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ADDENDUM AND ERRATUM TO
”LOCALIZATION FOR A MATRIX-VALUED ANDERSON MODEL”

HAKIM BOUMAZA AND SYLVAIN ZALCZER

Abstract. In this short note we we give the proper rate of exponential decay for the Initial
Length-Scale Estimate in the case of quasi-one-dimensional random operators of Schrödinger
type. This corrects the statement and the demonstration of Proposition 5 in : H. Boumaza,
Localization for a matrix-valued Anderson model, Math. Phys. Anal. Geom. 12(3), 255-286,
2009..

1. The model and first definitions

In this note we give the proper rate of exponential decay for the ILSE in the case of
quasi-one-dimensional operators of Schrödinger type. This corrects the statement and the
demonstration of [2, Proposition 5], changing the γ1(E) into a γN(E) in the exponential rate
of decay. Let (Ω,A,P) be a complete probability space. Recall that in [2] one considers, for
every ω ∈ Ω,

(1.1) Hω,ℓ = − d2

dx2
⊗ IN +

∑
n∈Z

V (n)
ω (x− ℓn),

acting on L2(R) ⊗ RN , where N ≥ 1 is an integer and ℓ > 0 is a real number. For every

n ∈ Z, the functions x 7→ V
(n)
ω (x) are symmetric matrix-valued functions, supported on [0, ℓ]

and bounded uniformly on x, n and ω. The sequence (V
(n)
ω )n∈Z is a sequence of i.i.d random

variables on Ω. We also assume that the potential x 7→
∑

n∈Z V
(n)
ω (x − ℓn) is such that

{Hω,ℓ}ω∈Ω is ℓZ-ergodic.
One considers the equation for the generalized eigenvalues, for every ω ∈ Ω,

(1.2) Hω,ℓu = Eu, where E ∈ R and u = ( u′
u ) : R → R2N .

We introduce, for E ∈ R and every x, y ∈ R, the transfer matrix T y
x (E) of Hω,ℓ from x to

y which maps a solution (u′, u) at position x to the same solution at position y. It is defined
by the relation

(1.3)

(
u′(y)
u(y)

)
= T y

x (E)

(
u′(x)
u(x)

)
and in particular, T x

x (E) = I2N for every x ∈ R. The transfer matrices are elements of the
real symplectic group

(1.4) SpN(R) = {M ∈ M2N(R) | tMJM = J}

with J =
(

0 −IN
IN 0

)
.
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2 H. BOUMAZA AND S. ZALCZER

For E ∈ R, we denote by γ1(E), . . . , γ2N(E) the Lyapunov exponents associated with the

sequence (T
ℓ(n+1)
ℓn (E))n∈Z (see [2]). Let us also define the Furstenberg group G(E) of {Hω,ℓ}ω∈Ω

at E as the closed group generated by the support of µE, where µE is the common distribution

of the random matrices T
ℓ(n+1)
ℓn (E) and the closure is taken for the usual topology in M2N(R):

G(E) = < suppµE >.

2. A large deviation result for blocks of products of transfer matrices

In order to estimate blocks of the products of transfer matrices as in [3], we introduce, given
a vector subspace F of R2N , the orthogonal projection onto F , πF : R2N → F , and we set

π∗
F :

F → R2N

x 7→ x
.

Recall that a subspace FR2N is said Lagrangian if it is orthogonal to itself for J and of
dimension N .

Let sp(·) denotes the p-th singular value of the considered matrix. We prove a Large
Deviation Property for the singular values of the products of transfer matrices. For the
definition of p-contractivity and Lp-strong irreducibility we refer to [1].

Proposition 2.1. We fix a compact interval I ⊂ R. We assume that for every E ∈ I:

(1) the Furstenberg group G(E) is included in SpN(R) ;
(2) for every p ∈ {1, . . . , N}, G(E) is Lp-strongly irreducible.

Then for all ϵ > 0 and all E ∈ I, there exist C(ϵ, E) > 0 and c(ϵ, E) > 0 such that, for all
p ∈ {1, . . . , N}, any Lagrangian subspace F and all integers m,n,

(2.1) P
({∣∣∣∣ 1

ℓ(n−m)
log sp

(
T ℓn
ℓm(E)

)
− γp(E)

∣∣∣∣ ≥ ϵ

})
≤ C(ϵ, E)e−c(ϵ,E)ℓ|n−m|

and

(2.2) P
({∣∣∣∣ 1

ℓ(n−m)
log sp

(
T ℓn
ℓm(E)π

∗
F

)
− γp(E)

∣∣∣∣ ≥ ϵ

})
≤ C(ϵ, E)e−c(ϵ,E)ℓ|n−m|.

Remark 2.2. The constants C(ϵ, E) and c(ϵ, E) depend a priori on E and ϵ but they can be
taken uniform in ϵ as it tends to 0 and uniform in E on the compact interval I. This is one
of the reasons why we need to take the interval I compact.

Proof. Recall that for a symplectic matrix M ∈ SpN(R), sp(M−1) = sp(M) for every p ∈
{1, . . . 2N}. Hence one can assume that m ≤ n without loss of generality since (T ℓn

ℓm(E))
−1 =

T ℓm
ℓn (E).

Let p ∈ {1, . . . , N}. For each M ∈ SpN(R), we denote by M̂ the matrix of GLk(R) such
that

(2.3) M̂ij = ⟨fi,ΛpMfj⟩.

where k is the dimension of Lp and (f1, . . . , fk) is an orthonormal basis of Lp, with f1 =

e1 ∧ · · · ∧ ep. Let us now denote by Ĝ(E) the subgroup of GLk(R) which is generated by the

matrices M̂ for M ∈ G(E). Then, since G(E) is Lp-strongly irreducible, Ĝ(E) is strongly
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irreducible. Hence, applying [1, Theorem A.V.6.2], one gets the existence of α > 0 such that
for any ϵ > 0 and any x̄ ∈ P(Lp),
(2.4)

lim sup
|n−m|→+∞

1

ℓ|n−m|
log P

(∣∣∣∣ 1

ℓ|n−m|
log(||ΛpT ℓn

ℓm(E)x̄||)− (γ1 + · · ·+ γp)(E)

∣∣∣∣ > ϵ

)
≤ −α

and
(2.5)

lim sup
|n−m|→+∞

1

ℓ|n−m|
log P

(∣∣∣∣ 1

ℓ|n−m|
log(||ΛpT ℓn

ℓm(E)||)− (γ1 + · · ·+ γp)(E)

∣∣∣∣ > ϵ

)
≤ −α.

Indeed, since the function x 7→ V
(n)
ω (x) is uniformly bounded in x, n and ω, and since the

support of the common law of the transfer matrices is bounded, the assumption of finiteness
of the integral in [1, Theorem A.V.6.2] is satisfied.

Now, let us take F a Lagrangian subspace of R2N . Then,

||Λp(T ℓn
ℓm(E)π

∗
F )|| = sup

u1∧···∧up∈P(Lp)
ui∈F

||(ΛpT ℓn
ℓm(E))(u1 ∧ · · · ∧ up)||

= ||ΛpT ℓn
ℓm(E) ū||, for some ū ∈ P(Lp)

since the supremum is attained by compactness of P(Lp). Hence, (2.4) rewrites,
(2.6)

lim sup
|n−m|→+∞

1

ℓ|n−m|
log P

(∣∣∣∣ 1

ℓ|n−m|
log(||Λp(T ℓn

ℓm(E)π
∗
F )||)− (γ1 + · · ·+ γp)(E)

∣∣∣∣ > ϵ

)
≤ −α

for any Lagrangian F . Let, for n,m ∈ Z, p ∈ {1, . . . , N}, ϵ > 0 and F a Lagrangian,

An,m,p(ϵ, F ) =

{∣∣∣∣ 1

ℓ|n−m|
log(||Λp(T ℓn

ℓm(E)π
∗
F )||)− (γ1 + · · ·+ γp)(E)

∣∣∣∣ > ϵ

}
,

An,m,p(ϵ) =

{∣∣∣∣ 1

ℓ|n−m|
log(||ΛpT ℓn

ℓm(E)||)− (γ1 + · · ·+ γp)(E)

∣∣∣∣ > ϵ

}
,

Bn,m,p(ϵ, F ) =

{∣∣∣∣ 1

ℓ|n−m|
(
log(||Λp(T ℓn

ℓm(E)π
∗
F )||)− log(||Λp−1(T ℓn

ℓm(E)π
∗
F )||)

)
− γp(E)

∣∣∣∣ > ϵ

}
and

Bn,m,p(ϵ) =

{∣∣∣∣ 1

ℓ|n−m|
(
log(||ΛpT ℓn

ℓm(E)||)− log(||Λp−1T ℓn
ℓm(E)||)

)
− γp(E)

∣∣∣∣ > ϵ

}
.

Then, one has

(2.7) Bn,m,p(2ϵ) ⊂ An,m,p(ϵ) ∩ An,m,p−1(ϵ) and Bn,m,p(2ϵ, F ) ⊂ An,m,p(ϵ, F ) ∩ An,m,p−1(ϵ, F ).

Since for any p ∈ {1, . . . , N}, ||ΛpT ℓn
ℓm(E)|| = s1(T

ℓn
ℓm(E)) · · · sp(T ℓn

ℓm(E)), combining (2.7)
and (2.5) one gets (2.1).

One also has, for any Lagrangian F , ||Λp(T ℓn
ℓm(E)π

∗
F )|| = s1(T

ℓn
ℓm(E)π

∗
F ) · · · sp(T ℓn

ℓm(E)π
∗
F ).

Hence, combining (2.7) and (2.6) one gets (2.2). This achieves the proof. □
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For any integer n ∈ [−L/3, L/3], any T ∈ M2N(R) and any vector subspace F ⊂ R2N , we
define

ΩF
ϵ [T ] :=

{
max
1≤p≤N

(∣∣∣∣ 1

ℓ|n− L|
log sp (T )− γp(E)

∣∣∣∣+(2.8) ∣∣∣∣ 1

ℓ|n− L|
log sp (Tπ

∗
F )− γp(E)

∣∣∣∣) ≤ ϵ

100N

}
.

Let

(2.9) F+ :=
{
( u
0 ) |u ∈ RN

}
⊂ R2N and F− :=

{
( 0
v ) |v ∈ RN

}
⊂ R2N

and for any n ∈ Z,

(2.10) Fn :=
{
( u
v ) ∈ C2N

∣∣ u = −Φ↓
+(ℓn)(Φ

↑
+(ℓn))

−1v
}
.

Note that since the transfer matrices are in SpN(R), the vector subspace Fn is Lagrangian.
Finally, set

(2.11) Ωϵ(n) := ΩFn
ϵ [tT ℓn

ℓL (E)] ∩ ΩF+
ϵ [tT ℓn

ℓL (E)] ∩ ΩF+
ϵ [T ℓn

ℓL (E)] ∩ ΩF−
ϵ [tT ℓn

ℓL (E)] ∩ ΩF−
ϵ [T ℓn

ℓL (E)].

3. Initial length-scale estimate

For x ∈ R and L ≥ 1 an integer, we introduce the finite volume operators Hω,x,L which are
the restrictions of Hω to intervals of the form ΛL(x) := [x−ℓL, x+ℓL] with Dirichlet boundary
conditions. We can then define Rω,x,L(z) := (Hω,x,L − z)−1 as the resolvent of Hω,x,L.

We will denote by χx,L the characteristic function of ΛL(x). We also denote by Γx,L the
characteristic function of the union of two regions near the boundary of ΛL(x): [x − ℓ(L −
1), x− ℓ(L− 3)] ∪ [x+ ℓ(L− 3), x+ ℓ(L− 1)].

Definition 3.1. Given E ∈ R, x ∈ Z and L ∈ 6N with E /∈ σ(Hω,x,L), we say that the box
ΛL(x) is (ω,m,E)-regular for a given m > 0 if

(3.1)
∥∥Γx,LRω,x,L(E)χx,L/3

∥∥ ⩽ e−mL.

Denote ΛL := ΛL(0).

Proposition 3.2 (ILSE for Schrödinger). Let I ⊂ R be an open interval such that, for
every E ∈ I, the Furstenberg group associated with {Hω,ℓ}ω∈Ω is p-contracting and Lp-strongly
irreducible, for every p ∈ {1, . . . , N}. Let E ∈ I. For every ε > 0, there exist C, c > 0 and
L0 ∈ N such that, for every L ≥ L0,

(3.2) P
({

ΛL is (ω, γN(E)− ε, E)− regular
})

≥ 1− Ce−cℓL.

To prove the correct ILSE for {Hω,ℓ}ω∈Ω, the first step is to give an explicit formula for the
Green kernel of Hω,0,ℓ in terms of the solutions Φ± of Hω,ℓΦ± = EΦ± satisfying

(3.3) Φ−(−ℓL) =
(

0
IN

)
and Φ+(ℓL) =

(
0
IN

)
,

which differs from the formula given in [2, Eq. (67)].
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Lemma 3.3. Let ω ∈ Ω and let x, y ∈ ΛL. Assume that Φ+(x) and Φ−(x) are invertible as
well as Φ′

+(x)Φ+(x)
−1 − Φ′

−(x)Φ−(x)
−1. The Green kernel of Hω,0,ℓ is given by

(3.4) Gω
ΛL
(E, x, y) =

{
Φ+(y)(Φ+(x))

−1
(
Φ′

+(x)Φ+(x)
−1 − Φ′

−(x)Φ−(x)
−1
)−1

for x ≤ y

Φ−(y)(Φ−(x))
−1

(
Φ′

+(x)Φ+(x)
−1 − Φ′

−(x)Φ−(x)
−1
)−1

for x ≥ y

Proof. We would like to have

(3.5) Gω
ΛL
(E, x, y) =

{
Φ+(y)α+(x) for x ≤ y
Φ−(y)α−(x) for x ≥ y

In addition, we want Gω
ΛL

to be continuous, i.e. that for all x ∈ ΛL

(3.6) Φ+(x)α+(x) = Φ−(x)α−(x).

By definition, we must have, for all ψ ∈ L2(ΛL) and almost all x ∈ ΛL,

(Hω,0,ℓ − E)

∫
ΛL

Gω
ΛL
(E, x, y)ψ(x)dx = ψ(y).

Computing this expression explicitly and using the fact that (Hω,ℓ − E)Φ± = 0, we find that
for all x ∈ ΛL

(3.7) −Φ+(x)α
′
+(x) + Φ−(x)α

′
−(x) = IN

The derivative of (3.6) combined with (3.7) implies that

(3.8) Φ′
+(x)α+(x)− Φ′

−(x)α−(x) = IN .

We can solve the system made of (3.6) and (3.8) to find that

(3.9)

{
α+(x) = (Φ+(x))

−1
(
Φ′

+(x)Φ+(x)
−1 − Φ′

−(x)Φ−(x)
−1
)−1

α−(x) = (Φ−(x))
−1

(
Φ′

+(x)Φ+(x)
−1 − Φ′

−(x)Φ−(x)
−1
)−1

which concludes the proof. □

Our goal is now to bound supx,y∈ΛL0
|Γ0,L0(x)G

ω
ΛL0

(E, x, y)χ0,L0/3(y)| with good probability.

To this purpose, for any integer n ∈ [−L/3, L/3], we consider the event Ωϵ(n) as defined in
(2.11).

Proposition 3.4. On Ωϵ := ∩n∈[−L/3,L/3]Ωϵ(n), we have that, for all x ∈ [−ℓL/3, ℓL/3] and
all y ∈ [ℓL− ℓ, ℓL],

(3.10) ||Gω
ΛL
(E, x, y)|| ≤ Ce−2(γN (E)−ϵ)ℓL.

Proof. We begin with proving that on Ωϵ, for all x ∈ [−ℓL/3, ℓL/3], Φ+(x) is invertible and
we estimate its inverse. It corresponds to bounding from below its N -th singular value.

Let n be the unique integer such that x ∈ [nℓ, (n + 1)ℓ). We first remark that, for all
p = 1, . . . , 2N ,

(3.11) sp(T
x
ℓL) ≥ sp(T

ℓn
ℓL )s2N(T

x
ℓn) = sp(T

ℓn
ℓL )∥T x

ℓn∥−1,

where the last equality comes from the fact that T x
ℓn is symplectic. But we know from[2,

Lemma 6] that there exists a constant C > 0, independent of x and ω, such that ∥T x
ℓn∥ ≤ C.

As a consequence, sp(T
x
ℓL) ≥ C−1sp(T

ℓn
ℓL ).
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We have the following singular value decomposition:

(3.12) T x
ℓL(E) = UΣV,

where U and V are unitary and, since we have a symplectic matrix, we can write Σ =(
Σ+ 0
0 Σ−

)
with Σ+ = diag(s1, . . . , sN) and Σ− = diag(1/s1, . . . , 1/sN) with si ≥ 1 for every

i ∈ {1, . . . , N}. We can write a block decomposition for U and V : U =

(
U11 U12

U21 U22

)
and

V =

(
V11 V12
V21 V22

)
. We have then

Φ+(x) =
(
IN 0

)(Φ+(x)
Φ′

+(x)

)
=

(
IN 0

)
T x
ℓL(E)

(
0
IN

)
= U11Σ+V12 + U12Σ−V22.

But since, on the one hand, the blocks Uij, Vij have norm less than 1 and, on the other hand,
on the event Ωϵ(n), ∥Σ−∥ ≤ Ce−(γN (E)−ϵ)ℓ|L−n|, we can write that

sN(Φ+(x)) ≥ sN(U11Σ+V12)− Ce−(γN (E)−ϵ)ℓ|L−n|

≥ sN(U11)sN(Σ+)sN(V12)− Ce−(γN (E)−ϵ)ℓ|L−n|.

Since sN(Σ+) ≥ C−1e(γN (E)−ϵ)ℓ|L−n| (on the event Ωϵ(n)), we are left with controlling sN(U11)
and sN(V12). We can prove as in Claim 3.4 and Remark 3.5 of [3] that, on Ωϵ(n),

(3.13) sN(V12) ≥ e−
ϵ
25

ℓ|L−n| and sN(U11) ≥ e−
ϵ
25

ℓ|L−n|.

As a consequence, on Ωϵ(n),

(3.14) |sN(Φ+(x))| ≥ C−1e(γN (E)− 27ϵ
25

)ℓ|L−n| − Ce−(γN (E)−ϵ)ℓ|L−n|

For L large enough, one gets on Ωϵ,

(3.15) |sN(Φ+(x))| ≥ e(γN (E)−2ϵ)
2ℓL
3 > 0.

In particular, Φ+(x) is invertible.
The next step to be able to apply Lemma 3.3 is to prove that Φ′

+(x)Φ+(x)
−1−Φ′

−(x)Φ−(x)
−1

is invertible. We prove as in Equation (33) of [3] that

(3.16) sN(Φ
′
+(x)Φ+(x)

−1 − Φ′
−(x)Φ−(x)

−1) ≥ e−
ϵ
2
ℓL

Then, we have by Lemma 3.3 that

(3.17) Gω
ΛL
(E, x, y) = Φ+(y)(Φ+(x))

−1(Φ′
+(x)Φ+(x)

−1 − Φ′
−(x)Φ−(x)

−1)−1.

Finally, we remark that, for such a y, we have by [2, Lemma 6],

(3.18) |Φ+(y)|2 ≤ N exp

(
2

∫ ℓL

y

|Vω(t)|dt
)

≤ C,

with C independent of ω and L.
Together with (3.18), (3.14) and (3.16), it gives that on Ωϵ

(3.19) ||Gω
ΛL
(E, x, y)|| ≤ Ce−2(γN (E)− 7

4
ϵ)ℓL.

□
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The last step is to estimate the probability of Ωϵ. Since the sequence of transfer matrices
of {Hω,ℓ}ω∈Ω and its Furstenberg group satisfy the hypothesis of Proposition 2.1, there exist
C, c > 0 such that P(Ωϵ(n)) ≤ Ce−cℓ|n−L|. As a consequence,

(3.20) P(c(Ωϵ)) ≥ 1−
∑

n∈[−L/3,L/3]

Ce−cℓ|n−L| ≥ 1− C ′e−c′ℓL

which prove the ILSE for {Hω,ℓ}ω∈Ω.
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