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Abstract

This paper considers the computation of reduced-order models for systems of ordinary differential equations
that include non-polynomial non-linearities. An targeted example is the case of a geometrically exact model
of highly flexible slender structure, that includes, after space discretisation, trigonometric nonlinear terms.
With a suitable change of variables, this system can be rewritten in an equivalent one with polynomial
nonlinearities at most quadratic, at the price of introducing additional variables linked to algebraic equations,
leading to a differential algebraic set of equations (DAE) to be solved. This DAE is reduced thanks to
a normal form parametrisation of its invariant manifolds and selecting a set of master ones. Arbitrary
order expansions are detailed for the coefficients of the change of variable and the reduced dynamics, using
linear algebra in the space of multivariate polynomials of a given degree. In the case of a single nonlinear
mode reduction, a criterion to evaluate the quality of the normal form results is also proposed based on an
estimation of the convergence radius of the polynomial asymptotic expansion representing truncated series.
The method is then applied to compute a single mode reduction of three test cases – a Duffing oscillator,
a simple pendulum and a clamped clamped beam with von Kármán model –, in order to investigate the
effect of the algebraic part of the DAE on the quality of the model reduction and its validity range. Then,
the more involved case of a cantilever beam modelled by geometrically exact finite elements is considered,
underlining the ability of the method to produce accurate and converged results in a range of amplitude that
can be bounded thanks to a convergence criterion.

1 Introduction

This paper considers the computation of reduced-order models for systems of ordinary differential equations
(ODEs) that include non-polynomial nonlinearities. The main application cases are geometrically exact models
of nonlinear slender structures discretised in space by a finite-element procedure, leading to differential equations
that include sine and cosine trigonometric functions. The investigated reduction strategy consists in replacing
the ODEs by an equivalent differential algebraic set of equations (DAE) with at most quadratic nonlinear terms
and reducing its dynamics on a few invariant manifolds of the phase space using a normal form technique.

The concept of normal forms originates with the work of Poincaré [1] where the idea is, in a nutshell, to use a
nonlinear change of variable to transform the original dynamics into a new one that has a simpler form and that
can be solved more easily. The change of variable somehow absorbs the nonlinearity, leading to a new dynamics
being linear in the best case. However, if the initial system has so-called resonance conditions, the new dynamics
will always contain some nonlinear terms called the resonant terms: the new dynamics is still nonlinear, but
simpler than the original one thanks to invariance properties. This properties also naturally lead to reduce the
dynamics by selecting only a subset of master (normal) variables, associated to a reduced dynamics, the change
of variables enabling to recover the initial variables in terms of the reduced set of normal variables. Additional
details about the theoretical framwork of the normal form theory can be found in [2, 3, 4, 5, 6].

The present invariant manifold reduction technique is linked to the nonlinear normal mode concept, that
extends the (linear) eigenmode definition to the nonlinear range. It is similar: one selects a reduced set of
master coordinates that enable to efficiently compute the dynamics around a given resonance. For a conservative
system in free vibrations, a NNM is defined equivalently as an invariant manifold of the phase space [7, 8, 9] or a
family of periodic solutions [10, 11], also known as a Lyapunov subcenter manifold [12, 13, 14]. With dissipation
included in the model, the invariant manifold definition still holds [15, 9] and coexists with other concepts
[16, 17]. Historically, the concept of NNM / invariant manifold has been first proposed and tested on models
of systems with a few degrees of freedom (either toy mass-spring models [18, 8, 11] or structures expanded

1



on a few linear modes [19, 20]) and its only recently that large finite-element discretised models of structures
have been addressed without the preliminary modal expansion step to diagonalise the linear part [21]. This
leaded to several software packages [22, 23] able to reduce the dynamics in free vibrations with possible internal
resonances [24, 25, 26, 26, 27, 28, 29], but also in forced vibrations around primary and secondary resonances
in direct and parametric forcing [30, 31, 32]. The present use of the normal form technique to compute the
invariant manifold and the reduced dynamics is one choice among others, another one being the so-called graph
style [21, 33, 34, 35, 36], used by Shaw & Pierre in the seminal work about NNM defined as invariant manifolds
[7, 37]. A review of model reduction for geometrically nonlinear structures can be found in [21] with more recent
references in [32, 38]. Some works also considers application to nonlinear PDE solved with the finite element
method [39]. .

In this work, we assume that the initial dynamics can be written under the form of a quadratic differential
algebraic equations (DAEs). Considering a quadratic DAE system offers a formalism that allows to easily
express asymptotic expansions analytically and simplifies the writing of the normal form associated computations.
Though being considered restrictive at first sight, it is possible to find an equivalent quadratic DAE to a given
ODE system that contains any classical elementary transcendental functions (exp, log, sin, cos, power. . . ), at
the price of introducing new variables, as explained in [40, 41, 42]. DAEs are for example the starting formalism
of the Manlab numerical continuation package that uses the asymptotic numerical method on quadratic DAE to
compute their solutions as a parameter is varied [43], or can be used for time integration [44]. Considering the
computation of reduced-order models for DAE using invariant manifolds has been considered recently in [45]
with the spectral submanifold framework. However, in this work the authors transform the DAE into an ODE by
taking the derivative of the algebraic equation with relation to time as many times as necessary. In the present
work, the quadratic DAE is kept as such during all the procedure for the normal form computation. Moreover,
using a quadratic DAE as a starting point for invariant manifold reduction has also been considered recently in
[32] to treat the case of systems forced in the vicinity of a secondary resonance, with no emphasis on the effect of
the algebraic part of the system on the model reduction, which is especially one of the goal of the present work.

In this paper, we propose a method to compute a reduced-order model of an autonomous quadratic DAE
using a polynomial change of variable, a reduced dynamics and a normal form style for the parametrisation
of the invariant manifold. The computations are carried out using linear algebra in the space of polynomials,
allowing to express multiplication and derivation operations with matrices with a particular block structure.
The equation to be assembled to compute the normal form at a given degree can then be easily assembled,
avoiding tedious handwritten and/or symbolic computations and facilitating its numerical implementation up to
an arbitrary polynomial order for the change of variables and the reduced dynamics.

The application of the method concerns in particular nonlinear mechanical systems modeled by the finite-
element method with any type of nonlinearity, provided a quadratic recast can be found, thus including algebraic
equations linked to the introduction of additional variables and/or constraints. A typical example is pendulum-
like equations, that involve sine functions in the nonlinearity, or more generally, geometrically exact beam
models where one has to take into account the displacement and the rotation of the cross section [46]. This is in
contrast with the test cases of cantilever beams discretised with 3D finite-element presented in [27, 29], where
only quadratic and cubic nonlinearities have to be considered since the finite-element degrees of freedom are
only displacements and no cross section rotations. Additional applications concern electrical systems and power
networks where machine dynamics and power balance appear naturally as quadatic DAEs [47].

As the normal form is an asymptotic expansion, it usually starts to diverge at high amplitudes and it can
be useful to have validity bounds for the reduced model. Criteria have been proposed for the normal form
in [48] and recent developments involve interesting discussions on the validity range of the different styles of
parametrisations [49]. In this paper, we propose a simple validity limit estimation for single mode reduced-order
models based on the d’Alembert and Cauchy criterion for convergence testing of power series.

The outline of the paper is as follows: first the proposed method and formalism are described in Section 2.
Then a detailed application on a Duffing oscillator is given in Section 3. Section 4 considers the application of
the proposed method to a simple pendulum system with various forms of parametrisations. Next, a simplified
model of a clamped clamped beam is studied in Section 5. Finally, Section 6 shows the applicability of the
proposed method by considering a cantilever beam discretised with geometrically exact finite-elements. The
paper ends with some concluding remarks.

2 Description of the normal form computation

2.1 Definition of the formalism

In this paper we consider autonomous and conservative dynamical systems that can be represented by an
autonomous quadratic DAE written under the following form:

Aẏ = Ly +Q(y, y) (1)
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where y ∈ RN is the vector of dynamical variables, L a linear operator (constant N × N matrix with real
coefficients) and A a (possibly singular) linear operator (constant N ×N matrix with real coefficients). Q is a
quadratic operator (vector of bilinear forms of size N) and ◦̇ = d ◦ /dt is the time derivative operation.

The vector of degrees of freedom y(t) contains the state variables of the system (usually positions and
velocities) along with Lagrange multipliers (if the dynamical system has constraints) and/or auxiliary variables
needed to recast the original dynamics under a quadratic DAE, that may bring singularities in A because of the
added algebraic equations. Although this formalism seems restrictive at first glance, it can actually account for
many nonlinear systems and allows to carry analytical development further as explained in the introduction.
This formalism is in particular used in the Manlab package as an input to compute periodic solutions using a
combination of the harmonic balance method and the asymptotic numerical method [43].

In the remainder of the paper, we assume that the origin y = 0 is an equilibrium point (i.e. Q(0, 0) = 0), and
we study the dynamics around that point. If this is not the case, then the procedure described in Appendix A
can be used.

2.2 Linear eigenmodes

The (right) linear eigenmodes of the quadratic DAE are defined by the solution of the following eigenvalue
problem:

(λA− L)Y = 0 (2)

where λ are the complex eigenvalues (possibly infinite due to the algebraic equations in the DAE) and Y the
(right) complex eigenvectors (mode shapes). These eigenmodes are used for the linear part of the change of
variable appearing in the normal form computation. Similarly, the (left) linear eigenmodes are defined by:

XT (λA− L) = 0 (3)

where X represent a left eigenvectors. Those (left) eigenmodes are used as projectors during the normal form
computation in the case of internal resonance. Note that since the operators L and A are real, the spectrum will
contain only real or complex conjugated eigenvalues. Note that if the operator A is singular, then (real) infinite
eigenvalues will appear in addition to the classical spectrum. These eigenvalues are associated with the algebraic
equations that can be identified as constraints on the variables of the systems.

2.3 Normal form strategy

2.3.1 Normal form parametrisation

We consider an autonomous quadratic DAE in the form of Equation (1). In the normal form computation, we
aim to find:

• (i) a nonlinear change of variable y = W (z), where W is a columns vector whose components are polynomials
(N components).

• (ii) a reduced nonlinear dynamics ż = f(z), where f is a columns vector whose components are polynomials
(n components) which we would like to be as simple as possible (i.e. containing as few terms as possible)

The variables in y are expressed as a function of the new variable z = (z1, z2, ..., zn) called complex normal
variables. The invariant manifold is parametrised using the normal form style parametrisation [36, 33], which is
contained in the change of variable y = W (z).

For a complete normal form computation (no reduction), the variable in z should be associated to all pairs of
complex conjugated eigenvalues of the linear eigenproblem in Equation (2), and in this case the computation is
equivalent to computing the Poincaré-Birkhoff normal form [50].

In this paper, we consider model order reduction, therefore the reduced normal variable z will contain
elements associated to selected pairs of complex conjugated eigenvalues of the linear problem. In the case of a
single mode reduction, the variables z contains only two elements z = (z1, z2).

In order to find an explicit expression for the change of variable W (z) and the reduced dynamics f(z), we use
multivariate polynomials in the variable z up to a given degree D. W (z) and f(z) can then be defined by their
coefficients matrix W and f relative to a monomial basis. In order to find the coefficients of the polynomials, we
substitute the polynomial expansion into the original DAE (1), and we balance the coefficients of each monomial
in order to obtain a set of equations defining the coefficients W and f . The remainder of the sections describes
this procedure in detail.
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2.3.2 Polynomial representation

The representation of the change of variable W (z) and the reduced dynamics f(z) uses multivariate polynomials
of the variable z. In the aim of computing a normal form up to a given degree D, we consider the space of
polynomials of degree D in n variables z = (z1, z2, . . . , zn) with complex coefficients, denoted CD[z]. It is a

vector space (over C) with dimension M = (D+n)!
D! n! , and we introduce the (canonical) monomial basis B(z)

composed of the elementary monomials bm(z) = zαm = zαm1
1 zαm2

2 · · · zαmn
n , with αm = (αm1, . . . , αmn) ∈ Nn

such that
∑n
k=1 αmk ≤ D, for m ∈ [0, M − 1]:

B(z) = [b0(z), b1(z), . . . , bn(z), . . . , bM−1(z)]T (4)

The elements of the monomial basis are sorted by increasing total degree. In particular, we set b0(z) = 1
(constant monomial), b1(z) = z1, b2(z) = z2, . . . , and bn(z) = zn (linear monomials).

A polynomial λ(z) ∈ CD[z] will be written using its coordinates relative to the basis B(z) as:

λ(z) = λ0 + λ1z1 + · · ·+ λnzn + λn+1z
2
1 + · · ·+ λmz

αm1
1 zαm2

2 · · · zαmn
n + · · ·+ λM−1z

D
n

=

M−1∑
m=0

λmbm(z) = λB(z)
(5)

where λ = [λ0, λ1, . . . , λM−1] is the (row) vector of coefficients for the polynomial λ(z) relative to the basis
B(z).

Next, we consider W (z) a (column) vector of N polynomials, whose components are denoted W j(z) for
j ∈ [1, N ]. Using the basis B(z), we can identify the vector of polynomials W (z) ∈ CND [z] with an N ×M
matrix of complex coefficients, denoted W ∈MN×M (C), such that:

W (z) = W B(z) =

M−1∑
m=0

Wmbm(z) = (W0, W1, W2, . . . , WM−1)


b0(z)
b1(z)
b2(z)

...
bM−1(z)

 (6)

where Wm ∈ CN is the vector of coefficients associated to the monomial bm(z) and also corresponds to the m+ 1
column of the matrix of coefficients W . The elements of the table of coefficient W are denoted W j

m ∈ C, where
the subscript (m) refers to the monomial basis and the superscript (j) refers to the component of the vector
W (z). Using this notation, Wm is a column vector containing the coefficients associated to the monomial bm
and W j is a raw vector containing all the coefficients for the polynomial W j(z).

In the following the will consider linear operator of RN that acts on the vector W (z) along with linear
operator of CND [z]. Both of those operation can be represented using matrices, acting to the left (resp. to the
right) of the coefficient matrix W for operator of RN (resp. for operator of CND [z]).

2.3.3 Derivation and multiplication of polynomials

In the following, two particular operations on polynomials will be required to rewrite the equations of motion:
taking the derivative of a vector of polynomials w.r.t a variable zj , and multiplying a vector of polynomials by a
given “scalar” polynomial. These operations are linear operations in the space of multivariate polynomials of
degree D and can be represented as matrices that act onto the coefficients of the input vector of polynomials.

We consider first the derivative operation ∂zj for 1 ≤ j ≤ N applied to the (column) vector of polynomials
W (z). Following the results presented in Appendix B, it can be expressed as:

∂zjW (z) = W∂zjB(z) = W∇jB(z) (7)

where ∇j is an M ×M constant matrix of integers representing the operation ∂zj relative to the basis B(z).
Equation (7) simply states that the components of the derivative ∂zjW (z) relative to the basis B(z) are given by
the matrix of coefficients W∇j . The derivation operation ∂zj reduces the degree of the input polynomial by one,
therefore the derivation matrices ∇j are (block) lower triangular matrices (with blocks of zeros on the diagonal).

We now consider the multiplication of a (column) vector of polynomials W (z) by a scalar polynomial λ(z).
Following the results presented in Appendix B, the product can be expressed as:

λ(z)W (z) = W
∑
m

λm∆mB(z) (8)

where ∆m is an M ×M constant Boolean matrix representing the operation “multiply by bm(z)” relative to the
basis B(z). The components of the product relative to B(z) are given by the matrix of coefficients W

∑
m λm∆m.
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Note that some information about the monomials of degree greater than D is lost at this point because those
monomials do not belong to the space CD[z] and do not appear in the basis B(z). This, however, is not a
problem since we aim at computing a normal form up to degree D. If m = 0, we have ∆0 = IM (the identity
matrix of size M). For m ≥ 1, the multiplication operation “multiply fy bm(z)” increases the degree of the
input polynomial by deg(bm(z)). As a consequence, the multiplication matrices ∆m are (block) upper triangular
matrices (with blocs of zeros on the diagonal).

The sequence of matrices ∇k for 1 ≤ k ≤ n and ∆m for 0 ≤ m ≤ M − 1 are very convenient to represent
the derivation and multiplication operations. They operate to the right of the matrix of coefficients of a given
polynomial. They all are sparse matrices with a special block structure due to the grading of polynomials
according to their total degree; they can be computed and stored prior to the normal form computation once the
number of normal variables (n) and the degree of polynomial approximations (D) are known.

2.3.4 Homological equation

Substituting the change of variable y = W (z) into the initial quadratic DAE (1), and recalling that the reduced
dynamics is written as ż = f(z), leads to the following invariance equation [21, 32]:

A
∂W

∂z
(z)f(z) = LW (z) +Q(W (z),W (z)) (9)

We consider the polynomials W (z) ∈ CND [z] and f(z) ∈ CnN [z] to be represented by their matrix of coefficients
W (N ×M matrix) and f (n×M matrix):

W (z) = W B(z) and f(z) = f B(z) (10)

Using the results of the previous section, the left-hand side of Equation (9) can be rewritten as:

A
∂W

∂z
(z)f(z) = A

n∑
j=1

∂W

∂zj
(z)f j(z) = AW

M−1∑
m=0

n∑
j=1

f jm∇j∆mB(z) = AWΞB(z) (11)

This shows that the operation ∂[·]
∂z f is represented by the matrix Ξ =

∑M−1
m=0

∑n
j=1 f

j
m∇j∆m relative to the basis

B. The operator Ξ is a combination of the elementary operators ∇j∆m corresponding to the operation bm(z)∂zj
(i.e. derivation w.r.t. zj followed by a multiplication by the monomial bm(z)).

Let us now consider the right-hand side of Equation (9). Using the multiplication matrices defined in the
previous section, it can be rewritten as:

LW (z) +Q(W (z),W (z)) =

(
LW +

M−1∑
m=0

M−1∑
s=0

Q(Wm,Ws)bm∆s

)
B(z) (12)

where bm is the (row) vector associated to the monomial bm(z) (i.e. containing a 1 in position m and zeros
elsewhere). Note that the product bm∆s actually corresponds to extracting the m-th line of the matrix ∆s, and
that the product Q(Wm,Ws)bm∆s will generates an N ×M matrix of coefficients.

Gathering the previous results, the homological Equation (9) can be rewritten as an equality between vectors
of polynomials as:

AW

M−1∑
m=0

n∑
j=1

f jm∇j∆mB(z) =

(
LW +

M−1∑
m=0

M−1∑
s=0

Q(Wm,Ws)bm∆s

)
B(z) (13)

By equating each coefficient of the monomials br(z) in B(z), the previous expression can be re-written as an
equality between N ×M matrices of coefficients (each column r + 1 corresponding to the coefficients of the
monomial br(z) for r ∈ [0,M − 1]):

AW

M−1∑
m=0

n∑
j=1

f jm∇j∆m = LW +

M−1∑
m=0

M−1∑
s=0

Q(Wm,Ws)bm∆s (14)

Doing so, the tedious task of balancing of the coefficients of a given monomial “by hand” is now replaced by
equating columns of matrices between the left and right-hand side of Equation (14). The equation for a particular
monomial br(z) for 0 ≤ r ≤M − 1 can be assembled simply by looking at the r+ 1-th column of the matrices in
Equation (14).
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2.4 Resolution procedure

We aim now at giving explicit expressions for the equations to be solved in order to find the coefficient matrices
W and f . The special block structure of the operators ∇j and ∆m allow us to proceed sequentially by increasing
degree.

2.4.1 Degree 0 (constant part)

We first consider the coefficient of the constant monomial b0(z) = 1. The corresponding equation to be solved
is obtained by equating the first column of Equation (14). The only terms appearing in the left-hand side are
related to the constant part of the reduced dynamics and the only term appearing in the right-hand side are
related to the constant part of the change of variable. The equation reads:

A

n∑
j=1

f j0Wj = LW0 +Q(W0,W0) (15)

Since the equilibrium point of the initial DAE system is the origin, an easy way to solve this equation, and avoid
the coupling with higher degree coefficients (Wj)1≤j≤n, is to take f j0 = 0 for 1 ≤ j ≤ n and W0 = 0.

At this point the constant terms can removed from the general homological Equation (14), which can be
rewritten as :

AW

M−1∑
m=1

n∑
j=1

f jm∇j∆m = LW +

M−1∑
m=1

M−1∑
s=1

Q(Wm,Ws)bm∆s (16)

2.4.2 Degree 1 (linear part)

Next, we consider the coefficients of the linear monomials br(z) = zr , related to the r + 1-th column of both
sides of Equation (14), for 1 ≤ r ≤ n. The only terms appearing in the left-hand side are related to the linear
part of the reduced dynamics, and the only terms appearing in the right-hand side are related to the linear part
of the change of coordinates. For a given r ∈ {1, n}, the equation for the coefficients of monomial br(z) reads:

A

n∑
j=1

f jrWj = LWr (17)

and can be rewritten as:

(Afrr − L)Wr +
∑
j 6=r

f jrWj = 0 (18)

Recalling that we would like the reduced dynamics to be in its simplest form, we can choose f jr = 0 for
1 ≤ j 6= r ≤ n and we can choose any eigenmode to solve the remainder part of the equation e.g. Wr = Yr and
frr = λr. In the case of a reduced normal form, the number n of normal variables should be even, and one has to
choose the complex conjugated pairs of eigenmodes associated to the physical modes of interest included in the
reduced-order model.

This step actually corresponds to a linear change of variables that renders the reduced dynamics uncoupled.
At this point, the reduced dynamics can be written as:

żr = λrzr (19)

for 1 ≤ r ≤ n, and the change of variables reads:

y(z) =

n∑
r=1

Yrzr (20)

where Yr and λr are the chosen eigenshapes and eigenvalues.

2.4.3 Higher degree (nonlinear part)

We now turn to the resolution for higher degree monomials. We consider a given monomial br(z) of degree
d ≤ D. Again, the equation to be solved can be assembled by looking at the r + 1-th column of the homological
equation. Based on the structure of the operator Ξ (see e.g. Equation (36) in the Duffing example in Section 3),
we can clearly see that several terms are now participating in the left-hand side of the homological Equation (16):
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• The “diagonal block” associated with (degree preserving) operators zm∂zj = ∇j∆m for 1 ≤ j,m ≤ n.
These terms are related to the degree d coefficients of the change of variable and the linear coefficients of
the reduced dynamics (this is where the so-called resonance conditions appear)

• The first “upper diagonal block” associated with the operators bm(z)∂zj = ∇j∆m for all m such that
deg(bm) = d. These terms are related to the degree d coefficient of the reduced dynamics and to the linear
coefficient of the change of variables.

• The remainder “upper diagonal blocks” associated to the operators bm(z)∂zj = ∇j∆m for all m such
that 1 < deg(bm) < d. These terms are associated to the degree p (1 < p < d) coefficient of the reduced
dynamics (and to the degree d− p of the coefficients of the change of variables). These terms arise only due
to the fact that the reduced dynamics cannot in general be put into linear form because of the resonance
conditions. Note that these terms are known at this point of the resolution procedure and therefore are
only participating in the right-hand side of the equation to be solved (along with the terms arising from
the quadratic operator Q).

The equation for the coefficient of a general monomial br(z) of degree d can be written as:

(

n∑
k=1

αrkλk)AWr︸ ︷︷ ︸
Diagonal block

+

n∑
j=1

f jrAYj︸ ︷︷ ︸
First upper diag. block

+
∑
p

f jpmp
AWkp︸ ︷︷ ︸

remainder upper diag. blocks

= LWr +

n∑
j=1

n∑
k=1

εrjkQ(Wj ,Wk) (21)

with
∑n
k=1 αrk = d ( αrk ∈ {0, 1, 2, . . . , d}), and εrjk = 1 if deg[bj(z)bk(z)] = deg[br(z)], ε

r
jk = 0 otherwise.

In view of resolution, we rewrite the previous equation under the following form:

(σrA− L)Wr +

n∑
j=1

f jrAYj =

n∑
j=1

n∑
k=1

εrjkQ(Wj ,Wk)−
∑
p

f jpmp
AWkp = Rr (22)

with σr =
∑n
k=1 αrkλk. Note that the right-hand side is known at this point and will be denoted Rr. In the

left-hand side we see appear the so-called resonance condition in the coefficient σr: if σr = λs, for a given s, then
the operator σrA−L in the left-hand side of Equation (22) becomes singular. The resolution proceeds as follows:

• if σrA− L is not singular, then we can take f jr = 0 for 1 ≤ j ≤ n (we do not include any new terms in the
reduced dynamics) and we obtain the coefficient for the change of variables as:

Wr = (σrA− L)−1Rr (23)

• if σr = λs, then the only terms we need to keep are the terms fsir AYsi (where Ysi i ∈ [1, R] are the possibly
multiple eigenshapes associated to the eigenvalue λs, i.e. the resonant modes) to account for the component
of the right-hand side parallel to the kernel of σrA− L (i.e. parallel to the Ysi), and we can set all the
other f jr = 0 for 1 ≤ j 6= si ≤ n. To close the system, we impose that the vector of coefficients Wr is
orthogonal to the kernel of σrA− L generated by the left eigenvectors Xsi , which generates an additional
R equations. The system to be solved can be written as: σrA− L AYsi,i∈[1,R] 0

XT
si,i∈[1,R]A 0 0

0 0 1


 Wr

f
si,i∈[1,R]
r

f
sj ,j /∈[1,R]
r

 =

Rr0
0

 (24)

At each degree d ≤ D there is Md systems of equation to be solved corresponding to all the monomials br(z)
of degree d. The procedure is carried out sequentially by increasing degree until a reduced normal form of degree
d is eventually computed.

2.5 Validity limit estimation for single mode reduction

We propose here a simple estimation of the validity limit when the reduced dynamics contains only two complex
conjugate variables (single mode reduction). The normal variables z1 and z2 can be rewritten under polar form
as z1 = ρeiθ and z2 = ρe−iθ with ρ ∈ R+ and θ ∈ R.

If we consider a particular component W j(z) of the change of variable (or of the reduced dynamics), it will
be written under the form of a series in the variable ρ with coefficients depending (periodically) on the variables
θ, and can be generally written as:

W j(z) = W j(ρ, θ) =

D∑
d=0

ad(θ)ρ
d (25)
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If the series is computed to a high enough degree D, then the convergence radius of the series can be estimated
using the traditional Cauchy or d’Alembert criterion [51], giving the maximum limit ρC (resp. ρA) for the
(infinite) series to converge. The criteria are defined as:

1

ρC
= lim
d→+∞

a
1/d
d (26)

1

ρA
= lim
d→+∞

ad+1

ad
(27)

Most of the time only even or only odd terms appear in the series and the d’Alembert criteria have to be adapted,
e.g. for a series containing only even terms, the criterion becomes:

1

ρ2A
= lim
l→+∞

a2l+2

a2l
(28)

The computation of the convergence radius for each variable can be realised for several values of the variables θ
over [0, 2π] to give a global estimation of the convergence of the results.

When the reduced dynamics contains more than two variables, other convergence criteria can be used, such
as looking at the singularities of the homological operator as in [48]. One can also look at the singularities of the
Jacobian of the reduced dynamics J = ∂zf to obtain information about the validity limit of the normal form
expansion.

2.6 Comments

The method to compute the normal form is presented here starting from the general form of a quadratic DAE.
This formalism has the advantage of being quite general and allows to push analytical development further. In
addition, this formalism is also used in the Manlab package [52] and it is convenient to reuse the same input for
the normal form computation.

We would like to point out, however, that the method can actually be applied to any polynomial DAE.
Indeed, only the right-hand side of the homological equation will be affected, and the multiplication matrices
can be used as many time as necessary to reach the degree of the polynomial nonlinearity. For example, if the
quadratic operator Q is replaced with a cubic operator K, then the polynomial K(W (z),W (z),W (z)) can be
written as:

K(W (z),W (z),W (z)) =

(∑
m

∑
s

∑
r

K(Wm,Ws,Wr)bmΛsΛr

)
B(z) (29)

For a DAE that derives from a Hamiltonian, the inclusion of the reduced dynamics in the unknown is actually
not necessary, and the reduced dynamics can be computed directly by imposing that the change of variable is
canonical (i.e. preserve the symplectic form) at each degree. This should be considered in future work.

3 Illustration on a Duffing oscillator

To illustrate the proposed method we consider here a detailed application to a simple Duffing equation written
as:

ü+ u+ u3 = 0 (30)

We believe that the detailed application provides a good insight to the core aspects of the method and helps to
show how it can easily be turned into an automated procedure for high degree normal form computation. The
analytical expressions presented in this section are actually general and not limited to the Duffing oscillator; the
results can be used to compute a single mode normal form (reduced dynamics with two variables only) of any
quadratic DAE up to degree 3.

3.1 Definition of the quadratic system and eigenmodes

Defining the velocity v = u̇ and the auxiliary variable r = u2 , the Duffing equation (30) is rewritten as the
quadratic DAE (1) given in explicit form by:1 0 0

0 1 0
0 0 0

u̇v̇
ṙ

 =

 0 1 0
−1 0 0
0 0 1

uv
r

+

 0
−ur
−u2

 (31)
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The (right) linear eigenmodes (λk, Yk) of the previous system are:

λ1 = i, λ2 = −i, λ3 =∞ (32)

associated to the following eigenvectors:

Y1 =

−i1
0

 , Y2 =

i1
0

 , Y3 =

0
0
1

 (33)

3.2 Detailed normal form computation up to degree 3

We consider here the computation of a normal form for the Duffing equation up to degree D = 3 in n = 2
variables z = (z1, z2). The vector space CD[z] is of dimension M = 10 and is generated by the basis:

B(z) =
[
1, z1, z2, z

2
1 , z1z2, z

2
2 , z

3
1 , z

2
1z2, z1z

2
2 , z

3
2

]T
(34)

Once the basis B is known, the derivation and multiplication matrices can be computed easily by using the
definition provided in Appendix B. For this application (n = 2, D = 3) the derivation and multiplication matrices
are explicitly given in Appendix B. For each unknown polynomials there is M = 10 coefficients to be computed.
The change of variable W (resp. the reduced dynamics f) of the Duffing oscillator will therefore consists in a
3× 10 (resp. a 2× 10) matrix of complex coefficients.

3.2.1 Constant and linear part

Following the procedure detailed in the previous section, the constant part of the change of variable and the
reduced dynamics are set to zero: W0 = 0, f0 = 0 (first columns of W and f). The linear part of the change of
variables consists in the two mode shapes W1 = Y1 and W2 = Y2, and the linear part of the reduced dynamics is

taken as f1 =

(
λ1
0

)
=

(
i
0

)
and f2 =

(
0
λ2

)
=

(
0
−i

)
.

3.2.2 nonlinear part

We first recall here the general homological Equation (16):

AW

M−1∑
m=1

n∑
j=1

f jm∇j∆m = LW +

M−1∑
m=1

M−1∑
s=1

Q(Wm,Ws)bm∆s (35)

Taking into account that the constant and linear part of the normal form is known at this point, the operator
Ξ =

∑M−1
m=1

∑n
j=1 f

j
m∇j∆m can be computed (see Appendix B) and expressed as:

Ξ =



0 0 0 0 0 0 0 0 1 0
0 λ1 0 f13 f14 f15 f16 f17 f18 f19
0 0 λ2 f23 f24 f25 f26 f27 f28 f29
0 0 0 2λ1 0 0 2f13 2f14 2f15 0
0 0 0 0 λ1 + λ2 0 f23 f13 + f24 f25 + f14 f15
0 0 0 0 0 2λ2 0 2f23 2f24 2f25
0 0 0 0 0 0 3λ1 0 0 0
0 0 0 0 0 0 0 2λ1 + λ2 0 0
0 0 0 0 0 0 0 0 λ1 + 2λ2 0
0 0 0 0 0 0 0 0 0 3λ2


(36)

Degree 2 coefficients

The equations for the coefficients of the degree 2 monomials br(z) for 3 ≤ r ≤ 5 are given by looking at
the columns 4 to 6 of the homological equation (i.e of the operator Ξ for the left-hand side of the equation,
remembering that Ξ operates to the left of the coefficient matrix W ). The three equations are given by:

• Coefficient of b3(z) = z21 :

2λ1AW3 + f13AY1 + f23AY2 = LW3 +Q(Y1, Y1) (37)

which can be rewritten as:

(2λ1A− L)W3 + f13AY1 + f23AY2 = Q(Y1, Y1) (38)
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Since there is no resonance condition for this monomial, we can directly solve the equation by setting

f3 =

(
0
0

)
and W3 = (2iA− L)−1Q(Y1, Y1).

• Coefficient of b4(z) = z1z2:

(λ1 + λ2)AW4 + f14AY1 + f24AY2 = LW4 +Q(W1,W2) +Q(W2,W1) (39)

Again, there is no resonance condition and the resolution gives:

f4 =

(
0
0

)
and W4 = −L−1 [Q(Y1, Y2) +Q(Y2, Y1)].

• Coefficient of b5(z) = z22 :

2λ2AW5 + f15AY1 + f25AY2 = LW5 +Q(Y2, Y2) (40)

which leads to f5 =

(
0
0

)
and W5 = (−2iA− L)−1Q(Y2, Y2).

In the case of the Duffing oscillator, the expressions for the coefficients of the change of variables are given
by:

W3 =

 0
0
−1

 , W4 =

0
0
2

 , W5 =

 0
0
−1

 (41)

At this order only the change of variable is updated, mainly to take into account the constraints (only the last
component the vectors of coefficients W3 to W5 is non zero). No additional terms are included in the reduced
dynamics, which is still linear at this point.

Note that the column of the operator Ξ can be updated and simplified using the known coefficients fr for
3 ≤ r ≤ 5, leading to:

Ξ =



0 0 0 0 0 0 0 0 1 0
0 λ1 0 0 0 0 f16 f17 f18 f19
0 0 λ2 0 0 0 f26 f27 f28 f29
0 0 0 2λ1 0 0 0 0 0 0
0 0 0 0 λ1 + λ2 0 0 0 0 0
0 0 0 0 0 2λ2 0 0 0 0
0 0 0 0 0 0 3λ1 0 0 0
0 0 0 0 0 0 0 2λ1 + λ2 0 0
0 0 0 0 0 0 0 0 λ1 + 2λ2 0
0 0 0 0 0 0 0 0 0 3λ2


(42)

Degree 3 coefficients

The equations for the coefficients of the degree 3 monomials br(z) for 6 ≤ r ≤ 9 are given by looking at columns
5 to 10 of the homological equation. Out of the four equations, two are related to (natural) resonance conditions
associated with the relations 2λ1 + λ2 = λ1 and λ1 + 2λ2 = λ2 (see the diagonal of operator Ξ). The four
equations are given by:

• Coefficient of b6(z) = z31 (non-resonant):

3λ1AW6 + f16AY1 + f26AY2 = LW6 +Q(Y1,W3) +Q(W3, Y1) (43)

whic can be rewritten as:

(3λ1A− L)W6 + f16AY1 + f26AY2 = Q(Y1,W3) +Q(W3, Y1) (44)

Since there is no resonance condition for this monomial, we can directly solve the equation by setting

f6 =

(
0
0

)
and W6 = (3iA− L)−1 [Q(Y1,W3) +Q(W3, Y1)].

• Coefficient of b7(z) = z21z2 (resonant):

(2λ1 + λ2)AW7 + f17AY1 + f27AY2 = LW7 +Q(Y1,W4) +Q(W4, Y1) +Q(Y2,W3) +Q(W3, Y2) (45)
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which can be rewritten as:

(λ1A− L)W7 + f17AY1 + f27AY2 = Q7 (46)

Since (λ1A − L) is singular, we have to keep the term f17AY1 to solve the equation. The system to be
solved is given as:λ1A− L AY1 0

XT
1 A 0 0
0 0 1

W7

f17
f27

 =

Q7

0
0

 (47)

• Coefficient of b8(z) = z1z
2
2 (resonant): as for the precedent term, the equation is rewritten as:

(λ2A− L)W8 + f18AY1 + f28AY2 = Q8 (48)

Since (λ2A − L) is singular, we have to keep the term f28AY2 to solve the equation. The system to be
solved is given as:λ2A− L AY2 0

XT
2 A 0 0
0 0 1

W8

f28
f18

 =

Q7

0
0

 (49)

• Coefficient of b9(z) = z32 (non resonant): as for the first term, the equation is rewritten equation as:

(3λ2A− L)W9 + f18AY1 + f28AY2 = Q9 (50)

The resolution gives f9 =

(
0
0

)
and W9 = (−3iA− L)−1Q9.

The numerical results for the Duffing oscillator can be summarized as:

W6 =
1

8

 i
−3
0

 , W7 =
3

4

i1
0

 , W8 =
3

4

−i1
0

 , W9 = −1

8

i3
0

 (51)

and

f6 =

(
0
0

)
, f7 =

3

2

(
i
0

)
, f8 = −3

2

(
0
−i

)
, f9 =

(
0
0

)
(52)

At degree 3, two terms are added to the reduced dynamics to take into account the resonant terms appearing
naturally in the homological equation. The change of variable is also updated in order to take into account the
curvature of the invariant manifold.

3.2.3 Sum up normal form Duffing order 3

For the normal form of the Duffing equation (written as a quadratic DAE) up to order 3, the change of variables
is given by:

y =

uv
r

 = W (z) = WB(z) =

0 −i i 0 0 0 i
8

3i
4 − 3i

4 − i
8

0 1 1 0 0 0 − 3
8

3
4

3
4 − 3

8
0 0 0 −1 2 −1 0 0 0 0





1
z1
z2
z21
z1z2
z22
z31
z21z2
z1z

2
2

z32


(53)

and the reduced dynamics by:

ż = f(z) = fB(z) =

(
0 i 0 0 0 0 0 3i

2 0 0
0 0 −i 0 0 0 0 0 − 3i

2 0

)



1
z1
z2
z21
z1z2
z22
z31
z21z2
z1z

2
2

z32


(54)
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which is simply rewritten as:(
ż1
ż2

)
=

(
iz1 + 3i

2 z
2
1z2

−iz2 − 3i
2 z1z

2
2

)
(55)

If we set z1 = ρeiθ and z2 = ρe−iθ, then the change of variable is rewritten as:

W (ρ, θ) =

uv
r

 =

 2ρ sin θ + ρ3 sin θ(sin2 θ − 9
4 )

2ρ cos θ + ρ3 cos θ(−3 cos2 θ + 15
4 )

4ρ2 sin2 θ

 (56)

and the reduced dynamics can be rewritten as:

ρ̇ = 0 + o(ρ3)

θ̇ = ω = 1 +
3

2
ρ2 + o(ρ3)

The first equation in the reduced dynamics is related to the conservation of energy in the system, and the second
equation says that the angular frequency only depends on the amplitude ρ, and is therefore a constant (since ρ
is constant). It directly gives the expression for the backbone curve of the Duffing oscillator parametrised by the
parameter ρ: (ω(ρ), umax(ρ)).

3.3 Normal form at higher degree and convergence results

In this section we aim at assessing the validity of the normal form results and give some information about the
convergence of the series. A reference solution can be computed analytically for the free Duffing oscillator using
Jacobi elliptic functions. The evolution of the natural frequency as a function of the initial amplitude u0 (zero
initial velocity) is given by the following (see [53]):

ωexact =
π
√

1 + u20
2K(m)

(57)

where K is the elliptic integral of modulus m =
√

u2
0

2(1+u2
0)

. This reference solution will be used to compare the

backbone curves and compute the error. In addition to the exact solution, we also consider a single harmonic
approximation u(t) = u0 cosωt (Harmonic Balance Method, HBM) for comparison purposes; in that case the
approximated angular frequency for the Duffing oscillator is given by:

ωhbm =

√
1 +

3

4
u20 (58)

The normal form for the Duffing oscillator is computed using the proposed method for degree 3 up to 31
and the results are compared to the reference solution in Figure 1. The backbone curves are compared on the
left part of the figure and one can observe a very good agreement between the normal form and the reference
results for low to moderate amplitudes. The normal form precision is obviously increased for higher degree. The
relative error to the exact solution is depicted on the right part of Figure 1 and one can see that increasing the
degree of the normal form reduces considerably the error.

Even if the HBM solution (with a single harmonic) seems to have a better global behaviour from the backbone
point of view, it can be seen in the error graph that a normal form with high enough degree is actually orders of
magnitude more precise (in its convergence domain).

To study the limit of validity of the results, we use the normal form at degree 31 to compute an estimation of
the convergence radius of the various series (reduced dynamics and change of coordinates) using the d’Alembert
and Cauchy criteria presented in Section 2.5. The estimated convergence radius is plotted against the normal
form degree in Figure 2. One can see that both the d’Alembert and Cauchy criteria seem to converge and that
they give very similar convergence radius estimation. This indicates that the normal form series are indeed
convergent in their validity domain. Note that the convergence of the Cauchy coefficients seems to be slower
than the d’Alembert’s one, but both criteria lead to roughly the same estimated convergence radius. In this
case, it is the series associated with the auxiliary variables that leads to the smallest convergence radius (using
the d’Alembert criteria). This allows for an estimation of the convergence radius ρ∗ of the series, and hence an
upper validity bound on the amplitude u (see Figure 1. This means that even if we increase the degree of the
normal form, the quality of the results will not be improved for amplitudes above the validity bound.

Since the coefficients of the series depend on the variable θ (recall z1 = ρeiθ and z2 = ρe−iθ), which can be
seen as a parameter describing the time along the period of the solution, the radius of convergence also depends
on θ, and its evolution is depicted in Figure 3 for the d’Alembert and the Cauchy criterion. The estimated
radius of convergence is taken as the minimum over θ of the convergence radius of all series (change of variables
and reduced dynamics) using the d’Alembert criteria.
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Figure 1: Comparison between exact solution and normal form (degree 3 to 31) for the Duffing oscillator. Left
plot: evolution of the fundamental angular frequency ω as a function of the initial amplitude u0. Right plot:
relative error (in %) on the angular frequency between the exact and normal form solution. Single harmonic
HBM results are also included for comparison purposes
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Figure 2: Left plot: Evolution of the d’Alemberts coefficients as a function of the degree d (for θ = 0). Right
plot: Evolution of the Cauchy coefficients as a function of the degree d (for θ = 0).

4 Application to the Simple Pendulum system

In this section, we present the application of the normal form computation to the case of a free (unforced) simple
pendulum, composed of a unit mass m = 1 attached to a massless rod of unit length l = 1 inside a constant
vertical acceleration field g = 1.

With this example, we would like to show that the results of the normal form depend on the parametrisation
used to recast the original dynamics under a quadratic ODE. Having in mind the application of the normal form
to a geometrically exact beam finite-elements model where quaternions are used for parametrisation of rotations,
we will first present the simple pendulum system using several types of motion parametrisation, resulting in
different kinds of quadratic DAE able to represent the same mechanical system. A comparison is then drawn
between the different models relative to the accuracy and the validity range of the normal form results.

4.1 Presentation of the parametrisation

The easiest way to represent the motion of the pendulum is to consider the angle θ between the rod and the
vertical direction. In this case, the kinetic (T ) and potential (U) energy are given by:

T =
1

2
θ̇2, U = − cos θ (59)
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Figure 3: Evolution of the estimated convergence radius ρA and ρC as a function of the angle θ (position along
the period) for the different series of the reduced dynamics (ω = θ̇) and the change of variables (u, v, r). Left:
d’Alembert coefficients, Right: Cauchy coefficients

and the equation of motion can be written as:

θ̈ + sin θ = 0 (60)

Several parametrisation are proposed here for the simple pendulum based on the approach used to recast the
original system under a quadratic DAE. They can be sorted into three categories:

• A direct Taylor expansion of the sine terms at various order, followed by the definition of the needed
auxiliary variables to have a quadratic system. These systems will be termed “Taylor X” where X is the
degree of the Taylor expansion of the sine.

• A Lagrangian approach base on the family of parametrisation p0 = cos(θ/n), p3 = sin(θ/n) for a given
n ∈ N, subject to the constraint p20 + p23 = 1. For n = 1, one recovers the Cartesian parametrisation, n = 2
correspond to the quaternion-like parametrisation, and n ≥ 3 gives rise to a series of other parametrisations.
Those systems will be termed “Chebichev n”.

• A mixed approach where we directly substitute the parameters (p0, p3) in the equation of motion, and use
an ODE to define the sine function. These systems will be termed “ODE Sine n”.

Details about each kind of parametrisation is given in the following.

4.1.1 Taylor X

To transform the equation of motion into a quadratic DAE, one can use a Taylor expansion of the sine function
around the equilibrium point (up to a reasonable order) so that the nonlinearity becomes polynomial so that the
system can then be recast under a quadratic DAE easily. To exemplify this procedure, we consider a Taylor
expansion at order 5 for the sine function. In this case, the equation of motion is approximated by the following:

θ̈ + θ − θ3

6
+

θ5

120
= 0 (61)

Introducing two auxiliary variables a = θ2 and b = a2, the equation of motion can be rewritten under the form
of a quadratic DAE as follows:

θ̇ = ω (62)

ω̇ = −θ +
aθ

6
− bθ

120
(63)

0 = a− θ2 (64)

0 = b− a2 (65)

The resulting quadratic DAE is centred around the origin and the proposed procedure to compute the normal
form can be applied directly.
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4.1.2 Chebichev n

In the following, we use a (family of) two dof parametrisation for the motion of the pendulum, resulting in a
(family of) polynomial DAE that can then be recast under quadratic form. We consider an integer n ∈ N∗ and
we define the two following variables:

p0 = cos
θ

n
(66)

p3 = sin
θ

n
(67)

Considering the n-th Chebichev polynomial (of the first kind) Tn, defined such that cosnx = Tn(cosx), and
setting nx = θ, one can write the potential energy of the pendulum as:

U = − cos θ = −Tn(cos
θ

n
) = −Tn(p0) (68)

Considering the time derivatives of Equation (66), we can write the kinetic energy as:

T =
n2

2
(ṗ20 + ṗ23) (69)

Finally we introduce the constraint linking p0 and p3 as:

p20 + p23 − 1 = 0 (70)

Using a Lagrange multiplier λ to take into account the constraint, and Euler- Lagrange equation to derive the
equation of motion, one obtains the following (family of) equations for the simple pendulum:

n2p̈0 −
∂Tn
∂p0

= 2λp0 (71)

n2p̈3 = 2λp3 (72)

p20 + p23 − 1 = 0 (73)

Since Tn is a polynomial, the previous equation is a DAE with polynomial nonlinearities and can be recast to a
quadratic form with no complications.

The idea of using such parametrisations is that if one chooses a large value for n, then variables p0 and p3
have a lower range of variation and can be very well captured by low order approximation in the normal form
computation. However, as n increases, the degree of the equation of motion increases as well and more and more
auxiliary variables are needed for the quadratic recast. Some examples for particular values of n are given in
Appendix C.

4.1.3 ODE for sin θ/n

Another way to represent the pendulum motion under a quadratic DAE is to consider the rotation speed ω = θ̇
and to introduce two more unknowns as c = cos θ and s = sin θ. The sine function can be defined by the
differential equation ṡ = Ωc along with the constraint c2 + s2 − 1 = 0. In this case the pendulum equation can
be rewritten as:

ω̇ = −s (74)

ṡ = ωc (75)

0 = c2 + s2 − 1 (76)

(77)

which is in the form of a quadratic DAE (with non-zero equilibrium).
An alternative way to define the pendulum equation in this framework is to consider a quaternion-like

parametrisation. In this case the additional unknowns are defined as p0 = cos θ2 and p3 = sin θ
2 , linked

through the differential equation ṗ3 = 1
2 θ̇p0 and the constraint p20 + p23 − 1 = 0. In this case, one has

sin θ = 2 sin θ
2 cos θ2 = 2p0p3 and the pendulum equation can be rewritten as:

ω̇ = −2p0p3 (78)

ṗ3 =
1

2
ωp0 (79)

0 = p20 + p23 − 1 (80)

(81)
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4.2 Details on the normal form computation

We consider here the computation of a normal form for the simple pendulum system by applying the proposed
method to the various quadratic DAE representing the equation of motion. For all systems, the input to the
computation is defined in the same way and the operators A and L are provided as constant (sparse) matrices,
and the quadratic operator Q can be provided directly using a function/routine.

The system is first set around the origin if the equilibrium is not zero. Then, the complex eigenmodes of the
system are computed using the operators A and L. In the case of the pendulum, only the two modes associated
to the oscillatory solution (i.e to the purely complex (conjugated) eigenvalues) are kept as an input for the
computation, leading to a normal form containing only two (complex conjugated) normal variables z1 and z2.

4.3 Solution computation and comparison

In the following, we consider only the free motion of the pendulum when subjected to an initial displacement
(zero initial velocity). We consider periodic solutions and aim to compute the evolution of the oscillation’s period
as a function of the initial amplitude (nonlinear mode / backbone curves) using the normal form for the several
types of quadratic DAE presented in the previous section.

4.3.1 Reference solution

The reference solution for the pendulum’s oscillation period can be derived analytically by first transforming the
pendulum equation into a Duffing oscillator and then using Jacobi Elliptic integrals (see e.g. [53]). If we define
θ0 as the initial amplitude of the pendulum, then the oscillation period T = T (θ0) can be expressed as:

T (θ0) = 4K(m) = 4

∫ 1

0

√
(1− t2)(1−mt2) dt (82)

where K is the complete elliptic integral of the first kind and m = sin2 θ0
2 is the modulus. The angular pulsation of

the oscillation is given by ω(θ0) = 2π
T (θ0)

. This expression will constitute the reference solution for all comparisons.

4.3.2 “Taylor X” results

We first consider here the case where the pendulum is parametrised using a single dof θ, and where the sine
function appearing in the equation of motion is expanded using Taylor expansion. For comparison purposes we
consider Taylor expansions at order X = 11 and X = 21. After a quadratic recast, the normal form is computed
up to degree d = 3, 5, 7, 21, 45 for each system.

Figure 4 represents the evolution of the angular frequency of the pendulum oscillation as a function of sin θ0.
It can be observed that the results are independent of the degree of the Taylor expansion. It can be observed
that increasing the degree of the normal form increase the quality of the results, and that the backbone barely
depends on the Taylor expansion order X (which means that X = 11 is a good enough approximation in this
case). The difference can only been seen for a normal form at order 45 where the error for a Taylor expansion at
order X = 21 is smaller that the one for X = 11.

4.3.3 “Chebichev n” results

We consider here the case of the Chebichev n parametrisation for n = 1, 2, 4 (see Appendix C). After a quadratic
recast, the normal form is computed up to degree d = 3, 5, 7, 21, 45 for each system.

Figure 6 represents the evolution of the angular frequency of the pendulum oscillation as a function of sin θ0
2 .

It can be observed that for a given normal form degree D, the results are better as the parameter n increases.
A possible explanation is the fact that the variable p3 = sin θ/n will have smaller and smaller amplitude as n
increases, and is therefore easier to develop into a series. Again, for a given n, it can be observed that increasing
the degree of the normal form increases the quality of the results. The results are in good agreement with the
reference solution and the best results are given for the normal form at degree 45 using the the parametrisation
with n = 4.

4.3.4 “ODE sine n” results

We consider here the case of the “ODE sine n” parametrisation for n = 1, 2. After a quadratic recast, the normal
form is computed up to degree d = 3, 5, 7, 21, 45 for each system.

Figure 8 represent the evolution of the angular frequency of the pendulum oscillation as a function of sin θ0.
As in the previous case, it can be observed that for a given normal form degree D, the result are better as the
parameter n increases. Again, the results are in good agreement with the reference solution and the best results
are obtained for the parametrisation n = 2 at degree D = 45.
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Figure 4: Comparison between exact solution and normal form (degree 3 to 45) for Taylor expansion (order 11
and 21). Left plot: evolution of the fundamental angular frequency ω as a function of the (sine) of the initial
angle amplitude θ. Right plot: relative error (in %) on the angular frequency between the exact and normal
form solution
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Figure 5: Left plot: Evolution of the d’Alemberts radius of convergence ρA a function of the degree d (for θ = 0).
Left plot: Evolution of the Cauchy radius of convergence ρC as a function of the degree d (for θ = 0).

4.4 Comparison between the various parametrisation

Finally, we compare the different formulations by considering the normal form at degree D = 45 of each
considered parametrisation for the simple pendulum. The results are presented in Figure 10. One can see that
the worst parametrisation is the Cartesian parametrisation (Chebichev 1) as it gives the highest error. The ODE
sine formulation for n = 1, 2 and the Chebichev 2 and 3 have a similar intermediary error level. The Taylor X
formulation seems to give the best results as it gives the lowest error on the largest angular frequency range.
One can conclude that in this case, a Taylor expansion at order 11 is barely sufficient to compute a normal form
for the simple pendulum. Note however that a quaternion-like formulation (Chebichev 2) yields a reasonable
error level over a relatively large angular frequency range.
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Figure 6: Comparison between exact solution and normal form (degree 3 to 45) when using the Chebichev
parametrisation (see Appendix C) for n = 1, 2 and 4. Left plot: evolution of the fundamental angular frequency
ω as a function of the (sine) of the initial angle amplitude θ. Right plot: relative error (in %) on the angular
frequency between the exact and normal form solution
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Figure 7: Left plot: Evolution of the d’Alembert radius of convergence ρA a function of the degree d (for θ = 0).
Left plot: Evolution of the Cauchy radius of convergence ρC as a function of the degree d (for θ = 0).

5 Clamped-Clamped beam with Von Kármán model

In this section, we consider a clamped-clamped beam with geometric nonlinearities modelled using Von Kármán
hypothesis. This allows us to consider a model of intermediate complexity before turning to the case of a full FE
model as a last application.

5.1 Description of the system

We consider a clamped-clamped straight beam of length L with a homogeneous cross section of thickness h, area
S and second moment of area I, made out of a homogeneous and isotropic material. The nonlinearities in this
case are due to the coupling between the axial strain and the transverse displacement, and can be well-captured
by a von Kármán model with neglected axial inertia [54, 55]. In this case, the continuous partial differential
equations for the transverse displacement can be expressed under normalised form as:

v̈ + v′′′′ − αTv′′ = 0

T = 1
2

∫ 1

0
(v′)2dx

(83)

where v(x, t) is the transverse displacement field normalised by the thickness h (i.e. v(x, t) = v∗(x, t)/h with
v∗(x, t) the dimensioned displacement), x ∈ [0, 1] is the normalised location along the middle axis of the beam
(i.e. x = x∗/L with x∗ the dimensioned location), t is the normalised time, ◦′ = ∂ ◦ /∂x, ◦̇ = ∂ ◦ /∂x, T (t) is the
(normalised) axial tension in the beam and α = Sh2/I is a dimensionless parameter that depends on the cross
section geometry only. In this text, a rectangular cross section is considered such that α = 12 [55].
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Figure 8: Comparison between exact solution and normal form (degree 3 to 45) when using an ODE to define
sin θ (see Equation (74)) or sin θ/2 (Equation (78)). Right plot: evolution of the fundamental angular frequency
ω as a function of the (sine) of the initial angle amplitude θ. Right plot: relative error (in %) on the angular
frequency between the exact and normal form solution
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Figure 9: Left plot: Evolution of the d’Alemberts radius of convergence ρA a function of the degree d (for θ = 0).
Right plot: Evolution of the Cauchy radius of convergence ρC as a function of the degree d (for θ = 0).

The continuous model is first discretised using the first transverse linear mode shapes Φj of the clamped
clamped beam, in order to express the displacement v as:

v(x, t) =

Nmode∑
j=1

qj(t)Φj(x) (84)

where qj(t) is the modal coordinate of the j-th transverse linear mode and Nmode is the number of retained
modes in the expansion. Expanding the continuous equation of motion onto the reduced mode shape basis leads
to the following set of second order differential equation for the variables {qj}1≤j≤Nmode

:

q̈j + ω2
j qj +

1

2
α

Nmode∑
k,l,m=1

ΓjkΓlm qkqlqm = 0 (85)

where ωj are the natural angular frequencies of the transverse modes, defined as:

ωj = k2j , (86)

with cosh kj cos kj = 1 and Γjk are constant coefficients defined as:

Γjk =

∫ 1

0

φ′j(x)φ′k(x) dx, (87)
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Figure 10: Comparison between exact solution and normal form (at degree 45) for the different formulation for
the pendulum equation of motion. Left plot: evolution of the fundamental angular frequency ω as a function of
the (sine) of the initial angle amplitude θ. Right plot: relative error (in %) on the angular frequency between
the exact and normal form solution

if the mode shapes are normalised such that
∫ 1

0
Φ2
j (x) dx = 1.

Finally, Equation (85) is recast under a quadratic DAE by introducing the velocities vj = q̇j as:

q̇j = vj (88)

v̇j = −ω2
j qj − αT

Nmode∑
k=1

Γjkqk (89)

0 = T − 1

2

Nmode∑
k,l=1

Γkl qkql (90)

For the numerical experiments, the first 15 linear transverse modes are used to discretise the continuous
equation (Nmode = 15). After quadratic recast, this leads to a quadratic DAE with N = 31 variables in total (15
modal coordinates (qj), 15 modal velocities (vj) and 1 auxiliary variable (T )).

5.2 Reference Solution

In order to draw comparisons and assess the quality of the normal form results, a reference solution is computed
for the first (transverse) vibration mode of the clamped clamped beam using a numerical HBM with 20 harmonics
and the ANM for the continuation of the periodic solution, coded in the software Manlab [43].

The reference solution for the first bending mode exhibits a 1:5 internal resonance with the 3rd linear mode
[55] located at frequency ω ' 1.1ω1 on the backbone curve. This feature will not be captured with the normal
form since we are only considering a single mode reduction in the application. Note however that the method
proposed in this paper can be applied to capture the internal resonance by keeping more normal variables
z3, z4, . . . in order to account for the resonant modes in the reduced dynamics [56, 28].

5.3 Example of normal form results

The normal forms for the first transverse mode of the clamped clamped beam are computed up to degree 35 and
compared to the reference solution in Figure 11, where the modal amplitude q1, q3 and q5 are depicted as a
function of the natural angular frequency ω. As the degree of the normal form increases, the results get closer
and closer to the reference solution. The modal amplitude of the coordinates q3 and q5 are well captured by
the change of coordinates, and the evolution of the natural angular frequency is well evaluated by the reduced
dynamics. Note however that, at a certain amplitude, the results start to diverge from the reference solution,
and the divergence appears at lower amplitude for higher degree normal forms.

The effect of increasing the normal form degree is even clearer in Figure 12 where the relative error in angular
frequency (between the normal form and the reference solution) is depicted. Increasing the degree of the normal
form lowers the relative error by orders of magnitude, in the validity range of the series. However, at one point
increasing the degree does not seem to have any effect on the error, indicating that moderate degree normal
forms should be considered (10 ≤ D ≤ 20). One recovers the results presented in [27] in which the case of a
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Figure 11: Comparison between the normal form backbone curves and the reference solution for the three modal
amplitudes q1, q3 and q5 as a function of the normalised angular frequency ω = Ω/ω1

clamped-clamped beam is considered with the same reduced-order modelling strategy but applied to a 3D finite
element discretisation. In both cases, the validity limit of the order three normal form is for a normalised modal
amplitude of q1 = 0.15 (corresponding ω ' 1.01ω1 on the backbone curve and to a vibration amplitude at the
center of the beam equivalent to 0.15Φ1(1/2) = 0.24 times the thickness of the beam), whereas an order five
normal form is valid up to a normalised vibration amplitude of q1 = 0.3 (ω ' 1.01ω1 on the backbone curve and
0.3Φ1(1/2) = 0.48 times the thickness for the vibration amplitude at the center of the beam). Our result also
extend the results of [27] since our computations shows the validity limits of the various degrees of the normal
form on a larger range of amplitude and frequency.

The validity limit of the normal form expansion can be estimated using the Cauchy or d’Alembert criterion
presented in Section 2.5, and depicted in Figure 13. In this case, the Cauchy criterion appears to be more robust
than the d’Alembert one, probably due to the small magnitudes of the coefficients appearing in the series at
higher degree. One can see that the estimated validity limit based on the proposed criterion is in good agreement
with qualitative and quantitative comparisons given in Figure 11 and Figure 12.
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Figure 12: Relative error in angular frequency (as compared to the reference solution) for the three modal
amplitudes q1, q3 and q5 as a function of the normalised angular frequency ω = Ω/ω1
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Figure 13: Clamped-clamped beam, convergence radius estimation as a function of the normal form degree using
d’Alembert (left plot) or Cauchy (right plot) criteria

6 Cantilever Beam with geometrically exact finite-element model

As as final application example, we consider here a clamped-free beam discretised with a geometrically exact
finite-element model. The aim of this example is to show that the proposed procedure can be applied to large
quadratic DAE used to model mechanical structures. In what follows only a normal form with two variables will
be considered, leading to the construction of a reduced model with a drastically reduced number of variables.
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6.1 Description of the model

The model used here is a reformulation of the model proposed in [57, 46] and only the main developments are
given in the following. We consider a straight clamped-free beam of length L with a homogeneous cross section
of area S and second moment of area I, made out of an isotropic and homogeneous material. The axis of the
beam is assumed to be initially aligned with the x axis. In the following, only the motion of the beam in the x, y
plane will be considered (2D model).

Using a rigid body assumption for the displacement field of the cross section (Timoshenko kinematics), the
motion of any point of the beam can be related to the displacement of the middle line and the position in the
cross section in the undeformed configuration. In order to represent the rotation of the cross section, unitary
complex numbers a+ ib are used to replace the usual rotation of the cross section [46, 57], denoted here by an
angle ψ(x, t), with a = cosψ and b = sinψ. This allows to represent rotation as quadratic operations, instead
of sine and cosine functions, at the price of including a constraint of the type a2 + b2 = 1 at each point of the
middle line. Another solution would have been to use quaternions, as done in [58, 59]

The constraint is taken into account through the use of a Lagrange multiplier µ. The unknown vector field,
denoted U(x, t), can then be defined as:

UT (x, t) =
[
u(x, t) v(x, t) a(x, t) b(x, t) µ(x, t)

]
(91)

where u (resp. v) is the axial (resp. transverse) displacement of the centerline, a and b are the component of the
complex number used to represent the rotation ψ(x, t) of the cross section (i.e. a = cosψ and b = sinψ) and µ is
the Lagrange multiplier used to enforce the constraint a2 + b2 = 1 along the beam. x ∈ [0, 1] is the normalised
location along the middle axis of the beam (i.e. x = x∗/L with x∗ the dimensioned location), t is the normalised
time, ◦′ = ∂ ◦ /∂x, ◦̇ = ∂ ◦ /∂x. The two displacement fields u and v are normalised with the length L of the
beam, instead of using h for the clamped-clamped beam in section 5 (i.e. (u, v) = (u∗, v∗)/L with (u∗, v∗) the
dimensioned displacements). Using this scaling, it can be shown that the dynamics of the beam does depend
mainly on one dimensionless parameter η = I/(SL2) and that if the beam is very slender, the effect of η on the
backbone curve is negligible [60]. In this particular example we choose η ≈ 4.10−6.

The strain measure is based on a consistant linearisation of the full Green-Lagrange strain tensor (see e.g [57])
and can be written as:

e = (1 + u′)a+ v′b− 1 (92)

γ = −(1 + u′)b+ v′a (93)

χ = ab′ − a′b (94)

where e is the axial strain, γ is the shear strain and χ is the curvature.
The beam is discretised with quadratic Timoshenko beam elements (with 3 nodes per element). At each node

j, the dofs consist in the axial displacement uj , the transverse displacement vj , the two components of complex
number (aj , bj) used to represent the rotation of the section, and the Lagrange multiplier µj . The nodal degrees
of freedom are gathered in a vector zj for j = 1, 2, 3 defined as:

zTj =
[
uj vj aj bj µj

]
(95)

and the element degrees of freedom are gathered in a vector z defined as:

zT =
[
zT1 zT2 zT3

]
(96)

The interpolation of the vector field over a single element can be written as:

U(x, t) = P (x)z(t), (97)

where P (x) is the interpolation matrix of size 5× 15 defined as:

P (x) =
[
N1(x)I5 N2(x)I5 N3(x)I5

]
. (98)

where I5 is the identity matrix of dimension 5 and N1(s), N2(s) and N3(s) are the quadratic interpolation
functions over the element.

For a single (quadratic) element the equation of motion for the 15 dof contained in the vector z can be
written under the form:

Mz̈ = Fint(z)

where M is the element mass matrix and Fint(x) is the vector of internal forces. The elementary internal forces
are computed using the virtual work principle along with reduced Gauss integration to avoid shear locking [61].
Using a 2 points Gauss integration, the elementary vector of internal forces can be written as:

Fint(z) =
Le
2

[
Q(x1)T fint(P (x1)z) +Q(x2)T fint(P (x2)z)

]
(99)
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where the matrix Q(x) is given by:

Q(x) =

[
P (x)
dP
dx (x)

]
(100)

where x1, x2 are the location of the Gauss points along the element, and fint is defined by:

fTint(U) =
[
0 0 −bT2 aT2 0 Fx Fy Ma + 2µa Mb + 2µb a2 + b2 − 1

]
(101)

where N = ESe, T = GSγ, Fx = aN − bT , Fy = bN + aT , T2 = Nγ − (1 + e)T , Ma = EIa′ and Mb = EIb′.
The elementary force vector Fint will therefore depend quadratically on the values of the various fields

a, b, µ, u′, v′, a′, b′, e, γ, T2 evaluated at the Gauss points. In this work, we choose to include an additional 20
auxiliary variables per Gauss point (40 auxiliary variables per elements) in order to render the expression of Fint
linear with relation to those variables. This was also motivated for post-processing reasons as in this case one
can directly access the results for the auxiliary variables (which have meaningful physical interpretation) instead
of recomputing it from the displacement field.

For the complete beam, the elementary mass matrices and forces vectors are assembled over the whole
structure and the system is put into the form of a quadratic DAE by adding auxiliary variables to the system.
For the numerical application, the beam is discretised with Ne = 30 quadratic elements (3 nodes per element,
with 5 dof per node). After quadratic recast and assembly, the final quadratic DAE contains N = 1740 variables
in total (240 positions, 240 velocities, 60 Lagrange multipliers and 1200 auxiliary variables).

6.2 Reference solution

For this example, a reference solution is computed using the harmonic balance method with H = 20 harmonics.
The Manlab package is used to compute the solution using the ANM. Note that the same input (the same
quadratic DAE) is directly used as an input to compute the normal form.

6.3 Example of normal form results

The normal form for the first mode of the cantilever beam is computed for various degree 1 ≤ D ≤ 31. The
evolution of the natural angular frequency ω as a function of the normalised transverse amplitude of the free
end v(L) is depicted in Figure 14 and compared to the reference solution. One can observe a good agreement
between the normal form solutions and the reference solutions. One can note that the normal form of degree 31
has a lower range of validity than the other, as it sharply changes direction when the amplitude reaches 0.5.
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Figure 14: Left: Evolution of the fundamental angular frequency ω as a function of the transverse amplitude at
the free end. Right: relative error in angular frequency for the normal form of the cantilever beam at various
degree. Note the figures are plotted as a function of the normalised angular frequency ω = Ω/ω1

Figure 14 should be compared to Fig.5c of [27] where the authors computed a normal form for the clamped
free beam problem using 3D finite element model (as opposed to a beam finite element model in the present
paper). Even if the slenderness parameter of the studied beam are slightly different (η ≈ 4.16.10−6 in our case
and η ≈ 1.16.10−6 in [27]), a very good agreement is observed between the results obtained from normal forms
using a 3D model (Fig.5c of [27]) or using a beam model (Figure 14). In particular, the validity for the transverse
displacement using a normal form at order 3 seems to be around the order of 0.5L in both cases.
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The relative error in angular frequency ε = ωhbm−ωnf

ωhbm
is depicted in Figure 14. One can see that for low

angular frequency, all the normal form results are equivalent. However, the high degree (31) normal form quickly
degrades in quality, whereas the normal form of moderate degree (11) has a relatively good global behaviour,
and seems to be the best choice to make in this example.

To understand the previous results, we analyse the coefficients of the series (displacement v and reduced
dynamics ω = θ̇) to estimate the radius of convergence using the d’Alembert and the Cauchy criteria. The
results are depicted in Figure 14. In both criteria, one can see that the convergence radius estimated using the
reduced dynamics series shows a rapid convergence to a stable limit (ρ∗ ≈ 1.6). For the series associated to
the displacement, using the d’Alembert criterion, the convergence radius first tend to the same as the reduced
dynamics, but after a certain degree (here around 25) there is a sudden drop in the convergence radius, explaining
the bad quality of the high degree normal form results at high amplitude. This might be due to numerical
instabilities occurring during the computation as high degree, as the matrices start to be ill conditioned, and the
coefficients of the series being very small. This might also be due to the fact that normal form are asymptotic
expansions that start to degrade at high amplitude when increasing the number of terms in the series.

The radius of convergence estimated using the Cauchy coefficient seems to have a more monotonous
convergence, but one can see that the validity limit estimated using the position v(L) and v(L/2) is clearly not
converged. We recommend that one should therefore consider normal forms of moderate degree, as high degree
normal forms can prove to be suboptimal.
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Figure 15: Evolution of the convergence radius estimated using the d’Alembert (left plot) or the Cauchy (right
plot) coefficients as a function of the normal form degree.

The numerical instabilities for the coefficients of the change of variables at high degree seems to be confirmed
if we look at the magnitude of the coefficients of the series as a function of the degree. Figure 16 depicts the
evolutions of the modulus of the coefficients of various series as a function of the monomial number m. One
can see that the amplitude of the coefficient is first decreasing, and is then re-increasing for monomial numbers
greater than 350 (i.e for normal forms of degree greater than 25). Note that the series corresponding to the
reduced dynamics ω = θ̇ does however have a good behaviour as the modulus of the coefficients is strictly
decreasing over the degree.

To give an estimation of the deformation of the beam, the vibration shape at the validity limit for the normal
form is depicted in Figure 17.
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Figure 16: Modulus of the series coefficient for the reduced dynamics ω and the axial and transverse displacements
at the free end of the beam as a function of the monomial number.

Figure 17: Vibration shape of the first mode of the cantilever beam at the quantitative validity limit amplitude
of the normal form of degree 31

7 Conclusion

This paper considers the computation of normal forms for dynamic system written in the form of a quadratic
differential equation, which is a general way of writing most of nonlinear systems encountered in various research
an application fields. The normal form aims at finding a change of variable and reduced dynamics using
polynomial expansion to carry out the computation. We propose here a method to write the (homological)
equation to be solved at each degree based on linear algebra in the space of polynomials. This method allows
for a general way of balancing the coefficients of each monomial in the homological equation, and can be easily
coded. We also propose a criterion to evaluate the validity limit of the normal form based on d’Alembert and
Cauchy criteria.

The proposed method is first applied in detail on a simple Duffing oscillator to illustrate the various matrices
involved and the convergence results. The second example considers the case of a simple pendulum, and is
here to illustrate the fact that the results of the normal form depends on the type of quadratic recast used to
transform an original nonlinear system into a quadratic DAE. Finally, the method is applied to a larger system
modelling a 2D cantilever beam using a geometrically exact finite-element. The results are in good agreement
with the reference solution, but it shows that high degree normal form can lead to bad quality results at too
high amplitude, and that moderate degree normal form should be used.

8 Acknowledgement
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A Quadratic DAE with non zero equilibrium position

If the initial system contains a constant part C, then a lift is required to recast the variable around the origin to
obtain a system under the form of Equation (1). Consider a system defined as:

AC Ẏ = C + LCY +QC(Y, Y ) (102)

The static solution Ys is defined by the algebraic equation:

0 = C + LCYs +QC(Ys, Ys) (103)

Using the change of variable Y = Ys + y (around a given stable static position Ys), where y is now the new
variable centred around origin, we obtain the following system of equation for y:

AC ẏ = C + LC(Ys + y) +QC(Ys + y, Ys + y) (104)

Using the definition of the equilibrium position Ys, leads to

AC ẏ = [LC +QC(·, Ys) +QC(Ys, ·)] y +QC(y, y) (105)

which is identified as the quadratic DAE with zero equilibrium (1) where we have define L = LC +QC(·, Ys) +
QC(Ys, ·) (the tangent operator around the equilibrium) and A = AC and Q = QC .

B Polynomial algebra

B.1 Basis

We consider the space of polynomials with complex coefficients of degree D in n variables z = (z1, z2, . . . , zn),

denoted CD[z]. It is a vector space (over C) with dimension M = (D+n)!
D!n! , the canonical monomial basis B(z) is

composed of the elementary monomials bm(z) given by:

bm(z) = zαm = zαm1
1 zαm2

2 · · · zαmn
n (106)

with αm = (αm1, . . . , αmn) ∈ Nn such that |αm| ≤ D, for m ∈ [0, M − 1].
The elementary vector of the basis can be concatenated into the basis (column) vector B(z) as:

B(z) = [b0(z), b1(z), . . . , bn(z), . . . , bM−1(z)]T (107)

In this paper, we sort the monomials of the basis by increasing total degree. In particular we set b0(z) = 1 (the
constant monomial, degree 0) , b1(z) = z1, b2(z) = z2, . . . , and bn(z) = zn (the linear monomials, degree 1) and
so on. The basis B(z) can be naturally split into D+ 1 families of monomials of constant degree. This leads to a
special block structure for the derivation and multiplication matrices presented hereafter.

B.2 Derivation matrices

We consider a (column) vector of polynomials W (z) expanded over the basis B(z): W (z) = WB(z). We consider
the derivative operation ∂zj for 1 ≤ j ≤ N acting onto the vector W (z), which can be written as follows:

∂zjW (z) = W∂zjB(z) (108)

It can be seen that it is sufficient to know the effect of the derivation operation in the basis ∂zjB(z) to compute

the expression in the previous equation. If we consider a general monomial bm(z) = zα
m

= z
αm

1
1 . . . z

αm
n

n , then the
derivation by zj gives:

∂zj bm(z) = αmj z
αm

1
1 · · · × zα

m
j −1

j × . . . zα
m
n

n = αmj br(z) (109)

where br(z) is a given monomial of degree 1 less than bm(z). The results for all monomials can be gathered in a
matrix ∇j representing the operation ∂zj relative to the basis B(z):

∂zjB(z) = ∇jB(z) (110)

where ∇j is an M ×M constant matrix of integers. The derivation operation ∂zj reduces the degree of the input
polynomial by one, therefore the derivation matrices ∇j are (block) lower triangular matrices (with blocs of
zeros on the diagonal).

The derivative of a vector of polynomials can then be expressed as:

∂zjW (z) = W∇jB(z) (111)

This relation simply states that the components of the derivative ∂zjW (z) relative to the basis B(z) are given
by the matrix of coefficients W∇j .
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B.3 Multiplication matrices

We now consider the multiplication of a (column) vector of polynomials W (z) = WB(z) by a scalar polynomial
λ(z) = λB(z). The product can be expressed as:

λ(z)W (z) =

M−1∑
r=0

M−1∑
s=0

λrWsbr(z)bs(z) = W

M−1∑
r=0

λrbr(z)B(z) (112)

we see that only the products br(z)B(z) are needed to compute the previous expression. We consider a general
monomial product br(z)bs(z). If the degree of this product if less than the degree D, then it actually corresponds
to another monomial of the basis, e.g. bm(z). If the degree of br(z)bs(z) is greater than D, then this term is
out of the vector space CND [z] and are discarded. The result can be summarized using a multiplication matrix
defined as:

bm(z)B(z) = ∆mB(z) (113)

where ∆m is an M ×M constant Boolean matrix representing the operation “multiply by bm(z)” relative to the
basis B(z). The product of λ(z)W (z) can then be expressed as:

λ(z)W (z) = W

M−1∑
m=0

λm∆mB(z) (114)

B.4 Matrices for n = 2, D = 3

We give here the explicit expression for the derivation and multiplications matrices in the case of polynomials of
degree D = 3 in n = 2 variables z = (z1, z2). The vector space CD[z] is of dimension M = 10 and is generated
by the basis:

B(z) =
[
1, z1, z2, z

2
1 , z1z2, z

2
2 , z

3
1 , z

2
1z2, z1z

2
2 , z

3
2

]T
(115)

B.4.1 Derivation matrices for n = 2, D = 3

The derivation matrices ∇j (for j= 1, 2) are defined by:

∂zjB(z) = ∇jB(z) (116)

and are given by:

∇1 =



0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0


, ∇2 =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 3 0 0 0 0


(117)

B.4.2 Multiplication matrices for n = 2, D = 3

The multiplication matrices ∆m, for m = 0, . . . , M − 1, are defined by:

bm(z)B(z) = ∆mB(z) (118)
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Constant and linear matrices

The matrix ∆0 is the identity matrix of size M . The matrices ∆1 and ∆2 are given by:

∆1 =



0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


, ∆2 =



0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


(119)

Degree 2 matrices

The degree 2 multiplication matrices are given by:

∆3 =



0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


, ∆4 =



0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


, (120)

∆5 =



0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


(121)

Degree 3 matrices

And finally the degree 3 multiplication matrices are given by:

∆6 =



0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


, ∆7 =



0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


(122)
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∆8 =



0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


∆9 =



0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


(123)

C Pendulum equation

C.1 Cartesian parametrisation

When n = 1 (T1(x) = x), one recovers the equation of motion using Cartesian coordinates. If one sets
p0 = cos θ = −y and p3 = sin θ = x, then Equation (71) can be written as:

ÿ + 1 = 2λy (124)

ẍ = 2λx (125)

x2 + y2 − 1 = 0 (126)

which are the classic equations for the pendulum (λ being the the tension in the rod). Note that the equation of
motion is already in the form of a quadratic DAE.

C.2 Quaternion-like parametrisation

When n = 2 (T2(x) = 2x2 − 1), one recovers the equation of motion using “quaternion-like” parametrisation for
the rotation of the pendulum. If one sets p0 = cos θ2 and p3 = sin θ

2 , then Equation (71) can be written as:

p̈0 − p0 =
1

2
λp0 (127)

p̈3 =
1

2
λp3 (128)

p20 + p23 − 1 = 0 (129)

which is in the form of a quadratic DAE.
Note that another form of the equations of motion is available in this case. Indeed, one can also write the

potential energy as U = p23 − p20, resulting in a somehow more “symmetric” system of equations given by the
following:

p̈0 −
1

2
p0 =

1

2
λp0 (130)

p̈3 +
1

2
p3 =

1

2
λp3 (131)

p20 + p23 − 1 = 0 (132)

C.3 Parametrisation for n ≥ 3

To illustrate the quadratic recast procedure, we consider the case n = 4 (the case n = 3 still leads to a quadratic
DAE and needs no quadratic recast). For n = 4, the variables are defined as p0 = cos θ4 and p3 = sin θ

4 , and the
resulting equations of motion are given by the following:

p̈0 − 2p30 + p0 =
1

8
λp0

p̈3 =
1

8
λp3

p20 + p23 − 1 = 0

(133)
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These equations are cubic (w.r.t. p0) and the quadratic recast is done by introducing an auxiliary variable
defined as a = p20 so that the system takes the following quadratic DAE form:

p̈0 − 2ap0 + p0 =
1

8
λp0

p̈3 =
1

8
λp3

p20 + p23 − 1 = 0

a− p20 = 0

(134)
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[33] X. Cabré, E. Fontich, and R. de la Llave. The parameterization method for invariant manifolds. I. Manifolds
associated to non-resonant subspaces. Indiana Univ. Math. J., 52(2):283–328, 2003.
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