On Entangled Singlet Pure Diradicals

Georges Trinquier,[†] Grégoire David,[‡] Elohan Veillon,[†] and Jean-Paul Malrieu ^{†*}

- [†] Laboratoire de chimie et physique quantiques, IRSAMC-CNRS-UMR 5626, Université Paul-Sabatier (Toulouse III), 31062 Toulouse Cedex 4, France
- [‡] Institut des sciences chimiques de rennes, ISCR-CNRS-UMR 6226, Université de Rennes, 35000 Rennes, France

Supporting information

Figure S1. Flake **3-9** (left) and its less-graphanized variant (right) addressed for sake of comparisons.

Table S1. UDFT-calculated relative energies for flake **3-9** and its less-graphanized variant. Introduction of the sp³-carbon set in the graph induces only small changes in the energy differences.

	flake 3-9	"empty" variant
carbon atom count		
polyenic polycyclic total conjugated graphanised empirical formula	12 24 36 12 C ₄₈ H ₃₀	12 24 36 3 C ₃₉ H ₂₈
relative energies (kcal/mol)		
closed-shell singlet (vertical) closed-shell singlet	13.3 9.0	14.9 9.9
triplet	0.9	0.7
BS $m_s=0$ (vert. closed-shell) BS $m_s=0$	3.7 0.	4.3 0.

Figure S2. Effect of full graphanization on the conjugated frame geometry. Bond lengths in fully-graphanized flake 3-9 (ordinate) are compared with their equivalents in its less-graphanized variant (abscissa). Bond lengths in Å. Closed-shell solutions. Root-mean-square deviation: 0.006 Å; largest deviation: 0.014 Å.

Figure S3. Effect of full graphanization on the conjugated frame geometry. Bond lengths in fully-graphanized flake **3-9** (ordinate) are compared with their equivalents in its less-graphanized variant (abscissa). Bond lengths in Å. BS m_s =0 solutions. Root-mean-square deviation: 0.006 Å; largest deviation: 0.014 Å.

Figure S4. Illustrating how graphanized scaffolds (red points, corresponding to single bonds involving *saturated* carbon atoms) remains unaffected by configurational change, in contrast to the conjugated-bond set (black points). Both flakes **5-7** and **3-9** are included.

Figure S5. Effect of full graphanization on calculated spin densities. Total spin densities on conjugated carbon atoms for the BS $m_s=0$ solution in fully-graphanized flake **3-9** (ordinate) are compared with their equivalents in its less-graphanized variant (abscissa). Root-mean-square deviation: 0.013; largest deviation: 0.030.

flake 5-7 flake 3	flake 3-9		
$BS m_s = 0 \text{clsh.} \qquad BS m_s = 0 \text{clsh.}$	clsh.		
<i>pl</i> 1.376 1.360 <i>pl</i> 1.373 1	1.361		
<i>p2</i> 1.416 1.442 <i>p2</i> 1.425	1.444		
<i>p</i> 3 1.396 1.364 <i>p</i> 3 1.393	1.3/1		
p_4 1.390 1.434 p_4 1.407 1	1.452		
p_{5} 1.410 1.574 p_{5} 1.407 1 n_{6} 1.376 1.417 n_{6} 1.303 1	1.373		
n7 1 396 1 364 n7 1 425 1	1 386		
p/1.390 1.304 $p/1.423$ 1 n8 1.441 1.428 $n8$ 1.373 1	1 410		
n9 1.381 1.377 n9 1.407 1	1 383		
nl0 1 407 1 412 $nl0$ 1 407 1	1 436		
vl 1 445 1 459 vl 1 452 1	1 463		
v2 1.408 1.413 v2 1.385 1	1.388		
<i>v</i> ³ 1.375 1.377 <i>v</i> ³ 1.394	1.398		
<i>v4</i> 1.361 1.362 <i>v4</i> 1.475 1	1.485		
<i>v</i> 5 1.437 1.443 <i>v</i> 5 1.387 1	1.391		
<i>v6</i> 1.406 1.411 <i>v6</i> 1.385	1.390		
v7 1.375 1.377 v7 1.438	1.455		
<i>v</i> 8 1.441 1.452 <i>v</i> 8 1.452 1	1.408		
<i>v9</i> 1.445 1.399 <i>v9</i> 1.385 1	1.368		
<i>v10</i> 1.408 1.384 <i>v10</i> 1.394 1	1.377		
<i>v11</i> 1.375 1.363 <i>v11</i> 1.475 1	1.428		
<i>v12</i> 1.361 1.354 <i>v12</i> 1.387 1	1.368		
<i>v13</i> 1.437 1.407 <i>v13</i> 1.385 1	1.366		
<i>v14</i> 1.406 1.384 <i>v14</i> 1.438	1.398		
v15 1.375 1.364			
<i>v16</i> 1.441 1.401			
<i>ol</i> 1.395 1.389 <i>ol</i> 1.408 1	1.404		
<i>o2</i> 1.429 1.424 <i>o2</i> 1.414	1.410		
<i>o</i> ³ 1.436 1.435 <i>o</i> ³ 1.410	1.406		
<i>o4</i> 1.423 1.419 <i>o4</i> 1.411	1.407		
05 1.422 1.419 05 1.404	1.400		
00 1.436 1.435 00 1.433	1.426		
0/ 1.423 1.420 0/ 1.399 1 	1.393		
00 1.422 1.418 08 1.421	1.413		
09 1.390 1.391 09 1.408	1.429 1.735		
	1.430		
<i>011</i> 1.395 1.422 <i>011</i> 1.410	1.429		
012 1.429 1.446 012 1.411	1.431		
	1.423		
014 1.425 1.442 014 1.435 1 015 1.422 1.428 015 1.200 1	1.438		
	1 422		

Table S2. Optimized lengths (in Å) of conjugated CC bonds in entangled diradicals. See diagrams below for bond labeling.

<i>o17</i>	1.423	1.442	
<i>o18</i>	1.422	1.437	
o19	1.396	1.420	
o20	1.428	1.442	

flake 5-7

Figure S6. Comparing RHF and DFT geometries for the closed-shell solution of flake **5-7** (same basis set 6-311G** in both treatments). Contrast between short and long bonds is clearly stronger in HF

Figure S7. Comparing RHF and DFT geometries for the closed-shell solution of flake **3-9** (same basis set 6-311G** in both treatments). Again, contrast between short and long bonds is clearly stronger in HF.

Table S3. Optimized lengths (in Å) of conjugated CC bonds in diradicaloids. Flake 7-7, the structure of which is detailed in Figure S8, is not discussed in the text and exhibits the same behaviour as flake 5-5. See diagrams below for bond labeling.

	flake 5-5		flake	- 7-7		flake	3-7
	BS $m_s=0$	clsh.	BS $m_s=0$	clsh.		BS $m_s=0$	clsh.
a	1.404	1.400	1.396	1.396	а	1.400	1.400
b	1.383	1.388	1.415	1.405	b	1.413	1.405
С			1.377	1.385	С	1.377	1.385
d	1.435	1.424	1.442	1.428	d	1.441	1.427
е	1.403	1.395	1.407	1.399	е	1.382	1.378
f	1.374	1.370	1.374	1.369	f	1.393	1.386
g	1.359	1.357	1.361	1.359	g	1.471	1.454
h	1.432	1.423	1.434	1.423	h	1.384	1.376
i	1.399	1.406	1.396	1.404	i	1.408	1.413
j	1.429	1.433	1.430	1.435	j	1.413	1.419
k	1.437	1.440	1.436	1.438	k	1.407	1.415
l	1.426	1.432	1.424	1.430	l	1.411	1.416
т	1.424	1.428	1.423	1.428	т	1.413	1.420
					п	1.402	1.410
					0	1.382	1.375
					р	1.423	1.431
					q	1.434	1.441
					r	1.433	1.422
					S	1.406	1.406

flake 3-7

Figure S8. Flake 7-7 drawn with the same conventions as in Figure S1.