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Scheduling problems

De�nition (scheduling)

Allocating resources to tasks over time while respecting the tasks
and resources constraints.
Often optimizing one or more objectives (Cmax,

∑∑∑
Cj . . . ).
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Solving scheduling problems with CP

Disjunctive constraint [Carlier, 1982; Fahimi & Quimper, 2014]

Cumulative constraint [Aggoun & Beldiceanu, 1993; Guy et al., 2015]

Survey of CP techniques for scheduling [Baptiste et al., 2001]

CP vs MIP for 12 scheduling problems [Naderi et al., 2023]. . .
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Constraint Optimization Problem (COP)

CP for scheduling: key points

Declarative

Global constraints

Components for scheduling

Exact method

Example in OPL, modeling language of IBM

dvar interval tasks[j in N] in r[j]..d[j] size p[j];

dvar int F; \\objective variable

minimize F;

subject to {

noOverlap(tasks); \\resource constraint (ct)

F = sum(j in N) endOf(tasks[j]); \\standard sum ct

flowtime(tasks, F); \\contribution of this work

}
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Constraint Programming (CP)

Principle

CP = Filtering + Search

Filtering = removing values from domains leading to non
feasible solutions

Search = systematic exploration of solution space

Figure: Solving the 4-queens
problem with CP. Picture
from the "Guide to
Constraint Programming" of
Roman Barták, 1998
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Main objective and chosen approach

Thesis main objective

Improve CP integration of scheduling objectives that are not
studied a lot in CP, in particular "

∑∑∑
" objectives

Focus on
∑∑∑
Cj (�owtime)

Chosen approach

Cost-based domain �ltering [Focacci et al., 99]: global
constraints �lter values not leading to a better-cost solution

Scheduling problems: a relaxation gives a lower bound

Main objective of this work

Propose a new global constraint helping minimizing
∑∑∑
Cj using

new polynomial relaxations
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The COMPLETION constraint

The COMPLETION constraint [Kovács & Beck, 2011]

COMPLETION([S1, . . . , Sn], [p1, . . . , pn], [w1, . . . , wn], C )
def⇐⇒ ((Si + pi ≤ Sj ∨ Sj + pj ≤ Si︸ ︷︷ ︸

no tasks overlap

) ∧ (
∑

wi (Si + pi ) = C
︸ ︷︷ ︸

no preemption

))
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Main contribution of this work

De�nition of a more e�cient global constraint for the
non-weighted case: FLOWTIME
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2. Relaxations of 1|rj , dj ; prec|
∑

Cj
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Polynomial relaxations

1|rj ; dj ; prec|
∑

Cj1|rj |
∑

Cj

1|prec|∑Cj

1||∑Cj

1|rj ; dj |
∑

Cj

1|rj ; dj ; pmtn|∑Cj

1|rj ; pmtn|∑Cj

1|chains; rj ; pmtn|∑Cj

1|prec; pmtn|∑Cj

1|sp-graph|∑wjCj

1|dj |
∑

Cj

1|rj ; pmtn|∑wjMj
P

NP-hard

list upda-
problem complexity algorithm ted reference
1||∑Cj O(n log n) yes no [Horn, 1973]
1|dj |

∑
Cj O(n log n) yes yes [Chen & al, 1998]

1|rj ; pmtn|∑Cj O(n log n) yes yes [Baker, 1974]
1|rj ; pmtn|∑wjMj O(n log n) yes yes [Kovàcs & Beck, 2011]
1|sp-graph|∑wjCj O(n log n) no yes [Lawler, 1978]
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3. The FLOWTIME constraint
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Global schema

Global schema of the �ltering algorithm

Choose a relaxation

Two rules:

Update the lower bound of the objective variable (F )

Filter the bounds of the domains of the Sj variables

Remarks

The relaxation can be changed

The relaxation is considered a "black box"

Allows to compare the performances of di�erent relaxations

12/23



Context Relaxations FLOWTIME Results Conclusion

Global schema

Global schema of the �ltering algorithm

Choose a relaxation

Two rules:

Update the lower bound of the objective variable (F )

Filter the bounds of the domains of the Sj variables

Remarks

The relaxation can be changed

The relaxation is considered a "black box"

Allows to compare the performances of di�erent relaxations

12/23



Context Relaxations FLOWTIME Results Conclusion

Global schema

Global schema of the �ltering algorithm

Choose a relaxation

Two rules:

Update the lower bound of the objective variable (F )

Filter the bounds of the domains of the Sj variables

Remarks

The relaxation can be changed

The relaxation is considered a "black box"

Allows to compare the performances of di�erent relaxations

12/23



Context Relaxations FLOWTIME Results Conclusion

Global schema

Global schema of the �ltering algorithm

Choose a relaxation

Two rules:

Update the lower bound of the objective variable (F )

Filter the bounds of the domains of the Sj variables

Remarks

The relaxation can be changed

The relaxation is considered a "black box"

Allows to compare the performances of di�erent relaxations

12/23



Context Relaxations FLOWTIME Results Conclusion

Global schema

Global schema of the �ltering algorithm

Choose a relaxation

Two rules:

Update the lower bound of the objective variable (F )

Filter the bounds of the domains of the Sj variables

Remarks

The relaxation can be changed

The relaxation is considered a "black box"

Allows to compare the performances of di�erent relaxations

12/23



Context Relaxations FLOWTIME Results Conclusion

Global schema

Global schema of the �ltering algorithm

Choose a relaxation

Two rules:

Update the lower bound of the objective variable (F )

Filter the bounds of the domains of the Sj variables

Remarks

The relaxation can be changed

The relaxation is considered a "black box"

Allows to compare the performances of di�erent relaxations

12/23



Context Relaxations FLOWTIME Results Conclusion

Global schema

Global schema of the �ltering algorithm

Choose a relaxation

Two rules:

Update the lower bound of the objective variable (F )

Filter the bounds of the domains of the Sj variables

Remarks

The relaxation can be changed

The relaxation is considered a "black box"

Allows to compare the performances of di�erent relaxations

12/23



Context Relaxations FLOWTIME Results Conclusion

Objective bound update: example

Tj 1 2 3 4 5 6

pj 14 5 2 3 6 3
rj 0 0 1 12 16 17
dj 24 ∞ 10 ∞ 26 ∞

Relaxation used: 1|rj ; pmtn|∑Cj

j 1 2 3 4 5 6

Sj [0, 10] [0, 46] [1, 8] [12, 49] [16, 20] [17, 17]
r ′j 0 0 1 12 16 17
d ′
j 24 51 10 51 26 20

2 3 2 1 4 1 5 6 5 1
t

ri, di

0 1 3 7 12 15 16 17 20 25 33

1
2 3 -3 4 5 6 -6 -1 -5
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Filter bounds of Sj : example

Filter S1 (symmetrical for S1)
F ∈ [104, 130] Relaxation used: 1|rj ; pmtn|∑Cj

j 1 2 3 4 5 6
Sj [2, 10] [0, 46] [1, 8] [12, 49] [16, 20] [17, 17]
r ′j 2 0 1 12 16 17

d ′
j 24 51 10 51 26 20

2 3 1 6 4 2 5
t

ri, di

0 1 3 17 20 23 27 33

1
2 3 -3 4 5 6 -6 -1 -5

Step 2 : t = 3, relax1,3 = 123 ≤ 130(= F )

STOP
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Filter bounds of Sj : example

Filter S1 (symmetrical for S1)
F ∈ [104, 130] Relaxation used: 1|rj ; pmtn|∑Cj
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4. Experimental results
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Experimental environment

Environment and parameters

C++ and IBM ILOG CPLEX Optimization Studio 22.1

The code of COMPLETION has been adapted to the solver
version (IlcActivity −→ IloIntervalVar)

Dell computer with 256 GB of RAM and 4 Intel E7-4870
2.40 GHz processors running on CentOS Linux release 7.9
(each processor has 10 cores)

Parallelism is disabled

Time limit is 1000 seconds for each run
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Instances

Instances used

Single-machine problems: 1|rj |
∑

Cj

900 instances from [Pan & Shi, 08]

Less than 100 tasks

Di�erent relative ranges of the release time
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Alternatives tested

Main alternatives tested

Most e�cient alternatives for the FLOWTIME constraint:

name �lter Sj relaxation

pmtnFlow no 1|rj ; pmtn|∑Cj

pmtnBusy no 1|rj ; pmtn|∑Mj

filtFlow yes 1|rj ; pmtn|∑Cj

filtBusy yes 1|rj ; pmtn|∑Mj

sum: standard sum constraint

complBusy: adapts COMPLETION (1|rj ; pmtn|∑Mj)
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Experimental results

Time: pmtnFlow < pmtnBusy < complBusy < filtBusy < filtFlow < sum

# Branches: filtFlow < filtBusy < complBusy < pmtnFlow < pmtnBusy < sum

19/23
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Detailed results

alternative OPT SAT mean t∗ median t∗ mean #b∗ median #b∗

pmtnFlow 824 76 50.5 2.62 484613 51618
pmtnBusy 777 123 55.4 2.87 666864 60633
filtFlow 565 335 169 58.8 10776 8704
filtBusy 578 322 158 47.3 18942 10832

sum 246 654 76.9 5.21 1629165 150508
complBusy 610 290 114 17.8 63835 25356

[∗]only on OPT solved instances

20/23



Context Relaxations FLOWTIME Results Conclusion

Conclusion of experimental results

Summary of the results

Less time taken to solve single-machine problems with
FLOWTIME

+500 more instances solved to optimality with pmtnFlow

than with sum

pmtnFlow quicker than pmtnBusy, and visits less branches

complBusy visits more branches than filtFlow

Currently, �ltering Sj : uses less branches than just
updating F , but takes more time

21/23



Context Relaxations FLOWTIME Results Conclusion

Conclusion of experimental results

Summary of the results

Less time taken to solve single-machine problems with
FLOWTIME

+500 more instances solved to optimality with pmtnFlow

than with sum

pmtnFlow quicker than pmtnBusy, and visits less branches

complBusy visits more branches than filtFlow

Currently, �ltering Sj : uses less branches than just
updating F , but takes more time

21/23



Context Relaxations FLOWTIME Results Conclusion

Conclusion of experimental results

Summary of the results

Less time taken to solve single-machine problems with
FLOWTIME

+500 more instances solved to optimality with pmtnFlow

than with sum

pmtnFlow quicker than pmtnBusy, and visits less branches

complBusy visits more branches than filtFlow

Currently, �ltering Sj : uses less branches than just
updating F , but takes more time

21/23



Context Relaxations FLOWTIME Results Conclusion

Conclusion of experimental results

Summary of the results

Less time taken to solve single-machine problems with
FLOWTIME

+500 more instances solved to optimality with pmtnFlow

than with sum

pmtnFlow quicker than pmtnBusy, and visits less branches

complBusy visits more branches than filtFlow

Currently, �ltering Sj : uses less branches than just
updating F , but takes more time

21/23



Context Relaxations FLOWTIME Results Conclusion

Conclusion of experimental results

Summary of the results

Less time taken to solve single-machine problems with
FLOWTIME

+500 more instances solved to optimality with pmtnFlow

than with sum

pmtnFlow quicker than pmtnBusy, and visits less branches

complBusy visits more branches than filtFlow

Currently, �ltering Sj : uses less branches than just
updating F , but takes more time

21/23



Context Relaxations FLOWTIME Results Conclusion

5. Conclusion and prospects

22/23



Context Relaxations FLOWTIME Results Conclusion

Conclusion and prospects

Conclusion

Global constraint minimizing
∑

Cj

FLOWTIME can be used to model any problem with
∑

Cj

Filtering algorithm allows using di�erent relaxations

E�ective for single-machine problems

Less e�ective for �owshop problems

Prospects

Improve the incrementality of the �ltering algorithm
(t = t + 1)

Add conditions to use the �ltering algorithm

Add 1|sp-graph|∑wjCj relaxation

23/23



Context Relaxations FLOWTIME Results Conclusion

Conclusion and prospects

Conclusion

Global constraint minimizing
∑

Cj

FLOWTIME can be used to model any problem with
∑

Cj

Filtering algorithm allows using di�erent relaxations

E�ective for single-machine problems

Less e�ective for �owshop problems

Prospects

Improve the incrementality of the �ltering algorithm
(t = t + 1)

Add conditions to use the �ltering algorithm

Add 1|sp-graph|∑wjCj relaxation

23/23



Context Relaxations FLOWTIME Results Conclusion

Conclusion and prospects

Conclusion

Global constraint minimizing
∑

Cj

FLOWTIME can be used to model any problem with
∑

Cj

Filtering algorithm allows using di�erent relaxations

E�ective for single-machine problems

Less e�ective for �owshop problems

Prospects

Improve the incrementality of the �ltering algorithm
(t = t + 1)

Add conditions to use the �ltering algorithm

Add 1|sp-graph|∑wjCj relaxation

23/23



Context Relaxations FLOWTIME Results Conclusion

Conclusion and prospects

Conclusion

Global constraint minimizing
∑

Cj

FLOWTIME can be used to model any problem with
∑

Cj

Filtering algorithm allows using di�erent relaxations

E�ective for single-machine problems

Less e�ective for �owshop problems

Prospects

Improve the incrementality of the �ltering algorithm
(t = t + 1)

Add conditions to use the �ltering algorithm

Add 1|sp-graph|∑wjCj relaxation

23/23



Context Relaxations FLOWTIME Results Conclusion

Conclusion and prospects

Conclusion

Global constraint minimizing
∑

Cj

FLOWTIME can be used to model any problem with
∑

Cj

Filtering algorithm allows using di�erent relaxations

E�ective for single-machine problems

Less e�ective for �owshop problems

Prospects

Improve the incrementality of the �ltering algorithm
(t = t + 1)

Add conditions to use the �ltering algorithm

Add 1|sp-graph|∑wjCj relaxation

23/23



Context Relaxations FLOWTIME Results Conclusion

Conclusion and prospects

Conclusion

Global constraint minimizing
∑

Cj

FLOWTIME can be used to model any problem with
∑

Cj

Filtering algorithm allows using di�erent relaxations

E�ective for single-machine problems

Less e�ective for �owshop problems

Prospects

Improve the incrementality of the �ltering algorithm
(t = t + 1)

Add conditions to use the �ltering algorithm

Add 1|sp-graph|∑wjCj relaxation

23/23



Context Relaxations FLOWTIME Results Conclusion

Conclusion and prospects

Conclusion

Global constraint minimizing
∑

Cj

FLOWTIME can be used to model any problem with
∑

Cj

Filtering algorithm allows using di�erent relaxations

E�ective for single-machine problems

Less e�ective for �owshop problems

Prospects

Improve the incrementality of the �ltering algorithm
(t = t + 1)

Add conditions to use the �ltering algorithm

Add 1|sp-graph|∑wjCj relaxation

23/23



Context Relaxations FLOWTIME Results Conclusion

Conclusion and prospects

Conclusion

Global constraint minimizing
∑

Cj

FLOWTIME can be used to model any problem with
∑

Cj

Filtering algorithm allows using di�erent relaxations

E�ective for single-machine problems

Less e�ective for �owshop problems

Prospects

Improve the incrementality of the �ltering algorithm
(t = t + 1)

Add conditions to use the �ltering algorithm

Add 1|sp-graph|∑wjCj relaxation

23/23


	Context
	Relaxations of 1 | rj, dj ; prec | Cj
	The FLOWTIME constraint
	Experimental results
	Conclusion and prospects

