A Series-Parallel digraph based relaxation for the COMPLETION constraint

Bonnin Camille*,o Thomas Dissaux ${ }^{\dagger}$ Malapert Arnaud ${ }^{\circ}$
Nicolas Nisse ${ }^{\dagger} \quad$ Espinouse Marie-Laure*
*Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, 38000 Grenoble, France \{camille.bonnin, marie-laure.espinouse\}@grenoble-inp.fr
${ }^{\circ}$ Université Côte d'Azur, CNRS, I3S, France arnaud.malapert@univ-cotedazur.fr
${ }^{\dagger}$ Université Côte d'Azur, Inria, CNRS, I3S, Sophia Antipolis, France
\{thomas.dissaux, nicolas.nisse\}बinria.fr

Doctoral Program of CP 2023 ($26^{\text {th }}-31^{\text {th }}$ August), Toronto, ON, Canada

G. SCOP

Thesis main objective

Thesis main objective

- Improve CP integration of scheduling objectives that are not studied a lot in CP, in particular " \sum " objectives

Chosen approach and goal

G:SCOP

Thesis main objective

Thesis main objective

- Improve CP integration of scheduling objectives that are not studied a lot in CP, in particular " \sum " objectives
- $\sum C_{j}$ (flowtime) and $\sum w_{j} C_{j}$ (weighted flowtime)

Chosen approach and goal

Thesis main objective

Thesis main objective

- Improve CP integration of scheduling objectives that are not studied a lot in CP, in particular " \sum " objectives
- $\sum C_{j}$ (flowtime) and $\sum w_{j} C_{j}$ (weighted flowtime)

Chosen approach and goal

- Cost-based domain filtering: approach that uses filtering algorithms for global constraints which filter combinations of values that cannot lead to a better-cost solution

A way to do that is to use a lower bound which can be found by using a relaration for scheduling puoblems

- Goal: find new such filtering algorithms using new nolvnomial relaxations

Thesis main objective

Thesis main objective

- Improve CP integration of scheduling objectives that are not studied a lot in CP, in particular " \sum " objectives
- $\sum C_{j}$ (flowtime) and $\sum w_{j} C_{j}$ (weighted flowtime)

Chosen approach and goal

- Cost-based domain filtering: approach that uses filtering algorithms for global constraints which filter combinations of values that cannot lead to a better-cost solution
- A way to do that is to use a lower bound which can be found by using a relaxation for scheduling problems
- Goal: find new such filtering algorithms using new polynomial relaxations

Thesis main objective

Thesis main objective

- Improve CP integration of scheduling objectives that are not studied a lot in CP, in particular " \sum " objectives
- $\sum C_{j}$ (flowtime) and $\sum w_{j} C_{j}$ (weighted flowtime)

Chosen approach and goal

- Cost-based domain filtering: approach that uses filtering algorithms for global constraints which filter combinations of values that cannot lead to a better-cost solution
- A way to do that is to use a lower bound which can be found by using a relaxation for scheduling problems
- Goal: find new such filtering algorithms using new polynomial relaxations

G. S SCDP

The COMPLETION constraint

The COMPLETION constraint

- Defined by Kovács and Beck in 2011
- COMPLETION([SI, $\xrightarrow[\text { where } C=\sum_{i} w_{i} C_{i}]{\stackrel{\text { def }}{\Longleftrightarrow}}\left(\left(S_{i}+p_{i} \leq S_{j}\right)\right.$ - The filtering algorithm uses a relaxation: $1\left|r_{j i} p m t n\right| \sum W_{i} M_{i}$

Giscop

The COMPLETION constraint

The COMPLETION constraint

- Defined by Kovács and Beck in 2011
- COMPLETION $\left(\left[S_{1}, \ldots, S_{n}\right],\left[p_{1}, \ldots, p_{n}\right],\left[w_{1}, \ldots, w_{n}\right], C\right)$ $\stackrel{\text { def }}{\Longleftrightarrow}\left(\left(S_{i}+p_{i} \leq S_{j} \vee S_{j}+p_{j} \leq S_{i}\right) \wedge \sum_{i} w_{i}\left(S_{i}+p_{i}\right)=C\right)$, where $C=\sum_{i} w_{i} C_{i}$

G.'scop

The COMPLETION constraint

The COMPLETION constraint

- Defined by Kovács and Beck in 2011
- COMPLETION $\left(\left[S_{1}, \ldots, S_{n}\right],\left[p_{1}, \ldots, p_{n}\right],\left[w_{1}, \ldots, w_{n}\right], C\right)$ $\stackrel{\text { def }}{\Longleftrightarrow}\left(\left(S_{i}+p_{i} \leq S_{j} \vee S_{j}+p_{j} \leq S_{i}\right) \wedge \sum_{i} w_{i}\left(S_{i}+p_{i}\right)=C\right)$, where $C=\sum_{i} w_{i} C_{i}$
- The filtering algorithm uses a relaxation: $1\left|r_{j} ; p m t n\right| \sum w_{i} M_{i}$

Giscop

The COMPLETION constraint

The COMPLETION constraint

- Defined by Kovács and Beck in 2011
- COMPLETION $\left(\left[S_{1}, \ldots, S_{n}\right],\left[p_{1}, \ldots, p_{n}\right],\left[w_{1}, \ldots, w_{n}\right], C\right)$ $\stackrel{\text { def }}{\Longleftrightarrow}\left(\left(S_{i}+p_{i} \leq S_{j} \vee S_{j}+p_{j} \leq S_{i}\right) \wedge \sum_{i} w_{i}\left(S_{i}+p_{i}\right)=C\right)$, where $C=\sum_{i} w_{i} C_{i}$
- The filtering algorithm uses a relaxation: $1\left|r_{j} ; p m t n\right| \sum w_{i} M_{i}$

Current work

- Definition of a global constraint based on COMPLETION for the non-weighted case (not presented here): FLOWTIME

Giscop

The COMPLETION constraint

The COMPLETION constraint

- Defined by Kovács and Beck in 2011
- COMPLETION $\left(\left[S_{1}, \ldots, S_{n}\right],\left[p_{1}, \ldots, p_{n}\right],\left[w_{1}, \ldots, w_{n}\right], C\right)$ $\stackrel{\text { def }}{\Longleftrightarrow}\left(\left(S_{i}+p_{i} \leq S_{j} \vee S_{j}+p_{j} \leq S_{i}\right) \wedge \sum_{i} w_{i}\left(S_{i}+p_{i}\right)=C\right)$, where $C=\sum_{i} w_{i} C_{i}$
- The filtering algorithm uses a relaxation: $1\left|r_{j} ; p m t n\right| \sum w_{i} M_{i}$

Current work

- Definition of a global constraint based on COMPLETION for the non-weighted case (not presented here): FLOWTIME
- A second filtering algorithm for COMPLETION using another relaxation: $1|s p-g r a p h| \sum w_{i} C_{i}$

(Vertex) Series Parallel (di)graph

A digraph that can be built exclusively by using two operations starting from single vertex:
(a) Parallel operation
(b) Series
operation

G:'SCDP

(Vertex) Series Parallel (di)graph

A digraph that can be built exclusively by using two operations starting from single vertex:

(a) Parallel operation
(b) Series operation

G:SCDP

(Vertex) Series Parallel (di)graph

A digraph that can be built exclusively by using two operations starting from single vertex:

(a) Parallel operation
(b) Series operation

G:SCDP

A digraph that can be built exclusively by using two operations starting from single vertex:

(a) Parallel operation

(b) Series operation

G:SCDP

A digraph that can be built exclusively by using two operations starting from single vertex:

(a) Parallel operation

(b) Series operation

SP-digraph and tree decomposition

(a) SP-digraph G
(b) Tree decomposition of G

SP-digraph and tree decomposition

(a) SP-digraph G
(b) Tree decomposition of G

SP-digraph and tree decomposition

(a) SP-digraph G

(b) Tree decomposition of G

Giscop

SP-digraph and tree decomposition

(a) SP-digraph G

(b) Tree decomposition of G

Gis SCOP

SP-digraph and tree decomposition

(a) SP-digraph G

(b) Tree decomposition of G

G.'scop

SP-digraph and tree decomposition

(a) SP-digraph G
(b) Tree decomposition of G

G.scop

SP-digraph and tree decomposition

(a) SP-digraph G

(b) Tree decomposition of G

G.scop

SP-digraph and tree decomposition

(a) SP-digraph G

(b) Tree decomposition of G

G.scop

SP-digraph and tree decomposition

(a) SP-digraph G

(b) Tree decomposition of G

G:SCOP

Interest of SP-digraphs

Polynomial relaxation

- General problem $1\left|r_{j} ; d_{j}\right| \sum w_{j} C_{j}$ is $\mathcal{N} \mathcal{P}$-hard
- Polynomial relaxation of COMPLETION: $1\left|r_{j} ; p m t n\right| \sum w_{j} M_{j}$
- $1|s p-g r a p h| \sum w_{j} C_{j}$ can be solved in polynomial time $(\mathcal{O}(n \log n))$ by Lawler's algorithm using the tree decomposition of SP-digraphs

Cost-based domain filtering approach

G."sCOP

Interest of SP-digraphs

Polynomial relaxation

- General problem $1\left|r_{j} ; d_{j}\right| \sum w_{j} C_{j}$ is $\mathcal{N} \mathcal{P}$-hard
- Polynomial relaxation of COMPLETION: $1\left|r_{j} ; p m t n\right| \sum w_{j} M_{j}$
- $1 \mid$ sp-graph $\mid \sum w_{j} C_{j}$ can be solved in polynomial time $(\mathcal{O}(n \log n))$ by Lawler's algorithm using the tree decomposition of SP-digraphs

Cost-based domain filtering approach

G:SCDP

Interest of SP-digraphs

Polynomial relaxation

- General problem $1\left|r_{j} ; d_{j}\right| \sum w_{j} C_{j}$ is $\mathcal{N} \mathcal{P}$-hard
- Polynomial relaxation of COMPLETION: $1\left|r_{j} ; p m t n\right| \sum w_{j} M_{j}$
- $1|s p-g r a p h| \sum w_{j} C_{j}$ can be solved in polynomial time $(\mathcal{O}(n \log n))$ by Lawler's algorithm using the tree decomposition of SP-digraphs

Cost-based domain filtering approach

Giscop

Interest of SP-digraphs

Polynomial relaxation

- General problem $1\left|r_{j} ; d_{j}\right| \sum w_{j} C_{j}$ is $\mathcal{N} \mathcal{P}$-hard
- Polynomial relaxation of COMPLETION: $1\left|r_{j} ; p m t n\right| \sum w_{j} M_{j}$
- $1 \mid$ sp-graph $\mid \sum w_{j} C_{j}$ can be solved in polynomial time $(\mathcal{O}(n \log n))$ by Lawler's algorithm using the tree decomposition of SP-digraphs

Cost-based domain filtering approach

- First step: Extract an instance of $1 \mid s p$-graph $\mid \sum w_{j} C_{j}$ from an instance of $1\left|r_{j} ; d_{j}\right| \sum w_{j} C_{j}$ (currently)
- Second step: Use it to compute a lower bound for a new filtering algorithm for COMPLETION (prospect)

Interest of SP-digraphs

Polynomial relaxation

- General problem $1\left|r_{j} ; d_{j}\right| \sum w_{j} C_{j}$ is $\mathcal{N} \mathcal{P}$-hard
- Polynomial relaxation of COMPLETION: $1\left|r_{j} ; p m t n\right| \sum w_{j} M_{j}$
- $1|s p-g r a p h| \sum w_{j} C_{j}$ can be solved in polynomial time $(\mathcal{O}(n \log n))$ by Lawler's algorithm using the tree decomposition of SP-digraphs

Cost-based domain filtering approach

- First step: Extract an instance of $1|s p-g r a p h| \sum w_{j} C_{j}$ from an instance of $1\left|r_{j} ; d_{j}\right| \sum w_{j} C_{j}$ (currently)
- Second step: Use it to compute a lower bound for a new filtering algorithm for COMPLETION (prospect)

Interval and precedence graphs

(a) Intervals representing the time windows of the tasks

G.'SCOP

Interval and precedence graphs

\qquad
(a) Intervals representing the time windows of the tasks

(b) Interval graph

G.'scop

Interval and precedence graphs

$$
4
$$

\qquad

\qquad
\qquad

- 7

\qquad
(a) Intervals representing the time windows of the tasks

(b) Interval graph

(c) Precedences digraph

G: SCOP

Non-preemptive relaxations

Non-preemptive relaxations of $1\left|r_{j} ; d_{j}\right| \sum w_{j} C_{j}$

- General problem $1\left|r_{j} ; d_{j}\right| \sum w_{j} C_{j}$ is $\mathcal{N} \mathcal{P}$-hard
- Relaxation 1 interval order $\sum w_{j} C_{j}$ is also $\mathcal{N} \mathcal{P}$-hard
- Relaxation $1|s p-g r a p h| \sum w_{j} C_{j}$ is polynomial

Consequence
 We need to extract a SP-digraph of precedences from the time windows of the tasks $\Rightarrow 2$ algorithms

G.'SCDP

Non-preemptive relaxations

Non-preemptive relaxations of $1\left|r_{j} ; d_{j}\right| \sum w_{j} C_{j}$

- General problem $1\left|r_{j} ; d_{j}\right| \sum w_{j} C_{j}$ is $\mathcal{N} \mathcal{P}$-hard
- Relaxation 1 interval order $\sum w_{j} C_{j}$ is also $\mathcal{N} \mathcal{P}$-hard
- Relaxation 1 sp-graph $\sum w_{i} C_{j}$ is polynomial
\square
Consequence
We need to extract a SP-digraph of precedences from the time
windows of the tasks $\Rightarrow 2$ algorithms

Giscop

Non-preemptive relaxations

Non-preemptive relaxations of $1\left|r_{j} ; d_{j}\right| \sum w_{j} C_{j}$

- General problem $1\left|r_{j} ; d_{j}\right| \sum w_{j} C_{j}$ is $\mathcal{N} \mathcal{P}$-hard
- Relaxation 1 |interval order $\sum w_{j} C_{j}$ is also $\mathcal{N} \mathcal{P}$-hard
- Relaxation $1|s p-g r a p h| \sum w_{j} C_{j}$ is polynomial

[^0]
G.'scop

Non-preemptive relaxations

Non-preemptive relaxations of $1\left|r_{j} ; d_{j}\right| \sum w_{j} C_{j}$

- General problem $1\left|r_{j} ; d_{j}\right| \sum w_{j} C_{j}$ is $\mathcal{N} \mathcal{P}$-hard
- Relaxation 1 |interval order $\sum w_{j} C_{j}$ is also $\mathcal{N} \mathcal{P}$-hard
- Relaxation $1|s p-g r a p h| \sum w_{j} C_{j}$ is polynomial

Consequence

We need to extract a SP-digraph of precedences from the time windows of the tasks $\Rightarrow 2$ algorithms

G:SCDP

Colouring Based Algorithm

\qquad
(a) Intervals representing the time windows of the tasks

(c) SP-digraph
obtained by CBA
(b) Precedences digraph

G:SCDP

Colouring Based Algorithm

\qquad
(a) Intervals representing the time windows of the tasks

(b) Precedences digraph

G.SCDP

Colouring Based Algorithm

\qquad
(a) Intervals representing the time windows of the tasks

> (c) SP-digraph
obtained by CBA
(b) Precedences digraph

G:SCDP

Colouring Based Algorithm

G.'SCOP

Colouring Based Algorithm

1
(a) Intervals representing the time windows of the tasks

2

3

(c) SP-digraph
(b) Precedences digraph

G.'SCOP

Colouring Based Algorithm

(a) Intervals representing the time windows of the tasks

(c) SP-digraph
(b) Precedences digraph

G.'SCOP

Colouring Based Algorithm

1
(a) Intervals representing the time windows of the tasks

G.SCOP

Colouring Based Algorithm

\qquad
(a) Intervals representing the time windows of the tasks

G.SCDP

Colouring Based Algorithm

 4 —
\qquad 5 \qquad

\qquad
\qquad
$-3-$
-7 \qquad -9 -
\qquad
(a) Intervals representing the time windows of the tasks

(b) Precedences digraph

G.SCDP

Colouring Based Algorithm

G.'SCOP

Minimal Separators Based Algorithm

- 3 -

-7 \qquad

1
(a) Intervals representing the time windows of the tasks

(b) Interval graph
(c) SP-digraph obtained by MSBA

Minimal separators:

G.iscop

Minimal Separators Based Algorithm

(a) Intervals representing the time windows of the tasks

(b) Interval graph
$C_{1} \longrightarrow C_{2} \longrightarrow C_{3}$

(c) SP-digraph obtained by MSBA

Minimal separators: $K_{1}=\{1,4\}$

G.iscop

Minimal Separators Based Algorithm

(a) Intervals representing the time windows of the tasks

(b) Interval graph

(c) SP-digraph obtained by MSBA

Minimal separators: $K_{1}=\{1,4\}$

G. SCOP

Minimal Separators Based Algorithm

 4

$$
5
$$

$$
-3-
$$

\qquad
(a) Intervals representing the time windows of the tasks

(c) SP-digraph obtained by MSBA Minimal separators: $K_{1}=\{1,4\}$ and $K_{2}=\{7\}$

G. SCOP

Minimal Separators Based Algorithm

 4

$$
-3-
$$

\qquad
(a) Intervals representing the time windows of the tasks

(c) SP-digraph obtained by MSBA Minimal separators: $K_{1}=\{1,4\}$ and $K_{2}=\{7\}$

G. SCOP

Minimal Separators Based Algorithm

 4

$$
-3-
$$

\qquad
(a) Intervals representing the time windows of the tasks

Minimal separators: $K_{1}=\{1,4\}$ and $K_{2}=\{7\}$

Gis SCOP

Conclusion and prospects

Conclusion

- Relaxation $1|s p-g r a p h| \sum w_{j} C_{j}$ is polynomial

Prospects

G.'scop

Conclusion and prospects

Conclusion

- Relaxation $1|s p-g r a p h| \sum w_{j} C_{j}$ is polynomial
- 2 algorithms for extracting an instance of $1 \mid$ sp-graph $\mid \sum w_{j} C_{j}$ from $1\left|r_{j} ; d_{j}\right| \sum w_{j} C_{j}$

Giscop

Conclusion and prospects

Conclusion

- Relaxation $1|s p-g r a p h| \sum w_{j} C_{j}$ is polynomial
- 2 algorithms for extracting an instance of $1 \mid$ sp-graph $\mid \sum w_{j} C_{j}$ from $1\left|r_{j} ; d_{j}\right| \sum w_{j} C_{j}$

Prospects

- Implement new filtering algorithms for COMPLETION
- Compare the filtering algorithms
- We defined an extension of SP-digraphs: the Pseudo-SP dioranhs (PSP-dioranhs) \Rightarrow Complexity of $1 \mid$ psp-graph

G.iscop

Conclusion and prospects

Conclusion

- Relaxation $1|s p-g r a p h| \sum w_{j} C_{j}$ is polynomial
- 2 algorithms for extracting an instance of $1 \mid$ sp-graph $\mid \sum w_{j} C_{j}$ from $1\left|r_{j} ; d_{j}\right| \sum w_{j} C_{j}$

Prospects

- Implement new filtering algorithms for COMPLETION
- Compare the filtering algorithms
- We defined an extension of SP-digraphs: the Pseudo-SP digraphs (PSP-digraphs) \Rightarrow Complexity of $1 \mid$ psp-graph

G:S'SCD

Conclusion and prospects

Conclusion

- Relaxation $1|s p-g r a p h| \sum w_{j} C_{j}$ is polynomial
- 2 algorithms for extracting an instance of $1 \mid$ sp-graph $\mid \sum w_{j} C_{j}$ from $1\left|r_{j} ; d_{j}\right| \sum w_{j} C_{j}$

Prospects

- Implement new filtering algorithms for COMPLETION
- Compare the filtering algorithms
- We defined an extension of SP-digraphs: the Pseudo-SP digraphs (PSP-digraphs)
\Rightarrow Complexity of $1 \mid$ psp-graph $\mid \sum w_{j} C_{j}$?

[^0]: Consequence
 We need to extract a SP-digraph of precedences from the time
 windows of the tasks $\Rightarrow 2$ algorithms

