sequence ART03 690 9869 7739 0.0035
15 L Cumulative Event ART13 495 16553 15878 0.0023
15 L Cumulative Event KONE11 241 15036 14699 0.0027

20 H Disjunctive Time Index PRI69 1780 2840 1060 0.1318
20 H Disjunctive Sequence TV93 420 17645 17105 0.0009
20 H Disjunctive Sequence ART03 1220 21435 17695 0.0017
20 H Disjunctive Event ART13 860 39033 37933 0.0010
20 H Disjunctive Event KONE11 421 35028 34481 0.0012

20 L Cumulative Time Index PRI69 1740 2868 1128 0.1427
20 L Cumulative Sequence TV93 420 17715 17175 0.0009
20 L Cumulative Sequence ART03 1220 21443 17703 0.0017
20 L Cumulative Event ART13 860 36653 35553 0.0011
20 L Cumulative Event KONE11 421 34426 33879 0.0012

n MILP = number of variables original problem, n (QUBO) = number of qubits, S (QUBO) =
number of Slack qubits, ρ = Density of the QUBO
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Table B2: Evaluation of MILP Formulations for RCPSP

Instance Type MILP n MILP n (QUBO) S (QUBO) ρ

10 H Disjunctive PRI69 570 1136 566 0.157
10 H Disjunctive CHRI87 570 3432 2862 0.041
10 H Disjunctive SOUWO97 570 2316 1746 0.009
10 H Disjunctive KLEIN/KAPL98 570 2803 2290 0.009
10 H Disjunctive KLEIN00 1 570 3673 3103 0.010
10 H Disjunctive KLEIN00 2 1140 3447 2307 0.006
10 H Disjunctive BIACAR13 1710 8016 2886 0.016
10 H Disjunctive MINGZ98 684 1187 503 0.099

10 L Cumulative PRI69 380 830 450 0.174
10 L Cumulative CHRI87 380 2932 2552 0.034
10 L Cumulative SOUWO97 380 1542 1162 0.010
10 L Cumulative KLEIN/KAPL98 380 1354 1012 0.023
10 L Cumulative KLEIN00 1 380 2735 2355 0.014
10 L Cumulative KLEIN00 2 760 2288 1528 0.013
10 L Cumulative BIACAR13 1140 5342 1922 0.023
10 L Cumulative MINGZ98 646 1611 965 0.065

15 H Disjunctive PRI69 990 1758 768 0.1443
15 H Disjunctive CHRI87 990 7694 6704 0.022
15 H Disjunctive SOUWO97 990 4065 3075 0.006
15 H Disjunctive KLEIN/KAPL98 990 6726 5802 0.009
15 H Disjunctive KLEIN00 1 990 6199 5209 0.008
15 H Disjunctive KLEIN00 2 1980 6027 4047 0.004
15 H Disjunctive BIACAR13 2970 13965 5055 0.013
15 H Disjunctive MINGZ98 1320 2796 1476 0.046

15 L Cumulative PRI69 1035 1851 816 0.153
15 L Cumulative CHRI87 1035 8913 7878 0.020
15 L Cumulative SOUWO97 1035 4389 3354 0.006
15 L Cumulative KLEIN/KAPL98 1035 5029 4063 0.011
15 L Cumulative KLEIN00 1 1035 9372 8337 0.007
15 L Cumulative KLEIN00 2 2070 6441 4371 0.008
15 L Cumulative BIACAR13 3105 14739 5424 0.012
15 L Cumulative MINGZ98 2001 5054 3053 0.055

20 H Disjunctive PRI69 1780 2840 1060 0.132
20 H Disjunctive CHRI87 1780 15945 14165 0.014
20 H Disjunctive SOUWO97 1780 7177 5397 0.004
20 H Disjunctive KLEIN/KAPL98 1780 15366 13675 0.005
20 H Disjunctive KLEIN00 1 1780 13492 11712 0.005
20 H Disjunctive KLEIN00 2 3560 10709 7149 0.003
20 H Disjunctive BIACAR13 5340 24977 8957 0.010
20 H Disjunctive MINGZ98 2581 5570 2989 0.030

20 L Cumulative PRI69 1740 2868 1128 0.143
20 L Cumulative CHRI87 1740 18997 17257 0.012
20 L Cumulative SOUWO97 1740 7624 5884 0.004
20 L Cumulative KLEIN/KAPL98 1740 11391 9738 0.007
20 L Cumulative KLEIN00 1 1740 19217 17477 0.004
20 L Cumulative KLEIN00 2 3480 11076 7596 0.006
20 L Cumulative BIACAR13 5220 25024 9364 0.009
20 L Cumulative MINGZ98 5307 12620 7313 0.089

n MILP = number of variables original problem, n (QUBO) = number of qubits, S (QUBO) =
number of Slack qubits, ρ = Density of the QUBO
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Appendix C TTT Supplementary plots
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Fig. C2: Time-to-Target, reported in seconds for Cumulative instances with OS =
0.1.
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Fig. C3: Time-to-Target, reported in seconds for Middle instances with OS = 0.5.
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Fig. C4: Time-to-Target, reported in seconds for Disjunctive instances with OS = 0.9.

Appendix D Annealing time Supplementary plots
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Fig. D5: Overall Effect of annealing time on QA performance, measured as the mean relative deviation

from the ground state
(

Emin−E0
E0

)
for cumulative instances with a OS = 0.1 and all sizes (3,4,5,6,7 and 8

non-dummy activities).
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Fig. D6: Overall Effect of annealing time on QA performance, measured as the mean relative deviation

from the ground state
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Emin−E0
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for Middle instances with a OS = 0.5 and all sizes (3,4,5,6,7 and 8

non-dummy activities).
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Fig. D7: Overall Effect of annealing time on QA performance, measured as the mean relative deviation

from the ground state
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)
for Disjunctive instances with a OS = 0.9 and all sizes (3,4,5,6,7 and

8 non-dummy activities).
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Appendix E Annealing pauses supplementary plots
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Fig. E8: General effect of pauses included in the annealing schedule vs the relative deviation from the

ground state energy
(

Emin−E0
E0

)
for Cumulative instances with OS = 0.1. The y axis shows the percentage

of pause in the annealing schedule, as shown in Fig. 7.
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Fig. E9: General effect of pauses included in the annealing schedule vs the relative deviation from the

ground state energy
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Emin−E0
E0

)
for Middle instances with OS = 0.5. The y axis shows the percentage of

pause in the annealing schedule, as shown in Fig.7.
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Fig. E10: General effect of pauses included in the annealing schedule vs the relative deviation from the

ground state energy
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)
for Disjunctive instances with OS = 0.9. The y axis shows the percentage

of pause in the annealing schedule, as shown in Fig.7.

Appendix F QUBO of the 1 PRCPSP

f(x)1 PRCPSP
QUBO =

∑
t
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2

(F1)

We adapt the notation of the multipliers according to the activity and the type of
constraints (e.g. ”λB

1 ”). Each original variable xi,t is now divided into two parts xiA,t

and xiB,t that must comply with:∑
t∈H

t.xiA,t ≤
∑
t∈H

t.xiB,t + pA ∀i ∈ A
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