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Abstract
Distributed systems are ubiquitous, and their distributed nature

make them particularly vulnerable to faults. Being able to auto-

matically recover from these faults is of utmost importance, and

self-stabilization is a general and lightweight approach to tackle this

problem. However, fully asynchronous self-stabilizing algorithms

(FASS) are notoriously difficult to design and prove. It thus makes

sense to create and prove a transformer that turns synchronous

algorithms into FASSes.

The Rollback Compiler of Awerbuch and Varghese (FOCS 1991) is
such a transformer. The problem is that although it produces FASSes

that are fast (time being evaluated in rounds), we prove that their

energy requirement (measured through thenumber of state changes)

can be exponential in the number 𝑛 of nodes. Actually, regardless

of the problem, the literature only contains a few FASSes which

are asymptotically optimal time-wise. Moreover, several of these

algorithms have been shown to require an exponential amount of

energy, and no such algorithms are known to be energy-efficient.

In this paper, we introduce the first transformer that turns any

terminating synchronous algorithm into a fully asynchronous self-

stabilizing algorithmwith essentially the same time complexity and

with a lowenergy requirement (polynomial in𝑛). However, as for the

rollback compiler, this comes at the cost of a (reasonable) memory

increase. Our approach is compatible with most models, ranging

from the LOCALmodel (a powerful synchronous fault-free model),

down tomodels such as the StoneAgemodel, inwhich a node cannot

even know howmany neighbors it has.

In particular, we can transform extremely fast algorithms such

as the classicalΘ(𝑙𝑜𝑔∗𝑛)-time ring coloring algorithm by Cole and

Vishkin (FOCS 1986) into fast and energy-efficient FASSes. We also

provide the best FASSes so far for many classical distributed prob-

lems such as leader election and spanning tree constructions (e.g.,
BFS, shortest-path).
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1 Introduction
1.1 Context
Distributed computing is everywhere in our daily lives (Internet,

smartphones, aircraft and industrial control systems, . . . ) and fault-

tolerance (i.e., the ability of a system to automatically withstand fail-

ures) is a major concern in this area. However, designing distributed

algorithms, and in particular asynchronous ones, is notoriously dif-

ficult (see e.g., the literature on race conditions and deadlocks). Fault
tolerance adds another layer of difficulty to the point that some prob-

lemsbecomeoutright impossible to solve (see e.g., [33]). Furthermore,

when it can be achieved, it often comes at the price of sacrificing

efficiency (in time, space, or energy) or versatility (see e.g., [16, 20]).
Self-stabilization [27] is a popular paradigm for dealingwith these

distributed systems in which errors may occur. Self-stabilization

focuses on transient faults, which occurs at an unpredictable time,

but do not result in permanent hardware damage. As opposed to in-

termittent faults, the frequency of transient faults is considered to be

low. After a finite number of transient faults, the configuration of the

systemmay be arbitrary, and may thus violate the safety properties

of the system. Now, starting from such an arbitrary configuration,

a self-stabilizing algorithm recovers within finite time a legitimate
configuration fromwhich an intended specification is satisfied. Self-

stabilization is commonly considered [4, 29] as a general approach

for tolerating such faults. Indeed, it makes no assumptions on the

extent or the nature of transient faults that could hit the system

(e.g., memory corruption, message loss, topological changes) and a

self-stabilizing system recovers from those faults in a unifiedmanner.

However, such versatility comes at a price, e.g., after transient faults,
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there is a finite period of time during which the safety properties of

the system are violated.

One obviously wants “fast” algorithms. The running time of asyn-

chronous algorithms is usually evaluated in terms of rounds, which
capture the execution time according to the speed of the slowest

nodes. Since, to finish its computation, a node may need some infor-

mation stored in another node far away, the diameter𝐷 of the net-

work is oftena lowerbound for thenumberof rounds.Hence, looking

for solutions achieving round complexities that are polynomial, or

even linear, in𝐷 is natural. It even becomes quite desirable consider-

ing the fact that, in many large-scale networks,𝐷 is logarithmic in𝑛,

the number of nodes in the network. As an illustrative example, the

IPv6protocol,which allows for up to 2
128

machines, assumes that the

diameter of the network is at most 255 (the TTL is stored on 8 bits).

Energy consumption is also becoming a more andmore crucial is-

sue, both for scalability and ecological reasons.Wemodel the energy

requirement with themove complexity, which counts the total num-

ber of state changes. This choice is a bit unusual. Indeed, although

local computations do require energy, this energy is often negligible.

Messages between nodes are much more costly in this regard. How-

ever both are related. Indeed, a node only starts a local computation

when it receives information (via messages) about its neighbors, and

a node only emits messages when moving. The number of moves is

thus a lower bound on the number of messages. Thus if the number

of moves is, say, exponential, then so is the number of messages.

Conversely, if the number of moves is polynomial, then so is the

number of messages. Of course, we must also consider the size of

the messages, and take into account the fact that any self-stabilizing

algorithm must regularly check for errors. (We will expand more

on energy in Section 6.) Since each node usually makes at least one

move, a natural parameter for this complexity is 𝑛.

1.2 A Difficult Balancing Act
Designing fully asynchronous self-stabilizing algorithms is difficult

because of the huge variety of possible interleavings. In particular,

fairness is not guaranteed. A node may starve and never be allowed

to move as long as some other node can be activated. Requiring that

these algorithms are both fast and energy-efficient is thus evenmore

challenging. Indeed, for the algorithm to be fast, nodes should exploit

parallelism as much as possible and thus perform their computa-

tion as early as possible. But then, a very fast node 𝑝 may do a lot

of computation which turns out to be useless, typically because 𝑝

has not received a crucial information from a slow node. Thus, fast

self-stabilizing algorithms tend to behave poorly energy-wise: their

move complexity is often exponential; see e.g., [26]. A natural idea is

then to slow down nodes by removing some parallelism to prevent

them from doing computations whose dependencies are not sound.

This may, in turn, lead to a slow algorithm.

To try to solve this problem, a popular approach is then to use an

error mechanism in which nodes that detect “major errors” launch

a reset of possibly faulty nodes. Such a partial reset can be done in

many ways. If this reset allows nodes to resume their computation

too early, then the exponential moves problemmost likely remains.

A commonway to perform a “slow” and accurate reset is to use at

least two phases: a broadcast phase in which involved nodes are

frozen, and a feedback phase in which involved nodes reset and con-

firm the good propagation of the freezing. The computation resumes

after this second phase. Those two phases organize reset nodes into

directed acyclic graphs (DAG) or even trees. Since the freezing is

propagated following such underlying error DAGs, the round com-

plexity of the feedback phase depends on their depth, which may

be Ω(𝑛). One may then want to allow nodes to restructure error

DAGs until their depth is 𝑂 (𝐷). But, this shortening process is a

computation in itself, andwhile the “real” computationmaybeunder

control, the shortening may become costly, even exponential. This

moving of the goal post further suggest that being both fast and

energy-efficient is inherently hard.

In fact, this intuition is reflected in the literature. Indeed, just

having a round complexity polynomial in𝐷 is rare in a fully asyn-

chronous setting. Most algorithms that focus on rounds have a Ω(𝑛)
complexity (we focus here on the fully asynchronous setting). No-

table exceptions are the Rollback compiler of Awerbuch and Vargh-

ese [10], Dolev’s Breadth-First Search (BFS) algorithm [28], and

Bellman-Ford-based spanning tree constructions [7, 15]. However,

all these algorithms have an exponential move complexity; see Sec-

tion 7 for the Rollback compiler, [26] for Dolev’s BFS, and [6] for

Bellman-Ford shortest-path constructions. On the other hand, and

as expected, techniques used so far to optimize the move complexity

produce round complexities inherently linear in 𝑛 (e.g., [3, 18, 24]).
Another compelling example is the best (and probably optimal) al-

gorithm with respect to moves for tree construction [38] (with a

𝑂 (𝑛𝐷) move complexity). We can show that this algorithm has a

round complexity in Ω(𝑛). The general consensus seems to be that

being both efficient in rounds and moves is only rarely possible.

Cournier, Rovedakis, and Villain [19] tackle the existence of non-

trivial algorithms whose round and move complexities are bounded

by polynomials in respectively𝐷 and 𝑛. They prove that such fully
polynomial self-stabilizing algorithms do exist by providing the only

fully polynomial algorithm so far: a𝑂 (𝑛6)-move and𝑂 (𝐷2)-round
BFS spanning tree algorithm for rooted connected networks. They

also ask whether (1) the spanning tree problem can be solved by a

fully polynomial algorithm with optimal𝑂 (𝐷) round complexity,

and (2) other typical distributed problems, such as leader election,

admit fully polynomial solutions.

1.3 Our Contributions
In this paper, we mostly respond to the two aforementioned ques-

tions in the affirmative. Indeed, we prove that every synchronous

algorithmwhich terminates in𝑂 (𝐷) rounds can be turned, by the
mean of a transformer, into a fully asynchronous self-stabilizing

algorithm that converges in𝑂 (𝐷) rounds and𝑂 (𝑛2)moves per node

(thus,𝑂 (𝑛3)moves in total). Now, it iswell known that classical prob-

lems such as spanning tree constructions and leader election admit

such synchronous solutions; see Section 5 for illustrative examples.

Actually, our transformer is even more general. It operates in

the atomic-state model (the most commonly used model in the self-

stabilizing area) and has several inputs: (1) a terminating synchro-

nous algorithm𝐴𝑙𝑔𝐼 , (2) an upper bound𝐵 on the execution time𝑇 of

𝐴𝑙𝑔𝐼 , which may be set to +∞ if unknown, (3) a boolean flag greedy,
indicating whether the transformer runs in “greedy” or “lazy” mode.

The output is a fully asynchronous silent self-stabilizing algorithm
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(FASSS)𝑇𝑟𝑎𝑛𝑠 (𝐴𝑙𝑔𝐼 ) that simulates𝐴𝑙𝑔𝐼 . Silent algorithms are such

that the state of each node eventually remains fixed [30]. Silence is

a desirable property as, for example, such algorithms can be more

easily composed, thus helping the design of algorithms solvingmore

complex tasks [4].

The complexity bounds (in moves and rounds) and the memory

requirement of𝑇𝑟𝑎𝑛𝑠 (𝐴𝑙𝑔𝐼 ) according to the used mode (greedy or

lazy) are summarized in Table 1. Intuitively, the error recovery phase

ends when everything is back to normal, except that the simulation

may not be finished yet. A more precise definition will be given at

the beginning of Section 4.

Move complexity Round complexity

Lazy mode 𝑂 (min(𝑛3+𝑛𝑇,𝑛2𝐵)) 𝑂 (𝐷+𝑇 )
Greedy mode 𝑂 (min(𝑛3+𝑛𝐵,𝑛2𝐵)) 𝑂 (𝐵)

Common features

Error recovery 𝑂 (min(𝑛3,𝑛2𝐵)) 𝑂 (min(𝐷,𝐵))
Space complexity 𝑂 (𝐵 ·𝑆) bits

• 𝑇 and 𝑆 are respectively the time and space

complexities of𝐴𝑙𝑔𝐼 .

• 𝐵 ∈ [𝑇,+∞).
Table 1: Complexities of𝑇𝑟𝑎𝑛𝑠 (𝐴𝑙𝑔𝐼 ).

Notice also that our method is compatible with most variants

of the atomic-state model. In particular, our transformer neither

requires node identifiers nor local port numbers. It can thus be used

in strong models with node identifiers like the LOCALmodel [41],

down to models such as the Stone Agemodel [32]. Our results have

the following three direct implications:

(1) In lazymode,𝑇𝑟𝑎𝑛𝑠 (𝐴𝑙𝑔𝐼 ) is fully-polynomialwhenever𝐴𝑙𝑔𝐼

has a round complexity polynomial in 𝐷 , regardless of the

valueof𝐵. As a consequence, all problemswhich canbe solved

in the LOCALmodel admits a fully-polynomial FASSS in the

asynchronous corresponding model.

(2) Any problemwhose optimal complexity is Ω(𝐷) in the syn-
chronous setting admits a FASSSwith the same time complex-

ity and just an additional𝑂 (𝑛2) energy consumptionper node

(using our transformer in lazy mode). As a consequence, we

have time-optimal energy-efficient FASSSes for many classi-

cal problems, such as spanning tree constructions and leader

election.

(3) When the provided bound 𝐵 is linear in𝑇 , our transformer in

greedy mode performs the simulation in𝑂 (𝑇 ), even when𝑇
is sublinear in𝐷 . In particular, we can transform extremely

fast algorithms that use a bound as input, such as the clas-

sical Θ(𝑙𝑜𝑔∗𝑛)-time ring 3-coloring algorithm by Cole and

Vishkin [17].

Overall, our solution is very efficient in terms of time and en-

ergy but at the price of multiplying the memory cost of the original

algorithm by its execution time. However, this is often not a real

problem. Indeed, being able to focus on synchronous algorithmswith

a controlled initialization makes it much easier to design algorithms

whose execution times are quite small, achieving complexities such

as 𝑂 (𝐷) or even 𝑂 (log∗𝑛) (which is admittedly extreme). Recall

that, in large-scale networks such as the Internet,𝐷 is often logarith-

mic in 𝑛. Furthermore, using nonces and hashes, one may reduce in

practice the communication cost to almost the one of the original

algorithm. Finally, our transformer alwaysmodifies its state in away

that can be describedwith limited information, linear in the time and

memory complexity of the simulated algorithm, and this can be also

used to limit the volume of exchanged information. We elaborate on

those two latter points in more detail in Section 6.

To summarize, our transformer allows to drastically simplify the

design of energy-efficient FASSSes by overcoming twomain sources

of uncertainty: the arbitrary initial configuration and the asynchro-

nism.

1.4 RelatedWorks
Transformers are far frombeingnew, and canbeused in severalways.

Oneway isasa (constructive) tool toprove that solutions toagiven

problem can be assumed to have an additional property. Alongside

a proof that the property cannot be achieved outside the class, this

gives a full characterization. For example, Katz and Perry [37] have

addressed the expressivity of self-stabilization in message-passing

systems where links are reliable and have unbounded capacity, and

nodes are both identified and equipped with infinite local mem-

ories. Several transformers, e.g., [14, 37], build time-efficient self-

stabilizing solutions yet work on synchronous systems only. Boldi

and Vigna [14] propose a universal transformer for synchronous

networks. As in [37], the transformer allows to self-stabilize any

behavior for which there exists a self-stabilizing solution. However,

the transformer in [14] is slow, stabilizes in at most𝑛+𝐷 rounds, and

is costly in terms of local memories (basically, each node collects and

stores information about the whole network). In the same vein, Afek

and Dolev [1] propose to collect pyramids of views of the system

to detect incoherences and correct the behavior of a synchronous

system. In [13], Blin, Fraigniaud and Patt-Shamir propose two trans-

formers to construct silent self-stabilizing algorithms. Their goal is

to minimize memory consumption. The transformers are therefore

slow. The first one may need an exponential number of rounds. The

second one stabilizes in𝑂 (𝑛) rounds.
Transformers have been also used to compare the expressiveness

of computational models. Equivalence (in terms of computational

power) between the atomic-state model and the register one and be-

tween the register model and message passing are discussed in [29].

In the previous examples, transformers are only used as tools in

a proof, and in this context, performance is not an issue. Indeed, all

aforementioned transformers use heavy (in terms ofmemory and/or

time) mechanisms such as global snapshots and resets in order to be

generic. For example, the transformer of Katz and Perry [37] requires

infinite local memories and endlessly computes (costly) snapshots

of the network even after the stabilization.

Lighter transformers have been proposed but at the price of reduc-

ing the class of problems they can handle. For example, locally check-

able problems are considered in the message-passing model [2]. The

proposed transformer constructs solutions that stabilize in𝑂 (𝑛2)
rounds. The more restrictive class of locally checkable and locally

correctable problems is studied in [8], still in message-passing. Fi-

nally, Awerbuch and Varghese [10] propose, in the message-passing
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model, to transform synchronous terminating algorithms into self-

stabilizing asynchronous algorithms. They propose two methods:

the rollback compiler and the resynchronizer. The resynchronizer
additionally requires the input algorithm to be locally checkable and

assumes the knowledge of a commonupper boundD on the network

diameter. Using the rollback, resp. the resynchronizer, method, the

output algorithm stabilizes in𝑂 (𝑇 ) rounds, resp.𝑂 (𝑇 +D) rounds,
using𝑂 (𝑇 ×𝑆) space, resp.𝑂 (𝑆) space, per node where𝑇 , resp. 𝑆 ,
is the execution time, resp. the space complexity, of the input algo-

rithm. Notice however that the straightforward atomic-state model

version of the rollback compiler (the work closest to our contribu-

tion) achieves exponential move complexities, as shown in Section 7.

Finally, notice that the rollback compiler of Awerbuch and Varghese

is revisited in the position paper of Lenzen, Suomela, andWatten-

hofer [40] to show the links, that we exploit here, between the Local
model [41] and self-stabilization.

1.5 Roadmap
In the next section, we define the computational model. In Section 3,

we present our transformer. In Section 4, we sketch its correctness

and its complexity. We illustrate the versatility and efficiency of

our transformer by presenting several of its instances in Section 5.

In Section 6, we justify why reducing the move complexity of self-

stabilizing algorithms allows to make them energy-efficient. In Sec-

tion 7, we establish an exponential lower bound in moves for the

rollback compiler, the closest related work. We make concluding

remarks in Section 8. Precise statements and proofs can be found in

the technical report online [25].

2 Preliminaries
2.1 Networks
We consider distributed systemsmade of 𝑛≥ 1 interconnected nodes.

Each node can directly communicate through channelswith a subset

of other nodes, called its neighbors. We assume that the network is

connected and that communication is bidirectional. More formally,

wemodel the topologybya connected simple graph𝐺 = (𝑉 ,𝐸),where
𝑉 is the set of nodes and 𝐸 is the set of edges. If {𝑝,𝑞} is an edge, then
𝑞 is a neighbor of 𝑝 . We denote by𝑁 (𝑝) the set of neighbors of 𝑝 , and
let 𝑁 [𝑝]=𝑁 (𝑝)∪{𝑝}.

A path is a finite sequence 𝑃 =𝑝0𝑝1 ···𝑝𝑙 of nodes such that con-

secutive nodes in 𝑃 are neighbors. We say that 𝑃 is from 𝑝0 to 𝑝𝑙 .
The length of the path 𝑃 is the number 𝑙 . Since we assume that𝐺 is

connected, then for every pair of nodes 𝑝 and 𝑞, there exists a path

from 𝑝 to 𝑞. We can thus define the distance 𝑑 (𝑝,𝑞) between two

nodes 𝑝 and 𝑞 to be the minimum length of a path from 𝑝 to 𝑞. The

diameter 𝐷 of𝐺 is the maximum distance between nodes of𝐺 .

2.2 Computational
Model: the Atomic-stateModel

Formally, we do not provide a single transformer but a family of

transformers. Indeed, since the algorithms that we deal with work

under different models, so does our transformers. In this section,

we present the weakest model required for our algorithms. We will

explain how to cope with other (stronger) models after having pre-

sented the transformer, in Section 3.

Our algorithms runonavariant of theatomic-statemodel inwhich
nodes communicate using a finite number of locally shared registers,

called variables. The state of a node is defined by the values of its
local variables. A configuration of the system consists of the states

of each node.

An algorithm is described as a finite set of rules of the form

𝑙𝑎𝑏𝑒𝑙 :𝑔𝑢𝑎𝑟𝑑→ 𝑎𝑐𝑡𝑖𝑜𝑛. A guard is a boolean predicate involving the

state of the node and the set of states of its neighbors. The action
part of a rule updates the state of the node. If the guard of a rule eval-

uates to true, the rule is enabled and can be executed. By extension, a
node is enabled if at least one of its rules is enabled, and 𝐸𝑛𝑎𝑏𝑙𝑒𝑑 (𝛾)
denotes the set of enabled nodes in𝛾 . Note that this model is quite

weak. Indeed, a node only receives the set of states of its neighbors,
so it may not even be able to count howmany neighbors it has.

In the model, executions proceed as follows. Given a configura-

tion𝛾 with 𝐸𝑛𝑎𝑏𝑙𝑒𝑑 (𝛾)≠∅, a so-called daemon selects a nonempty

set of enabled nodesX that simultaneously and atomically execute

oneof their enabled rules, leading to anewconfiguration𝛾 ′. The tran-
sition𝛾 ↦→𝛾 ′ is a step, andwe say that each node ofX executes amove
during𝛾 ↦→𝛾 ′. An execution is a maximal sequence of configurations

𝑒 =𝛾0𝛾1 ···𝛾𝑖 ··· such that 𝛾𝑖−1 ↦→𝛾𝑖 for all 𝑖 > 0. Thus, an execution

starts from an arbitrary configuration and is either infinite, or ends

at a terminal configuration𝛾 𝑓 where 𝐸𝑛𝑎𝑏𝑙𝑒𝑑 (𝛾 𝑓 )=∅. An algorithm
which admits no infinite executions is said to be terminating or silent.

We consider two particular daemons: the synchronous one, which
always selects all enabled nodes, and the fully asynchronous one
(also called the distributed unfair daemon), which has no constraints

except that at each step it must select a nonempty set of enabled

nodes. The latter daemonmay never select a specific enabled node

unless it is the only enabled node.

We use two units of measurement to evaluate the complexity:

moves for the energy consumption, and rounds for the time. The

definition of a round uses the concept of neutralization: a node 𝑝 is

neutralized during a step𝛾𝑖 ↦→𝛾𝑖+1, if𝑝 is enabled in𝛾𝑖 but not in con-
figuration𝛾𝑖+1, and does not execute any move in the step𝛾𝑖 ↦→𝛾𝑖+1.
Then, the rounds are inductivelydefinedas follows.Thefirst roundof

an execution 𝑒 =𝛾0𝛾1··· is the minimal prefix 𝑒′ such that every node
that is enabled in𝛾0 either executes amove or is neutralized during a

stepof𝑒′. If𝑒′ is finite, then let𝑒′′ be the suffixof𝑒 that starts from the

last configuration of 𝑒′; the second round of 𝑒 is the first round of 𝑒′′,
and so on.Note that in a synchronous execution, steps and rounds co-

incide, unless a terminal configuration is reached.The complexity of a
silent self-stabilizing algorithm is themaximumnumber of moves or

rounds over every possible execution under the considered daemon.

3 The Algorithm
We propose a transformer that takes as an input a terminating syn-

chronous distributed algorithm 𝐴𝑙𝑔𝐼 and transforms it into an ef-

ficient fully asynchronous silent self-stabilizing algorithm which

simulates it.

Our algorithm is a major improvement on the Rollback Compiler
algorithm of Awerbuch and Varghese [10]. The Rollback Compiler is
based on a standard approach (already developed in [9], for example)

which consists in storing the whole synchronous execution of the

input algorithm𝐴𝑙𝑔𝐼 . Every node 𝑝 thus has a list 𝐿 such that for any

cell 𝑖 , ultimately, 𝑝.𝐿[𝑖]=st𝑖𝑝 , where st𝑖𝑝 is the state of 𝑝 at Round 𝑖
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of the synchronous execution of 𝐴𝑙𝑔𝐼 . Since the cell 𝑝.𝐿[𝑖 + 1] is
computed using the cells 𝑞.𝐿[𝑖] for node 𝑞 in the closed neighbor-

hood of 𝑝 (i.e., 𝑝 and its neighbors), we say that 𝑝.𝐿[𝑖+1] depends on
the cells 𝑞.𝐿[𝑖]. In [10], when 𝑝 is activated, it finds its faulty cells,

and corrects all of them. Moreover, if 𝑝.𝐿[𝑖] does not exist but is
necessary (e.g., the synchronous execution of𝐴𝑙𝑔𝐼 contains at least
𝑖 rounds) and all its dependencies exist, then it creates 𝑝.𝐿[𝑖]. This
gives a simple algorithm which has a good round complexity but

has an exponential move complexity; see Section 7 for details.

In our transformer, to control the number of moves, a node that

discovers a problem launches a partial reset by the mean of an error

broadcast / error feedbackmechanism that builds errorDAGs. Nodes

inDAGs are frozen (i.e., they cannot execute𝐴𝑙𝑔𝐼 ) until the broadcast
and feedback have terminated in their DAGs.

In the following, we give the actual algorithm (Section 3.1), after

which we explain in detail the principles of the algorithm, and in

particular how the error broadcasts work (Section 3.2).

3.1 Definition of the Algorithm
Let𝑇 be the execution time in synchronous rounds of𝐴𝑙𝑔𝐼 . Apart

from the algorithm 𝐴𝑙𝑔𝐼 that we simulate, our transformer needs

two additional parameters as inputs:

• an upper bound 𝐵 on𝑇 , which can be set to +∞when such

a bound is not available;

• a boolean parametergreedy indicatingwhichmode the trans-

former uses.

Precisely, greedy is true when the transformer runs in “greedy”

mode and false when it runs in “lazy” mode. In greedy mode, the

transformer simulates 𝐵 rounds of the input algorithmwhile, in lazy

mode, a new round is simulated only if necessary. In greedy mode,

since 𝐵 is an upper bound on𝑇 , we may end up simulating, say, 18

rounds of an algorithmwhich terminates in 10 rounds. To do so, we

assume that the 8 last rounds “do nothing”.

The state st of a node consists of the following shared variables:

• st.𝑖𝑛𝑖𝑡 : an initial state in the simulated algorithm; it cannot

be modified and constitutes the read-only part of the state;

• st.𝑠: the status, which can take two values:𝐶 or 𝐸;

• st.𝐿: a list of at most 𝐵 elements containing states of𝐴𝑙𝑔𝐼 .

Given a node 𝑝 with (local) state st𝑝 , 𝑝.𝑖𝑛𝑖𝑡 , 𝑝.𝑠 , and 𝑝.𝐿 respec-
tively denote st𝑝 .𝑖𝑛𝑖𝑡 , st𝑝 .𝑠 , and st𝑝 .𝐿. A node 𝑝 such that 𝑝.𝑠 =𝐸

is said to be in error. We denote by 𝑝.ℎ the length of 𝑝.𝐿, which we

call the height of 𝑝 , and by 𝑝.𝐿[𝑖] with 𝑖 >0 the 𝑖𝑡ℎ element of 𝑝.𝐿. To

simplify the design, we conventionally set 𝑝.𝐿[0] :=𝑝.𝑖𝑛𝑖𝑡 . Finally,
in an execution𝛾0𝛾1···, we respectively denote by 𝑝.𝑠𝑖 , 𝑝.𝐿𝑖 and 𝑝.ℎ𝑖
the value of 𝑝.𝑠 , 𝑝.𝐿 and 𝑝.ℎ in𝛾𝑖 .

As already stated at the beginning of the section, we ultimately

want that 𝑝.𝐿[𝑖] = st𝑖𝑝 . We thus must be able to call the simulated

algorithm on the cells of 𝑝.𝐿 and those of its neighbors. For this

purpose, we define �algo(𝑝,𝑖) to be the result of the application of

𝐴𝑙𝑔𝐼 by node𝑝 when each node𝑞 has the state𝑞.𝐿[𝑖]. More precisely,

in the model presented in Section 2.2, we have:�algo(𝑝,𝑖) :=𝐴𝑙𝑔𝐼 (𝑝.𝐿[𝑖],{st.𝐿[𝑖] | st∈ {st𝑞 |𝑞 ∈𝑁 (𝑝)}}
)
.

In this weak model, apart from its state, a node 𝑝 has only access

to the set {st𝑞 | 𝑞 ∈ 𝑁 (𝑝)} of its neighbors’ states. A guard should

thus not contain a direct reference to a neighbor 𝑞 of 𝑝 . However,

the semantics of ∃st∈ {st𝑞 |𝑞 ∈𝑁 (𝑝)},Pred(st.𝑖𝑛𝑖𝑡,st.𝑠,st.𝐿), for
some predicate Pred, is precisely ∃𝑞 ∈𝑁 (𝑝),Pred(𝑞.𝑖𝑛𝑖𝑡,𝑞.𝑠,𝑞.𝐿). We

can also encode similar universal statements. To increase readability,

we will thus make heavily use of the following shortcuts:

Shortcut1 : ∃𝑞 ∈𝑁 (𝑝),Pred(𝑞.𝑖𝑛𝑖𝑡,𝑞.𝑠,𝑞.𝐿) :=
∃st∈ {st𝑞 |𝑞 ∈𝑁 (𝑝)},Pred(st.𝑖𝑛𝑖𝑡,st.𝑠,st.𝐿)

Shortcut2 : ∀𝑞 ∈𝑁 (𝑝),Pred(𝑞.𝑖𝑛𝑖𝑡,𝑞.𝑠,𝑞.𝐿) :=
∀st∈ {st𝑞 |𝑞 ∈𝑁 (𝑝)},Pred(st.𝑖𝑛𝑖𝑡,st.𝑠,st.𝐿) .

Below, we define the predicates used by our algorithm.

𝑎𝑙𝑔𝑜𝐸𝑟𝑟 (𝑝) :=∃𝑖,1≤ 𝑖 ≤𝑝.ℎ,(∀𝑞 ∈𝑁 (𝑝),𝑞.ℎ≥ 𝑖−1)
∧𝑝.𝐿[𝑖]≠�algo(𝑝,𝑖−1)

𝑑𝑒𝑝𝐸𝑟𝑟 (𝑝) :=
(
𝑝.𝑠 =𝐸∧¬(∃𝑞 ∈𝑁 (𝑝),𝑞.𝑠 =𝐸∧𝑞.ℎ<𝑝.ℎ)

)
∨
(
𝑝.𝑠 =𝐶∧∃𝑞 ∈𝑁 (𝑝),𝑞.ℎ≥𝑝.ℎ+2

)
𝑟𝑜𝑜𝑡 (𝑝) :=𝑎𝑙𝑔𝑜𝐸𝑟𝑟 (𝑝)∨𝑑𝑒𝑝𝐸𝑟𝑟 (𝑝)

𝑒𝑟𝑟𝑃𝑟𝑜𝑝 (𝑝,𝑖) :=∃𝑞 ∈𝑁 (𝑝),𝑞.𝑠 =𝐸∧𝑞.ℎ< 𝑖 <𝑝.ℎ

𝑐𝑎𝑛𝐶𝑙𝑒𝑎𝑟𝐸 (𝑝) :=𝑝.𝑠 =𝐸∧∀𝑞 ∈𝑁 (𝑝),
(
|𝑞.ℎ−𝑝.ℎ | ≤ 1

∧(𝑞.ℎ≤𝑝.ℎ∨𝑞.𝑠 =𝐶)
)

𝑢𝑝𝑑𝑎𝑡𝑎𝑏𝑙𝑒 (𝑝) :=𝑝.𝑠 =𝐶∧𝑝.ℎ<𝐵∧
(
∀𝑞 ∈𝑁 (𝑝),𝑝 .ℎ≤𝑞.ℎ≤𝑝.ℎ+1

)
∧
(
greedy∨𝑝.𝐿[𝑝.ℎ]≠�algo(𝑝,𝑝.ℎ)∨∃𝑞 ∈𝑁 (𝑝),𝑞.ℎ>𝑝.ℎ

)
Ouralgorithmuses thesepredicates and isdefinedas the following

four rules.

• 𝑅𝑅 : (𝑝.ℎ>0∨𝑝.𝑠 =𝐶)∧𝑟𝑜𝑜𝑡 (𝑝) −→𝑝.ℎ :=0 ;𝑝.𝑠 :=𝐸

• 𝑅𝑃 (𝑖) :𝑒𝑟𝑟𝑃𝑟𝑜𝑝 (𝑝,𝑖) −→𝑝.ℎ :=𝑖 ;𝑝.𝑠 :=𝐸

• 𝑅𝐶 :𝑐𝑎𝑛𝐶𝑙𝑒𝑎𝑟𝐸 (𝑝) −→𝑝.𝑠 :=𝐶

• 𝑅𝑈 :𝑢𝑝𝑑𝑎𝑡𝑎𝑏𝑙𝑒 (𝑝) −→𝑝.𝐿[𝑝.ℎ+1] :=�algo(𝑝,𝑝.ℎ)
We set that 𝑅𝑅 has the highest priority, and 𝑅𝑃 (𝑖) has a higher

priority than 𝑅𝑃 (𝑖+𝑙) for 𝑙 >0.

3.2 Principles of the Algorithm
Let us now explain the algorithm. First of all, at a very high level, the

rules are used as follows. The rule 𝑅𝑅 is applied by a node which de-

tects a major error, and thus initiates an error broadcast. The rule𝑅𝑃
is used both to propagate error broadcasts and to shorten the cor-

responding DAGs. The rule 𝑅𝐶 allows a node to leave an error DAG.

Finally, 𝑅𝑈 is used to perform a simulation move.

We start our explanation of the algorithm with the rule 𝑅𝑈 . In-

formally, this rule is used by a node 𝑝 when the situation locally

looks normal, and 𝑝’s next cell can be computed. More precisely, the

first part of the𝑢𝑝𝑑𝑎𝑡𝑎𝑏𝑙𝑒 predicate expresses that 𝑝 is in the correct

status 𝐶 , its list is not full, and the lists of its neighbors are long

enough to allow 𝑝 to compute its next cell, but not too long either.

In greedy mode, 𝑝 computes its next cell with𝐴𝑙𝑔𝐼 applied on the

relevant cells of its neighbors. In the lazy mode however, 𝑝 performs

this computation only after checking that, either the algorithm has

not yet terminated (i.e., the new simulated state would be different

from the last one), or some neighbor 𝑞 has already a value in its cell

𝑞.𝐿[𝑝.ℎ+1].
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Let us now focus on the three other rules, which deal with error

recovery. When a node 𝑟 detects a major error, it is a root (cf. Predi-
cate 𝑟𝑜𝑜𝑡 (𝑟 ), to be explained later) and it initiates an error broadcast.
To do so, 𝑟 empties its list 𝑟 .𝐿 (which removes all its possible faulty

cells) and switches to the error status 𝐸 by applying the rule 𝑅𝑅 .

The cells removed by 𝑟 most likely create cells with missing de-

pendencies in a neighbor 𝑝 . Since these cells are most likely faulty,

𝑝 removes themwith the rule 𝑅𝑃 , and it switches its status to error

to inform its neighbors of the ongoing error broadcast. As a matter

of fact, the rule𝑅𝑃 does not rely on the fact that 𝑟 applied the rule𝑅𝑅 .

It only needs the neighbor to be in error. This allows the rule 𝑅𝑃
to be more aggressive. Indeed, 𝑝 removes all its cells with missing

dependencies in any of its neighbors in error.

There is thus a causal link between𝑝 and its neighbor(s) in error of

minimal height. We generalize these links by saying that 𝑝 is a child
of a neighbor 𝑞 if both 𝑝 and 𝑞 are in error and 𝑝.𝑡 >𝑞.𝑡 . This defines

a DAG among the nodes in error. Note also that a given node may

apply the rule 𝑅𝑃 several times, thus compressing the error DAG.

We can now properly define what a root is; we will explain the

rule 𝑅𝐶 afterward. Obviously, contents of cells should correspond

to the application of �algo on the depending cells. The predicate

𝑎𝑙𝑔𝑜𝐸𝑟𝑟 checks whether any inconsistency of this type exists. Fur-

thermore, any node in error which did not initiate an error broadcast

should have a neighbor in error with a shorter list. Any node in error

without such a “parent” is also considered to be a root (first part of

predicate 𝑑𝑒𝑝𝐸𝑟𝑟 ). Finally, since the error rules 𝑅𝑅 and 𝑅𝑃 remove

cells, we expect cells to have missing dependencies. However, such

missing dependencies should only appear in neighbors which are

in error. More formally, if 𝑝 has a neighbor 𝑞 such that 𝑞.ℎ≥𝑝.ℎ+2,
then 𝑞 has a missing dependency in 𝑝 . The node 𝑝 should be in error.

If this is not the case, then 𝑝 is also considered to be a root (second

part of predicate 𝑑𝑒𝑝𝐸𝑟𝑟 ).

We implement the classical feedback mechanismwithout a spe-

cific status, but instead by switching the status of a node from 𝐸 to𝐶 .

Any node without children nor would-be children (i.e., neighbors
which could apply the rule 𝑅𝑃 and become a child) can leave the

DAG by switching its status to𝐶 (rule 𝑅𝐶 ).

The purpose of this broadcast/feedback mechanism is to forbid

nodes involved in a broadcast from a root 𝑟 to apply the rule𝑅𝑈 until

𝑟 has been notified that its broadcast has ended: 𝑟 will the first of

those nodes to resume the simulation by 𝑅𝑈 . And indeed, whenever

a node 𝑝 (which is not a root) enters the error DAG, it does so by

applying the rule 𝑅𝑃 . It thus has a neighbor 𝑞 in the DAG such that

𝑞.ℎ<𝑝.ℎ. Because of this neighbor, 𝑝 cannot apply the rule 𝑅𝑈 . We

prove that such a node always exists as long a 𝑟 has not moved, even

if 𝑝 has got back Status𝐶 . Hence, the “freeze” property is achieved.

3.3 Dealing with StrongerModels
Accesses to neighbors’ local states by our algorithm are only per-

formed through �algo, Shortcut1, and Shortcut2. Moreover, all

our proofs only rely on their semantics, not on their implementa-

tion. Therefore, our claims about our transformer will still hold in

any model where it is possible to implement�algo, Shortcut1 and
Shortcut2while respecting their semantics.

Stronger models include classical ones such as models in which

nodes have unique identifiers (like the LOCALmodel), semi-uniform

models in which some nodes are distinguished, andmodels in which

port numbers allow nodes to locally distinguish their neighbors.

The encoding is usually straightforward. For example, in the case

of node identifiers, we can assume that nodes receive pairs (id,st)
containing the identifier and the state of each neighbor. The �algo
macro can simply be encoded as follows:�algo(𝑝,𝑖) :=𝐴𝑙𝑔𝐼 ((id𝑝 ,𝑝 .𝐿[𝑖]),{(id,st.𝐿[𝑖]) |

(id,st) ∈ {(𝑖𝑑𝑞,st𝑞) |𝑞 ∈𝑁 (𝑝)}}
)
.

4 Correctness and Complexity Analysis
In the following, we consider an execution 𝑒 =𝛾0𝛾1··· and we parti-
tion the steps𝛾𝑖 ↦→𝛾𝑖+1 into segments such that each step in which
at least one root (i.e., a node 𝑝 satisfying 𝑟𝑜𝑜𝑡 (𝑝)) applies the rule 𝑅𝐶
(and thus disappears) is the last step of a segment. Although it is a bit

tedious, it is straightforward to prove that roots cannot be created.

As a consequence, there are at most𝑛 segments in which roots disap-

pear. They constitute the error recovery phase. Furthermore, there is

at most one rootless segment (the last one) which constitutes what

we call the simulation phase.

4.1 Terminal Configurations
Every configuration with a root 𝑟 contains a node which can be

activated. Indeed, if 𝑟 .𝑠 =𝐶 , then 𝑟 can be activated, otherwise there

exists nodes (such as 𝑟 ) in error. Let 𝑝 be in error with maximum

height. If 𝑝 has a neighbor𝑞 such that 𝑝.ℎ≥𝑞.ℎ+2, then either𝑞.𝑠 =𝐶
and𝑞 can apply the rule𝑅𝑅 or𝑞.𝑠 =𝐸 and 𝑝 can apply the rule𝑅𝑃 . If 𝑝

has a neighbor 𝑞 such that 𝑞.ℎ≥𝑝.ℎ+2, then 𝑞 can apply the rule 𝑅𝑃 .
And if neither previous cases occur, then𝑝.ℎ beingmaximum implies

that 𝑝 can apply the rule 𝑅𝐶 .

As a consequence, terminal configurations (i.e., inwhich no nodes
can be activated) contain no roots, and thus, by induction on 𝑖 , we

have 𝑝.𝐿[𝑖] =st𝑖𝑝 for every node 𝑝 and every 𝑖 ≤ 𝑝.ℎ. Moreover, in

such a configuration, for all nodes 𝑝 and 𝑞, 𝑝.ℎ=𝑞.ℎ. Indeed, other-

wise, there exists 𝑝 with 𝑝.ℎminimum and with a neighbor 𝑞 such

that 𝑞.ℎ=𝑝.ℎ+1. This node can apply the rule 𝑅𝑈 .

Recall that we assume that 𝐵 ≥𝑇 . In greedy mode, the common

final height is𝐵, and thus, the algorithmdoes not terminate if𝐵=+∞.

In lazy mode, if initially all heights are less than or equal to𝑇 , then

the final height is𝑇 . Indeed, when𝐴𝑙𝑔𝐼 is not silent yet, there exists𝑝

such that st𝑖𝑝 ≠st
𝑖+1
𝑝 , and thus 𝑝 can apply the rule 𝑅𝑈 . Otherwise,

the final height is at most the maximum initial height of a node.

4.2 Move Complexity
To bound the number of moves, we individually bound the number

of 𝑅𝑅-moves, 𝑅𝑃 -moves, 𝑅𝐶 -moves, and 𝑅𝑈 -moves. Since no roots

can be created, we can easily bound the number of 𝑅𝑅-moves by 𝑛.

The bound on 𝑅𝐶 -moves is also easy. Indeed, between two applica-

tions of the rule 𝑅𝐶 , a node 𝑝 has to apply either the rule 𝑅𝑅 or the

rule 𝑅𝑃 . The number of 𝑅𝐶 -moves is thus at most 𝑛+#{𝑅𝑅-moves}+
#{𝑅𝑃 -moves}.

A path 𝑃 =𝑣0 ···𝑣𝑙 is decreasing in a given configuration if 𝑣𝑖 .ℎ >
𝑣𝑖+1 .ℎ for 0≤ 𝑖 < 𝑙 . A𝐷-path is a decreasing path 𝑃 ending at a root

in error. Note that if a node 𝑝 is in error, then either it is a root or it

has a neighbor with a smaller height which is also in error. In both

cases, 𝑝 is the first node of a𝐷-path.
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Consider a step𝛾𝑎 ↦→𝛾𝑏 and a node 𝑝 which is the first node of a

𝐷-path 𝑃 in𝛾𝑎 . Let 𝑟 be the root of 𝑃 . If 𝑃 contains no nodes in error

in 𝛾𝑏 , then 𝑟 is no longer a root in 𝛾𝑏 and 𝛾𝑎 ↦→𝛾𝑏 is thus the last

step of a segment. Otherwise, let 𝑞 be the first node of 𝑃 which is in

error in𝛾𝑏 (n.b., 𝑞 may have executed 𝑅𝑃 in𝛾𝑎 ↦→𝛾𝑏 , thus making 𝑃

locally increasing after 𝑞). Since 𝑞 is in error, it is the first node of

a𝐷-path, and if we remove the part of 𝑃 after 𝑞 and replace it with

this𝐷-path, we obtain a𝐷-path from 𝑝 . This implies that any node 𝑝

which belongs to a𝐷-path remains in a𝐷-path until the last step of

the segment. Since no nodes of a𝐷-path can apply the rule 𝑅𝑈 , once

a node applies an error rule (and thus belongs to a𝐷-path), it can no

longer apply the rule 𝑅𝑈 until the end of the segment.

Thus, in any segment, the respective numbers of 𝑅𝑈 and 𝑅𝑃 rules

that a node 𝑝 applies is the number of values that 𝑝.ℎ can reach

after having applied the respective rules. This allows us to easily

bound the numbers of applications of the rules 𝑅𝑈 and 𝑅𝑃 in the

error recovery phase by 𝐵 per node and per segment, leading to an

overall𝑂 (𝑛2𝐵) bound on the number of moves in this phase.

Since 𝐵 can be very large and even +∞, we now give a bound

which does not depend on 𝐵. It is quite easy to see, by induction on 𝑙 ,

that if a node 𝑝 consecutively applies the rule𝑅𝑈 2𝑙+1 times, then all

the nodes at distance at most 𝑙 from 𝑝 must increase their height by

at least one in the meantime. Since a root cannot increase its height

inside a segment, it implies that, in the error recovery phase, the

rule 𝑅𝑈 is applied at most 2𝐷 times per node and per segment.

Let us focus on the rule 𝑅𝑃 , and let 𝑠 be a segment. If a node 𝑝0
applies the rule 𝑅𝑃 in 𝛾 𝑗1 ↦→𝛾 𝑗1+1 ∈ 𝑠 , then 𝑝0 .ℎ

𝑗1+1 = 𝑝1 .ℎ 𝑗1 +1 for
someneighbor𝑝1 of𝑝0.Now,𝑝1mayhavealsoapplied the rule𝑅𝑃 in𝑠

and𝑝1 .ℎ
𝑗1 =𝑝1 .ℎ

𝑗2+1=𝑝2 .ℎ 𝑗2+1,with𝑝2 aneighborof𝑝1 inerror, and
so on. This defines a causality chain 𝑝0···𝑝𝑙 , and 𝑝0 .ℎ 𝑗1+1=𝑝𝑙 .ℎ 𝑗𝑙 +𝑙 .
Now, because rules 𝑅𝑃 and 𝑅𝑈 do not alternate in 𝑠 , a given node

cannot appear twice in the causality chain, thus 𝑙 < 𝑛. Moreover,

𝑝𝑙 .ℎ
𝑗𝑙
is either the value of 𝑝𝑙 .ℎ at the beginning of 𝑠 , or 0 if 𝑝𝑙 has

applied the rule 𝑅𝑅 . The height 𝑝0 .ℎ can thus take at most 𝑛(𝑛+1)
distinct values in 𝑠 , which implies that the rule 𝑅𝑃 is applied𝑂 (𝑛2)
times per node and per segment. Note that a more careful analysis

gives an overall bound of𝑂 (𝑛3) instead of the𝑂 (𝑛4) bound sketched
here. Combining this result with our first bound, we have at most

𝑂 (min(𝑛3,𝑛2𝐵)) moves in the error recovery phase. Note that this

bound is valid regardless of the mode in which the algorithmworks.

Now, in thesimulationphase, only the rule𝑅𝑈 canbeapplied.Each

move increases theheightof thenodebyone.Thus,wehaveatmost𝐵

such applications for each node,which gives a total number ofmoves

of𝑂 (min(𝑛3+𝑛𝐵,𝑛2𝐵)). In greedymode, this is all that we can do. In

lazymode, if, at the beginning of the simulation phase, all heights are

less than𝑇 , we have seen that the common final height is𝑇 in which

case the number of moves is at most 𝑛𝑇 . Otherwise, since the nodes

with maximum height never apply the rule 𝑅𝑈 anymore, and since

the difference of height between two nodes is atmost𝐷 in this phase,

the number of moves is at most 𝑛𝐷 ≤ 𝑛3. In the end, in lazy mode,

we have a total number of moves which is𝑂 (min(𝑛3+𝑛𝑇,𝑛2𝐵)).

4.3 Round Complexity
Let 𝑟 be a root in 𝛾𝑟𝐷+1

, the first configuration of Round 𝐷 +1. By
the end of the first round (using the rule 𝑅𝑅 if needed), 𝑟 .ℎ=0 and

𝑟 .𝑠 =𝐸. Now, since 𝑟 is still a root in 𝛾𝑟𝐷+1
(and thus cannot make a

move in the meantime), this is still true in 𝛾𝑟𝐷+1
. Furthermore, ev-

ery neighbor 𝑝 of 𝑟 such that 𝑝.ℎ > 1 can apply Rule 𝑅𝑃 . So, by the

end of Round 2, 𝑝.ℎ ≤ 1 and, since 𝑟 cannot increase its height, so

does 𝑝 . By induction on the distance𝑑 (𝑝,𝑟 ) between 𝑝 and 𝑟 , in𝛾𝑟𝐷+1
,

𝑝.ℎ≤𝑑 (𝑝,𝑟 ), for every node 𝑝 .
Let a cliff be a pair (𝑝,𝑞) of neighboring nodes such that 𝑝.ℎ ≥

𝑞.ℎ +2. We claim that 𝛾𝑟𝐷+1
contains no cliff (𝑝,𝑞). Since a root in

𝛾𝑟𝐷+1
cannot apply the rule 𝑅𝑅 , 𝑞 must be in error. Now 𝑞 is the first

node of a 𝐷-path ending at a root 𝑟 in error, and thus 𝑞.ℎ ≥ 𝑑 (𝑞,𝑟 ).
Since 𝑝.ℎ ≥ 𝑞.ℎ + 2, we have 𝑝.ℎ > 𝑑 (𝑝,𝑟 ). But this is impossible

because 𝑟 is a root in𝛾𝑟𝐷+1
, and we have proven that 𝑝.ℎ≤𝑑 (𝑝,𝑟 ).

Since there are no cliffs in𝛾𝑟𝐷+1
and the rule𝑅𝑅 cannot be applied,

we both have that the difference between heights of any two nodes

is at most𝐷 , and that no nodes can apply an error rule anymore. But

then, any node in error of maximum height can apply the rule 𝑅𝐶 ,

which implies that by the end of Round 2𝐷+2, there are no longer
roots.

If 𝐵 <𝐷 , a similar analysis gives a bound of 2𝐵+2 rounds. This
may seem counterintuitive as the procedure described above is an

error broadcast/error feedback mechanism, and it is natural to ex-

pect that such a reset procedure takes Ω(𝐷) rounds. However, the
main purpose is to delete erroneous cells and all the cells which

depend on them. Now 𝑝.𝐿[𝑖] depends on 𝑞.𝐿[ 𝑗] if and only if 𝑗 > 𝑖

and 𝑖− 𝑗 ≥𝑑𝑖𝑠𝑡 (𝑝,𝑞). Thus, if 𝐵<𝐷 , issues in a root 𝑟 cannot impact

the nodes at distance further than 𝐵. In this regard, a reset procedure

in𝑂 (min(𝐵,𝐷)) rounds is no longer that strange. Note that, similarly

as for the move complexity, this bound for the error recovery phase

is valid regardless of the mode.

Let us focus on the simulation phase. In greedymode, any node of

lowest height can apply the rule𝑅𝑈 , thus the simulation phase takes

at most 𝐵 rounds, which gives an overall𝑂 (𝐵) round complexity. In

lazy mode, suppose that, initially, the maximum height ℎmax is at

most𝑇 (the caseℎmax>𝑇 is similar). Note that if all𝑞 ∈𝑁 [𝑝] are such
that st𝑖𝑞 = st𝑖+1𝑞 , then st𝑖+1𝑝 = st𝑖+2𝑝 . Thus any 𝑝 such that st𝑖+1𝑝 ≠

st𝑖+2𝑝 has some 𝑞 ∈ 𝑁 [𝑝] such that st𝑖𝑞 ≠ st𝑖+1𝑞 . Therefore, there

exists a sequence 𝑝0,...,𝑝𝑇−1 such that 𝑝𝑖+1 ∈𝑁 [𝑝𝑖 ] and st𝑖𝑝𝑖 ≠st
𝑖+1
𝑝𝑖

.

At the end of Round 1, 𝑝0 .ℎ ≥ 1. Any neighbor 𝑞 of 𝑝0 such that

𝑞.ℎ=0 at the beginning of Round 2 can apply the rule 𝑅𝑈 and thus

𝑞.ℎ ≥ 1 at the end of Round 2. More generally, any 𝑞 at distance 𝑑

from 𝑝0 is such that𝑞.ℎ≥ 1 at the end of Round𝑑+1. Note that 𝑝1 has
all the dependencies for 𝑝1 .𝐿[2] at the end of Round 3. Thus, at the
end of Round 4,𝑝1 .ℎ≥ 2. Furthermore, at that time, any neighbor𝑞 of

𝑝1 also has its dependencies for𝑞.𝐿[2]. More generally, by induction

on 𝑖 , we show that 𝑝𝑖 has height at least 𝑖 at the end of Round 3𝑖+1,
and that any 𝑞 at distance 𝑑 from 𝑝𝑖 is such that 𝑞.ℎ ≥ 𝑖 at the end

of Round 3𝑖 + 1+𝑑 . This implies that after at most 3𝑇 +𝐷 rounds,

the algorithm terminates. Hence, in lazy mode, we obtain an overall

bound of𝑂 (𝑇 +𝐷) rounds.

5 Instances
To illustrate the versatility and efficiency of our approach, we now

sketch examples solving three benchmark distributed computing

problems: leader election, breadth-first spanning tree, and 3-coloring

in rings. The two first instances answer two open questions left

in [19].
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5.1 Leader Election
The Problem. Recall that leader election requires all nodes to even-

tually permanently designate a single node of the network as the

leader; the network being assumed to be connected. To (determinis-

tically) achieve this task, we should augment our model with unique

node identifiers: the state of each node 𝑝 now includes its own identi-

fier𝑝.𝐼𝐷 , a non-modifiable integer. Then, nodeswill have to compute

the identifier of the leader.

The Algorithm. For each node 𝑝 , the algorithm simply consists in

computing into an integer variable 𝑝.𝐵𝑒𝑠𝑡 the minimum identifier

of the network. First, each node 𝑝 initializes 𝑝.𝐵𝑒𝑠𝑡 with its own

identifier 𝑝.𝐼𝐷 . Then, at each synchronous round, 𝑝 evaluates the

minimum value𝑚𝑖𝑛 among the 𝐵𝑒𝑠𝑡 variables in its closed neigh-

borhood and moves by updating 𝑝.𝐵𝑒𝑠𝑡 with𝑚𝑖𝑛 if necessary. Thus,

after each round, each node knows the minimum identifier of nodes

one hop further. After atmost𝐷 rounds, the computation terminates

and the 𝐵𝑒𝑠𝑡 variable of each node is forever equal to the minimum

identifier of the network.

Contribution and RelatedWork. Using our transformer in the lazy

mode, we obtain a fully-polynomial silent self-stabilizing leader

election algorithm that stabilizes in𝑂 (𝐷) rounds and𝑂 (𝑛3) moves.

Moreover, by giving an upper bound 𝐵 on 𝐷 as input of the trans-

former, we obtain a bounded-memory solution achieving similar

time complexities. Precisely, if we made the usual assumption that

identifiers are stored in𝑂 (log 𝑛) bits, we obtain a memory require-

ment in𝑂 (𝐵.log 𝑛) bits per node.
To our knowledge, our solution is the first fully-polynomial asyn-

chronous silent self-stabilizing solution of the literature. Indeed,

several asynchronous self-stabilizing leader election algorithms [3,

22, 23] written in the atomic-state model have been proposed for

arbitrary connected and identified networks. However, none of them

is proven fully-polynomial. Actually, they all achieve a stabilization

time inΘ(𝑛) rounds. Note that the algorithm in [3] has a stabiliza-

tion time in moves that is polynomial in 𝑛, while [22, 23] have been

proven to stabilize in a number of moves that is at least exponential

in 𝑛; see [3]. Notice also that the algorithm proposed in [39] actually

achieves a leader election in𝑂 (𝐷) rounds, yet under synchronous
settings.

5.2 Breadth-First
Search Spanning Tree Construction

The Problem. We now consider the problem of distributedly com-

puting a breadth-first search (BFS) spanning tree in a connected

network rooted at some node 𝑟 . By “distributedly”, we mean that ev-

ery non-root node will eventually designate a neighbor as its parent

in the computed spanning tree. Being BFS, the length of the unique

path in the tree from any node 𝑝 to the root 𝑟 should be equal to the

distance from 𝑝 to 𝑟 in the network.

To distinguish the root, we use the non-modifiable boolean vari-

able at each node 𝑝 . This latter indicates whether or not the node is

the root. Moreover, as we could seen, processes should be able to dis-

tinguish their neighbors in this problem. Yet, this time, nodes are not

assumed to be identified. Instead, we augment themodel with a local

labeling at each node that distinguishes the channel incoming from

their neighbors (one can think about port numbers, for example).

The Algorithm. Each node 𝑝 holds a variable so-called parent
pointer which is used to designate its parent in the BFS spanning

tree. Initially, each parent pointer is set to the special value 𝑁𝑈𝐿𝐿

meaning that no node has parent yet. Since the root has no parent at

all, its pointer is already at the right value and so never take any step.

Then, at each synchronous round, every non-root node 𝑝 whose

parent pointer is 𝑁𝑈𝐿𝐿 checks whether a neighbor is the root or

has a non-𝑁𝑈𝐿𝐿 parent pointer; in this case 𝑝 definitely designates

the channel to such a neighbor with its pointer. If several neighbors

satisfy the condition, 𝑝 breaks ties using channel labels. After at

most𝐷 synchronous rounds, all non-root nodes have a parent, i.e.,
the BFS spanning tree is (definitely) defined and the execution stops.

Contribution and Related Work. Similarly to the leader election

instance, using our transformer in the lazy mode, we obtain a fully-

polynomial silent self-stabilizing BFS algorithm that stabilizes in

𝑂 (𝐷) roundsand𝑂 (𝑛3)moves.Moreover,bygivinganupperbound𝐵

on𝐷 as input of the transformer, we obtain a bounded-memory so-

lution achieving similar time complexities. Precisely, its memory

requirement is𝑂 (𝐵.log Δ) bits per node, where Δ is the maximum

node degree in the network.

To our knowledge, our solution is the first fully-polynomial asyn-

chronous silent self-stabilizing solutionof the literature that achieves

a stabilization time in rounds that is asymptotically linear on the

network diameter. Indeed, several self-stabilizing algorithms that

construct BFS spanning trees in arbitrary connected and rooted net-

works have been proposed in the atomic-state model [18, 19, 21, 35].

In [26], theBFS spanning tree constructionofHuangandChen [35] is

shown to be exponential inmoves. The algorithm in [18] is not silent

and computes a BFS spanning tree in𝑂 (Δ ·𝑛3) moves and𝑂 (𝐷2+𝑛)
rounds. The silent algorithm given in [19] is fully-polynomial: it has

a stabilization time in 𝑂 (𝐷2) rounds and 𝑂 (𝑛6) moves. The algo-

rithm given in [36] is not silent and is shown to stabilize in𝑂 (𝐷 ·𝑛2)
rounds in [21], however notice that its memory requirement is in

𝑂 (log Δ) bit per node.
Anotherself-stabilizingalgorithm, implemented in the link-register

model, is given in [31]. It uses unboundednode localmemories. How-

ever, it is shown in [26] that a straightforward bounded-memory

variantof thisalgorithm,working in theatomic-statemodel, achieves

an asymptotically optimal stabilization time in rounds, i.e., 𝑂 (𝐷)
roundswhere𝐷 is the network diameter; however, in the samepaper,

its move complexity is also shown to be at least exponential in 𝑛.

5.3 Vertex 3-Coloring in Oriented Rings
The Problem. The coloring problem consists in assigning a color

(a natural integer) to every node in such a way that no two neigh-

bors have the same color. To (deterministically) achieve this task, we

should augment our model with unique node identifiers chosen in

[0..𝑛𝑐 −1], with 𝑐 ∈N∗
. The orientation of the ring is given by the

channel labels. A node should distinguish the state of its clockwise

neighbor from its counterclockwise one. For instance,we can assume

the channel number of the clockwise neighbor is smaller than the

one of counterclockwise neighbor.

The Algorithm. The algorithm of Cole and Vishkin [17] can be

adapted for the LOCALmodel [41] to compute a vertex 3-coloring of

any oriented ring of 𝑛 identified nodes in 𝑙𝑜𝑔∗ (𝑛𝑐 )+7 rounds. Being
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written in the LOCALmodel, it is then a synchronous terminating

algorithm that is suited for our model.

Contribution and Related Work. Using our transformer in the

greedymode, we obtain a silent self-stabilizing 3-coloring algorithm

on oriented rings that stabilizes in𝑂 (𝐵) rounds and𝑂 (𝑛2𝐵) moves.

Moreover, its memory requirement is in𝑂 (𝐵.log𝑛) bits per node. If
we carefully choose 𝐵 to be in𝑂 (𝑙𝑜𝑔∗ (𝑛)), then we obtain a solution
that stabilizes in𝑂 (log∗𝑛) rounds and𝑂 (log∗ (𝑛) .𝑛2) moves using

𝑂 (log∗𝑛.log𝑛) bits per node.
To our knowledge, our solution is the first self-stabilizing 3-

coloring ring algorithm achieving such small complexities. Indeed,

self-stabilizing node coloring has been almost exclusively investi-

gated in the context of anonymous networks. Vertex coloring cannot

be deterministically solved in asynchronous and anonymous set-

tings [5]. This impossibility has been circumvented by considering

central schedulers or probabilistic settings [11, 12, 34]. In [40], a self-

stabilizing versionof theCole andVishkin algorithm is proposed, but

the solution (based on the rollback of Awerbuch and Varghese [10])

does not achieve a move complexity polynomial in 𝑛.

6 Move Complexity and Energy-saving
As stated in the introduction, messages are a major, if not the, source

of energy consumption in a distributed algorithm.Actually, since our

algorithm assumes the atomic-state model, which does not consider

messages, this section is a bit shaky. But we can still implement such

an algorithm in practical (message passing) systems. As explained

in [4, 30], to do so, all nodes should permanently check whether or

not they should change their local state due to the modification of

some neighbors’ local states, which means that they have to regu-

larly send information to all their neighbors and to store the last

known state from each neighbor.

There are two kinds of sent messages: the messages needed by

the algorithm and the messages used to check for transient faults.

A first remark is that the second ones need not be sent too often in

most applications.

Now, both kinds of messages involve messages containing whole

states, which may be heavy. To avoid this problem, one can adopt

the lightweight approach proposed in [30]: since neighbors store the

state of their neighbors, a solution is not to send the state but only

a proof of it. Such proof can be much smaller: for example, a hash of

the state salted with a nonce, together with that nonce. If the proof

does not correspond to the locally stored copy, a node can request

a whole (heavy) copy of the state. This should only happen during

or just after the transient faults. With this additional strategy, the

self-stabilizing messages can be both rare and lightweight, while the

number of heavy messages for the algorithm directly depends on

the number of moves.

Together with the previous state-proof mechanism, we can use

the features of our transformer to further reduce the volume of ex-

changed information. We can just encode the difference between

the new and the previous state of the sending node. This leads to

a reduction of these messages from 𝑂 (𝐵 × 𝑆) (recall that 𝑆 is the

space complexity of𝐴𝑙𝑔𝐼 ) to only𝑂 (𝑆+log𝐵). Indeed,we can encode
the name of a rule (𝑅𝑅 , 𝑅𝐶 , 𝑅𝑃 or 𝑅𝑈 ) with 2 bits. The rule 𝑅𝑝 then

only requires an integer value stored using𝑂 (log𝐵) bits. The most

expensive rule is 𝑅𝑈 which requires𝑂 (𝑆) bits, to send the value of
the newly computed𝐴𝑙𝑔𝐼 ’s state.

7 The Energy
Consumption of the Rollback Compiler

We now show that the rollback compiler of Awerbuch and Vargh-

ese [10] can have an exponential number of moves. Apart from the

algorithm it simulates, this compiler takes a constant 𝐵 as input: the

rollback simulates 𝐵 rounds of the input algorithm. The lists 𝑝.𝐿 are

thus all set to have length 𝐵. A node 𝑝 just corrects its faulty cells

𝑝.𝐿[𝑖] each time it is needed.

Consider that each node 𝑝 has an input 𝑝.𝐼 ∈ {0,1}, and let𝐴𝑙𝑔𝐼
be an algorithmwhich computes the minimum of these values (in

the variable 𝑝.𝑆 of each node). The algorithm simply consists for

each node in repeatedly evaluating𝑚𝑖𝑛 =min(𝑞.𝑆 |𝑞 ∈𝑁 [𝑝]), and
updates 𝑝.𝑆 to𝑚𝑖𝑛 whenever 𝑝.𝑆 ≠𝑚𝑖𝑛.

We now define the graph𝐺𝑘 that will be used in our exponential

execution. The graph𝐺1 is the path 𝑏1,𝑎1,𝑐1,𝑑1,𝑒1, and𝐺𝑘 is recur-

sively defined as the disjoint union of𝐺𝑘−1 and a newpath𝑏𝑘 ,𝑎𝑘 , 𝑐𝑘 ,

𝑑𝑘 , 𝑒𝑘 , together with the edges 𝑏𝑘𝑐𝑘−1 and 𝑒𝑘𝑐𝑘−1. The bottom path
of𝐺𝑘 is the simple path from 𝑐𝑘 to 𝑒1 which goes through the nodes

𝑐𝑖 , 𝑑𝑖 and 𝑒𝑖 . Given any positive number 𝑖 ≤ 𝐵, we denote by 𝑖 the

list 𝐿 of size 𝐵 such that 𝐿[ 𝑗]=1 for 0≤ 𝑗 < 𝑖 and 𝐿[ 𝑗]=0 otherwise.
The index of a node 𝑝 such that 𝑝.𝐿=𝑖 is 𝑖 .

Wenowconsider the following initial configuration of𝐴𝑙𝑔𝐼 on𝐺𝑘 .

For every node 𝑝 , 𝑝.𝐼 =1. Every node 𝑎𝑖 satisfies 𝑎𝑖 .𝐿=𝑑 (𝑎𝑖 ,𝑐𝑘 ), and
for all other nodes, 𝑝.𝐿=𝑑 (𝑝,𝑐𝑘 )+1 (see Fig 1). We then recursively

define the partial execution Γ𝑖 which starts from the initial config-

uration of𝐺𝑖 and whose global effect is just to increase the indices

of the 𝑎-nodes of𝐺𝑖 by one:

• Γ1 activates 𝑎1.
• Γ𝑖+1 applies Γ𝑖 , then activates 𝑏𝑖+1, followed by the nodes of
the bottom path of𝐺𝑖 , and all the nodes 𝑎 𝑗 for 𝑗 ≤ 𝑖 . Next, Γ𝑖+1
activates 𝑎𝑖+1, 𝑏𝑖+1, and the nodes of the bottom path of𝐺𝑖 .

Finally, Γ𝑖+1 applies Γ𝑖 again.

By construction, the length of Γ𝑖+1 is more than twice the length

of Γ𝑖 . Thus, in the graph family𝐺𝑘 , the move complexity is exponen-

tial in 𝑘 , and thus in 𝑛 (since 𝑛=5𝑘).
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Figure 1: The initial configuration of𝐺3

8 Conclusion
We have proposed a versatile transformer that builds efficient silent

self-stabilizing solutions. Precisely, our transformer allows for a

good trade-off between time and energy consumption. In fact, we
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can apply it to obtain fully polynomial solutions to various problems

with round complexities asymptotically linear in𝐷 or even better.

Our transformer can be seen as a powerful tool to simplify the de-

sign of asynchronous self-stabilizing algorithms since it reduces the

initial problem to implementing an algorithm just working in syn-

chronous settings.More precisely, all tasks, even non-self-stabilizing

ones, that terminate in a synchronous setting in various models, in-

cluding the LOCALmodel, can be made self-stabilizing using our

transformer. Interestingly, theLOCALmodelwas initially introduced

as an unrealistically strong model to prove lower bounds valid in

weaker models. Using our transformer, it becomes a tool to provide

upper bounds and even time-optimal self-stabilizing algorithmswith

lowenergyusage.Another interestingapplicationofour transformer

is the weakening of fairness assumptions of silent self-stabilizing

algorithms (e.g., asynchronous algorithms assuming a weakly fair or

a synchronous daemon) without compromising efficiency (indeed,

such algorithms can be provided as input of the transformer).

The perspectives of this work concern the space overhead and the

move complexity. The space overhead of our solution depends on

the synchronous execution time of the input algorithm. In the spirit

of the resynchronizer proposed by Awerbuch and Varghese [10], we

may build another transformer that would be space-efficient, pos-

sibly assuming more constraints on input algorithms. Concerning

the move complexity, for many problems, the trivial lower bound

in moves for the asynchronous (silent) self-stabilization is Ω(𝑛𝐷);
while we usually obtain upper bounds in 𝑂 (𝑛3) moves with our

transformer. Reducing the gap between those two bounds is another

challenging perspective of our work.
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