

Toward a Global Constraint for Minimizing the Flowtime

Camille Bonnin* Arnaud Malapert^o Margaux Nattaf* Marie-Laure Espinouse*

*Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, 38000 Grenoble, France {camille.bonnin, margaux.nattaf, marie-laure.espinouse}@grenoble-inp.fr

^oUniversité Côte d'Azur, CNRS, I3S, France

arnaud.malapert@univ-cotedazur.fr

13th International Conference on Operations Research and Enterprise Systems (ICORES 2024) 24-26 February 2024, Rome, Italy

G-SCOP

Relaxat

FLOW TIME

Results 0000000 Conclusion

Context

1/23

Relaxations of $1|r_j, d_j; prec| \sum C_j$

The FLOWTIME constraint

Experimental results

Conclusion and prospects

Context

axations

FLOW TIME

Conclusion

G. SCOP

1. Context

Scheduling problems

Definition (scheduling)

Allocating **resources** to **tasks** over **time** while respecting the tasks and resources **constraints**.

Often optimizing one or more objectives $(C_{\max}, \sum C_j...)$.

Context

00000

Scheduling problems

Definition (scheduling)

Allocating **resources** to **tasks** over **time** while respecting the tasks and resources **constraints**.

Often optimizing one or more objectives $(C_{\max}, \sum C_j...)$.

Solving scheduling problems with CP

Context

- Disjunctive constraint [Carlier, 1982; Fahimi & Quimper, 2014]
- Cumulative constraint [Aggoun & Beldiceanu, 1993; Guy et al., 2015]
- Survey of CP techniques for scheduling [Baptiste et al., 2001]
- CP vs MIP for 12 scheduling problems [Naderi et al., 2023]...

GISCOP	Context 000000	Relaxations 00	FLOW TIME	Results 0000000	Conclusi 00
Consti	raint (Optimiza	ation Pro	blem (COP)
CP for scheduling	g: key po	oints			
 Declarative 		• (Components	f <mark>or schedu</mark> li	ng
• Global constra	aints	•	Exact method	l	
Example in OPL,	modelir	ng language	e of IBM		
dvar interval dvar int F; \\	tasks[j objecti [,]	in N] in ve variab]	r[j]d[j] .e	size p[j];
<pre>minimize F; subject to { noOverlap(ta F = sum(j in flowtime(tas }</pre>	usks); \ N) end Eks, F);	\resource Of(tasks[\\contri]	<pre>constraint j]); \\star oution of t</pre>	: (ct) dard sum his work	ct

Constraint Programming (CP)

Principle

CP = Filtering + Search

Context

Figure: Solving the 4-queens problem with CP. Picture from the "Guide to Constraint Programming" of Roman Barták, 1998

Constraint Programming (CP)

Principle

CP = Filtering + Search

Context

• Filtering = removing values from domains leading to non feasible solutions

Figure: Solving the 4-queens problem with CP. Picture from the "Guide to Constraint Programming" of Roman Barták, 1998

Constraint Programming (CP)

Principle

CP = Filtering + Search

Context

- Filtering = removing values from domains leading to non feasible solutions
- Search = systematic exploration of solution space

Figure: Solving the 4-queens problem with CP. Picture from the "Guide to Constraint Programming" of Roman Barták, 1998

Thesis main objective

Context

000000

 Improve CP integration of scheduling objectives that are not studied a lot in CP, in particular "∑" objectives

Thesis main objective

- Improve CP integration of scheduling objectives that are not studied a lot in CP, in particular "∑" objectives
- Focus on $\sum C_j$ (flowtime)

Context

000000

Thesis main objective

- Improve CP integration of scheduling objectives that are not studied a lot in CP, in particular "∑" objectives
- Focus on $\sum C_j$ (flowtime)

Context

Chosen approach

• Cost-based domain filtering [Focacci et al., 99]: global constraints filter values not leading to a better-cost solution

Thesis main objective

- Improve CP integration of scheduling objectives that are not studied a lot in CP, in particular "∑" objectives
- Focus on $\sum C_j$ (flowtime)

Context

Chosen approach

- Cost-based domain filtering [Focacci et al., 99]: global constraints filter values not leading to a better-cost solution
- Scheduling problems: a relaxation gives a lower bound

Main objective and chosen approach

Thesis main objective

- Improve CP integration of scheduling objectives that are not studied a lot in CP, in particular "∑" objectives
- Focus on $\sum C_j$ (flowtime)

Context

Chosen approach

- Cost-based domain filtering [Focacci et al., 99]: global constraints filter values not leading to a better-cost solution
- Scheduling problems: a relaxation gives a lower bound

Main objective of this work

Propose a **new global constraint** helping minimizing $\sum C_j$ using **new polynomial relaxations**

Context Relaxations FLOWTIME Res

2. Relaxations of $1|r_j, d_j; prec| \sum C_j$

C C C C D D	Context 000000	Relaxations ○●	FLOWTIME 00000	Results 0000000	Conclusion 00
G SLUP		Pol	ynomia	l relaxat	ions
$1 d_j \sum C_j$	$\rightarrow 1 r_j; d_j \sum C_j \qquad \qquad$	$ d_j; pmtn \sum C_j $	$pomtn \sum w_iM_i$	\mathcal{P}	
$1 \sum C_j \longrightarrow 1 r_j \sum C_j$	$\frac{1 r_j; d_j; prec \sum C_j}{1 chai}$	$ns; r_j; pmtn \sum C_j$		$\mathcal{NP} ext{-hard}$	
$1 prec \sum C_j$	$1 sp-grapn \sum w_j C_j$ 1 pn	rec; $pmtn \sum C_j$			
problem	complexity	list algorithm	upda- ted	referen	се

		list	upda-	
problem	complexity	algorithm	ted	reference
$1 \sum C_j$	$O(n \log n)$	yes	no	[Horn, 1973]
$1 d_j \sum C_j$	$O(n \log n)$	yes	yes	[Chen & al, 1998]
$1 r_j$; pmtn $ \sum C_j$	$O(n \log n)$	yes	yes	[Baker, 1974]
$1 r_j; pmtn \sum w_j M_j$	$O(n \log n)$	yes	yes	[Kovàcs & Beck, 2011]
$1 sp$ -graph $ \sum w_j C_j$	$O(n \log n)$	no	yes	[Lawler, 1978]

G-SCOP

3. The FLOWTIME constraint

0000

The FLOWTIME constraint

• FLOWTIME($[S_1, \ldots, S_n]$, $[p_1, \ldots, p_n]$, F) $\stackrel{\text{def}}{\longleftrightarrow} ((\underbrace{S_i + p_i \leq S_j \lor S_j + p_j \leq S_i}_{\text{no tasks overlap}}) \land \underbrace{\sum (S_i + p_i) = F}_{\text{no precemption}})$

The FLOWTIME constraint

11/23

• FLOWTIME($[S_1, \ldots, S_n], [p_1, \ldots, p_n], F$) $\stackrel{\text{def}}{\longleftrightarrow} ((S_i + p_i \leq S_j \lor S_j + p_j \leq S_i) \land \sum (S_i + p_i) = \textbf{\textit{F}})$ no tasks overlap

• Relaxation used: many relaxations possible

Grenoble - Sciences pour la Conception, l'Optimisation et la Production

no preeemption

Global schema

Global schema of the filtering algorithm

• Choose a relaxation

Relaxati 00 FLOW TIME

Results 0000000 Conclusion

Global schema

Global schema of the filtering algorithm

- Choose a relaxation
- Two rules:

Global schema

Global schema of the filtering algorithm

- Choose a relaxation
- Two rules:
 - Update the lower bound of the objective variable (<u>F</u>)

kt Rela

FLOW 00000

OWTIME

Con

Global schema

Global schema of the filtering algorithm

- Choose a relaxation
- Two rules:

G-SCOP

- Update the lower bound of the objective variable (<u>F</u>)
- Filter the bounds of the domains of the S_j variables

t Rela

FLOW TIME

FIME F

Conclusion

Global schema

Global schema of the filtering algorithm

- Choose a relaxation
- Two rules:
 - Update the lower bound of the objective variable (<u>F</u>)
 - Filter the bounds of the domains of the S_j variables

Remarks

G-SCOP

• The relaxation can be changed

t Rela

FLOWTIME 00000

Resul 0000 Conclusion

Global schema

Global schema of the filtering algorithm

- Choose a relaxation
- Two rules:
 - Update the lower bound of the objective variable (<u>F</u>)
 - Filter the bounds of the domains of the S_j variables

Remarks

G-SCOP

- The relaxation can be changed
- The relaxation is considered a "black box"

t Rela

FLOWTIME

VIE Res

Conclusion

Global schema

Global schema of the filtering algorithm

- Choose a relaxation
- Two rules:
 - Update the lower bound of the objective variable (<u>F</u>)
 - Filter the bounds of the domains of the S_j variables

Remarks

G-SCOP

- The relaxation can be changed
- The relaxation is considered a "black box"
- Allows to compare the performances of different relaxations

Objective bound update: example

00000

Tj	1	2	3	4	5	6
pj	14	5	2	3	6	3
rj	0	0	1	12	16	17
d_j	24	∞	10	∞	26	∞

Objective bound update: example

FLOWTIME

00000

T _j	1	2	3	4	5	6
pj	14	5	2	3	6	3
rj	0	0	1	12	16	17
d_j	24	∞	10	∞	26	∞

Relaxation used: $1|r_j; pmtn| \sum C_j$

Objective bound update: example

00000

FLOWTIME

T _j	1	2	3	4	5	6
pj	14	5	2	3	6	3
rj	0	0	1	12	16	17
d_j	24	∞	10	∞	26	∞

Relaxation used: $1|r_j; pmtn| \sum C_j$ $F \in [100, 130]$

j	1	2	3	4	5	6
Sj	[0, 10]	[0, 46]	[1, 8]	[12, 49]	[16, 20]	[17, 17]
r'_i	0	0	1	12	16	17
d'_j	24	51	10	51	26	20

Objective bound update: example

FLOWTIME

00000

T _j	1	2	3	4	5	6
p j	14	5	2	3	6	3
rj	0	0	1	12	16	17
dj	24	∞	10	∞	26	∞

Relaxation used: $1|r_j; pmtn| \sum C_j$ $F \in [100, 130]$

Objective bound update: example

FLOWTIME

00000

T _j	1	2	3	4	5	6
p j	14	5	2	3	6	3
rj	0	0	1	12	16	17
d_j	24	∞	10	∞	26	∞

 $\begin{array}{ll} \mbox{Relaxation used: } 1|r_j; \mbox{ pmtn}| \sum C_j \\ F \in [100, 130] & \sum C_j = {\bf 104} > \underline{F} \end{array}$

Objective bound update: example

FLOWTIME

00000

T _j	1	2	3	4	5	6
p j	14	5	2	3	6	3
rj	0	0	1	12	16	17
dj	24	∞	10	∞	26	∞

Relaxation used: $1|r_j; pmtn| \sum C_j$ $F \in [104, 130] \qquad \sum C_j = 104 > \underline{F}$

Filter bounds of S_j: example

0000

Filter $\underline{S_1}$ (symmetrical for $\overline{S_1}$) $F \in [104, 130]$ Relaxation used: $1|r_j$; $pmtn| \sum C_j$

j	1	2	3	4	5	6
Sj	[2, 10]	[0, 46]	[1, 8]	[12, 49]	[16, 20]	[17, 17]
r'_i	2	0	1	12	16	17
d'_j	24	51	10	51	26	20

Filter bounds of S_j: example

0000

Filter $\underline{S_1}$ (symmetrical for $\overline{S_1}$) $F \in [104, 130]$ Relaxation used: $1|r_j$; $pmtn| \sum C_j$

j	1	2	3	4	5	6
Sj	[2, 10]	[0, 46]	[1, 8]	[12, 49]	[16, 20]	[17, 17]
r'_i	2	0	1	12	16	17
d'_j	24	51	10	51	26	20

Step 2 : t = 3, $relax_{1,3} = 123 \le 130(=F)$ STOP

14/23

Contex 00000

G. SCOP

Relaxatio

FLOW TIM

Results 0000000 Conclusion

4. Experimental results

Experimental environment

Results

Environment and parameters

• C++ and IBM ILOG CPLEX Optimization Studio 22.1

xt

ns Fl

OW TIME

Results 000000 Conclusion

Experimental environment

- C++ and IBM ILOG CPLEX Optimization Studio 22.1
- The code of **COMPLETION** has been **adapted** to the solver version (IlcActivity \longrightarrow IloIntervalVar)

Rel

FLOW T

Results

Conclusion

16/23

Experimental environment

- C++ and IBM ILOG CPLEX Optimization Studio 22.1
- The code of **COMPLETION** has been **adapted** to the solver version (IlcActivity \longrightarrow IloIntervalVar)
- Dell computer with 256 GB of RAM and 4 Intel E7-4870
 2.40 GHz processors running on CentOS Linux release 7.9 (each processor has 10 cores)

Rel

FLOW

IME Results

Conclusion

16/23

Experimental environment

- C++ and IBM ILOG CPLEX Optimization Studio 22.1
- The code of **COMPLETION** has been **adapted** to the solver version (IlcActivity \longrightarrow IloIntervalVar)
- Dell computer with **256 GB** of **RAM** and **4** Intel E7-4870 2.40 GHz processors running on CentOS Linux release 7.9 (each processor has 10 cores)
- Parallelism is disabled

Rela

FLOWT

Results 000000 Conclusion

Experimental environment

- C++ and IBM ILOG CPLEX Optimization Studio 22.1
- The code of **COMPLETION** has been **adapted** to the solver version (IlcActivity \longrightarrow IloIntervalVar)
- Dell computer with **256 GB** of **RAM** and **4** Intel E7-4870 2.40 GHz processors running on **CentOS Linux** release 7.9 (each processor has 10 cores)
- Parallelism is disabled
- Time limit is 1000 seconds for each run

Context

Relaxation s

FLOW TIME

Results

Conclusion

Instances used

G-SCOP

• Single-machine problems: $1|r_j| \sum C_j$

xations

FLOW TIME

Results 00●0000 Conclusion

Instances used

G-SCOP

- Single-machine problems: $1|r_j| \sum C_j$
- 900 instances from [Pan & Shi, 08]

itext

axations

FLOW TIME

Results 00●0000 Conclusion

Instances used

G-SCOP

- Single-machine problems: $1|r_j| \sum C_j$
- 900 instances from [Pan & Shi, 08]
- Less than 100 tasks

text

tions

FLOW TIME

Results

Conclusion

Instances used

G-SCOP

- Single-machine problems: $1|r_j| \sum C_j$
- 900 instances from [Pan & Shi, 08]
- Less than 100 tasks
- Different relative ranges of the release time

axations

FLOW TIME

Results 000●000 Conclusion

G. SCOP

18/23

Alternatives tested

Main alternatives tested

• Most efficient alternatives for the FLOWTIME constraint:

name	filter Sj	; relaxation		
pmtnFlow	no	$1 r_j; pmtn \sum C_j$		
pmtnBusy	no	$ 1 r_j; pmtn \sum M_j$		
filtFlow	yes	$1 r_j; pmtn \sum C_j$		
filtBusy	yes	$1 r_j; pmtn \sum M_j$		

ations

FLOW TIME

Results 0000000 Conclusion

G-SCOP

Alternatives tested

Main alternatives tested

• Most efficient alternatives for the FLOWTIME constraint:

name	filter <i>S</i> j	relaxation		
pmtnFlow	no	$1 r_j; pmtn \sum C_j$		
pmtnBusy	no	$ 1 r_j; pmtn \sum M_j$		
filtFlow	yes	$1 r_j; pmtn \sum C_j$		
filtBusy	yes	$1 r_j; pmtn \sum M_j$		

• sum: standard sum constraint

kations

FLOW TIME

Results 000●000 Conclusion

G. SCOP

Alternatives tested

Main alternatives tested

• Most efficient alternatives for the FLOWTIME constraint:

name	filter Sj	relaxation
pmtnFlow	no	$1 r_j; pmtn \sum C_j$
pmtnBusy	no	$ 1 r_j; pmtn \sum M_j$
filtFlow	yes	$1 r_j; pmtn \sum C_j$
filtBusy	yes	$1 r_j; pmtn \sum M_j$

• sum: standard sum constraint

• complBusy: adapts COMPLETION $(1|r_j; pmtn| \sum M_j)$

Context

G-SCOP

Relaxation

FLOWTIME

Results

Conclusion

Experimental results

Context

Relaxations

FLOW TIME

Results 00000●0 Conclusion

Detailed results

alternative	OPT	SAT	mean t*	median t*	mean #b*	median #b*
pmtnFlow	824	76	50.5	2.62	484613	51618
pmtnBusy	777	123	55.4	2.87	666864	60633
filtFlow	565	335	169	58.8	10776	8704
filtBusy	578	322	158	47.3	18942	10832
sum	246	654	76.9	5.21	1629165	150508
complBusy	610	290	114	17.8	63835	25356

[*]only on OPT solved instances

G-SCOP

Conclusion of experimental results

Results

Summary of the results

• Less time taken to solve single-machine problems with FLOWTIME

Conclusion of experimental results

Results

- Less time taken to solve single-machine problems with FLOWTIME
- +500 more instances solved to optimality with pmtnFlow than with sum

Conclusion of experimental results

Results

- Less time taken to solve single-machine problems with FLOWTIME
- +500 more instances solved to optimality with pmtnFlow than with sum
- pmtnFlow quicker than pmtnBusy, and visits less branches

Conclusion of experimental results

Results

- Less time taken to solve single-machine problems with FLOWTIME
- +500 more instances solved to optimality with pmtnFlow than with sum
- pmtnFlow quicker than pmtnBusy, and visits less branches
- complBusy visits more branches than filtFlow

Conclusion of experimental results

Results

- Less time taken to solve single-machine problems with FLOWTIME
- +500 more instances solved to optimality with pmtnFlow than with sum
- pmtnFlow quicker than pmtnBusy, and visits less branches
- complBusy visits more branches than filtFlow
- Currently, filtering S_j: uses less branches than just updating <u>F</u>, but takes more time

ext

itions

FLOW TIME

Results 0000000 Conclusion

5. Conclusion and prospects

Conclusion

0.

Conclusion

• Global constraint minimizing $\sum C_j$

Conclusion

- Global constraint minimizing $\sum C_j$
- FLOWTIME can be used to model any problem with $\sum C_j$

Conclusion

- Global constraint minimizing $\sum C_j$
- FLOWTIME can be used to model any problem with $\sum C_j$
- Filtering algorithm allows using different relaxations

Conclusion

- Global constraint minimizing $\sum C_j$
- FLOWTIME can be used to model any problem with $\sum C_j$
- Filtering algorithm allows using different relaxations
- Effective for single-machine problems

Conclusion

- Global constraint minimizing $\sum C_j$
- FLOWTIME can be used to model any problem with $\sum C_j$
- Filtering algorithm allows using different relaxations
- Effective for single-machine problems
- Less effective for flowshop problems

Conclusion

Conclusion

- Global constraint minimizing $\sum C_j$
- FLOWTIME can be used to model any problem with $\sum C_j$
- Filtering algorithm allows using different relaxations
- Effective for single-machine problems
- Less effective for flowshop problems

Prospects

• Improve the incrementality of the filtering algorithm (t = t + 1)

Conclusion

Conclusion

- Global constraint minimizing $\sum C_j$
- FLOWTIME can be used to model any problem with $\sum C_j$
- Filtering algorithm allows using different relaxations
- Effective for single-machine problems
- Less effective for flowshop problems

Prospects

- Improve the incrementality of the filtering algorithm (t = t + 1)
- Add conditions to use the filtering algorithm

Conclusion

Conclusion

- Global constraint minimizing $\sum C_j$
- FLOWTIME can be used to model any problem with $\sum C_j$
- Filtering algorithm allows using different relaxations
- Effective for single-machine problems
- Less effective for flowshop problems

Prospects

- Improve the incrementality of the filtering algorithm (t = t + 1)
- Add conditions to use the filtering algorithm
- Add $1|sp-graph| \sum w_j C_j$ relaxation