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Thesis main objective

Thesis main objective

Improve CP integration of scheduling objectives that are not
studied a lot in CP, in particular "

∑
" objectives∑

Cj (�owtime) and
∑

wjCj (weighted �owtime)

Chosen approach and goal

Cost-based domain �ltering: approach that uses �ltering
algorithms for global constraints which �lter combinations of
values that cannot lead to a better-cost solution

A way to do that is to use a lower bound which can be found
by using a relaxation for scheduling problems

Goal: �nd new such �ltering algorithms using new

polynomial relaxations
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The COMPLETION constraint

The COMPLETION constraint

De�ned by Kovács and Beck in 2011

COMPLETION([S1, . . . , Sn], [p1, . . . , pn], [w1, . . . , wn], C )
def⇐⇒ ((Si + pi ≤ Sj ∨ Sj + pj ≤ Si ) ∧

∑
i wi (Si + pi ) = C ),

where C =
∑

i wiCi

The �ltering algorithm uses a relaxation: 1|rj ; pmtn|
∑

wiMi
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Current work

De�nition of a global constraint based on COMPLETION
for the non-weighted case (not presented here): FLOWTIME

A second �ltering algorithm for COMPLETION using
another relaxation: 1|sp-graph|

∑
wiCi
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(Vertex) Series Parallel (di)graph

A digraph that can be built exclusively by using two operations
starting from single vertex:
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SP-digraph and tree decomposition

(a) SP-digraph G
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Interest of SP-digraphs

Polynomial relaxation

General problem 1|rj ; dj |
∑

wjCj is NP-hard

Polynomial relaxation of COMPLETION: 1|rj ; pmtn|
∑

wjMj

1|sp-graph|
∑

wjCj can be solved in polynomial time
(O(n log n)) by Lawler's algorithm using the tree
decomposition of SP-digraphs

Cost-based domain �ltering approach

First step: Extract an instance of 1|sp-graph|
∑

wjCj from an
instance of 1|rj ; dj |

∑
wjCj (currently)

Second step: Use it to compute a lower bound for a new
�ltering algorithm for COMPLETION (prospect)
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Interval and precedence graphs

(a) Intervals representing the time windows of the tasks
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Non-preemptive relaxations

Non-preemptive relaxations of 1|rj ; dj |
∑

wjCj

General problem 1|rj ; dj |
∑

wjCj is NP-hard

Relaxation 1|interval order|
∑

wjCj is also NP-hard

Relaxation 1|sp-graph|
∑

wjCj is polynomial

Consequence

We need to extract a SP-digraph of precedences from the time
windows of the tasks ⇒ 2 algorithms
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Minimal Separators Based Algorithm
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Conclusion and prospects

Conclusion

Relaxation 1|sp-graph|
∑

wjCj is polynomial

2 algorithms for extracting an instance of 1|sp-graph|
∑

wjCj

from 1|rj ; dj |
∑

wjCj

Prospects

Implement new �ltering algorithms for COMPLETION

Compare the �ltering algorithms

We de�ned an extension of SP-digraphs: the Pseudo-SP
digraphs (PSP-digraphs)
⇒ Complexity of 1|psp-graph |

∑
wjCj ?
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