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Abstract: The atmosphere of southern West Africa (SWA) is one of the world’s most aerosol-laden
regions. This study investigated the seasonal variability of aerosol optical thickness using photometric
and CALIPSO/CALIOP observations. The mean daily aerosol optical thickness (AOD) at 550 nm
over the 11 AERONET stations in SWA ranged from 0.35 in the Sahel area to 0.49 in the Guinea
coast area and a maximum of 0.53 observed in the Savanna area. The AERONET and CALIOP
observations reveal a seasonal variability of AOD that is comparable across all sub-regions studied.
The seasonal variation of the AOD spectral dependency was related to the change in the occurrence
of the CALIOP-derived aerosol types, and in particular to the contribution of dust to the AOD. We
also observed a north–south gradient of 2 km in the mean extinction height of the dust layer, being
at 4 km and 6 km high in the Sahel and Guinea areas, respectively. This gradient is attributed to the
northward migration of the monsoon flow.

Keywords: aerosol; dust; regional transport; environmental satellites; AERONET; CALIOP

1. Introduction

Aerosol concentrations in the troposphere are highly dependent on geographical location,
meteorological and environmental conditions [1]. Atmospheric aerosols have a significant
impact on the Earth’s radiation balance, and therefore on climate change [2–4]. Aerosols can
have far-reaching effects on air quality and public health [5,6].

The atmospheric aerosol load in Western Africa is affected by both natural and an-
thropogenic aerosol sources. Aeolian mineral aerosol (hereinafter called dust) is emitted
all year round in the arid and semi-arid areas of North Africa, with seasonal variations
in the intensity and direction of long-range transport [7–12]. The contribution of North
Africa dust sources to the global loading of dust is about 50% [13] and the dust emission is
estimated to be between 400 Tg yr−1 and 2200 Tg yr−1 [14], making this the world’s largest
source of mineral aerosols. The deforestation and the burning of agricultural waste all over
sub-Saharan Africa is a major source of biomass burning smoke aerosol [15]. The combus-
tion budget of North Africa for biomass burning is the second largest in the world and
was estimated to be between 430 and 461 T(C)g yr−1 between 2003 and 2008 [16]. The main
anthropogenic sources of combustion particulate emissions in West Africa are domestic
fires, road traffic, landfill fires, industries and thermal power plants [17]. The anthropogenic
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aerosol emissions in West Africa are expected to increase significantly due to the population
growth, land use change and economic development [18]. In particular, there is a growing
concern about the impact of the increasing anthropogenic aerosol emissions on the southern
part of West Africa (hereinafter called southern West Africa, SWA) regional climate and the
West African monsoon system [19].

The seasonal excursion of the intertropical convergence zone (ITCZ) and the West
African monsoon are key meteorological systems that controls the winds, temperature,
clouds and precipitation over SWA [20,21]. The ITZC over SWA becomes a marked discon-
tinuity called the intertropical front (ITF) that separates the dry air masses of the Harmattan
regime in the North and the monsoon flow in the south of West Africa. Harmattan is a cool
dry wind that blows from the northeast or east in the western Sahara and is strongest from
late November to mid-March. It is characterized by cold, dry, dust-laden wind, and also
significant fluctuations in the ambient temperatures of the day and night. The northward
migration of the IFT is located around 9◦ N in January and moves northward up to 18◦ N
in August. The Guinea zone (south of 8◦ N) has two rainy seasons and two dry seasons.
The Savanna zone (between 8◦ N and 12◦ N) and the Sahel zone (12◦ N to 16◦ N) have
only one rainy season, the duration of which depends on the latitude [22,23]. Both aeolian
dust and biomass burning emissions and transportation have a pronounced seasonal cycle.
The north-easterly winds of the Harmattan flow are a major pathway for the southward
advection of continental aerosols towards the Gulf of Guinea [24–28]. The Gulf of Guinea
is one of the regions with the highest aerosol optical thickness in the world [29,30] due to
the accumulation of continental aerosols. The shores of the Gulf of Guinea experience the
highest aerosol concentrations during the winter long dry season between December and
March [31,32]. Such high concentrations may impact the West African monsoon regime
and the precipitation amounts [19,33–35].

Several field experiments have documented the aerosol optical and chemical properties
in West Africa [21,36,37] leading to a simplified meridional–vertical cross-section of the
meteorological conditions affecting aerosol transport in SWA [37]. However, the seasonal
and latitudinal variations of the so-called “Harmattan front” are still poorly investigated.
This study gathers ground-based and satellite aerosol observations to characterize the
seasonal variability of the dust layers’ southward intrusion.

2. Materials and Methods
2.1. Geographical Area

SWA’s climate is marked by a precipitation gradient from south to north, leading
contrasting ecosystems (Figure 1). We have divided the domain into 3 distinct regional
boxes between longitudes 7◦ W and 13◦ E: Guinea (4◦ to 8◦ N, lower box in Figure 1),
Savanna (8◦ to 12◦ N, middle box) and Sahel (12◦ to 16◦ N, upper box). The ombrotype of
the Guinea zone is mainly “subhumid”, with forest ecosystems in the eastern part classified
as “humid”. Two “dry” areas corresponding to a mix of dry forest and savanna can be
identified in the Guinea box: the V-Baoulé [38] in the west and the Dahomey gap [39] in the
east, the latter going down to the coast. The savanna box is mainly composed of a savanna
ecosystem and dry forest (ombrotype “dry” and “sub-humid”). The Sahel box corresponds
to the semi-arid and arid ombrotypes. The Bodélé depression (Figure 1) located in the
North-East of the domain is a major source of dust which is active throughout the year,
with a peak in May and a minimum in August [40,41].
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Figure 1. Ombrotypes of Southern West Africa (adapted from [42], location of the AERONET stations,
geographical boxes used in the study and geographical location of the Bodélé depression.

2.2. Sun Photometer Observations

AERONET (AErosol RObotic NETwork) is a network of ground-based sunphotometers
dedicated to the observation of atmospheric aerosols [43]. AERONET provides long-term,
continuous, and easily accessible public domain databases on the optical, microphysical,
and radiative properties of aerosols for scientific research. The instrument and measurement
protocol are described by Eck et al. [44]. The Cimel CE-318 sunphotometer tracks the Sun
thanks to a two-axis robot that can move in the zenithal and azimuthal planes with an
accuracy of 0.05◦. The direct atmospheric transmission of the Sun’s irradiance is measured
at 8 wavelengths between 340 and 1020 nm with 1.2◦ field-of-view. The solar extinction
is used to compute the spectral aerosol optical depth (AOD). Our analysis utilises the
Level 2 of the version 3 spectral AOD daily product [45]. The uncertainty is estimated
to be ≈0.01–0.02. The sunphotometer also measures the sky’s radiance at solar elevation
angles for several azimuth angles (almucantar scans) at 4 wavelengths (440, 670, 870, and
1020 nm). The almucantar scans observations are used to retrieve optically equivalent
column-integrated volume size distributions, aerosol refractive indices, and additional
aerosol parameters like the single scattering albedo and the asymmetry parameter according
to the algorithm proposed by Dubovik and King [46] and Dubovik et al. [47].

We have selected 11 stations (Table 1) that are operating or have previously operated
in SWA: 6 stations in the Sahel box, 2 stations in the Savanna box and 3 in the Guinea box.

The Angström exponent (AE) expresses the relative contribution to optical thickness of
coarse aerosols compared with fine aerosols, with values varying between approximately 0
for pure coarse dust particles and 2 for predominantly fine particles [48,49]. AE is derived
from the AOD measured at two different wavelengths λ1 and λ2 by

AE = −log(AOD(λ1)/AOD(λ2))/log(λ1/λ2) (1)

Holben et al. [50] suggest that AE below 0.4 indicate that aerosols are dominated by
coarse particles, while higher values indicate a contribution from mainly fine and submi-
cronic aerosols. The variation of AE with wavelength can provide additional information



Atmosphere 2024, 15, 396 4 of 15

about aerosol size distributions for intermediate AE values [51]. Here, we used a single AE
value computed between λ1 = 440 nm and λ2 = 870 nm.

Table 1. AERONET geographical location, period of observations, (N) number of days of observations
during the period and corresponding ombrotype.

Station Name Geographical Location Period N Ombrotype

Agoufou (15.3° N, 1.5° W) October 2002–April 2011 2000 Arid
Banizoumbou (13.5◦ N, 2.7◦ E) October 1995–April 2022 6478 Semi-arid

CATUC_Bamenda (5.9◦ N, 10.2◦ E) December 2016–January 2022 796 Humid
DMN_Maine_Soroa (13.2◦ N,12.0◦ E) November 2005–July 2010 1011 Arid

Djougou (9.8◦ N, 1.6◦ E) February 2004–May 2007 652 Sub-humid
IER_Cinzana (13.3◦ N, 5.9◦ W) June 2004–Octpber 2021 4474 Dry

Ilorin (8.5◦ N, 4.7◦ E) April 1998–March 2021 3892 Sub-humid
Koforidua_ANUC (6.1◦ N, 0.3◦ W) December 2015–January 2022 1353 Sub-humid
LAMTO-STATION (6.2◦ N, 5.0◦ W) November 1997–November 2021 1306 Sub-humid

Ouagadougou (12.4◦ N, 1.5◦ W) November 1994–September 2007 1724 Dry
Zinder_Airport (13.8◦ N, 9.0◦ E) May 2009–April 2022 2873 Semi-arid

The concurrent changes in AOD and AE are often used to identify the aerosol type in
relation to the emission source (i.e., dust or biomass burning by-products) [32,52–54]. Dust
days are identified as having high AOD and low AE, while biomass-burning events or
polluted days are identified as having a high AOD and a high AE. Thresholds depend on the
location and number of observations available and are statistically defined. However, the
statistics may be biased by the number of data sets available for each station. To compensate
for this statistical bias, we randomly selected an equal number of days for each station,
evenly distributed over the year (around 600 days in all), and we calculated the means and
standard deviations of AOD and AE. Note that AOD means are reported as geometrical
means because the AOD statistical distribution is not a normal distribution. Based on the
sub-sampling of all the stations, the days with an AE ≥ 1.12 are classified as polluted days
and the days with an AE ≤ 0.3 are classified as dust days. Those threshold corresponds to
the mean (AE) ± 1 × SD of the sub-sample. To avoid a bias due to low AOD, we consider
only the days with an AOD ≥ 0.11, corresponding to the mean (AOD) ± 1 × SD of the
sub-sample.

2.3. CALIOP Observations

The NASA/CNES CALIPSO satellite was launched in April 2006. The CALIOP lidar
on the CALIPSO satellite records the attenuated backscatter profiles of the atmosphere
at 532 and 1064 nm with a spatial resolution of 333 m along-track [55], day and night.
At the Earth’s surface, the CALIOP footprint has a diameter of around 70 m. The depo-
larisation of the return laser beam is measured at 532 nm. CALIPSO’s orbit is 99 min
sun-synchronous and its ground track is repeated every 16 days. The CALIOP sensor
can continuously observe atmospheric aerosols on a global scale and extract their optical
signatures [56] by providing high-resolution aerosol vertical distribution characteristics to
effectively determine aerosol types [57–59].

The CALIOP aerosol type identification algorithm uses the lidar measured integrated
attenuated backscatter and volume depolarisation ratio, the type of surface, and the altitude
of the scattering layer [60]. In this study, we have used 16 years (2007–2022) of the standard
version (4) of the CALIPSO level 2 aerosol extinction profile product (05kmAPro) with
a uniform horizontal resolution of 5 km. CALIOP aerosol data have been widely used
to evaluate aerosol model simulations for several aerosol types [61–63] and to study the
spatio-temporal distribution and transport of several major aerosol types, such as dust and
smoke aerosols [64–67]. The major updates implemented in the CALIPSO aerosol subtyp-
ing algorithm defined in the most recent version. Its 4 data products include the following
aerosol typology: marine aerosols (hereinafter called clean_marine), dust (dust), dusty ma-
rine (dusty_marine), polluted dust (polluted_dust), continental (clean_continental), polluted
continental/smoke (polluted_continental) and high smoke plumes (elevated_smoke) [68]. The
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new type of dusty marine aerosol is introduced to identify mixtures of marine dust and
aerosols in the marine boundary layer that were incorrectly classified as polluted dust over
the oceans. The elevated_smoke subtype replaces smoke aerosol to translate the layers identi-
fied as high smoke above the planetary boundary layer. The polluted continent/smoke
type in V4 modifies the polluted continent and smoke types due to the similarity of their
optical properties measured by CALIOP (depolarisation and colour ratio).

The CALIOP data have been aggregated on the geographical boxes presented above
and by the latitude strip of 1◦ between 7◦ W and 13◦ E. Extinction profiles at 532 nm were
extracted based on the aerosol type along each orbit to compute daily (day and night
orbit) averages for each aerosol type. Monthly averages of AODs and extinction profiles
were computed when at least 10 daily observations per month are available. A mean
extinction height Hm [63] was estimated from the monthly mean extinction profiles for each
aerosol type.

Hm =
n

∑
i=1

zibext/
n

∑
i=1

bext (2)

bext is the extinction coefficient of level i and zi is its altitude. Hm is an alternative parameter
to the scale height [69,70] although both metrics show similar behaviours.

3. Results
3.1. Aerosol Optical Depth and Angström Exponent

The overall average for all sites is 0.40 (geometrical standard deviation, log(SD) = 0.71)
and 0.51 (SD = 0.39) for the AOD and AE, respectively. The AERONET located in the
Sahel has the lowest mean AOD (Table 2). Djougou station has the highest mean AOD
(0.53); however, it has the smallest number of observations (see Table 1). In the Guinea
zone, Koforidua_ANUC has a higher mean AOD (AOD = 0.49) than LAMTO_STATION
(AOD = 0.41) and CATUC_Bamenda (AOD = 0.40). The low AE observed at Agoufou
(AE = 0.27) is associated with the largest number of dust days (65.3% of the observations).
The four other stations in the Sahel have a very similar number of dust days (around
51%), but the number is lower than for Agoufou. The percentage of dust days for the
Guinea stations remains below 5%. Only 30% of the days are classified as dust or polluted
days at LAMTO_STATION and Koforidua_ANUC, indicating that most of the time, the
atmosphere is composed of a mix of aerosols.

Table 2. AERONET AOD and AE means and standard deviations and percentage of dust and
pollution days.

Station Name AOD (±log(SD)) AE (±SD) Dust (%) Pollution (%)

Agoufou 0.38 (±0.74) 0.27 (±0.23) 65.3 0.4
Banizoumbou 0.37 (±0.71) 0.35 (±0.25) 51.2 0.8

CATUC_Bamenda 0.40 (±0.78) 1.06 (±0.37) 3.6 44.6
DMN_Maine_Soroa 0.35 (±0.68) 0.39 (±0.31) 49.8 2.3

Djougou 0.53 (±0.61) 0.58 (±0.36) 26.4 11.0
IER_Cinzana 0.35 (±0.68) 0.34 (±0.25) 51.3 0.7

Ilorin 0.49 (±0.71) 0.72 (±0.36) 12.0 15.1
Koforidua_ANUC 0.49 (±0.69) 0.85 (±0.35) 3.5 26.5
LAMTO-STATION 0.41 (±0.63) 0.84 (±0.35) 5.0 25.0

Ouagadougou 0.39 (±0.65) 0.41 (±0.26) 40.4 1.5
Zinder_Airport 0.38 (±0.72) 0.35 (±0.25) 51.4 0.6

3.2. Aerosol Optical Depth Annual Cycle

The seasonality can be observed by analysing the AOD monthly mean annual cycle
across all sites (Figure 2). The guinea box shows a maximum AOD during the winter (DJF).
The AOD reaches its maximum in January at LAMTO_STATION (AOD = 0.77), and in
February at CATUC_Bamenda (0.99) and Koforidua_ANUC (1.13). The minimum AOD is
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reached in September at LAMTO_STATION (AOD = 0.21) and at CATUC_Bamenda (0.17),
and in October at Koforidua_ANUC (0.25). A secondary maximum is observed in August
for all three stations. The Savanna box has a similar trend but with the maxima shifted
to February for Ilorin (AOD = 1.06) and to March for Djougou (AOD = 0.96). There is no
secondary maximum in August. Minimum AODs are all observed in September around
0.25. The Sahel box exhibits different behaviour to the two other boxes. For most of the
sites in the Sahel box, the maximum AOD is observed in March or April, ranging from
0.62 at IER_Cinzana to 0.84 at Ouagadougou. The maximum is shifted to May for the
easternmost station, DMN_Maine_Soroa (AOD = 0.87) and the June for the northernmost
station, Agoufou (AOD = 0.84). A secondary maximum is observed in October and the
minimum AOD (≈0.25) is reached in August and during the winter (DJF) period.

The seasonal cycles of CALIOP AOD in the different geographical boxes are similar to
the AERONET seasonal cycle. CALIOP AODs maxima and minima are observed in the
same period of time as the AERONET sites. In the Sahel box, a maximum AOD above 0.6 is
observed between March and June, while the minimum AODs are obtained in August and
during the winter period. As CALIOP observations are averaged over a 20◦ longitude band,
the averages do not reflect the East–West variability observed for AERONET measurements.
This can explain the absence of a secondary peak in the Guinean zone in August. The
maximum AODs (around 1.0) for these two zones are observed in winter, while the minima
are 0.4 in summer.
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Figure 2. Monthly mean annual cycle of (left) AERONET aerosol optical depth at 550 nm at the selected
AERONET sites in the (A) Sahel, (B) Savanna and (C) Guinea geographical boxes, and (right) CALIOP
aerosol optical depth at 532 nm for the (D) Sahel, (E) Savanna and (F) Guinea geographical boxes.

3.3. Angström Exponent and CALIOP Aerosol Type

The AE monthly mean annual cycle (Figure 3) shows a minimum between March and
June for all three areas. The increase in AE starts as early as April in the Guinea box, while
it takes place in June for the Savanna and Sahel boxes. In the Sahel boxes, all AE monthly
means are below 0.6 and remain below 0.25 from March to June for all the sites. The highest
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AEs observed in August and December are concurrent with the lowest AODs (Figure 2).
The lowest AE is observed in Agoufou (AE = 0.04) during the heart of the dust season. A
similar seasonal pattern to the one observed in the Sahel box can be observed for the sites
in the Savanna box; however, this occurs with AE that surpasses 1.0 during the summer
(JJA) period. For the Savanna and Guinea boxes, there is an east–west gradient in the AE,
with the AE being higher in the eastern part of the boxes (Ilorin and CATUC_Bamenda).
Throughout the year, the AEs are higher in the Guinea box than in the two other boxes. The
AEs are around 1.4 during the JJA period and reach a minimum of around 0.5 during MAM.
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Figure 3. Monthly mean annual cycle of (left) Angström Exponent at the selected AERONET sites
in the (A) Sahel, (B) Savanna and (C) Guinea geographical boxes, and (right) relative contribution
of the CALIOP aerosol type to the CALIOP AOD for the (D) Sahel, (E) Savanna and (F) Guinea
geographical boxes.

The monthly mean annual cycle of the relative abundance of the CALIOP aerosol type
to the total AOD (Figure 3) displays a marked seasonal cycle that has some similarities
with the AE monthly mean annual cycle. In the Sahel box, dust and polluted_dust are the
main aerosol types, respectively corresponding to 48.5% and 25.5% of total AOD over the
year. The other types are mainly elevated_smoke and polluted_continental, contributing 15.8%
and 20.4%, respectively. There is a clear increase in the polluted_continental contribution
between June and September corresponding to the simultaneous increase in the AE. The
contribution of the elevated_smoke type is the highest in October and November, at around
22%. While the polluted_dust contribution remains steady over the year, the contribution of
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dust is at its maximum in April. The contribution of the polluted_continental in the Savanna
box is greater than in the Sahel box but can be observed all year round, with a maximum
in summer (JJA) and a minimum in March. Like continental aerosols, smoke aerosols
contribute significantly to the total aerosol load in summer, with a contribution of 20.3% in
August, while their contribution is only 9.3% in March. Inversely, the contribution of dust is
minimum in summer (around 25%) and maximum in February (around 57%). As it includes
an ocean surface, the Guinea box shows an additional clean_marine and dusty_marine aerosol
type. The overall contribution of dust subtypes (dust, polluted_dust and dusty_marine) is at
its maximum in DJF (around 75%). The contribution of elevated_smoke can be observed all
year round, with a maximum at 19.2% in summer (JJA).

There is a clear similarity between the seasonal cycle of the relative contribution of
CALIOP aerosol types to the AOD and the AERONET AE exponent for all the considered
areas. In particular, the dust fraction tends to modulate the seasonal variation of AE. As the
contribution of dust to the AOD increases, the AE decreases. We found that the monthly
mean AERONET AEs and the ratio of no-dust CALIOP AOD (all types except dust type )
to the dust (dust type) CALIOP AOD (Figure 4) are highly correlated (Pearson coefficient
of determination r2 = 0.72) considering the whole region. When considering each zone
separately, the correlation is lower (r2 = 0.53 for the Sahel area, 0.54 for Guinea and 0.63 for
Savanna), but still significant.

n = 408   y = 0.51 + 0.353 x   R2 = 0.72   

0.0

0.5

1.0

1.5

-2 -1 0 1 2
CALIOP log (AOD no dust / AOD dust)

AE
R

O
N

ET
 A

E 
44

0−
67

0 
nm

Sahel
Savanna
Guinea

Figure 4. Regression plot of the monthly mean AERONET Angström exponent against the ratio of
no-dust CALIOP AOD to CALIOP dust AOD.

3.4. Altitude of the Transport

All three geographical areas have similar seasonal (excluding summer) average profiles
of the CALIOP extinction coefficient at 532 nm (Figure 5). During the winter period (DJF),
the maximum extinction coefficient for dust is at 1 km and for polluted_dust is at 1.5 km.
This maximum shifts to 2 km during MAM period and to 2.5 km during the summer period
(JJA). The extinction coefficient profiles of polluted_dust are very close in Savanna and Sahel
for all seasons. In the Guinea zone, we note the absence of a layer between 0.5 km and
1.5 km, which is present during JJA in the other zones.
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Figure 5. Mean seasonal CALIOP extinction profiles at 532 nm for (top row, (A–C)) dust aerosol type in
(A) Sahel, (B) Savanna and (C) Guinea geographical boxes, and for (bottom row, (D–F)) polluted_dust
aerosol type in (D) Sahel, (E) Savanna and (F) Guinea geographical boxes.

The mean extinction height Hm of the continental dust aerosol subtypes (namely dust
and polluted_dust) reveals a well-defined seasonal cycle (Figure 6). The size of the boxes
(interquartile range, IQR) in Figure 6 reflects the Hm interannual variability. On average,
the IQR is 0.37 km and 0.64 km for polluted_dust and dust, respectively. The IQR increases
during the summer and early autumn, particularly in the Guinea box. Hm IQR can be as
high as 1.8 km in October for the Guinea box for the dust type. In the Guinea box, Hm for
the dust stays below 3 km between November and March and starts to increase in April.
The maximum altitude, which is reached in August, increases from 4 km on average in
the Sahel box to about 6 km in the Guinea box. A steady increase in Hm of about 0.3 km
per month is observed in the Savanna and Sahel boxes between January and August. Hm
decreases during the second half of the year. In the Guinea box, there is a large variability
in the year-to-year altitude of the dust altitude in the decreasing trend, as highlighted by the
larger IQR in Figure 6. The minimum altitude is in December for all three boxes at about
2 km. Hm for the polluted_dust has different seasonal behaviour. Hm is between 1.8 km and
3.8 km (Guinea box) or 2.8 km (Sahel and Savanna boxes). We observe a significant drop of
1.5 km in Hm in the Guinea box between September and October.



Atmosphere 2024, 15, 396 10 of 15

(A)

(B)

(C)

(D)

(E)

(F)

S
ahel

S
avanna

G
uinea

Ja
n

Fe
b

M
ar Apr

M
ay Ju

n Ju
l

Aug Sep Oct
Nov Dec Ja

n
Fe

b
M

ar Apr
M

ay Ju
n Ju

l
Aug Sep Oct

Nov Dec

2

4

6

8

2

4

6

8

2

4

6

8

M
ea

n 
ex

tin
ct

io
n 

H
ei

gh
t (

km
)

dust polluted_dust

Figure 6. Boxplot of the monthly annual cycle of the CALIOP-derived scale height (left column, A–C)
dust aerosol type in (A) Sahel, (B) Savanna and (C) Guinea geographical boxes, and for (right column,
D–F) polluted_dust aerosol type in (D) Sahel, (E) Savanna and (F) Guinea geographical boxes.

4. Discussion

The seasonal cycle of AOD in SWA is driven by the natural variability of aerosol
emissions, wind and rainfall patterns. As revealed by the CALIOP and AERONET data
analysis, the aerosols in SWA are a mixture of combustion and pollution particles and dust.
The AOD spectral dependency (namely AE) is largely influenced by the contribution of the
mineral dust AOD. The larger the contribution of dust to the AOD, the lower the AE for the
atmospheric column, and we have found that the AERONET AE is nicely correlated with
the ratio of CALIOP non-dust AOD to CALIOP dust AOD over the whole studied area.

The highest contribution of dust occurs in spring (MAM) due to the activation of the
Bodélé dust source by the northeasterlies due to the ridging of the Lybian high [71]. During
spring, the dust layer is uplifted as shown by the CALIOP mean extinction height. The
increase in the dust layer in April is due to the northward motion of the inter-tropical
front [37]. Although dust transport toward the Gulf of Guinea is weakened during the
summer months, the mean extinction height of dust layers is at around 6 km altitude during
JJA, thus indicating transport at greater heights.

Biomass burning associated with human land-use activities is a significant contributor
to the aerosol load in the SWA atmosphere [72,73]. Biomass burning occurs during the
dry season [16] all over SWA. Biomass burning emits particles in the accumulation mode
associated with AEs around 1.8 [74]. The mixing of biomass burning by-products with
dust leads to an intermediate mean AEs between 0.5 and 1.0 in DJF. In the Sahel, as there
is less available fuel to burn, the emissions of combustion aerosols have less impact on
AE. Over the Guinea area, there is a clear increase in the AOD during the summer period,
which is associated with high AEs, and an increase in the contribution of the elevated_smoke
and polluted_continental types. The increase in AE is consistent with previous findings
indicating a regional-scale advection of biomass burning by-products by easterly winds
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in summer [75]. Aged biomass burning is advected from central Africa to SWA above the
monsoon layer and partially entrained within the monsoon layer [76,77].

We used an average of CALIOP day and night observations. There were some differ-
ences between CALIOP observations made during the day and those made at night because
of the mechanisms by which aerosols are emitted and transported, and the possible impact
of relative humidity. However, these differences were smoothed out by using seasonal
averages. On average, we have estimated that the difference between CALIOP night-time
or daytime AODs compared with an average of the two is ±5%. This difference is of the
same order of magnitude as the AOD diurnal variability [78]. This difference is +3% on
average for Hm. The differences may be greater at daily scales, however.

5. Conclusions

SWA atmosphere is characterised by a complex and intense mixing of different aerosol
types. Although mineral dust is present all year long, the summer period shows a significant
contribution of biomass burning pollution that impacts the aerosol properties. The seasonal
cycle of AOD given by CALIOP satellite and local sun photometer observations is consistent
over SWA region. The CALIOP aerosol classification indicates that the AE variability is
largely influenced by the relative apportionment of dust and no-dust aerosol types. The
dust altitude has a pronounced seasonal cycle with a maximum in summer and a minimum
in winter. While there is a steady increase in the dust altitude, most probably due to the
increase in solar heating and convection, the northward migration of the IFT creates a
discontinuity by shifting the dust towards higher altitudes. Our study is based on monthly
averages from relatively large geographical boxes that are characteristic of West African
ecosystems. However, the investigation of the variation of aerosol types and their relative
optical thickness from CALIOP at day scale and over regions of smaller geographical
extent remains difficult due to the low spatial coverage of the lidar. The focus of future
research will be on analyzing CALIOP and meteorological data over time to gain a better
understanding of the relationship between monsoon and aerosol loading at seasonal and
interannual scales.
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