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Abstract. Convolutional Neural Networks (CNNs) have become ubiq-
uitous in diverse applications, including safety-critical domains such as
autonomous driving, where ensuring reliability is crucial. CNNs relia-
bility can be jeopardized by the occurrence of hardware faults during
the inference, leading to severe consequences. In recent years, gradient
regularization has garnered attention as a technique able to improve
generalization and robustness to Gaussian noise injected into the pa-
rameters of neural networks, but no study has been done considering its
fault-tolerance effect. This paper analyzes the influence of gradient reg-
ularization on CNNs reliability for classification tasks in the presence of
random hardware faults, exploring impacts on the network’s performance
and robustness. Our experiments involved simulating permanent stuck-
at faults through statistical fault injection and assessing the reliability
of CNNs trained with and without gradient regularization. Experimental
results point out that regularization reduces the masking ability of neural
networks, paving the way for efficient in-field fault detection techniques
that aim at unveiling permanent faults. Specifically, it systematically re-
duces the percentage of masked faults up to 15% while preserving high
prediction accuracy.

Keywords: Regularization · Neural Networks · Reliability · Hardware
Faults · Gradient Regularization · Fault Tolerance · Machine Learning.

1 Introduction

Deep learning has revolutionized numerous fields, including image recognition,
natural language processing, and autonomous systems. Deep neural networks
(DNNs) and especially Convolutional Neural Networks (CNNs) are nowadays
the most adopted standard Machine Learning (ML) models in the aforemen-
tioned fields (and beyond). In safety-critical applications such as autonomous
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driving, the reliability of DNNs is paramount. Beyond mere performance met-
rics like accuracy, the robustness of these networks against unforeseen circum-
stances, particularly random hardware faults, is crucial. Hardware failures during
inference can harm the system and have catastrophic consequences, like endan-
gering human lives. Also, their architectures and high-dimensional parameter
spaces pose challenges in ensuring their robustness and testability. Recent re-
search has unveiled instances where DNN accuracy experiences notable declines
in the presence of hardware faults [28, 20]. These findings underscore the impor-
tance of simultaneously evaluating DNN reliability.
In contemporary literature, gradient regularization (GR) has garnered signifi-
cant interest owing to its potential for improving the accuracy of discriminative
models and enhancing robustness against noise injected into the weights [3, 30].
In this study, our objective is to investigate the role of GR during the train-
ing phase of CNNs in enhancing their reliability and testability in classification
tasks. Reliability in neural networks refers to the ability of the network to main-
tain its performance and accuracy under various conditions, such as the presence
of noise. Testability, instead, refers to the ability to unmask possible hardware
faults and let them propagate to the output (observability). From the literature
[2, 4], it has been proven that CNNs inherently own a certain masking ability
due to their redundancy. This is desirable in operational conditions, but it is dis-
advantageous when the CNN-based system undergoes a testing phase because
detecting faults requires a long test time. In safety-critical systems, especially in
automotive, a test procedure is periodically scheduled. It is therefore mandatory
to detect the highest number of faults in the shortest time.
We review the current landscape of GR methods and their implications on model
generalization and robustness. Experimental results showed that GR can increase
the testability of the CNNs, facilitating the propagation of hardware faults to
the output. The derived set of trained parameters, denoted as θtest, can be used
for the subsequent testing phase of the underlying hardware platform.
Our experiments involve two standard datasets for CNNs evaluation (MNIST
and CIFAR-10), and 5 different architectures (a simple Le-Net-like CNN, two
ResNet models, and two VGG models).

The rest of the paper is organized as follows: section 2 provides a review
of related work on DNN resiliency; section 3 presents background information
that describes theory and concepts useful for understanding successive experi-
ments; section 4 describes the motivations and the proposed approach; section 5
presents the experimental setup, the dataset used, the ablation studies, and the
overall results of the evaluations; finally, section 6 concludes the paper with the
implications and limitations of the proposed approach, a summary of the main
results, and future directions.

2 Related Work

Regularization plays a crucial role in preventing overfitting and improving the
generalization performance of DNNs. However, its definition can vary, and dif-
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ferent regularization methods are frequently investigated: [13] presents a system-
atic, unifying taxonomy to categorize existing methods, that may affect data,
network architectures, error terms, and optimization procedures. Among the var-
ious regularization methods, gradient-based techniques have garnered significant
attention [30, 3, 11, 32], being able to enhance model accuracy in supervised tasks
[30, 32]. Also, it promotes the optimizer to find a minimum that resides within
relatively flat regions of the optimization landscape [32], often leading to better
generalization performance compared to sharp minima.

GR has been proven to be effective in ensuring robustness to both random
and adversarial perturbations of the inputs of a DNN [17], and increasing robust-
ness of DNN parameters in the presence of Gaussian additive or multiplicative
noise [3, 6]. In [9], the authors utilized the gradient magnitude evolution through-
out the model training process as a monitor to detect potential hardware faults
during training. In [18], authors analyzed the effect of Max-Magnitude regular-
ization in enhancing the resilience to single-bit-flit in quantized DNNs, finding
that regularization methods did not improve the bit error resilience.

As for the DNN intrinsic masking effect, in [29] a fault detection technique
based on evolutionary-based test images has been proposed to reduce the mask-
ing ability of neural networks.

In this work, the target is still reducing the masking ability of DNNs, but
performed during the training phase by investigating the effect of gradient reg-
ularization in increasing the observability of DNNs for testing purposes.

3 Background

This section intends to provide background knowledge on the reliability assess-
ment of DNNs (Section 3.1), with a focus on fault models (Section 3.2) and
fault injection-based approaches (Section 3.3). Then, GR in DNNs is described
in Section 3.4.

3.1 DNN Resiliency Analysis

The development of standards to address reliability concerns has become in-
creasingly prevalent across various industries. One notable example is the ISO
26262 standard [1], which is widely adopted in the automotive sector to ensure
functional safety in the design and production of vehicles. Similarly, new stan-
dards focusing on the functional safety of AI systems, such as ISO/IEC CD TR
5469 [10], are being introduced to guide this rapidly evolving domain. From a
functional point of view, DNNs can be seen as software programs executed on a
given hardware, and thus, can be analysed by functional approaches. Functional
testing methods rely on the comparison of outcomes between a faulty system and
the same system operating under fault-free conditions. A trained DNN, ready
to be deployed in the field, can be tested with functional methods by inspect-
ing its outputs in the possible presence of faults. DNNs are known to possess
an intrinsic fault tolerance due to their extensive and redundant interconnected
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layers. The high number of parameters enables them to mitigate a certain degree
of possible hardware-faults [2, 4]. However, in the literature [23] has been shown
that in safety-critical applications a single fault may lead to catastrophic conse-
quences, e.g., an autonomous driving car that misclassifies a pedestrian crossing
the road.

3.2 Fault models

Faults affecting electronic devices can be categorized into two main types: per-
manent and transient. Permanent faults typically result from irreversible physi-
cal damage to the electronic components. They represent enduring defects that
cannot be rectified through normal operation. Examples include manufacturing
defects, material degradation, or physical damage due to environmental fac-
tors. Transient faults, instead, are temporary faults that arise from external
disturbances or abnormal conditions/events. Among the various sources are in-
terference phenomena, such as high-energy particle strikes, and electrical or elec-
tromagnetic noise. Transient faults are also known as soft errors and can affect
registers or memory regions within electronic devices. The random bit-flip model
is often used to represent transient faults, where bits in memory or registers flip
spontaneously due to external factors.

In the DNN reliability field, the stuck-at fault model [22] is a widely used
abstraction of permanent faults, as many transistor and interconnection defects
can be accurately represented as permanent defects at the logic level. Specifi-
cally, a widely recognized practice consists of corrupting individual bits in the
weights of neural networks. This effect mimics the occurrence of random physical
hardware faults in memories (that could be permanent or transient) since during
inference weights are treated as constant data and stored in memories.

To conduct reliability studies, the effect of faults affecting the underlying
hardware is typically categorized into three primary categories [22]: Masked,
Non-Critical, and Critical (also known as Silent Data Corruption SDC-1 ). The
first category includes all those faults that keep the prediction correct, and that
do not change the output vector of the scores; in other words, the output of
the faulty DNN remains identical to the fault-free one. Essentially, the fault is
present but does not lead to any change in the output. It is not observable, or
it is not propagated in the output of the network. For the second category, the
output of the faulty DNN differs from the fault-free output, but the variation
is still deemed acceptable by the end user. As an example, for a classification
system, the predicted probability associated with the different classes considered
changes between faulty and faulty-free DNNs, but the predicted class (i.e. the
argmax of the probabilities) remains the same. A critical fault, instead, results
in output changes that are not acceptable to the end user [16]. The deviations
from the fault-free output are significant and impact the usability or reliability
of the system. For a classification system, the predicted class between faulty and
faulty-free DNNs changes.
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3.3 Fault Injection

Among the different dependability testing techniques, fault injection (FI) is a
widely used and powerful method that involves introducing errors (or faults)
into a system to observe their impact on the system behavior. Depending on the
abstraction level, FI methods can be categorized into three main types [26]:
Simulation-based, Platform-based, and Radiation-based FIs. Simulation-based
FIs operate on a model of the device described using a simulation language.
Faults can be injected into the architectural representation of the hardware
model (e.g., the HDL model) either at run-time or at compile-time, or they can be
introduced into the software level of the application. Software-level simulation-
based FIs injects faults directly into program variables or instructions without
considering the hardware layer. It has low implementation costs, high control-
lability, and observability. However, they may produce non-realistic results due
to the lack of knowledge about the underlying hardware. In platform-based FIs,
the measurements and analyses are performed directly on a physical device that
emulates the final implementation of a design using FPGAs or on physical plat-
forms that run DNNs, for example, CPUs and GPUs. They have a medium
cost, requiring the use of validation or emulation devices such as GPUs, CPUs,
and FPGAs. Once purchased, the advantage is that they can be reused after
FI campaigns. Finally, as for radiation-based FIs, the actual implementation of
the system is exposed to the same external conditions as the in-field application
(for example, a flux of atmospheric-like neutrons, which can induce single-event
effects on electronic devices). These FI experiments lead to very accurate re-
sults, but are extremely expensive in terms of equipment and facility access, and
can only be performed late in the design process when the physical device is
available.

Evaluating the reliability of a DNN may involve running a complete FI cam-
paign, and thus considering every possible bit-flip fault of every bit within the
data representation of weights, typically in 32-bit floating-point format (FP32).
To do this, it is common to use the entire validation/test set. The main problem
of this approach is the time requirement: we can take as an example a test set
composed of 10,000 images and a relatively small set of faults (100,000) to be
injected. In such a scenario, the experiment would necessitate conducting 108

fault injections. Assuming a reasonable execution time of 1 ms per fault injection
in a relatively small CNN (e.g. ResNet20), the time required would be approxi-
mately 12 days. This exhaustive process becomes increasingly impractical with
larger and more intricate models, in which the number of weights usually reaches
millions. To address this challenge, research works have proposed to exploit sta-
tistical sampling to reduce the fault space, i.e., the injection of a reduced set
of faults [25]. Statistical FI campaigns can be used to obtain statistically sig-
nificant results when assessing the reliability of a DNN, without the need for
exhaustive fault simulations. This procedure is based on extracting a subset
of all the possible faults (representative and statistically significant) that may
happen in a targeted DNN (and a targeted population of faults). Experimen-
tal results show that by injecting a reduced quantity of faults (e.g., 0.55% on
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MobileNetV2 trained and tested on CIFAR-10 [25]) it is possible to achieve an
estimate with a maximum error margin of 1% and a confidence of 99%.

3.4 Gradient Regularization

Training a neural network involves minimizing a loss function L, computed on a
dataset D(X, y) with respect to the parameters of the model θ. The loss function
L measures the difference between the predicted output ŷ of the neural network
and the ground truth label y for a given input X. The goal is to find the optimal
parameters θ that minimize the loss function, which corresponds to the best fit
of the neural network to the dataset. This is a non-convex optimization problem
[3], carried on using optimization algorithms, such as stochastic gradient descent
(SGD), Adam, AdaDelta [24, 5, 31], which iteratively update the parameters θ
to minimize the loss function. The choice of loss function L depends on the
specific problem and the type of neural network being used. For example, for a
classification problem, a common choice is the cross-entropy loss [19].

Regularization techniques play a vital role in improving model generalization
[13, 32], encompassing various approaches such as penalty function methods,
data augmentation, dropout regularization, normalization techniques, and more.
Penalty function methods involve adding extra terms to the loss function and
optimizing them alongside it, to impose constraints on specific properties of
models, in the form of:

L′(θ;X, y) = L(θ;X, y) + αP (θ) (1)

In which L′ is the loss function to minimize, computed on inputs X and label
y with respect to the model parameters θ. L is the loss function related to the
supervised task we aim to solve, such as the cross-entropy loss in classification
problems.

GR has indeed garnered significant attention from researchers in recent years
[32, 30, 3, 11]. Including a penalty term computed on the gradient of the loss
functions with respect to the model weights could generally improve the gen-
eralization capabilities and the stability of the learning procedure of a neural
network [32]. The loss function (already studied [3]) is thus:

L′(θ;X, y) = L(θ;X, y) + α||∇L(θ;X, y)||2 (2)

Penalizing large gradient norms could lead to flat minima in the loss surface, re-
gions in which parameters are more robust regarding perturbations after training
(in the form of multiplicative or additive Gaussian noise [3, 6])

4 Methodology

Numerous studies have explored the robustness of DNNs in the presence of pa-
rameter noise, often finding that DNNs exhibit considerable resilience, particu-
larly in networks with higher test accuracy [21, 3]. GR has emerged as a technique
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to bolster this robustness against perturbations post-training. However, existing
investigations primarily focus on Gaussian additive or multiplicative noise, rather
than simulated hardware faults, which mimic real-world deployment scenarios
where DNNs operate as applications on specific hardware platforms, such as
GPUs or dedicated chips. Our study aims at addressing this gap by conducting
a rigorous analysis of DNNs trained using the loss function described in Equation
2, specifically evaluating the impact of gradient regularization on faults affecting
single bits of the network parameters. In a dependable neural network, the im-
pact on the output of a hardware fault should be minimized as much as possible.
Thus, Critical faults should be minimized, while the faults classified as masked
should be maximized. This property is highly desirable in safety-critical envi-
ronments, as it ensures that decisions or analyses based on the network’s output
remain unaffected even when faults occur. However, having a high number of
masked faults means reducing the observability of the network, thus making it
more difficult to unveil the presence of a fault in the underlying output with func-
tional methods. Hence, depending on the system, task, and ultimate objective,
engineers can strive to either maximize or minimize masked faults. In real-world
scenarios, it would be feasible to maintain a dual set of parameters, denoted
as θ and θt, for the DNN: one (θ) optimized to achieve the highest degree of
fault masking for deployment in field inference, and the other (θt) designated for
testing the underlying hardware in an online test environment.

By simulating hardware faults, we aim to provide insights into the reliability
and testability of DNNs in realistic deployment environments, where the integrity
of individual parameter bits can significantly influence performance and safety.
This approach enables us to assess the effectiveness of gradient regularization in
mitigating (or not) the effects of such faults.

5 Experiments

5.1 Datasets

To validate our experiments we used CIFAR-10 [12] and MNIST [15] datasets.
These usually serve as cornerstone benchmarks in computer vision and machine
learning, facilitating the evaluation and comparison of various algorithms and
architectures. CIFAR-10 comprises 60,000 32x32 color images across ten classes,
while MNIST consists of 60,000 28x28 grayscale images representing handwrit-
ten digits from zero to nine. For both dataset, the test set is composed by 10,000
images. Images were pre-processed before being fed to the DNN. For CIFAR-10,
we normalize each channel using predefined mean and standard deviation ((0.5,
0.5, 0.5), (0.5, 0.5, 0.5)). For MNIST, image transformations included resizing
to a 32x32 resolution (to standardize DNN architectures between datasets) and
normalizing the image data using predefined mean and standard deviation val-
ues (0.1307, 0.3081). We used data augmentation during the training to reduce
the overfitting of the networks, applying random affine transformations such as
rotation, translation, and scaling.
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5.2 Models

Our analysis considered five models across three distinct architectures. Residual
Neural Networks (ResNets) [8] represents a pivotal advancement in deep learn-
ing architecture. By introducing innovative identity skip connections, commonly
known as "residual connections", they target the issue of degradation in training
accuracy with increased network depth. Skip Connections facilitate the training
of deep networks comprising tens or hundreds of layers, preventing the vanishing
gradient problem [8] inherent in deep networks. We used two ResNet architec-
tures with 9 and 18 layers. LeNet [14] is a pioneering CNN architecture that has
been influential in the field of deep learning, particularly in the context of docu-
ment recognition and image processing tasks We used a Le-Net style CNN that
consists of two convolutional layers with ReLU activation functions, followed by
max pooling, dropout, flattening, and two fully connected layers, culminating
in a final linear layer for classification. Finally, the VGG [27] architecture. It
is characterized by uniformity with consistent use of 3x3 filters in the convolu-
tional layers and a maximum pooling layer for downsampling after each block of
convolutional layers. We used VGG11 and 16, respectively with 11 and 16 layers.

5.3 Parameters Setting

In our experimental setup, we employed the Adadelta optimizer [31]. For the
CIFAR-10 dataset, we conducted training over 100 epochs, while for MNIST,
we trained for 20 epochs. These epochs revealed being enough to reach near
state-of-the-art testing accuracy with all the networks considered. A batch size
of 64 was utilized for both datasets. We initialized the learning rate at 1 and
incorporated a learning rate step-decay strategy, with γ = 0.9 the step=5 for
CIFAR-10, while we used γ = 0.7 with a step=3 for MNIST. Cross Entropy
Loss [19] was employed, in conjunction with gradient regularization as neces-
sary. Our experiments were conducted using PyTorch, leveraging its efficient
autograd functionality for gradient computation. Faults Injection campaign was
conducted using statistical fault injection [25], with a dedicated Python frame-
work to perform FI campaign on NVIDIA-CUDA devices [7].

Statistical FI makes it feasible to run an FI campaign on DNNs in a rea-
sonable amount of time by computing the sample size, denoted as n required to
reach the maximum error of an estimate.

The formula for calculating the sample size (n) given the maximum error of
the estimate (e) is derived as follows [25]:

e = t · σ√
n

(3)

This equation can be rearranged to solve for n:

n =
N

1 + e2·(N−1)
t2·p·(1−p)

(4)
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In which e represents the desired error margin; t, a constant, is the critical value
associated with the desired confidence level; σ denotes the population standard
deviation; N is the population size; p is the probability of a bit-flip to happen.
We used p = 0.5, e = 0.01, t = 2.58, while N is the total number of bit-flips that
may happen, thus the total number of parameters in the DNN multiplied by 32
(FP32 representation) multiplied by 2 (0-to-1 and 1-to-0 transitions). For each
model under consideration, Eq. 4 leads to about 16,660 faults to inject to obtain
an estimate with a maximum error margin of 1%. The number of faults to inject
into each layer of the DNN, l, is determined by calculating the proportion of the
total faults relative to the parameters of that specific layer. This is computed by
rounding the product of the number of parameters in the layer l and the desired
total number of faults to inject, divided by the total sum of parameters. This
distributes the faults to the layers based on their respective parameter counts.
Then, for each layer, random parameters and random bits from these are selected
until the desired number of faults is reached. The selected bit is then flipped.
The FI campaign was based on applying every fault in the fault list to the DNN
and running the inference on the chosen test set. For each output vector, we
compare it with the fault-free execution, marking each fault as masked, critical
or not critical depending on the comparison outcome. The number of outputs
for each FI campaign is thus the dimensionality of the test set multiplied by
the number of faults applied to each network (see Tab. 1). The FI campaign
procedure is explained in Alg. 1

As model performance metrics, we used the baseline accuracy and how it is
affected by faults, as well as the distribution of different types of faults (masked,
not critical, critical). The Clean Accuracy is the baseline accuracy of the network
on the test set. It is informative on how likely the network will perform the correct
classification without faults. The Faulty Accuracy is the accuracy of the network
in the presence of a fault. It is computed as the number of times the network
predicted the correct class divided by the number of faulty outputs analyzed. It
is informative on how likely the network will perform the correct classification
when a fault occurs. Percentages of distribution of faults reflect the number of
outcomes in which a fault was marked masked, critical, or not critical. These
are informative on how likely a fault is propagated to the output or not and its
effect on the classification outcome.

Values of α parameter were selected by trial and error: depending on the
model, high values lead to an over-regularization, and thus to the divergence of
the training procedure. Therefore, we used values that permitted sticking, with
a certain degree, to baseline accuracy achieved without regularization.

5.4 Results

The main effect of GR is a shift in the distribution of fault categories (Tables
2 and 3). The number of masked-faults decreases. We have this effect for both
the dataset and for all the networks taken into account. The number of critical
faults is quite similar among default and regularized loss, with a slight increase
for some architecture. Notably, a significant portion of faults initially labeled
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Table 1. FI campaign information for the different networks

Network Dataset #Parameters #Possible Faults Applied Faults Outcome
ResNet18 CIFAR-10 11,173,962 715,133,568 16,641 16,641*104

ResNet9 CIFAR-10 2,440,266 156,177,024 16,639 16,639*104

LeNet CIFAR-10 1,626,442 104,092,288 16,638 16,638*104

VGG11 CIFAR-10 9,756,426 624,411,264 16,641 16,641*104

VGG16 CIFAR-10 15,253,578 976,228,992 16,641 16,641*104

ResNet18 MNIST 11,172,810 715,059,840 16,641 16,641*104

ResNet9 MNIST 2,439,114 156,103,296 16,639 16,639*104

LeNet MNIST 1,626,442 104,092,288 16,638 16,638*104

VGG11 MNIST 9,755,274 624,337,536 16,641 16,641*104

VGG16 MNIST 15,252,426 976,155,264 16,641 16,641*104

Table 2. Accuracy metrics and fault-type distributions (CIFAR-10)

Model Loss Clean Acc Faulty Acc Masked Not Critical Critical

ResNet18 Default 93.52% 91.24% 30.80% 66.72% 2.46%
ResNet18 Gradient (α = 0.01) 93.48% 91.14% 28.46% 69.02% 2.52%

ResNet9 Default 92.17% 89.64% 23.03% 74.19% 2.77%
ResNet9 Gradient (α = 0.05) 91.55% 88.96% 21.81% 75.32% 2.86%

LeNet Default 79.36% 79.07% 91.28% 8.36% 0.34%
LeNet Gradient (α = 0.05) 78.04% 77.47% 82.22% 17.01% 0.76%

VGG11 Default 90.10% 88.15% 50.11% 47.70% 2.18%
VGG11 Gradient (α = 0.01) 90.37% 88.32% 43.49% 54.22% 2.29%

VGG16 Default 91.61% 89.53% 41.32% 56.38% 2.29%
VGG16 Gradient (α = 0.005) 91.62% 89.47% 35.91% 61.72% 2.36%

as masked now are recognized as not critical. Resulting networks are not more
resilient or robust: in the presence of faults, the percentage of outcomes that
differ between clean and faulty inference is increased. However, this does not
lead to changing the predicted class (the not-critical faults remains practically
the same). Surprisingly, GR reduced the resilience and robustness of DNN to bit
flips perturbation. However, it made them more observable: if the percentage of
not-critical increases, it is easier for the effect of a fault to be propagated to the
output and thus be visible. This property is desirable for testability purposes
since it increases the number of faults in the hardware that can be identified by
looking at the outcome of the network. This reduction can indicate improved
fault detection or mitigation strategies, leading to a higher level of transparency
and understanding of DNN systems vulnerabilities. This property can be used
in addition to existing fault detection methods, to obtain an additional set of
weights θt to be used for online functional testing of underlying hardware. This
effect is limited in some cases (ResNets, CIFAR-10) but is non-negligible in
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Algorithm 1 Fault Injection Campaign
Require: n: number of faults to inject
Require: DNN : NN to analyze

faultList← [ ]
N ← model.getParamsNum ▷ Generate the Fault List
for layer ∈ model.layersList do ▷ For each layer:

i← 0
e = (layer.getParamsNum/N) ∗ n ▷ Compute faults to inject into each layer
while i ≤ e do

θl = randomSelectParameter(layer)
b = randInt(0, 31) ▷ Selection of a bit to flip
faultList.append(l, θl, b) ▷ Append to the Fault List

end while
end for
for f ∈ faulList do ▷ Apply every fault in the faults list

ˆDNN = copy(DNN)
ˆDNN.applyFault(f)

for testImage ∈ testSet do
faultyOutput = ˆDNN(testImage)
goldenOutput = DNN(testImage)
response = categorizeFault(goldenOutput, faultyOutput)
save(f, testImage, response)

end for
end for

others (ResNet9 on MNIST and LeNet on CIFAR-10, with a decrease in masked
faults between 9% and 12%)

5.5 Ablation Studies

We furthermore studied the effect of GR with ablation studies on subsets of
models and datasets, to validate our experiments. These involved altering three
key components: the optimizer employed to train the network, the regularization
strength parameters α and the epochs of training.

Changing the optimizer We performed these experiments on CIFAR-10
dataset for the two ResNet architectures. We replaced AdaDelta optimizer with
Adam. We chose learning rate lr = 0.01. Higher values lead to divergence in the
training procedure, while lower values to a increase in convergence time. We run
the network optimization for 150 epochs. We found that the choice of optimizer
impacts the DNN reliability: the number of masked faults with ADAM optimizer
(see Tab 4) dramatically increases. The obtained networks are thus more resilient
to be used in the field. In this case, the effect of the gradient regularization is to
increase the overall accuracy of the model, in accordance with the premises. Also
in this case, the number of masked faults decreases if gradient regularization is
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Table 3. Accuracy metrics and fault-type distribution (MNIST)

Model Loss Clean Acc Faulty Acc Masked Not Critical Critical

ResNet18 Default 99.63% 97.08% 25.10% 72.34% 2.55%
ResNet18 Gradient (α = 0.1) 99.49% 96.96% 24.70% 72.76% 2.53%

ResNet9 Default 99.65% 96.87% 17.82% 79.39% 2.78%
ResNet9 Gradient (α = 0.05) 99.61% 96.85% 1.62% 95.59% 2.78%

LeNet Default 99.25% 99.09% 95.79% 4.05% 0.15%
LeNet Gradient (α = 0.06) 99.19% 98.89% 92.76% 6.93% 0.30%

VGG11 Default 99.68% 97.36% 42.06% 55.60% 2.33%
VGG11 Gradient (α = 0.05) 99.63% 97.31% 39.88% 57.78% 2.33%

VGG16 Default 99.58% 97.22% 38.15% 59.47% 2.36%
VGG16 Gradient (α = 0.08) 99.51% 97.03% 32.45% 65.80% 2.49%

Table 4. Effect of using ADAM optimizer, CIFAR10

Model Loss Clean Acc Faulty Acc Masked Not Critical Critical

ResNet18 Default 90.50% 89.50% 90.68% 8.20% 1.12%
ResNet18 Gradient (α = 0.1) 91.47% 90.36% 89.05% 9.71% 1.23%

ResNet9 Default 81.06% 79.18% 90.76% 6.85% 2.37%
ResNet9 Gradient (α = 0.05) 83.87% 81.84% 88.84% 8.67% 2.48%

VGG11 Default 88.37% 86.72% 62.82% 35.30% 1.88%
VGG11 Gradient (α = 0.05) 89.23% 87.53% 54.82% 43.24% 1.93%

used, even if the percentages of only 1-2% for the ResNets and up to 8% for
VGG.

Varying the α parameter We performed these experiments on MNIST dataset,
considering the VGG11, VGG16 and ResNet18 architectures. We used AdaDelta
optimizer. Increasing the α seemed to impact the percentage of masked faults
(Tab. 5). By starting from ’low’ values of α, the number of masked faults seems
to be higher with respect to default cross-entropy loss. However, increasing α
leads to a reduction in the percentage of masked faults. Regularization strength
has thus an impact.

Varying the training epochs We performed these experiments on CIFAR-10
dataset, considering the LeNet architecture. In previous experiments, this net-
work showed the highest masking capabilities. Also in this experiment, gradient
regularization decreases the masked faults by a non-negligible percentage (7-9%,
see Tab 6).
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Table 5. Effect of varying α, MNIST

Model Loss Clean Acc Faulty Acc Masked Not Critical Critical

ResNet18 Gradient (α = 0.005) 99.63% 97.12% 26.05% 71.42% 2.52%
ResNet18 Gradient (α = 0.01) 99.61% 97.09% 25.11% 72.35% 2.52%
ResNet18 Gradient (α = 0.1) 99.49% 96.96% 24.70% 72.76% 2.53%

ResNet9 Gradient (α = 0.025) 99.64% 96.87% 19.61% 77.60% 2.78%
ResNet9 Gradient (α = 0.03) 99.66% 96.89% 19.73% 77.48% 2.78
ResNet9 Gradient (α = 0.05) 99.61% 96.85% 1.62% 95.59% 2.78%

VGG11 Gradient (α = 0.01) 99.71% 97.42% 43.41% 54.29% 2.29%
VGG11 Gradient (α = 0.03) 99.67% 97.40% 44.90% 52.80% 2.28%
VGG11 Gradient (α = 0.05) 99.63% 97.31% 39.88% 57.78% 2.33%

VGG16 Gradient (α = 0.005) 99.66% 97.37% 39.29% 58.40% 2.30%
VGG16 Gradient (α = 0.01) 99.63% 97.27% 37.82% 59.80% 2.37%
VGG16 Gradient (α = 0.08) 99.51% 97.03% 32.45% 65.80% 2.49%

Table 6. Effect of varying the epochs of training

Model Loss Clean Acc Faulty Acc Masked Not Critical Critical

LE NET (50 EPOCHS) Default 78.04% 77.47% 82.22% 17.01% 0.76%
LE NET (50 EPOCHS) Gradient (α = 0.06) 75.15% 74.42% 75.84% 23.14% 1.01%
LE NET (30 EPOCHS) Default 72.61% 74.35% 90.19% 9.42% 0.38%
LE NET (30 EPOCHS) Gradient (α = 0.06) 72.97% 72.43% 81.35% 17.87% 0.78%

6 Conclusion

We compared DNNs trained with cross-entropy loss versus cross-entropy loss
with gradient regularization to assess if the latter impacts reliability in the pres-
ence of simulated hardware faults. While gradient regularization did not increase
DNN reliability, as evidenced by the unchanged number of critical faults and not
an increase in masked faults, it did demonstrate a notable capability to reduce
the occurrence of masked faults. The impressive reductions observed in certain
cases, such as with ResNet9 on Cifar 10 and LeNet architectures, were par-
ticularly noteworthy. Although this characteristic may not directly enhance NN
reliability, it offers substantial potential for improving testability, which is crucial
for the functional testing of DNNs. Moreover, our ablation showed a consistent
decrease in masked faults when gradient regularization was used. This technique
could be used to obtain a set of parameters θt usable for testability of underly-
ing hardware, thus providing valuable insights for optimizing NN performance
and robustness in safety-critical applications. Future work aims to study how
changing the training setup affects the DNNs reliability.
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