N

N

Cogment Lab: A Practical Toolkit for
Human-in-the-Loop RL Research
Ariel Kwiatkowski

» To cite this version:

Ariel Kwiatkowski. Cogment Lab: A Practical Toolkit for Human-in-the-Loop RL Research. 2024.
hal-04605485

HAL Id: hal-04605485
https://hal.science/hal-04605485v1

Preprint submitted on 7 Jun 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-04605485v1
https://hal.archives-ouvertes.fr

Cogment Lab: A Practical Toolkit for Human-in-the-Loop RL Research

Ariel Kwiatkowski
Al Redefined
ariel @ai-r.com

Abstract

Human-in-the-loop learning is a key aspect of en-
suring a positive future for the interactions between
Al systems and humans. Despite that, the tool-
ing for this line of research is often incomplete or
inaccessible, creating a significant obstacle in this
field. In this work, we introduce Cogment Lab, a
researcher’s toolkit for reinforcement learning ex-
periments with the involvement of humans. It is
a layer of abstraction on top of the already existing
Cogment, which proves to be powerful, but difficult
to use. In contrast, Cogment Lab preserves most
of Cogment’s flexibility, but making it significantly
easier to use for practical research and develop-
ment. We describe the design philosophy of Cog-
ment Lab, some elements of its implementation, as
well as research directions that it enables. We hope
that this library will accelerate human-in-the-loop
research by drastically reducing the barrier to entry
of this field. Video: https://bit.ly/coglab-ijcai

1 Introduction

As Al systems become increasingly ubiquitous, the ability
for Al to successfully work alongside humans is increasingly
important. We need to ensure that we have both the infras-
tructure and the algorithms to enable smooth interactions be-
tween humans and Al Despite the growing interest in human-
in-the-loop Al, researchers and developers often find them-
selves constrained by the tools available. Many of these tools
are designed for specific, one-time experiments and lack the
flexibility needed for broader application.

Cogment was created as a solution to these challenges, of-
fering a platform aimed at facilitating Human-in-the-Loop
Learning (HILL), in particular Reinforcement Learning (RL),
through an orchestrator that manages interactions between
humans, Als and their environments. However, its techni-
cal complexity and the steep learning curve made it difficult
to use without a large time commitment.

To bridge this gap, we introduce Cogment Lab. Our goal
with Cogment Lab is to make the development of human-
interactive Al systems more approachable. We built it on top
of Cogment to offer a more user-friendly toolkit that main-
tains the original’s strengths but makes the process of in-

tegrating HILL elements into Al research and development
simpler and more straightforward.

This paper will detail the design of Cogment Lab, its struc-
ture, and what makes it unique. We aim to show how Cog-
ment Lab can be a valuable asset for researchers and devel-
opers looking to incorporate human feedback into Al sys-
tems without having to reinvent the entire interaction model.
Through this, we hope to contribute to the field by making the
development of collaborative human-AI systems more acces-
sible to a wider audience.

2 Cogment Lab Outline

Cogment Lab is built on Cogment [Redefined et al., 2021],
which itself is a platform for HILL. This means that it inherits
some of the built-in design choices and limitations.

Microservice architecture. Cogment Lab is based on mi-
croservice architecture, where various components interact
with one another via the Cogment orchestrator. On the user
side, these components are environments and actors, with
Cogment itself providing additional auxiliary services like
the trial datastore and the model registry. Each service is
launched separately, with the orchestrator managing their in-
teractions and sending messages between them.

Episodic interactions In Cogment Lab, the basic unit of
interaction between actors and environments is an episode,
also called a trial (following the Cogment terminology).

At its core, Cogment Lab is built for researchers and de-
velopers, and thus strives to be as unopinionated and extensi-
ble as possible, allowing its users to implement any research
ideas they may deem interesting. This puts a natural limit on
the scope of features we included in the core library. The

2.1 Cogment Lab vs Cogment

Cogment takes a relatively low-level approach in its design,
opting for more fine-tuned control of messages exchanged be-
tween the relevant services. This comes at the expense of its
ease of use — starting from scratch, implementing a new ex-
periment using Cogment can be a significant effort. For ex-
ample, the user must define and compile the desired protobuf
specification for messages that will be exchanged between all
the services, and describe them in a YAML to coordinate the
launch via the Cogment orchestrator.

https://bit.ly/coglab-ijcai

With Cogment Lab, we aim to improve specifically the
ease of use. We eliminate most of the Cogment boilerplate,
handling it internally within the library. We also provide pre-
compiled message definitions that are designed for typical RL
usage.

2.2 Cogment Lab vs Cogment-Verse

Cogment-Verse [Gottipati et al., 2023] is the spiritual ances-
tor to Cogment Lab, initially also meant to be a research
framework for HILL. The key difference between the two li-
braries is their design. Cogment-Verse functions largely as a
modifiable stand-alone application. It is easy to customize it
slightly, and then run it to get a standard experiment. How-
ever, it is significantly more difficult to use it as a component
of a larger system, or for completely new use-cases. The us-
age of Cogment-Verse is largely config-driven — the user de-
fines the desired experiment in a YAML file. This is passed
to the predefined launch script of Cogment-Verse which will
execute the experiment.

In contrast, Cogment Lab is meant to be a proper library,
and not a framework or an application. It provides compo-
nents that can be imported and combined in whatever way
the user desires, without enforcing any particular way of do-
ing things. Programs built with Cogment Lab has a single,
obvious entry point — the main Python script, or a Jupyter
notebook, based on the user’s preference. Within that, the
user can dynamically start and stop any services according
to their needs, launch trials to collect data, and use that data
using any other libraries and algorithms.

3 Library Design

Because Cogment is inherently asynchronous, the same is
true in Cogment Lab. All interactions with Cogment Lab
must be wrapped in an asyncio event loops. In return, this
makes it possible to easily develop asynchronous algorithms
enabling better hardware utilization.

The entry point to any Cogment Lab project is the
Cogment object, which manages the connection to the or-
chestrator, and holds all of the key functionalities of the li-
brary. By convention, it is created as:

cog = Cogment (log_dir=...)

This initializes the connection to the Cogment services, and
starts keeping track of any services we add.

3.1 Running Services

With the Cogment object created, we can run services (envi-
ronments and actors) either in a separate process, or in some
cases, in the same one. Typically, this involves creating an
inactive instance of the service in the main process, and then
creating a copy of it in the subprocess. While this may ini-
tialize some resources redundantly, it is typically useful to
obtain metadata about the environment (primarily the obser-
vation and action spaces), and it can be disabled by initializ-
ing the service appropriately.

3.2 Environments

Cogment Lab supports both Gymnasium [Towers et al., 2023]
and PettingZoo [Terry et al., 2021] environments by default.

They can be initialized using the environment ID in the Gym-
nasium registry, and the path to the PettingZoo environment,
respectively. For example:

cenv = GymEnvironment (
env_id="CartPole-v1l",
render=True

)

await cog.run_env (env=cenv,
env_name="cartpole",
port=9011,

)

pz_path = "pettingzoo.sisl.pursuit.env"
pz_cenv = AECEnvironment (
env_path=pz_path,
render=True
)
await cog.run_env (env=pz_cenv,
env_name="pursuit",
port=9012
)

With this, we have two environments running in their own
subprocesses, interacting with Cogment on ports 9011 and
9012.

3.3 Actors

Similarly to environments, we can run arbitrary ac-
tor implementation. A minimal actor is one that
subclasses ‘CogmentActor®, and implements the
act (obs, rendered_frame) method which returns
the action. An actor can be run in a subprocess:

actor = ConstantActor (0)
await cog.run_actor (actor,
actor_name="constant",

port=9021
)

or in the same process:

cog.run_local_actor (actor,
actor_name="dqgn",
port=9012

The latter option is particularly useful for neural network-
based actors, which may need to be frequently updated during
the training. This makes it possible to update the model with-
out having to share the memory, or send messages between
different processes.

Human Actors

Finally, in any environment, we can replace algorithmic ac-
tors with a human actor. Cogment Lab starts a simple web
app that can be accessed from the browser. The user must
specify an action map that converts key presses in the web
UI to in-environment actions. They may also customize the
interface further by providing a custom HTML file that con-
nects with Cogment Lab via a web socket.

await cog.run_web_ui (
actions=["no-op", "ArrowRight"]

)

4 Use Cases

4.1 Environment Compatibility

By default, Cogment Lab is compatible with any Gymnasium
and PettingZoo environments. These libraries are the de facto
standard for open-source RL environments, in the single- and
multi-agent context respectively. Any properly defined Gym-
nasium or PettingZoo environment can be used as an envi-
ronment service. If it also supports the rgb_array render
mode, it can be used with the web UI to support a human
actor taking the place of one of the agents.

It is also possible to implement a custom environment
without going through either interface. To that end, the user
can implement an instance of the BaseEnv abstract class,
which directly follows the design of the Cogment environ-
ment API. Alternatively, the CogmentEnv base class offers
a more modular approach to building a BaseEnv, using ab-
stractions that are more similar to typical RL code.

4.2 Environment Conversions

A key concept for non-standard workflows is that of environ-
ment conversions. This refers to the process of taking an envi-
ronment and changing something about its actors. This way,
we can add human involvement in environments which, on
the surface, do not have any room for that. Cogment Lab cur-
rently supports two types of environment conversions: Ob-
server and Teacher.

In the Observer conversions, we take in a Gymnasium en-
vironment and produce a PettingZoo environment, using ei-
ther the AEC or Parallel API. This environment will have
two agents: "gym" representing the original environment’s
agent, and "observer", typically a human. The observer
receives all the same observations as the agent, including the
environment renders, but its actions are ignored. This makes
it possible for a human operator to watch the agent’s actions
in real time through the web UL

In the Teacher conversions, just like before, we turn a
Gymnasium environment into a PettingZoo environment, this
time with the agents "gym" and "teacher". The role of
the teacher is observing, and potentially overriding the main
student’s actions. At each step, the teacher’s action indicates
whether they wish to override the main agent’s action, and if
s0, what action should actually be executed. The teacher can
base this decision on the main agent’s observation, and in the
case of the AEC API, the agent’s originally chosen action.
All of this information (both agent’s actions, and whether an
override happened) is automatically recorded via Cogment,
enabling its use during the training process.

4.3 Regular RL

The first, relatively simple use for Cogment Lab is for regular
RL training loops, without human involvement. After defin-
ing the code for the environment and sampling the actions
of a model, Cogment Lab provides a simple abstraction for
collecting episodes of data from the environment:

trial_id = await cog.start_trial (
env_name="<env_name>",
actor_impls={
"gym": "<actor_name>",
b
)
data = await cog.get_trial_data(trial_id)

Note that this can be done asynchronously — we can start the
trial, and then perform some other computation while the trial
is running in the background.

This component can be easily integrated in most standard
DRL algorithms. Simply add the gathered data to a replay
or rollout buffer, and optimize the model using the chosen
algorithm. In the repository, we provide examples for both
DQN [Mnih et al., 2013] and PPO [Schulman et al., 2017]
implementations using this approach.

4.4 Imitation Learning

Cogment Lab can be easily used for all parts of imitation
learning [Pomerleau, 1988]. The typical workflow involves
collecting the data for imitation beforehand, and then using it
as a static dataset for the training loop. In some cases, it is
also possible to interactively obtain actions from a pretrained
algorithmic agent. This approach is clearly limiting, as often
it might be valuable for a human demonstrator to adapt their
demonstrations based on the learner’s progress.

With Cogment Lab, it is possible to concurrently collect
new data for imitation from a human operator, and train the
agent on the data it already has access to. We provide an
implementation of the simple Behavioural Cloning algorithm
in the repository as a proof of concept.

4.5 Active Teaching

With the Teacher conversion described in Section 4.2 we can
implement new, creative ways of training RL agents with hu-
man involvement. One such method involves combining a
learner agent with a human instructor. They act in the envi-
ronment together, with the human overriding the agent’s ac-
tions whenever they deem necessary. The actions that were
actually executed in the environment are then added to the
replay buffer, and used in the learning process. This results
in an effective hybrid team, using both the human and the Al
together to achieve the goal. We provide an example of this
workflow on the Lunar Lander environment in the repository.

S Summary

In this work, we demonstrate Cogment Lab, an evolution of
interacting with Cogment for HILL RL research. We describe
its core philosophy, and how it differs from similar projects.
We provide an outline of how it can be used in terms of code,
but also what algorithms it enables — both existing and new.
We aim to extend Cogment Lab with new functionalities, and
use it for both commercial and research projects. We release
Cogment Lab with a permissive Apache 2 license, allowing
the wider community to use it for their own work. With this,
we hope to contribute to the growing field of human-in-the-
loop learning, to ensure a more collaborative future between
humans and Al

References

[Gottipati e al., 2023] Sai Krishna Gottipati, Luong-Ha
Nguyen, Clodéric Mars, and Matthew E. Taylor. Hiking up
that HILL with Cogment-Verse: Train & Operate Multi-
agent Systems Learning from Humans. In Proceedings of
the 2023 International Conference on Autonomous Agents
and Multiagent Systems, AAMAS ’23, pages 3065-3067,
Richland, SC, May 2023. International Foundation for Au-
tonomous Agents and Multiagent Systems.

[Mnih et al., 2013] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Alex Graves, loannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing Atari with Deep
Reinforcement Learning. arXiv:1312.5602 [cs], Decem-
ber 2013.

[Pomerleau, 1988] Dean A. Pomerleau. ALVINN: an au-
tonomous land vehicle in a neural network. In Proceedings
of the Ist International Conference on Neural Informa-
tion Processing Systems, NIPS’88, pages 305-313, Cam-
bridge, MA, USA, January 1988. MIT Press.

[Redefined et al., 2021] Al Redefined, Sai Krishna Gottipati,
Sagar Kurandwad, Clodéric Mars, Gregory Szriftgiser, and
Francois Chabot. Cogment: Open Source Framework For
Distributed Multi-actor Training, Deployment & Opera-
tions, June 2021. arXiv:2106.11345 [cs].

[Schulman et al., 2017] John Schulman, Filip Wolski, Pra-
fulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
Policy Optimization Algorithms. arXiv:1707.06347 [cs],
August 2017.

[Terry er al., 2021] Justin K. Terry, Benjamin Black, Mario
Jayakumar, Ananth Hari, Ryan Sullivan, Luis Santos,
Clemens Dieffendahl, Niall L. Williams, Yashas Lokesh,
Caroline Horsch, and Praveen Ravi. PettingZoo: Gym for
Multi-Agent Reinforcement Learning. arXiv:2009.14471
[cs, stat], February 2021. arXiv: 2009.14471.

[Towers et al., 2023] Mark Towers, Jordan K. Terry, Ariel
Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan
Deleu, Manuel Gouldo, Andreas Kallinteris, Arjun KG,
Markus Krimmel, Rodrigo Perez-Vicente, Andrea Pierré,
Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and
Omar G. Younis. Gymnasium, March 2023. Language:
eng.

	Introduction
	Cogment Lab Outline
	Cogment Lab vs Cogment
	Cogment Lab vs Cogment-Verse

	Library Design
	Running Services
	Environments
	Actors
	Human Actors

	Use Cases
	Environment Compatibility
	Environment Conversions
	Regular RL
	Imitation Learning
	Active Teaching

	Summary

