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systems driven by a stationary control field
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Université Toulouse III and CNRS UMR 5589, Toulouse, France and
2Department of Physics, Syed Babar Ali School of Science and Engineering,

Lahore University of Management Sciences (LUMS), Lahore

In this article, we investigate the optical response of a duplicated two-level atomic medium sub-
mitted to a strong stationnary control field and a weak co-propagating probe field, orthogonally
polarized to each other. We show that both reflected and transmitted components of the probe may
be absorbed and amplified. Moreover, for low optical depths, reflection and transmission factors are
controlled by the relative phase between control and probe fields, which makes the configuration we
present here promising for the development of optical devices, such as phase-controlled switches.

I. INTRODUCTION

The control and manipulation of light pulses has long been a key challenge with many applications in, e.g., telecom-
munications and, more recently, quantum technologies. To achieve this goal one may try and shape the optical
response of the propagation medium – absorption and /or dispersion – through combining non-linear effects and
quantum interferences. Electromagnetic induced transparency (EIT) [1], refraction index enhancement [2], slow,
stored and fast light [3] are examples of applications of such an approach. Meta-materials like negative-index samples
[4] or photonics crystals [5] are based on different strategies. In the latter, the propagation of light is modified by the
existence of photonic band gaps due to periodic spatial variations of the optical index, in the same way as periodic
atomic lattices affect the conductivity of electrons in semiconductors. Such crystals are usually obtained by stacking
dielectric slabs of different indices periodically. The optical features of the structures thus obtained are determined
once and for all. Another more versatile way to obtain a photonic crystal is provided by Electromagnetically Induced
Gratings (EIG). In this case, the periodic modulation of the medium optical response results from the application of a
standing-wave driving field, which gives rise to new original phenomena. For instance, the standing-wave configuration
was recognized years ago to be very promising to achieve spatial localization [6]. Moreover, exciting a lambda system
in EIT configuration with a stationary control field one obtains a periodic modulation of the atomic absorption with
sharp peaks which allows for the creation of stationary pulses of light [7] as well as the optical control of photonic
band gaps [8]. Many groups also use this configuration to control the group velocity [9], induce Raman-gratings [10],
phase-gratings [11], or implement phase-gates and optical switching [12].

In the present work, we focus on an atomic medium with the so-called duplicated two-level system (DTLS) config-
uration, often used to study electron spin coherence effects [13]. When excited by a strong control and a weak probe
beams, polarized orthogonally to each other, DTLS exhibits efficient quantum interferences between absorption and
stimulated emission paths. We pointed out the great potentialities of DTLS media for controlling the propagation
of the probe field in previous works. We experimentally demonstrated the coherent control of the medium gain in
the femtosecond regime [14]. We also theoretically predicted the existence of Zeeman-coherent-oscillation-assisted
slowing of the probe in a non-collinear configuration [15] and phase control of the effective susceptibility in a collinear
configuration [16]. Other authors proposed to take advantage of DTLS media to control optical bistability [17], group
velocity [18], and implement quantum memory or optical switching [19]. It was also suggested to use orthogonal
spatial configuration for the control field to generate spatial diffraction within the multiphoton resonance condition
[20] or beyond [21]. The phase control of spatial interference of resonance fluorescence [22], transmission and reflection
factors in a dielectric slab [23], and the possibility of spatial localization of atoms [24] are among promising related
results.

In the present article, we consider a DTLS medium submitted to collinear control and probe fields. The control field,
however, is now a standing-wave which induces an EIG in Zeeman coherences. The overlap between the control and
probe beams ensures efficient interaction and energy exchange between the field components along the sample. We
study the influence of interaction parameters – control field intensity, detuning, optical depth and phase shift between
the control and the probe – on reflected and transmitted probe light intensity and phase. By contrast with transverse
gratings which only diffract a weak part of the probe field, the optical depth of DTLS medium leads to significant
reflection and transmission coefficients which can be even larger than one. This spatial configuration moreover enables
a phase control of probe reflection and transmission in certain conditions we identify.

ar
X

iv
:2

40
6.

02
04

3v
1 

 [
qu

an
t-

ph
] 

 4
 J

un
 2

02
4



2

Figure 1. Experimental configuration (proposal). The control field is split into two parts that give the forward and backward
components (Rabi envelopes Ω±

π , respectively). The probe field is sent at the entrance of the sample in the forward direction
(Rabi envelope Ω+

σ ) and the backward component (Rabi envelope Ω−
σ ) is generated from the end part of the sample.

II. THEORETICAL MODEL

A. The system

We consider the experimental configuration depicted in Fig. 1. An atomic sample of length L is submitted to two
fields of same frequency ω, propagating along the y axis with orthogonal polarizations. The first – so-called control –
field is π-polarized and split into two parts: one part penetrates the sample from the left side (henceforth designated
as the entrance), and propagates in the direction of increasing y’s, while the other part is seeded back into the sample
from the other side (henceforth designated as the exit), and propagates in the direction of decreasing y’s. The total
control electric field expresses as

Eπ (y, t) = ez
[
ε+π (y) eiky + ε−π (y) e−iky] e−iωt + c.c. (1)

For sake of simplicity, we assume that the amplitude ε+π (y = 0) is real. The second – so-called probe – field is σ-
polarized propagates in the direction of increasing y’s and penetrates the sample through the entrance. Its electric
field is given by

Eσ (y, t) = ex
[
ε+σ (y) eiky + ε−σ (y) e−iky] e−iφe−iωt + c.c. (2)

In this expression, φ is defined as the phase shift between the probe and control fields. Note that even if the
injected probe field propagates in the forward direction, a backward component ε−σ (y) builds up because the atomic
sample radiates in both directions. Moreover, the boundary conditions for the probe at the exit and entrance write
ε−σ (y = L) = 0 and ε+σ (y = 0) = E0, where E0 is real.

We assume that the fields essentially couple to a F = 1/2 → F = 1/2 atomic line of the medium (e.g. 2S1/2F = 1/2 →
2P1/2F = 1/2 transition of 6Li at 671 nm) described by a duplicated two-level system (Fig. 2). The π-polarized control
field Eπ (resp. σ polarized probe field Eσ) couples to the ∆mF = 0 (resp. ∆mF = ±1) paths. In the following,
we determine the reflection and transmission coefficients of the medium for a weak probe in the presence of a much
stronger control field.

B. Atomic polarization

In the interaction picture, the density matrix ρ of an atom in the medium obeys the master equation iℏ∂tρ =
[H, ρ] + relaxations where H is the Hamiltonian in the rotating wave approximation

H = ℏ


0 0 −Ω∗

π −Ω∗
σe

iφ

0 0 −Ω∗
σe

iφ Ω∗
π

−Ωπ −Ωσe
−iφ ∆0 0

−Ωσe
−iφ Ωπ 0 ∆0


Here Ωj=π,σ =

dεj
ℏ denote the Rabi frequencies for the control and probe fields, with d = ⟨mF = 1/2 |D · ez|mF = 1/2⟩

the z-component of the dipole moment of the transition (F = 1/2,mF = 1/2) → (F = 1/2,mF = 1/2), ∆0 = ω0 − ω is
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Figure 2. (a) The duplicated two-level system (DTLS) and (b) field configurations.

the detuning of the fields with respect to the DTLS natural frequency, ω0, while εj=π,σ (y) = ε+j (y) + ε−j (y) e−2iky

are the envelopes of the control and probe fields, respectively. The populations ρcc and ρdd relax with the rate Γ, the
coherences ρac, ρad, ρbc and ρbd with the rate Γd and the excited Zeeman coherence with the rate Γze. In the absence
of non-radiative homogeneous dephasing processes, (Γze,Γd) reduce to

(
Γ, Γ

2

)
. The modification of the probe field is

determined by the behaviour of the coherence ρσ = ρcb+ρda which radiates the σ-polarized light and whose evolution
is ruled by the equation [14–16]

∂tρσ = iΩπ (ρZ − ρ∗Z) + iΩσe
−iφ (ng − ne)− (i∆π + Γd) ρσ

where ρZ = ρab + ρcd. The coherence ρσ therefore builds up through two competing phenomena, i.e. the diffraction
of the pump by the Zeeman coherences (first term) and the absorption of the probe by the population (second term).
In the stationary regime, the excited state coherence is destroyed by relaxations, ρcd = 0, and only the ground state
Zeeman coherence ρab contributes to ρσ. In the stationary regime, one finds ρσ = 2ρda = 2ρcb =

(
Ωσe

−iφ

Ωπ

)∗
ρπ with

ρπ =

(
Ω2

π +Ω2
σe

−2iφ
)
(iΓd +∆0) Ω

∗
π

4ΓdΓ−1 |Ω2
π +Ω2

σe
−2iφ|2 +

(
|Ωπ|2 + |Ωσ|2

)
(Γ2

d +∆2
0)

(3)

ρσ =

(
Ω2

π +Ω2
σe

−2iφ
)
(iΓd +∆0) Ω

∗
σe

iφ

4ΓdΓ−1 |Ω2
π +Ω2

σe
−2iφ|2 +

(
|Ωπ|2 + |Ωσ|2

)
(Γ2

d +∆2
0)

(4)

Throughout this work, we will assume that, along the sample, the control is much more intense than the probe, i.e.

|Ωπ (y)| ≫ |Ωσ (y)| (5)

therefore, from Eqs.(3,4), we get

ρπ =
iΓd +∆0

4ΓdΓ−1 |Ωπ|2 + Γ2
d +∆2

0

Ωπ (6)

ρσ =
iΓd +∆0

4ΓdΓ−1 |Ωπ|2 + Γ2
d +∆2

0

Ω2
π

|Ωπ|2
Ω∗

σe
iφ (7)

We now define α0 = Nd2ω0/2cℏε0Γd the field absorption coefficient at resonance, where N denotes the number of atoms
per unit volume in the medium, and we introduce χlin and χsat, the linear and saturated susceptibilities respectively,
and χeff – whose signification will be given later,

χlin =
2α0Γd/k

−iΓd +∆0
(8)

χsat = χlinS (9)

χeff = χsate
2iφ (10)
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with the saturation parameter S (y) defined as

S (y) =
1

1 + F0 |Ωπ (y)|2
(11)

and

F0 =
4ΓdΓ

−1

Γ2
d +∆2

0

(12)

Using Eqs.(6-12), we finally get

ρπ =

(
k

2α0Γd

)
χsatΩπ (13)

ρσ =

(
k

2α0Γd

)
χeff

Ω2
π

|Ωπ|2
Ω∗

σe
−iφ (14)

C. Propagation equations

The control and probe fields obey the following one-dimensional Maxwell propagation equations

∂2

∂y2
(
Ωπe

iky)+ k2
(
Ωπe

iky) = −2kα0Γd

(
ρπe

iky)
∂2

∂y2
(
Ωσe

ikye−iφ)+ k2
(
Ωσe

ikye−iφ) = −2kα0Γd

(
ρσe

iky)
Using Eqs.(1,2), we explicitly decompose the Rabi frequencies into their forward and backward contributions

Ωj=π,σ (y) = Ω+
j (y) + Ω−

j (y) e−2iky (15)

with Ω±
j=π,σ =

dε±j
ℏ , and we define the associated phases φ±

j by the relation Ω±
j =

∣∣Ω±
j

∣∣ e−iφ±
j . We also formally

expand the coherences ρj=π,σ as

ρj (y) =

+∞∑
n=−∞

ρ
(n)
j (y) e2inky (16)

When the conditions
∣∣∣ ∂2

∂y2Ω
±
j

∣∣∣ ≪ k
∣∣∣ ∂
∂yΩ

±
j

∣∣∣ ≪ k2
∣∣Ω±

j

∣∣ are met, the slow envelope approximation can be performed.

The envelopes ρ
(n)
j (y) are then slowly varying at the wavelength scale. Retaining only the relevant terms ρ

(n)
j (y)

which satisfy the phase matching condition, one finally gets from Eqs.(14-16)

∂Ω+
π

∂y
= iα0Γdρ

(0)
π (17)

∂Ω−
π

∂y
= −iα0Γdρ

(−1)
π (18)

∂Ω+
σ

∂y
= iα0Γde

iφρ(0)σ (19)

∂Ω−
σ

∂y
= −iα0Γde

iφρ(−1)
σ (20)

In the next section, we recall important results on the simpler specific case when control and probe beams are both
forward-propagating. Then, in Sec. IV, we shall address the more complex configuration involving a stationary control
field and investigate in detail the observed phase-controlled probe reflection and transmission through analysing the

behaviour of associated coefficients R =
∣∣∣Ω−

σ (y=0)

Ω+
σ (y=0)

∣∣∣2 and T =
∣∣∣Ω+

σ (y=L)

Ω+
σ (y=0)

∣∣∣2.
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III. SITUATION WITH NO BACKWARD CONTROL FIELD

We first address the case of forward-propagating fields inside the medium, i.e. ε−j (y) = 0, Ωj = Ω+
j and ρj = ρ

(0)
j

for j = π, σ. This situation has been studied in detail in [16], we shall therefore only briefly summarize the main
effects here.

Using the relation Ω2
π

|Ωπ|2
Ω∗

σ = e2i∆φ+
σπΩ+

σ with ∆φ+
σπ = φ+

σ − φ+
π , Eqs.(13, 14, 17-20) lead to

∂Ω+
π

∂y
= i

k

2
χsatΩ

+
π (21)

∂
(
Ω+

σ e
−iφ

)
∂y

= i
k

2
χeffe

2i∆φ+
σπ

(
Ω+

σ e
−iφ) (22)

Provided that the dephasing between the control and probe fields, denoted by ∆φ+
σπ, does not substantially grow along

propagation, χeff is seen to play the role of an effective susceptibility for the probe in Eq.(22). From Eqs.(21,22),
one derives the propagation equation

∂∆φ+
σπ

∂y
= k sin

(
∆φ+

σπ − φ
) [

χ′
sat sin

(
∆φ+

σπ − φ
)
− χ”sat cos

(
∆φ+

σπ − φ
)]

(23)

where χ′
sat and χ”sat denote the real and imaginary parts of the saturated susceptibility, respectively. We introduce

the phase of the linear susceptibility, φL, defined by χlin = |χlin| eiφL , which verifies

tanφL =
Γd

∆0
(24)

The integration Eq.(23) leads to tan∆φ+
σπ = tanφL

( tanφL
tanφ +1)e−2α0y sin2 φL−1

. When |Ωπ (y = 0)| ≪
√
ΓdΓ and α0L sin2 φL ≪

1, then |Ω+
π (y)| ≈ |Ω+

π (y = 0)|, S ≈ 1 and ∆φ+
σπ ≈ 0, see [16]. The sample therefore becomes a linear medium for the

probe field whose susceptibility, χeff , is related to the true linear susceptibility through χeff = χline
2iφ. The latter

relation proves the existence of the phase control of the linear response of the medium, whose physical interpretation
was described in [16]. It results from interference effects between the quantum paths which contribute to the coherence
ρσ responsible for the σ-polarized radiated field.

If the control field intensity is increased, saturation effects occur and the validity condition of parametric approxi-
mation is less restrictive. From Eq.(21), one gets

∂ |Ω+
π |

∂y
= −α0S sin2 φL

∣∣Ω+
π

∣∣
and provided that α0LS (y = 0) sin2 φL ≪ 1, control field intensity remains unaffected along propagation. If the
optical depth is increased so that the inequality α0LS (y = 0) sin2 φL ≪ 1 no longer holds, the modification of the
control field cannot be neglected and additional dephasing has to be taken into account in the propagation equation
of the probe. New features appear and are detailed in [16].

IV. SITUATION OF A STATIONARY CONTROL FIELD

In this section, we investigate the effects which appear when the intensity of the control field is not uniform but
spatially modulated because of the backward component. In this situation, the probe field experiences both reflexion
and transmission. The impact of the modification of the optical response of the sample and the eventuality of phase
control can be evaluated by calculating the transmission and reflection coefficients for the probe field.

A. Propagation equations in the slow envelope approximation

In the slow envelope approximation, the set of Eqs.(17-20) can be rewritten by extracting an analytical expression
for the components ρ

(0)
j (y) and ρ

(−1)
j (y).

We introduce the parameter r (y) and phase φr defined by Ω−
π (y) = r (y) Ω+

π (y) and r = |r| e−iφr , so that φr =
φ−
π − φ+

π . When the control field is unaffected by the propagation, r (y) is constant. Note that, for Eq.(5) to hold,
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the control field should not vanish anywhere, including the spatial nodes, therefore r should be different from 1.
From Eqs.(13,14,16), we see that the analytical expressions of ρ(0)j (y) and ρ

(−1)
j (y) can be evaluated as soon as the

series expansion of the saturation parameter S (y) and 1
|Ωπ(y)|2

are determined. The saturation parameter S given by
Eq.(11) may be expressed as

S (y) =
b (y)

1 + a (y) cos [2ky + φr (y)]
(25)

with a (y) =
2F0|Ω+

π (y)|2|r(y)|
1+F0|Ω+

π (y)|2(1+|r(y)|2)
and b (y) = 1

1+F0|Ω+
π (y)|2(1+|r(y)|2)

. It can also be formally expanded as

S (y) =

+∞∑
n=−∞

cn (y) e
2inky (26)

where the cn coefficients are slowly varying at the spatial wavelength scale 2π/k and can be approximated as cn (y) ≈
k
π

∫ y+π/k

y
S (y′) e−2inky′

dy′. For n ≥ 0, using Eq.(25) and [25], we get cn (y) ≈ c0η
neinφr(y), with c0 = b(y)√

1−a2(y)
and

η =

√
1−a2(y)−1

a(y) . Moreover, for n ≤ 0, the reality of parameter S implies that cn = c∗−n.
On the other hand, using Eq.(15), one may put the parameter 1

|Ωπ(y)|2
under the form

1

|Ωπ (y)|2
=

b′ (y)

1 + a′ (y) cos [2ky + φr (y)]
(27)

with a′ (y) = 2|r(y)|
|Ω+

π (y)|2(1+|r(y)|2)
and b′ (y) = 1

|Ω+
π (y)|2(1+|r(y)|2)

. It can also be formally expanded as 1
|Ωπ(y)|2

=∑+∞
n=−∞ c′n (y) e

2inky where the c′n coefficients are slowly varying at the wavelength scale and can be expressed as
c′n (y) ≈ k

π

∫ y+π/k

y
1

|Ωπ(y′)|2 e
−2inky′

dy′. Using [25], we get c′n≥0 (y) ≈ c′0η
′neinφr(y) with c′0 = b′(y)√

1−a′2(y)
and η′ =

√
1−a′2(y)−1

a′(y) . Moreover, the reality of 1
|Ωπ|2

implies that c′n≤0 =
(
c′−n

)∗.
Using Eqs.(13,14,16,25,26,27), we can finally express the components of the coherences which appear in the propa-

gation equations for the control fields

ρ(0)π (y) =
i
Γd

[
c0 (y) Ω

+
π (y) + c1 (y) Ω

−
π (y)

]
(28)

ρ(−1)
π (y) =

i
Γd

[
c−1 (y) Ω

+
π (y) + c0 (y) Ω

−
π (y)

]
(29)

with ci (y) =
(

Γd

Γd+i∆0

)
ci (y), and in the propagation equations for the probe fields

ρ(0)σ (y) =
i
Γd

eiφ [
c+ (y) Ω+∗

σ (y) + c+− (y) Ω−∗
σ (y)

]
(30)

ρ(−1)
σ (y) =

i
Γd

eiφ [
c+− (y) Ω+∗

σ (y) + c− (y) Ω−∗
σ (y)

]
(31)

with

c+ = β
[
1 + 2γ |r|+ δ |r|2

]
(32)

c+− = βr

[
2 +

γ

|r|
+ γ |r|

]
c− = βr2

[
1 +

2γ

|r|
+

δ

|r|2

]
and

β =
c0e

−2iφ+
π

(1− ηη′)
∣∣∣1− |r|2

∣∣∣
(

Γd

Γd + i∆0

)
(33)

γ = η + η′ (34)

δ = η2 + (η′)
2
+ ηη′ − (ηη′)

2 (35)
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Injecting Eqs.(28-31) into Eqs.(17,18) and Eqs.(19,20), we get

∂Ω+
π

∂ (y/L)
(y) = −α0L

[
c0 (y) Ω

+
π (y) + c1 (y) Ω

−
π (y)

]
(36)

∂Ω−
π

∂ (y/L)
(y) = α0L

[
c−1 (y) Ω

+
π (y) + c0 (y) Ω

−
π (y)

]
(37)

and

∂Ω+
σ

∂ (y/L)
(y) = −α0Le

2iφ [
c+ (y) Ω+∗

σ (y) + c+− (y) Ω−∗
σ (y)

]
(38)

∂Ω−
σ

∂ (y/L)
(y) = α0Le

2iφ [
c+− (y) Ω+∗

σ (y) + c− (y) Ω−∗
σ (y)

]
(39)

The forward and backward components of both the probe and control fields are now coupled through the coefficients
(c−1, c1) for the control and c+− coefficient for the probe. In particular, Eqs.(38,39) clearly show that the probe field
propagation may be controlled by the phase. This property is further investigated in Sec. V, through numerically
solving the above coupled equations.

B. Limit of small optical depths

The probe field propagation depends on the control field intensity and the optical depth. For small optical depths,
i.e. |α0Lcj=0,±1| ≪ 1, the control field is weakly affected by propagation and the envelopes can be considered uniform,
i.e. Ω+

π (y) ≈ Ω+
π (0), Ω−

π (y) ≈ Ω−
π (L) and φ±

π ≈ 0. The coefficients c+, c−, c+− are thus constant along the sample
and the phases φ+

π and φr are neglected. The system of Eqs.(38,39) turns into a set of differential equations with
constant coefficients. Moreover, for optical depths such as |α0Lcj=+,−,+−| ≪ 1, one may retain the most significant
terms in the integration of the system Eqs.(38,39) which leads to

Ω+
σ (y)− Ω+

σ (0) ≈ −α0ye
2iφ [

c+Ω
+∗
σ (0) + c+−Ω

−∗
σ (0)

]
Ω−

σ (y)− Ω−
σ (L) ≈ α0 (y − L) e2iφ

[
c+−Ω

+∗
σ (L) + c−Ω

−∗
σ (L)

]
Taking into account the boundary condition {Ω−

σ (L) = 0 ; Ω+∗
σ (0) = Ω+

σ (0)}, one readily obtains

Ω+
σ (y) ≈ Ω+

σ (0)
[
1− α0ye

2iφc+
]

(40)

Ω−
σ (y) ≈ Ω+

σ (0)α0 (y − L) e2iφ
[
c+− − α0 (y − L) e−2iφc+−c

∗
+

]
(41)

From Eqs.(32,33-37), we get arg [c+ (0)] = φL − π/2, where φL is defined in Eq.(24). Transmission and reflection
coefficients can then be approximated as

T ≈ 1− 2α0L |c+| sin (2φ+ φL) (42)

R ≈ |α0Lc+−|2 [1− 2α0L |c+| sin (2φ+ φL)] (43)

These expressions show the existence of phase-controlled reflection and transmission in the limit of small optical
depths. The coefficients can be modified by adjusting a versatile and fine tuning experimental parameter, φ, the
additional shift φL being determined by the detuning ∆0. For 0 ≤ 2φ + φL ≤ π, the transmission factor T is less
or equal to 1, while it becomes larger than 1 for π ≤ 2φ + φL ≤ 2π. This is in agreement with the absorptive or
amplificative nature of the sample as described by its effective linear susceptibility, given by Eq.(10). The reflection
factor is associated with the backward component of the control field that is generated through the coupling with the
forward part of the probe. Thus, the reflection factor depends on the second (or higher) power of the optical depth
and is small with respect to the transmission factor. As for the transmission factor, however, the contrast is linear
with the optical depth and can be varied by modifying the intensities of the control field components.

V. RESULTS AND DISCUSSION

In this section, we present both the numerical results obtained through the numerical simulation of Eqs.(36-39) and
analytical approximation, Eqs.(42,43), and discuss their physical interpretation.
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Figure 3. (a) Reflection and (b) Transmission factors as functions of the relative phase φ at resonance (∆0 = 0) for a probe field
propagating in an optically thin sample (optical depth α0L = 0.3) driven by a control field with Rabi amplitudes Ω+

π (0)/Γd = 0.4
and Ω−

π (L)/Γd = 0.16. Blue solid (orange dashed) line plots are obtained through numerical simulation (analytic approximation).

In Fig.3 are plotted the variations of the (a) reflection, R, and (b) transmission, T , coefficients as functions of the
relative phase φ, for resonant probe and control fields (∆0 = 0) and small optical depth α0L = 0.3. Forward/backward
control field Rabi frequencies at the entrance/exit of the sample are set to Ω+

π (0)
Γd

= 0.4 and Ω−
π (L)
Γd

= 0.16, respectively.
The curves in solid and dashed lines correspond to numerical simulations and approximate analytical expressions,
Eqs.(42,43), respectively. We observe that both R and T oscillate with a period of π as expected from the e2iφ

dependence of the effective susceptibility, Eq.(10). As already pointed out in Subsec. IV B, T may be larger or
smaller than 1, depending whether the sample is amplificative or absorptive. We note that T is much larger than R :
the transmitted field indeed results from the interference of the incident and radiated probe fields, while, in contrast,
the reflected field results from the backward radiated field only and is thus proportional to the small optical depth.
Moreover, we observe discrepancies between the numerical simulations and the simple perturbative analytical model.

In Fig. 4 are plotted (a) the (normalized) backward and forward-propagating control field intensities
∣∣∣Ω±

π (y)
Γd

∣∣∣2 and
(b) phases φ±

π , respectively, as functions of the (normalized) position y/L, for the set of parameters ∆0 = 0, α0L = 0.3,
Ω+

π (0)/Γd = 0.4, Ω−
π (L)/Γd = 0.16. Forward-propagating field intensity is attenuated by 37.5% along its propagation, from

the input value 0.16 at the entrance to approximately 0.1 at the exit of the sample, while the backward-propagating
control field intensity is reduced by 22%, from the input value 0.0256 at the exit to 0.02 at the entrance. The phases
accumulated along propagation are small in all cases. This can be understood from Eqs.(36,37). At low optical
depth, the dominant contribution due to the diagonal terms involves the c0 coefficient which is real at resonance.
The control field components therefore experience pure absorption without dispersion, the accumulated phase is thus
negligible. For the lowest-order solution of Eqs.(38,39), namely Eqs.(40,41), to hold, the condition |α0Lcj | ≪ 1 must
be checked : we find the values 0.192, 0.005, 0.054 for |α0Lcj=+,−,+−|, respectively, which ensures the validity of the
analytical model presented in Subsec. IVB, although the control field can be considered only roughly unaltered along
propagation. This simple model captures the essential physical phenomena at work and clearly exhibits the accuracy
of phase control of R and T .

Figs 5 and 6 correspond to the same situations as considered in Figs 3 and 4, though with a higher optical
depth α0L = 0.6. Both the reflection and transmission coefficients are significantly enhanced in Fig. 5 compared
to Fig. 3 : now, T oscillates between 0.48 and 2.17 – versus 0.7 and 1.45 for α0L = 0.3 – and R between 0.017
and 0.043 – versus 0.0043 and 0.0063 for α0L = 0.3. Here, although the parametric approximation is no longer
valid, both R and T still depend on the phase and are substantially amplified. The fitting by the analytical model,
Eqs.(42,43), is only qualitative for two reasons. First, as shown in Fig. 6, the increased optical depth leads to stronger
absorption of the control field along propagation. The forward-, resp. backward-, propagating component intensity
is indeed reduced by 60% (37% in the case of Fig. 4 with α0L = 0.3), resp. 56% (22% in Fig. 4). The parametric
approximation, Ω+

π (y) ≈ Ω+
π (0) ; Ω−

π (y) ≈ Ω−
π (L), is thus rough. Secondly, the coefficients |α0Lcj=+,−,+−| are

magnified approximatively by a factor two with respect to the case where α0L = 0.3 (e.g. |α0Lcj | ≈ 0.41, 0.006, 0.09 for
j = +,−,+−, respectively) making the low order perturbation solution less valid. Note that in this case the dispersive
component of the optical response vanishes at resonance and therefore the phase remains essentially constant.

In Fig. 7 are plotted the (a) reflection and (b) transmission coefficients as functions of the relative phase φ, in
the resonant case ∆0 = 0 (solid line) and the non-resonant case ∆0/Γd = 2 (dashed line), the other parameters
being α0L = 0.3 and Ω+

π (0)/Γd = 0.4, Ω−
π (L)/Γd = 0.16. When the detuning increases, the modulus of the effective

susceptibility χeff , Eq.(10), decreases and so does the global coupling of the probe with the atomic medium. R and T
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Figure 4. Control field (a) intensities
∣∣∣Ω±

π
Γd

∣∣∣2 and (b) phases φ±
π as functions of the (normalized) propagation distance y/L for

∆0 = 0, α0L = 0.3, Ω+
π (0)

Γd
= 0.4 and Ω−

π (L)

Γd
= 0.16.

Figure 5. (a) Reflection and (b) Transmission factors as functions of the relative phase φ for ∆0 = 0, α0L = 0.6, Ω+
π (0)/Γd = 0.4

and Ω−
π (L)/Γd = 0.16. Blue solid (resp. orange dashed) line plots are obtained through numerical simulation (resp. analytic

approximation).

therefore tend to decrease, which is confirmed by the results of numerical simulation. An important feature, however,
is the dephasing which appears on R and T plots when modifying the detuning. The expression of the phase shift
predicted by the analytical model, Eqs.(42,43), is φL with tanφL = Γd/∆0. When Γd/∆0 = 0.5, φL ≈ 0.15π which is
very close to the value 0.16π obtained via numerical simulations.

In Fig. 8 are plotted the intensities of (a) the forward probe field,
∣∣Ω+

σ (y)/Ω+
σ (0)

∣∣2, and (b) the backward probe field,∣∣Ω−
σ (y)/Ω+

σ (0)
∣∣2, as functions of the normalized coordinate y/L for three values of the relative phase φ = 0, π/4, π/2, and

Figure 6. Control field (a) intensities
∣∣∣Ω±

π
Γd

∣∣∣2 and (b) phases φ±
π as functions of the (normalized) propagation distance y/L for

∆0 = 0, α0L = 0.6, Ω+
π (0)

Γd
= 0.4 and Ω−

π (L)

Γd
= 0.16.
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Figure 7. Effect of detuning. (a) Reflection and (b) Transmission factors plotted as functions of the relative phase φ for
α0L = 0.3, Ω+

π (0)

Γd
= 0.4, Ω−

π (L)

Γd
= 0.16 and ∆0/Γd = 0 (solid blue line), 2 (dashed orange line).

Figure 8. Probe field intensities (a)
∣∣∣Ω+

σ (y)

Ω+
σ (0)

∣∣∣2 and (b)
∣∣∣Ω−

σ (y)

Ω+
σ (0)

∣∣∣2 as functions of the (normalized) propagation distance y/L for
φ = 0 (solid blue line), π

4
(dotted orange line), π

2
(dashed green line).

∆0 = 0, Ω+
π (0)/Γd = 0.4, Ω−

π (L)/Γd = 0.16, α0L = 0.6. In Figs. 9 (a,b) are plotted the corresponding accumulated phases
φ±
σ (y). As shown by Fig. 8-a, φ = 0 leads to absorption of the forward component of the probe whereas φ = π/2 leads

to its significant amplification. The case φ = π/4 corresponds to a small modification of the probe. This is in line
with the results of the numerical simulations (Fig.5-a). We also notice that intensity depends quasi-linearly on the
propagation distance which comforts the linear approximation performed in Eqs.(40,42). In Fig. 8-b, is represented the
backward probe component which vanishes at y = L. The field is amplified from the exit to the entrance of the sample.
Its intensity at the entrance depends significantly on the dephasing. On the other hand, the shape of the curves is
almost parabolic around y = L. Indeed, when y is close to L, Eq.(41) yields |Ω−

σ (y)|2 ≈ |Ω+
σ (0)|2 |c+−|2 α2

0 (y − L)
2.

The accumulated phase φ+
σ (y) and φ−

σ (y) are represented in Fig.9-a and b, respectively. The forward component
exhibits a vanishing phase at the entrance and accumulates a significant value along propagation (φ+

σ (y = L) ≈ 0.34)
for φ = π/4 whereas for φ = 0 and φ = π/2 the phase remains equal to zero. This effect can be explained from the simple
analytical model introduced in Subsec. IV B which leads to Eq.(40). We then have φ+

σ (y) ≈ −α0y |c+| cos (2φ+ φL).
At resonance, φL = π/2 and thus φ+

σ (y) = 0 for φ = 0, π/2 and φ+
σ (y) ≈ α0y |c+| for φ = π/4. Using |c+ (0)| = 0.683,

the analytical model predicts an accumulated phase φ+
σ (y = L) ≈ 0.41 to compare with the value 0.34 given by exact

numerical simulations. The backward component has a different behavior. Indeed, due to the boundary condition
Ω−

σ (L) = 0, the value of the phase φ−
σ cannot be set either at the entrance (y = 0) or the exit (y = L) of the sample,

only the propagation dynamics allows us to recover it. From Eq.(41), φ−
σ (y) ≈ π−2φ+α0 (y − L) |c+| cos (2φ+ φL),

which leads φ−
σ (L) ≈ π, π/2, 0 for φ = 0, π/4 and , π/2 in agreement with the numerical values read on inset (b) of Fig.

9, i.e. 3.14, 1.35, 0, respectively.

VI. CONCLUSION

In this article, the dynamics of an ensemble of duplicated two-level systems driven by a strong stationary control
field and subject to a weak probe field was studied in detail. In particular, the expressions of the probe reflection,
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Figure 9. Accumulated phases (a) φ+
σ (y) of the forward-propagating probe field and (b) φ−

σ (y) of
the backward-propagating probe field as functions of the (normalized) propagation distance y/L for φ =
0 (solid blue line), π

4
(dotted orange line), π

2
(dashed green line).

R, and transmission, T , factors were determined and their dependence on field parameters was investigated. Both
amplification and absorption were shown to be achievable. Moreover, R and T depend on the relative phase between
the fields, which demonstrates the control potentialities offered by this system. For low optical depths, proper control
with no phase modification along propagation may be performed. For arbitrarily higher optical depths, both the
driving fields and the phase accumulated by the probe field along its propagation are affected which drastically
modified the behavior of the system. Previous works on co-propagating control and probe field schemes have already
showed new interesting phenomena like phase saturation and transparency [16]. This paves the way to further
investigations for the present stationary control field configuration. Numerical simulations also showed a strong
increase of the reflection and transmission factors with the optical depth. The combination of these effects offers a
stimulating motivation for further study of this case.

ACKNOWLEDGMENTS

This research was funded in part by l’Agence Nationale de la Recherche (ANR), Project ANR-22-CE47-0011. For
the purpose of open access, the authors have applied a CC-BY public copyright licence to any Author Accepted
Manuscript (AAM) version arising from this submission.

[1] K.-J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).
[2] M. O. Scully, Phys. Rev. Lett. 67, 1855 (1991).
[3] L. V. Hau et al., Nature (London) 397, 594 (1999); M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch,

M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, Phys. Rev. Lett. 82, 5229 (1999); L. J. Wang, A. Kuzmich and
A. Dogarlu, Nature (London) 406, 277 (2000); P. W. Millonni, Fast Light, Slow Light and Left-Handed Light, Taylor &
Francis, New York, 2005.

[4] J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000); R. A. Shelby, D. R. Smith, S. Shultz, Science 292, 77 (2001)
[5] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals: Molding The Flow Of Light, Princeton

University Press, 2008.
[6] A. M. Herkommer, W. P. Schleich, and M. S. Zubairy, J. Mod. Opt. 44, 2507 (1997) ; K. S. Johnson, J. H. Thywissen, N.

H. Dekker, K. K. Berggren, A. P. Chu, R. Younkin, and M. Prentiss, Science 280, 1583 (1998) ; S. Qamar, S.-Y. Zhu, and
M. S. Zubairy, Phys. Rev. A 61, 063806 (2000) ; V. Ivanov and Y. Rozhdestvensky, Phys. Rev. A 81, 033809 (2010).

[7] A. André, M. D. Lukin, Phys. Rev. Lett. 89, 143602 (2002) ; M. Bajcsy, A. S. Zibrov, M. D. Lukin, Nature 426, 638
(2003) ; A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin Phys. Rev. Lett. 94, 063902 (2005).

[8] X. M. Su and B. S. Ham, Phys. Rev. A 71, 013821 (2005) ; M. Artoni and G. C. La Rocca, Phys. Rev. Lett. 96, 073905
(2006) ; Q.-Y. He, Y. Xue, M. Artoni, G. C. La Rocca, J.-H. Xu and J.-Y. Gao, Phys. Rev. B 73, 195124 (2006) ; Q.-Y.
He, J.-H. Wu, T.-J. Wang, and J.-Y. Gao, Phys. Rev. A 73, 053813 (2006) ; J.-H. Wu, A. Raczyński, J. Zaremba, S.
Zielińska-Kaniasty, M. Artoni and G.C. La Rocca, Journal of Modern Optics 56, 768 (2009) ; K. Słowik, A. Raczyński, J.
Zaremba, S. Zielińska-Kaniasty, M. Artoni and G.C. La Rocca, Journal of Modern Optics 58, 978 (2011).

[9] Q. Jiang, Y. Zhang, D. Wang, S. Ahrens, J. Zhang, and S. Zhu, Opt. Express 24, 24451 (2016).
[10] V. G. Arkhipkin, and S. A. Myslivets, Opt. Lett. 39, 3223 (2014) ; V. G. Arkhipkin and S. A. Myslivets, Phys. Rev. A

93, 013810 (2016) ; V. G. Arkhipkin, and S. A. Myslivets, J. Opt. 19, 055501 (2017).



12

[11] L. E. E. de Araujo, Opt. Lett. 35, 977 (2010)
[12] K. Słowik, A. Raczynski, J. Zaremba, S. Zielinska-Kaniasty, M. Artoni and G. C. La Rocca, Phys. Scr. T143, 014022

(2011) ; Yihong Qi, Yueping Niu, Fengxue Zhou, Yandong Peng and Shangqing Gong, J. Phys. B: At. Mol. Opt. Phys. 44,
085502 (2011).

[13] Tao Li, Hailin Wang, N.H. Kwong, and R. Binder, Opt. Express 11, 3298-3303 (2003).
[14] J. C. Delagnes and M. A. Bouchene, Phys. Rev. Lett. 98, 053602 (2007) ; J. C. Delagnes and M. A. Bouchene, Phys. Rev.

A 76, 045805 (2007) ; J. C. Delagnes and M. A. Bouchene Phys. Rev. A 76, 053809 (2007).
[15] F. A. Hashmi and M. A. Bouchene, Phys. Rev. A 77, 051803(R) (2008).
[16] F. A. Hashmi and M. A. Bouchene, Phys. Rev. Lett. 101, 213601 (2008).
[17] J. Wu, X.-Y. Lu and L.-L. Zheng, J. Phys. B: At. Mol. Opt. Phys. 43, 161003 (2010) ; L. E. Zohravi, A. Vafafard, M.

Mahmoud, Journal Of Luminescence 151, 11 (2014).
[18] S. H. Asadpour, H. Rahimpour Soleimani, Optics Communications 315, 394 (2014) ; P. Kumar and S. Dasgupta, J. Phys.

B: At. Mol. Opt. Phys. 47, 175501 (2014) ; Ziauddin, Y.-L. Chuang, R.-K. Lee and S. Qamar, Laser Phys. 26, 015205
(2016).

[19] M. A. Anton and F. Carreno, J. Opt. 12, 104006 (2010).
[20] L. Yun, W. Pu, and P. Shuang-Yan, Chin. Phys. B 22, 104203 (2013).
[21] A. Vafafard and M. Sahrai, JOSA B 35, 2118 (2018).
[22] L. Jin, Y. Niu, and S. Gong, Phys. Rev. A 83, 023410 (2011).
[23] D. A. Smait et al, Laser Phys. Lett. 20, 086003 (2023).
[24] Z. Zhu, W.-X. Yang, X.-T. Xie, S. Liu, S. Liu, and R.-K. Lee, Phys. Rev. A 94, 013826 (2016) ; D. Shah, U. Wahid, S. M.

Arif, S. Muhammad, H. Ahmad, Optical and Quantum Electronics 54, 360 (2022).
[25] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals series and products, Elsevier, 2014.


	Phase control of transmission and reflection in a sample of duplicated two-level systems driven by a stationary control field
	Abstract
	Introduction
	Theoretical model
	The system 
	Atomic polarization
	Propagation equations

	Situation with no backward control field 
	Situation of a stationary control field
	Propagation equations in the slow envelope approximation 
	Limit of small optical depths

	Results and discussion 
	Conclusion
	Acknowledgments
	References


