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Abstract. In recent years, there has been a significant surge in machine
learning techniques, particularly in the domain of deep learning, tailored
for handling attributed graphs. Nevertheless, to work, these methods as-
sume that the attribute values are fully known, which is not realistic in
numerous real-world applications. This paper explores the potential of
Optimal Transport (OT) to impute missing attribute values on graphs.
To proceed, we design a novel multi-view OT loss function that can en-
compass both node feature data and the underlying topological structure
of the graph by utilizing multiple graph representations. We then utilize
this novel loss to train efficiently a Graph Convolutional Neural Net-
work (GCN) architecture capable of imputing all missing values over the
graph at once. We evaluate the interest of our approach with experiments
both on synthetic data and real-world graphs, including different miss-
ingness mechanisms and a wide range of missing data. These experiments
demonstrate that our method is competitive with the state-of-the-art in
all cases and of particular interest on weakly homophilic graphs.

Keywords: Attributed Graph - Missing Data Imputation - Optimal
Transport

1 Introduction

Graphs have become an indispensable tool for modeling and solving a wide
range of practical problems. From transportation networks to protein-protein
interactions, graphs provide a natural and versatile representation framework
for modeling relationships of various kinds. In this context, so-called attributed
graphs possess a valuable set of information about the objects whose relation-
ships they model, e.g., the personal information of users for online social net-
works, or the properties of atoms for a molecule. However, for real-world appli-
cations, attributed graphs often suffer from missing data [17]. For instance, it is
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quite common for traditional online social networks, usually modeled as graphs
of users, to have missing attribute values, as some of the information filled in
by users is not mandatory (e.g., gender, age). This will result in missing node
attributes in a graph.

Imputing missing data is a long-standing challenge in statistics that has been
at the forefront of research and practice for decades [19]. This problem arises
when datasets contain missing or incomplete information, which can lead to
biased analyses, reduced statistical power, and inaccurate results.

Missing data may be the result of different factors, also referred to in the
literature as mechanisms [25]. The simplest case is MCAR (Missing Completely
At Random), where the missingness of the attribute values (true or false) can be
modeled by i.i.d. random variables. For instance, a social platform’s localization
data might be lost due to occasional technical glitches. In the MAR (Missing
At Random) case, the missing data probability depends on other observed at-
tributes. For example, in social media profiles, MAR might occur if the proba-
bility of users omitting their hobbies depends on their gender. MNAR (Missing
Not At Random) is the most challenging case, where missing data probability
depends on unobserved variables. For instance, users may choose not to share
their income due to personal factors, unaccounted for in the dataset. Depending
on the mechanism, imputation can be more or less difficult.

In graph data, one approach to address missing node attributes is to cast
the problem as imputing missing information in tabular data, given that node
attributes are structured as a matrix. However, this method does not use the
crucial structural dependencies inherent in graph data. Therefore, addressing
missing information on graphs requires methods that respect and leverage the
underlying graph structure [10].

Most imputation methods on graphs assume homophily [24], but as it turns
out, real graphs are sometimes heterophilic [34]. A graph is homophilic if nodes
sharing similar attributes tend to be more often connected than those with dif-
ferent attributes: "birds of a feather flock together" [20]. In this paper, we are
interested in the problem of the imputation of missing node attributes, whatever
the nature of the graph, homophilic or heterophilic, or the missingness mecha-
nism (MCAR or MNAR). To proceed, we propose to exploit the Optimal Trans-
port (OT) theory to impute missing node attributes on graphs. In recent years,
OT has proved remarkably successful in machine learning notably for missing
values imputation on tabular data [23] and more recently with applications on
graphs including node embedding [33], fair edge prediction [18], graph predic-
tion [2], to name a few. The intuition of using OT for imputation [23] is that
the distance between two random samples from the data distribution should be
small (using Wasserstein distance from optimal transport theory). Thus, a good
imputation of missing values should minimize this distance between many pairs
of random samples. This goal is particularly suitable for OT-based distances, as
they can be (and have already been) used in gradient-based optimization as valid
loss terms due to their attractive differentiability properties [21,2]. However, the
classic Wasserstein distance does not take the graph topology into account.
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Contributions. We propose to use a novel distance, multi-view Wasserstein
(MultiW), able to take into account any representation of the graph, such as
attributes, topology, but also hierarchy, spectral decomposition, and more. This
distance is also more flexible and more computationally efficient than similar
multi-view loss functions, such as FGW [29] or OTT [13]. The MultiW distance
is used as a loss to train a Graph Neural Network (GNN) model able to impute
missing attributes on a graph. The main distinctive feature of our approach
is its ability to use the trained imputer on new nodes without the need to be
retrained (contrary to state-of-the-art FP [24]). This feature is of particular
interest as many graphs, such as social networks, are inherently dynamic.

Summing up, our contributions embed (1) the creation of an efficient Multi-
view loss function referred to as MultiW; (2) a framework for graph missing
attributes imputation GRIOT (GRaph Imputation with Optimal Transport) ;
an extensive empirical study of the performance of our approach and the most
recent state-of-the-art methods on a very wide variety of scenarios, whereas
most studies generally focus on a very small subset of these scenarios. The code
is available online*.

2 Related Works

Over the years, researchers have developed a wide range of techniques to tackle
the problem of missing data imputation [28,26,32]. Despite the progress made,
the field of research for data imputation remains dynamic due to evolving data
complexity. In this paper, we specifically address missing node attribute values
in data structured as graphs. There has been a renewal of interest in graphs,
driven particularly by the rise of Graph Neural Networks (GNNs) that require
complete attributes.

While various approaches like SAT[3], GCNMF|27], and PaGNN][11] have
aimed to adapt GNNs to this context, they primarily emphasize task perfor-
mance rather than imputation quality. Conversely, some methods employ GNNs
for graph completion [22,1], focusing on attribute matrix reconstruction over
task performance, but they often encounter scalability challenges.

Finally, to the best of our knowledge, Feature Propagation (FP) [24] is cur-
rently the state-of-the-art method for missing node attribute imputation. FP is
a diffusion-based attribute reconstruction approach that allows imputation on
the graphs upstream to the node classification task. As such, it is not tied to
any particular model or architecture for solving the final task. However, sim-
ilarly to the aforementioned approaches, FP assumes a strong attribute-based
homophily in the graph to impute the missing attributes. This means that nodes
in the graph are more likely to be connected to other nodes that have similar
attributes.

Our approach is at the crossroads of these methods. Much like FP, we impute
the missing node attributes matrix in an initial pre-processing step. However,

* Code available at: github.com/RichardSrn/GRIOT
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our approach involves training an imputer that relies on GNNs. Our framework
is also mainly different in the design of the loss function, which simultaneously
takes into account graph topology and node attributes, potentially assigning
different weights to each. This distinctive property makes our approach well-
suited to graphs with low homophily, and for complex missing data mechanisms,
in contrast with SOTA methods, which have not been evaluated in this context
before, and which are outperformed by GRIOT according to our experiments.

3 Multi-view Optimal Transport Loss for Attribute
Imputation

Hereafter, we define our notations and provide a reminder about Optimal Trans-
port (OT) and the Wasserstein distance. We then propose a novel loss function
that extends OT to enable graph attribute imputation.

3.1 Notations

We denote by G = (V, &, F), an undirected and attributed graph, where ¥V =
(vi)1<i<n 1is the set of nodes, &€ C V x V the set of edges represented by an
adjacency matrix A = (a;;);',—; € {0,1}"*", such that a;; = 1 if (v;,v;) € &,
0 otherwise and F = (f;)i<n, € F"*¢ are the node attribute vectors. In this
paper, we consider real or binary attributes: F =R or F = {0, 1}. In the context
of missing data, some values in F' are not observable. These missing values are
encoded as 0 in a binary mask £ € {0,1}"*9. The ground truth values are
denoted F9¢ and F = F9" © 2 + NaN ® (1 — §2), where ® is the Hadamard
product and NaN denotes missing values. The missing value imputation problem
is to recover an approximation F' of F9¢ from G and 2. In the following, a view
¢;j of a graph G is a collection of n vectors in a z; dimensional space. Formally,
¢ is a m X z; matrix, with its /-th vector associated to the ¢-th node of G (the
nodes attribute matrix F is such a view).

There exist multiple tasks associated with graph analysis including node
classification, edge prediction, and community detection to name a few. In this
paper, we consider node classification as our auxiliary task; missing data impu-
tation being the primary task. Therefore, we assume a label associated with each
node: C : ¥V — {1,--- ,k}. The goal of node classification is to learn a classifica-
tion function that maps each node v; in the graph to a class label, i.e., we aim
tolearn e : V — {1,--- ,k} s.t. €(v;) = C(v;),Vi € {1,--- ,n}. Note that because
our imputation procedure is done before solving the task, one can easily apply
our method to any subsequent task.

3.2 Optimal Transport and Wasserstein Distance

We present theoretical notions from Optimal Transport (OT) [30] restricted to
two weighted sets of data points in R¢, useful for understanding the sequel.
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Given two weighted sets of data points (X,w;) and (Y,ws) where X =
{zi}icn, € R*™ and Y = {y;}j<n, € R¥" are composed respectively of
ny and ng vectors of size d. The weight vector wy of size n; (resp. ws of size
ng) defines the weights of each vector of X (resp. Y). Each weight vector is a
discrete probability distribution on X (resp. V'), meaning that all the weights
are positive, and they sum to one.

The goal of OT is to find a transport plan of minimal cost between (X, w1)
and (Y, wz). This minimal cost is called the Wasserstein distance between (X, w)
and (Y, ws). A transport plan is represented by a matrix = such that m; ; is the
weight transported from data point z; to data point y;. The constraints are that
the total weight transported from z; must sum to wi(¢) and the total weight
transported to y; must sum to ws(j). More formally, 7 must belong to the set
of valid transportation plans IT (w1, ws):

H(wl,wg) = {7T € Rilx”u | 7T]1n2 = wi, 7TT]lnl = ’LUQ}, (1)

where 1,, is the vector (1,1,...,1)7 of dimension n, and - the transposition
operation.

The costs m; ; of transporting one unit of weight from z; to y; are given in
a matrix MY = (m; ;)1<i<n, 1<j<n,. This matrix is usually computed as the
l5 norm between the points of X and Y.

Finally, the optimal plan is found by solving the following regularized mini-
mization problem:

7((X,w1), (Y,ws)) = argmin (MY 7)p +eH(m) (2)
mell (wy,ws2)

where (-, -) p is the Frobenius inner product, ¢ is the regularization hyperpa-
rameter, and H is the entropy.
The Wasserstein distance [12] is the cost associated with the optimal plan:

WX, w1),(Y,ws)) = min (MY 7)p +cH(x) (3)
mell (w,w2)
Being equipped with all the necessary material from OT theory, we can now
move on to the description of MultiW, our newly introduced loss function.

3.3 Definition of the MultiW Loss Function

Graphs are complex objects, that can be represented through various means,
each offering distinct insights. For example, an adjacency matrix captures pair-
wise node connections, reflecting first-order proximity. On the other hand, the
Laplacian matrix [4] conveys information on node degrees and their relationships,
providing a deeper understanding of the graph’s structure beyond pairwise con-
nections. Finally, the node attribute matrix is yet another way to represent the
nodes of the graph.

To capture all these properties at once, we aim to design a loss function that
can simultaneously leverage these diverse views of a graph to impute missing
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data in the feature matrix. Note that while our focus is on missing attributes,
our approach could be extended to the imputation of missing information on
any other view, notably the adjacency matrix for link completion.

Motivation for OT. We opt for OT theory as it provides a clever way of estimat-
ing the discrepancy between distributions. We assume that the distribution of
imputed values should resemble that of the known values, especially when tak-
ing into account multiple views of the graph, i.e. the optimal transport distance
between these distributions should be small.

General Definition. Let us consider a graph G = (£,V) with n nodes and
¢ = (¢i)i<q be g views representing G in different spaces, such that for all 4, (;
is a m x z; matrix. Let o = (a;)1<i<q € [0,1]? be the views’ weights such that
Zgzl a; = 1. To proceed, we quantify the distance between random subgraphs to
evaluate the gap between the distributions. Therefore, we consider two subgraphs
of G respectively obtained by randomly selecting two subsets of nodes V' and
V? from V, and their respective views (¢})1<i<q and (¢?)1<i<q-

To compute an optimal transport between V! and V? with the ¢ views of
¢, one could solve the OT problem ¢ times independently, and get ¢ different
transport plans. In our case, we are interested in solving the OT problem in
a way that takes into account the ¢ views simultaneously, resulting in a single
transportation plan.

With MultiW, we propose to solve a unique optimization problem considering
all views at once:

q
MultiWa (((Hizg, ((Picg) = min Y (M m)p +eH(m)  (4)

mell(wy,w2) et

However, this issue is not solvable in a reasonable time with existing tools,
such as the POT [9] library, because of our ¢ optimization objectives. Nonetheless,
as a direct consequence of the linearity of the Frobenius inner product, we have:

q q
1 .2 1 .2
E ai(MS 5 mp = ( E a; M%) g (5)

Hence, using the linearity, the ¢ optimization problems, defined in equation
(4), can be simplified to one as defined in equation (6):

Definition 1. Multi-view Wasserstein. Given a graph G, and q views ¢ = (;)i<q-
For any two subgraphs corresponding to the subsets of nodes Vi and Vo, and
their respective views ((})1<i<q and ((?)1<i<q; given the weights of nodes of the
subgraphs wy and wo; given a = (a;)1<i<q € [0,1]9 such that Y i_ a; =1, let
MSSE be the cost matriz between the subgraphs, according to the i-th view, then:

q
MultiWe ((Di<g, ((Pizg) = min (3~ a;MS S m)p +eH(m)  (6)

well (wy,w2) =1
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Remark: The weights wy (resp. we) can be set to a uniform distribution Vi €
[1,n1], (w1); = ﬁ or proportional to the nodes’ degree.

The optimization problem presented in equation (6) can be solved by the
Sinkhorn-Knopp’s fixed point iteration algorithm [6], and the solution is a well-
defined transport plan.

3.4 Instantiation of MultiW Loss with Attributes and Structure

In this work, our focus lies on imputing missing node attributes in a graph.
Therefore, we use equation (6) to integrate two views. These two views en-
capsulate both the structural characteristics and the node attributes matrix F
associated with the graph. To represent the structural aspects, a straightforward
representation is through the adjacency matrix A. To effectively incorporate this
representation into our loss function, we propose the computation of a proximity
matrix P € N™*" which is defined as P = (p; ;) where p; ; is the geodesic path
length between the nodes v; and v;. Now, based on the two views P and F', we
can leverage the MultiW loss to estimate the mean distance between random
subgraphs of G. We operate under the assumption that nodes with comparable
roles in the graph exhibit similar attribute distributions, a well-imputed graph
thus yielding a smaller MultiW distance.

Let us consider G', a subgraph of G, and the corresponding vertices V!.
Let P, € NIV'IX7 he the sub-matrix of P associated to G! defined as P, =
{pi jlvi € V1,v; € V}. Unlike a sub-adjacency-matrix, P; is a rectangular matrix,
representing the relative position of each node in V; to every other node in V as
shown in Figure 1. Let F'! be the sub-features-matrix associated to G!. Similarly,
P2?, F? are views corresponding to a random sub-graph G2.

The distance between G! and G2 can be computed as:

MultiWa((Fl,Pl),(Fg,Pg)) = eHII(liIl )(MQ,W>F+€H(7T) (7)
™ w1, w2

where M, = (1—a)MPF2 aMP1P2 and (1—a), a are the weights attributed
to, respectively, the features and the structure.
Remark: The Fused-Gromov-Wasserstein (FGW) [29] could also be used to com-
pute the distance between G! and G2. However, FGW transports pairs of nodes
on pairs of nodes yielding a O(n*) complexity of the Frobenius product com-
putation of the loss versus O(n?) for MultiW. Moreover, FGW only takes into
account the edges of the two subgraphs contrary to MultiW which uses the prox-
imity matrix with all other nodes of the whole graph. Finally, the complexity of
MultiW grows linearly with the number of views considered, which makes it very
efficient when compared to other multi-views OT approaches such as Optimal
Tensor Transport (OTT) [13].

4 Imputing Missing Attributes with MultiW Loss

Next, we describe the architecture that we designed to train an imputer that
optimizes the GRIOT loss with the ability to impute all features in parallel.
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Fig. 1. Architecture of the GRIOT Framework. Given a graph G = (V, &) with nodes
attributes F', and a mask of missing data (2 as input, GRIOT decomposes in 2

main elements : the GCN Imputer and the MultiW Loss Function used to optimize it.

The framework outputs the last imputed attributes matrix F and the GNN imputer
trained and ready to be reused on new nodes with missing attributes.

4.1 Architecture of GRIOT

The overall architecture of GRIOT is presented in Figure 1, a detailed pseudocode
is shown in the additional material (see Algorithm GRIOT), and the code is avail-
able online*.

Input of GRIOT. Given a graph G = (V, &), a matrix of attributes F, and
a mask (2 of missing features GRIOT aims at reconstructing the node attributes
matrix, F'. Our imputer takes as input the adjacency (A) and the feature (F)
matrices. However, the missing values of F' must be filled in at the first iteration.
To this end, we initialize F by imputing the missing values with normal random
values such that (uj;,0;)j<q are the average and standard deviation of each
feature over observed ones.

F,;, ifw;, ; ==1 (i.e. F}; is observed)

Vi<n, Vj<d, F;= { (8)

Fm ~ N (uj,0;) otherwise

The loss takes as input the proximity matrix P computed from the adjacency
matrix such that V1 <¢ <n, V1 < j <n, p;; is the length of the geodesic path
between the nodes v; and v;, and the imputed feature matrix F.

Architecture and Training of the Imputer. The imputer is a Graph
Convolutional Network (GCN) [16] that takes as input F € F"*¢ after the
initialization of the missing values and A. The output of the GCN is the imputed
feature matrix, F*"P. Formally, we get the following equations for a GCN with
{=1,---, L layers:

F™ =o' (HLO7 ) + OL41)
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where A = A + I denotes the adjacency matrix with inserted self-loops, D is
the diagonal degree matrix, (H;);<s, are hidden states, ¢ and ¢’ are activation
functions, and (©;);<r+2 are the learned parameters.

Finally, the mask of observed features is applied to the imputed matrix such
that only missing features are replaced:

F=FoQ+F™o(1-0) (9)

where © is the element-wise product. The GCN is trained by minimizing the
MultiW loss (see definition 1). To compute the loss, we consider two subgraphs
G! and G? from G, defined from two subsets of nodes randomly drawn from V,
and as explained in Section 3.4, we use the MultiW loss function to estimate the
distance between them. This operation is carried out with n, couples of random
subgraphs, and sum as loss = > .2, MultiW((F}, P}), (F?, P?)), before being
back-propagated through the imputer. The whole process is repeated epochs
times, with a new imputation at each epoch.

Output of GRIOT. The output of GRIOT is the last version of the imputed
feature matrix F, and the imputer itself. The trained imputer offers the possi-
bility to perform inductive feature imputation. Indeed, an important difference
between our approach and current SOTA methods is that it goes beyond one-
shot imputation on a graph and can impute missing features on new nodes.

4.2 Accelerating the Imputation

The training of machine learning models as imputers has been studied in the lit-
erature on tabular data, but these approaches are generally based on the Round-
Robin principle of sequentially training one ML model imputer for each feature
(not parallelizable as each ML imputer depends on the previous ones). As a re-
sult, the Round-Robin principle suffers from scalability and efficiency problems
that limit its use for high-dimensional data. Indeed, all real graphs considered
in this paper have in the order of magnitude of 103 attributes.

In contrast, our approach can impute all features simultaneously using one
GNN imputer, providing a parallelizable solution, especially when utilizing GPUs.
Complexity Analysis. The theoretical time complexity analysis of GRIOT
yields a complexity of O(d x m x n? x n_epochs x n_pairs), where d is the
number of features, m is the number of views, n is the batch size, n_epochs and
n_pairs are parameters of Algorithm GRIOT (c.f. additional material).

5 Experimental Analysis

Now, we propose an extensive comparison of GRIOT against different SOTA ap-
proaches while covering a rich variety of scenarios: two different masking strate-
gies (MCAR and MNAR), different percentages of missing information, and
different levels of homophily. In addition, our evaluation unfolds across two di-
mensions: the quality of the values imputed by the different approaches and their
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Table 1. Datasets summary. hops is the observed homophily, heszp is the expected
homophily from a random graph and Aratio = hobs/hezp. + (resp. —) denotes a strong
(resp. weak) homophily level. k is the number of classes.

V| €] F k sparsity hops Mewp HPratio
SBM2~ (low hom.) 796 2407 2.8% 0.13 034 0.38
SBM1~ (med hom.) 794 1939 [0,1® 4 3.1% 0.55 0.61 1.11
SBMO™ (high hom.) 770 2085 3.1% 090 036 2.50
SBM 794 1939  [0,1® 4 25% 0.76 035 2.19
CORNELL™ 127 159 94.3% 0.13 0.32 0.42
TEXAS™ 129 171 {0,1}"™ 5 95.0% 0.13 042 0.31
WISCONSIN™ 168 232 93.6% 0.17 0.30 0.55
CITESEER™ 2,120 3,679 {0,1}*>72 6 99.1% 0.74 0.19 3.90
CORAT 2,485 5,069 {0,1}*33% 7 98.7% 0.80 0.18 4.50
PUBMED™ 19,717 44,324 [0,2]*? 3 89.9% 0.80 0.36 2.20

impact on node classification. Note that, most recent works focus on the latter
aspect for homophilic graph and with MCAR masking. Overall, our goal is to
answer the following research questions:

1. Can we outperform state-of-the-art methods by using the OT theory in
GRIOT on graph features imputation, and on node classification?

2. Does the masking strategy impact the imputation?

3. Theoretically, GRIOT can impute new nodes without recycling. How does it
behave in such a scenario?

In this section, we first describe the experimental protocol setup to address these
questions and then present the results obtained for all aforementioned scenarios.

5.1 Experimental Protocol

Baselines. We include both naive and SOTA baselines. For the naive baseline,
we compare with a K-nearest-neighbors-based principle and simply impute the
average of the features of nodes directly connected to the node presenting missing
values. The strong baselines comprise three models. The first one, PaGNN [11],
considers the mask {2 when classifying nodes. The second baseline, OT-TAB [23]
is also an OT-based imputation approach but for tabular data only leaving out
the graph’s structure. It corresponds to two algorithms, a one-shot imputation
referred to as OT-TAB and a Round-Robin-based version referred to as OT-TAB-
rr that, similar to us, allows the training of an imputer. Note that we could not
run the OT-TAB-rr algorithm on all datasets for time complexity reasons. The
third and strongest baseline is Feature Propagation (FP) [24] which is currently
the best approach among SOTA for this task.
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Datasets. We evaluate our algorithm and baseline methods on diverse graphs,
both synthetic and real, covering various homophily levels as summarized in
Table 1. Homophily is defined as the tendency for nodes with similar attributes
to be more likely connected [14]. Table 1 presents the expected homophily heyp
derived from a randomly drawn graph with equivalent node count and edge
probability, alongside the observed homophily A5 in the given graph. The ratio
Rratio = ZZI provides a key insight, where a value exceeding 1 signifies high

homophily, while a value below 1 indicates weak homophily.

We use the Stochastic Block Model (SBM) to generate synthetic graphs with
different homophily levels, spanning from low to medium and high homophily.
Each dataset has four imbalanced clusters, and specific parameters for genera-
tion can be found in the online code repository*. In addition to the synthetic
graphs, our evaluation encompassed three datasets from the WebKnowledge-
Base (WebKB) [5] (weakly homophilic, marked with a superscript "—" sign)
and three citation graphs from the citation network (Planetoid) datasets [31]
(highly homophilic, marked with a superscript "+" sign).

Missing Data Masking. We use two strategies to build the mask (2: Missing
Completely At Random (MCAR) and Missing Not At Random (MNAR). For
MCAR, we draw {2 = (w; j)i<n, j<a 1.1.d. such that V(i, j), w;; ~ B(p) follows a
Bernoulli distribution, where p is the probability of values being set to 0 in the
feature matrix. MCAR exhibits no correlation with the data or graph structure.
In MNAR, we consider the self-masked context, where P(w; ; = 0) depends on
the values of the unobserved data itself (extreme values are more likely to be
missing) and the characteristics of the graph’s structure (nodes with lower degree
are more prone to have missing data). Finally, we also vary the level of missing
data during experiments, maintaining consistency at 20%, 50%, and 80%.

Evaluation Metrics. Evaluation metrics fall into two categories. The first cate-
gory assesses the quality of the imputed values by comparing the imputed matrix
F to ground truth values F'9*, using Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE), where lower is better. The second evaluates imputation’s
impact on node classification done with a Graph Neural Network after impu-
tation and is based on accuracy and ROC-AUC scores, where higher is better.
We use the Mann-Whitney U test with a 5% p-value over 5 runs to determine
significant results.

Remark: Results presented in the following are a subset of our experiments.
Additional results are available in the additional material.

Imputer architecture. To build the reconstructed feature matrix F, we em-
ploy a Graph Neural Network (GNN). The imputer accepts as input the edge
index £ and the imputed features F , which have dimensions n x d. Consequently,
both the input and output of the imputer are of size d. We optimized the im-
puter’s architecture through cross-validation, resulting in a model with 2 layers of
Graph Convolutional Network (GCN) and 1 linear layer, with respective dimen-
sions (d, [vV/d]), ([Vd],[Vd]), and ([v/d],d). This architecture enhances graph
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abstraction and improves overall reconstruction quality. Furthermore, we intro-
duced a 50% dropout rate to increase the model’s robustness against overfitting.

The imputer’s parameters are optimized using the Adam optimizer [15], with a
learning rate set to 0.01 and a weight decay of 107°.

Classifier architecture. To evaluate the performance of all imputers on the
node classification task, we define a GNN classifier. This classifier takes (£, F))
as input, where F has dimensions n x d, and each node is assigned to one of
k distinct classes. The classifier consists of 2 Cheb layers [7] and 1 linear layer,

with dimensions (d, [v/d]), ([v/d], [vV/d]), and ([V/d], k), respectively.

We determined the type of layers through cross-validation, although we spent a
short time optimizing the layers’ hyperparameters, as the primary goal was to
assess the impact of imputation on classification performance.
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Fig. 2. Comparison of GRIOT v.s. baselines. (a,b,c) imputation MAE|, (d,e,f) clas-
sification ROC AUCT, on multiple datasets with (1) varying degrees of missing data:
(a,d) 20%, (b,e) 50%, and (c,f) 80%, and (2) varying missingness mechanisms: MCAR
(upper parts of the matrices) and MNAR (lower parts). In the visualization, white
squares denote non-significant differences, grayscale squares indicate instances where
GRIOT is outperformed, and colored squares represent significant improvements of GRIOT
over baseline methods, with colors ranging from yellow (small differences) to red (larger
differences).
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5.2 Imputation Quality v.s. Node Classification Accuracy

We start by assessing the performances of all methods, with a distinction be-
tween the accuracy of the imputed values and the impact on node classification
accuracy.

Imputed Values. Looking at the quality of the imputed values, Figure 2 (a,
b, ¢) shows the MAE obtained by all baselines, with a distinction between ho-
mophilic and heterophilic graphs with different masking strategies, MCAR in
the upper parts and MNAR in the lower parts, and percentages of missing at-
tributes varying from 20% (a), 50% (b) to 80% (c). This figure presents pairwise
comparisons between GRIOT and each of the baselines; colored squares (from yel-
low to red) correspond to the case when GRIOT significantly outperforms other
baselines. Overall, GRIOT performs much better for this particular task than its
competitors, and this difference is even more significant on heterophilic graphs.
However, we note that despite the high sparsity of the attributes, the strategy
that consists of imputing a zero in place of all missing attributes, indicated by
ZERO, performs poorly. Now, taking a closer look at the masking strategy, we
can see that the results of KNN and OT-TAB are consistent with the ones ob-
tained when using MCAR or MNAR. Finally, we observe that the differences in
FP performances become more pronounced as the percentage of missing data
increases.

Node Classification. Figure 2 (d, e, ) presents the AUC score differences
between all baselines versus GRIOT, it reads the same way as Figure 2 (a, b, c). We
observe that, although GRIOT showed better imputation performance compared
to baselines, this superiority does not systematically translate into a noticeable
improvement in the node classification task. Indeed, when dealing with 20% and
50% of missing attributes, we see that GRIOT obtains comparable AUC with
almost all baselines, including FP on all datasets. We also note that GRIOT is
always outperforming PaGNN. Now moving on to the 80% of missing attributes,
FP is obtaining better results for all the homophilic graphs. This comes as no
surprise, as FP was shown to perform extremely well in these extreme types of
scenarios [24]. Finally, it is worth remarking that, with 80% of missing attributes,
GRIOT significantly outperforms OT-TAB on the homophilic graphs.

Table 2. Average of the best a over the type of graph and the tasks: imputation and
node classification.

SBM WebKB™ Planetoid™
Masking MCAR MNAR MCAR MNAR MCAR MNAR

Imput. 050 042 031 050 0.14 033
Classif. 042 042 025 031 033 0.58
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Are both objectives always aligned? To get more insights into the corre-
lation between imputation quality and node classification, we take a closer look
at the hyper-parameter o of GRIOT, which determines the importance of each
view. A value of « close to 0 emphasizes the attribute information, while a value
close to 1 prioritizes the topology. Table 2, shows the a corresponding to the
best results, selected on a validation set. We distinguish between WebKB and
Planetoid graphs.

For WebKB graphs, we notice that o tends to be higher during the imputa-
tion task compared to classification. This suggests an increased emphasis on the
graph structure during the imputation optimization and a decreased emphasis
during classification. Conversely, the opposite trend is observed for Planetoid
graphs. Additionally, on the SBM graph, which has a balanced homophily, «
remains relatively stable, hovering around 0.50. Smaller values of « during the
imputation of homophilic graphs imply that the structure is considered less cru-
cial than with the heterophilic graphs. However, when it comes to classifying
heterophilic graphs, it appears beneficial for the network to downplay the im-
portance of structure, as it can potentially lead to misleading outcomes.

Moreover, we note that « is generally higher for real graphs (and similar for
SBM) in the MNAR scenario, indicating a greater emphasis on topology than
in the MCAR scenario. We recall that the MNAR mechanisms tend to mask
extreme values and attributes of weakly connected nodes. Thus, information loss
on attributes caused by the MNAR mechanism is likely being counterbalanced
during the network training by leveraging more of the graph’s structure.

For homophilic graphs, we observed only a small decrease of AUC when
focusing on MAE for the cross-validation (1.22%) against a decrease of 16% on
heterophilic ones. We believe that this is a particularly interesting finding as the
performances of recently proposed models are mostly evaluated on homophilic
graphs using node classification accuracy.

5.3 Imputing Missing Values for Unseen Nodes

The key feature of our approach is the ability to impute missing values on new
nodes dynamically added to the graph without having to retrain our imputer
from scratch. To evaluate this feature, we propose to build a test set composed of
nodes that were fully removed from the graph during the training of GRIOT.We
report results in Figure 3 and focus on the most heterophilic graphs, as we have
shown that these are the most complex ones. For the MAE, we observe that the
results of our imputer on unseen nodes are consistent with the ones obtained
when all nodes are known from training time, with a small increase in MAE
only for extreme cases (80% of missing data). However, this increase in MAE
does not coincide with a decrease in AUC score. Indeed, for AUC the results
are comparable most of the time, and the imputer is even getting slightly better
results on unseen nodes in the majority of the scenarios.
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Fig. 3. Performance in terms of (left) MAE and (right) AUC score of GRIOT and GRIOT
tested on nodes not present at training time for all settings.

Table 3. Imputation time complexity (in seconds) for all graphs. We report results for
the case of 50% missing data.

Model CITESEER CORA PUBMED CORNELL TEXAS WISCONSIN
GRIOT-CPU 846 £162 338 +6 1096 £216 186+ 10 195+64 244 +67
GRIOT-GPU 571 +£48 236+£6 819+£189 194+18 148+44 16867
FP 14+1 440 18+1 3+.0 3+.1 3+.0
OT-1AB 489+17 1607 597+32 792+1 780=+0 43+0
OT-TAB-IT (estimation)  5.5e6 9.0e5 8.3e5 1.7¢5 1.6e5 1.9¢5

5.4 Time Complexity

Table 3 displays the running times. GRIOT is comparable in processing time
to OT-TAB [23], which is less complex as it does not involve imputer training
and fills missing values in one step. Additionally, we were not able to compare
with OT-TAB-rr, based on Round-Robin, as running time was always exceeding
multiple days per run. Unsurprisingly, GRIOT is considerably slower than FP,
which does not require any learning process. Finally, FP is faster than GRIOT
as it does not require training an imputer (one-shot imputation). Bearing this
in mind and taking CITESEER as an example, it means that in a dynamic
environment GRIOT becomes more efficient than FP if more than 40 new nodes
requiring attribute imputation appear in the graph after training, and more
efficient than OT-TAB after just 1 new node.

Summing up our Results. When summarizing the comparison between GRIOT
and state-of-the-art methods (Table 4), we observe that GRIOT significantly en-
hances data reconstruction in 68% of the scenarios and improves the classification
task in 37% of the cases. However, it remains on par with the best-performing
method, FP if we consider its impact on node classification. Our method is
particularly relevant in dynamic environments such as social graphs, where the
number of new users is constantly increasing. The use of a trained imputer
improves adaptability and guarantees our efficiency in dynamic environments.
Furthermore, we hope that our findings provide interesting insights to the com-
munity regarding the counterintuitive observations made between the quality
of imputed values and subsequent node classification, offering the potential for
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Table 4. Each cell shows the number of times GRIOT (a) underperforms, (b) shows
no significant changes, or (c) outperforms compared to strong baselines when averaged
over all scenarios.

‘(a) underperform‘(b) similar‘(c) outperform
MAE| 6% | 26% | 68%
ROC | 8% | 56% | 37%

valuable advances in the understanding and optimization of imputation strate-
gies for various applications.

6 Conclusion and Perspectives

We introduce GRIOT, a framework employing OT and the MultiW metric for
missing attribute imputation in attributed graphs. Key features include support
for multiple graph representations, efficient parallelization of the imputation,
and a trained imputer for new nodes. Finally, GRIOT is also independent of the
task at hand and can therefore be used for tasks other than node classification.
Our extensive experiments, spanning synthetic and real-world data with diverse
missingness mechanisms, demonstrate the competitiveness of GRIOT in address-
ing the challenge of missing attributes, particularly in weakly homophilic graphs.
Another way to better adapt to heterophilic graphs would be to use an imputer
architecture that relies less on the homophilic assumption than GCN. We have
begun to investigate the potential use of convolutional graph transformers [8] in
place of GCN, but have so far been unable to achieve better results. The future
perspective of this work will also consist in deepening our study of the impact
of different structural views for tasks other than node classification.
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