
HAL Id: hal-04604106
https://hal.science/hal-04604106

Submitted on 6 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Series-Parallel digraph based relaxation for the
COMPLETION constraint

Camille Bonnin, Thomas Dissaux, Arnaud Malapert, Nicolas Nisse,
Marie-Laure Espinouse

To cite this version:
Camille Bonnin, Thomas Dissaux, Arnaud Malapert, Nicolas Nisse, Marie-Laure Espinouse. A Series-
Parallel digraph based relaxation for the COMPLETION constraint. CP 2023 - 29th International
Conference on Principles and Practice of Constraint Programming (Doctoral program), University of
Toronto, Aug 2023, Toronto (CA), Canada. �10.4230/LIPIcs.CVIT.2016.23�. �hal-04604106�

https://hal.science/hal-04604106
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Series-Parallel digraph based relaxation for the1

COMPLETION constraint2

Camille Bonnin #3

Univ. Grenoble Alpes, CNRS, Grenoble INP1, G-SCOP, 38000 Grenoble, France4

Thomas Dissaux #Ñ5

Université Côte d’Azur, CNRS, Inria, I3S, Sophia Antipolis, France6

Arnaud Malapert #Ñ7

Université Côte d’Azur, CNRS, I3S, France8

Nicolas Nisse #Ñ9

Université Côte d’Azur, Inria, CNRS, I3S, Sophia Antipolis, France10

Marie-Laure Espinouse # Ñ11

Univ. Grenoble Alpes, CNRS, Grenoble INP1, G-SCOP, 38000 Grenoble, France12

Abstract13

In 2011, Kovács and Beck defined the completion global constraint for minimizing the weighted14

flowtime for a single resource. This constraint is part of the cost-based domain filtering approach15

and as such, aims at removing values from the variables domains that cannot lead to a solution with16

a better cost than the best one found so far. The completion constraint uses a polynomial time17

relaxation that minimizes the weighted mean busy time on a single unary capacity resource with18

release dates and preemption. In this ongoing work, we consider another polynomial time relaxation19

that directly minimizes the weighted completion time without preemption where the precedence20

constraints form a Series-Parallel digraph. This is one of the first attempt to use a relaxation without21

preemption. We discuss how to build a Series-Parallel digraph from the time windows of the tasks22

or directly working on their interval graph.23

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;24

Computing methodologies → Planning and scheduling; Applied computing → Operations research25

Keywords and phrases Constraint Programming, Global Constraint, Cost-Based Domain Filtering,26

Operation Research, Scheduling, Weighted Flowtime, Series-Parallel Digraphs27

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2328

1 Introduction29

In our current society, scheduling problems are omnipresent with great diversity of constraints30

and objectives. Currently, the most famous and more studied objective function is the31

makespan (i.e., the end time of the schedule). However, in real applications, other objective32

functions are also used. One of those objective function is the minimization of the weighted33

flowtime (i.e., the weighted sum of the completion time of the tasks) which is used in a large34

variety of applications, from the industrial field, such as automobile gear manufacturing [8],35

to healthcare service sector [6] through multiprocessor scheduling [10].36

Among the many existing methods used to solve scheduling problems, Constraint Pro-37

gramming (CP) is a well-established one. Still, it focuses more on solving satisfaction38

problems than optimization ones. Indeed, to solve an optimization problem in CP, the39

classical method is to solve a sequence of satisfaction problems where constraints bounding40

the domains of the objective variables are added [2]. Nevertheless, there are more and more41

1 Institute of Engineering Univ. Grenoble Alpes

© Camille Bonnin, Thomas Dissaux, Arnaud Malapert, Nicolas Nisse and Marie-Laure Espinouse;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:camille.bonnin@grenoble-inp.fr
mailto:thomas.dissaux@inria.fr
https://www-sop.inria.fr/members/Thomas.Dissaux/
mailto:arnaud.malapert@univ-cotedazur.fr
https://www.i3s.unice.fr/~malapert
https://orcid.org/0000-0003-0099-479X
mailto:nicolas.nisse@inria.fr
https://www-sop.inria.fr/members/Nicolas.Nisse/
https://orcid.org/0000-0003-4500-5078
mailto:marie-laure.espinouse@grenoble-inp.fr
https://g-scop.grenoble-inp.fr/fr/laboratoire/espinouse-marie-laure
https://orcid.org/0000-0003-0120-661X
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Another relaxation for the COMPLETION

studies on how to efficiently solve optimizations problems in CP. Such is the case of the42

cost-based domain filtering approach which uses relaxations in global constraints to prune43

combinations of values that cannot lead to better-costed solutions that the best one found so44

far [7]. The completion constraint defined by Kovács and Beck [11] is an example of this45

approach and aims at pruning combinations of values that cannot lead to solutions with a46

smaller weighted flowtime for a single-machine scheduling problem with time windows.47

Our long therm objective is to develop another filtering algorithm for the completion48

constraint that uses a different relaxation than the one used by Kovács and Beck in order to49

compare their respective performances. The considered relaxation has precedence constraints50

in the form of a Series-Parallel digraph (SP-digraph) and can be solved by a polynomial51

time algorithm proposed by Lawler [12]. In order to use this relaxation for the completion52

constraint, "good" Series-Parallel digraph must be created from the time windows of the tasks.53

This ongoing work proposes two heuristics that take an interval graph (deduced from the54

time windows) and construct a precedences digraph in the form of a Series-Parallel digraph55

that is a sub-digraph of the precedences digraph corresponding to the interval graph. It also56

proposes a new class of digraphs that generalises the Series-Parallel digraphs and explain how57

to compute such a precedences digraph, but the complexity of the corresponding scheduling58

problem is currently unknown.59

This paper is structured as follow. Section 2 gives the definition of the completion60

constraint and some notations from scheduling theory. Then, Section 3 describes the61

proposed approaches to compute a lower bound using Series-Parallel digraphs and graph62

theory. Section 4 concludes this paper and gives some perspectives.63

2 The COMPLETION constraint64

The completion global constraint has been defined by Kovács and Beck in 2011 [11]. It aims65

to minimize the weighted sum of the completion times obtained when scheduling without66

preemption n tasks with time windows on a single resource. The corresponding problem is67

written 1|rj ; dj |
∑

wjCj in the Graham notation.68

Each task Tj posses a weight, wj , and a duration, pj , which is the time taken to completely69

execute the task. For each task Tj , two variables are associated, Sj and Cj which represent70

respectively the start time and the end time of its execution. As each task must be executed71

without preemption, the constraint Cj = Sj + pj must be respected. Also, at each time, the72

current lower bound of Sj is called the release date of Tj and is denoted rj . In the same way,73

the current upper bound of Cj is called the deadline of Tj and is denoted dj . In addition to74

those notations, we write C the sum of the weighted completion times of all the tasks. We75

assume that all data are integers. The completion constraint takes the following form.76

completion([S1, . . . , Sn], [p1, . . . , pn], [w1, . . . , wn], C)77

def⇐⇒ ((Si + pi ≤ Sj ∨ Sj + pj ≤ Si) ∧
∑

i wi(Si + pi) = C)78

This constraint is part of the cost-based domain filtering [7]. As such, it aims to reduce79

the time taken by the solver to find the optimal schedule and not only a feasible schedule. To80

achieve this result, the propagation algorithm proposed by Kovács and Beck [11] uses a lower81

bound computed by using a preemptive polynomial time relaxation, 1|rj ; pmtn|
∑

wjMj .82

This single machine preemptive relaxation enforces the respect of the release dates of the83

tasks and minimizes the weighted sum of the mean busy times, which gives a lower bound of84

the weighted flowtime. Mj , the mean busy time of a task j is the average of all the times85

in which j is executed. The goal of this ongoing work is to propose another propagation86

C. Bonnin et al 23:3

algorithm for this constraint using another non-preemptive polynomial time relaxation,87

1|sp-graph|
∑

wjCj . This scheduling problem is the single machine problem with precedences88

in the form of a SP-digraph minimizing the weighted sum of the completion times. This89

relaxation can be solved in polynomial time by an algorithm given by Lawler [12] which uses90

the tree decomposition of a SP-digraph to construct and manipulate sub-sequences of tasks.91

Using a polynomial non-preemptive relaxation is not the classical approach for this problem,92

so this may lead or not to different deductions that with a preemtive relaxation.93

3 Computing a lower bound a using graph theory94

To design a filtering algorithm for the COMPLETION constraint, computing a lower bound95

is an important step. This section describes the approaches studied to compute a lower96

bound using precedence constraints.97

In order to deduce precedence relations from the time windows of n tasks, the first98

notion that comes to mind is the interval graph of the tasks. An interval graph, written99

here I, is a graph where the vertices correspond to the tasks and where there is an edge100

between two vertices if and only if the time windows of the corresponding tasks intersect.101

For instance, Figure 1b represents the interval graphs I and I ′ of the sets of intervals of102

Figure 1a (respectively the set with only the black tasks and the set with also the red task).103

However, an interval graph indicates which combinations of tasks have no immediate104

precedence relation, but does not gives the precedence relations involving the other combin-105

ations. This information can be found by looking at the precedence digraph of I. Such a106

digraph is written I⃗ here and represents the interval order of the tasks. It has the same107

vertices as the corresponding I, but there is an arc from two vertices vi and vj if and only if108

di ≤ rj where di is the deadline of the task corresponding to vi and rj is the release date of109

the task corresponding to vi. An illustration is given in Figure 1c where the precedences110

digraph I⃗ of the digraph I of Figure 1b is depicted. The single machine scheduling problem111

with precedence constraints in the form of an interval order digraph minimizing the weighted112

flowtime, 1|interval order |
∑

wjCj , is then a relaxation of 1|rj ; dj |
∑

wjCj . However, this113

problem is NP-hard [1] for any interval order digraph of precedences. Therefore, our goal is114

to compute a subgraph of I⃗ such that the corresponding single machine scheduling problem115

minimizing the weighted flowtime can be solved in polynomial time.116

Before describing the approaches considered to achieve this goal, some definitions need to117

be reminded. The transitive closure, tc(D⃗) of a digraph D⃗ is obtained by iteratively (while118

possible) adding the arc (u, v) for any two non-adjacent vertices u and v such that there119

exists a directed path from u to v. Note that, if I is an interval graph, then tc(I⃗) = I⃗. The120

"reverse" operation, is the transitive reduction red(D) of a digraph D⃗ obtained by iteratively121

(while possible) removing the arc (u, v) for any two adjacent vertices u and v such that there122

exists a directed path of length at least 2 from u to v. As an example, Figure 1d represents123

the transitive reduction red(I⃗) of the precedence digraph I⃗ (Fig. 1c) of I (Fig. 1b).124

3.1 First approach: using the SP-digraphs125

The relaxation 1|sp-graph|
∑

wjCj can be solved in polynomial time [12]. This relation uses126

a precedences digraph in the form of a Series-Parallel digraph (SP-digraph). A digraph D⃗ is127

SP if it can be built recursively as follows. One single vertex is an SP-digraph. Given two128

SP-digraphs D⃗1 and D⃗2 with respective sources s1 and s2 and respective sinks k1 and k2:129

P (D⃗1, D⃗2): the disjoint union of D⃗1 and D⃗2 is an SP-digraph (parallel operation);130

CVIT 2016

23:4 Another relaxation for the COMPLETION

1

2
3

4
5 6

7
8

9

(a) The set of intervals in black and the set of intervals in black and red

2 3 4 5 6 7 8 9

1

(b) I in black and I′ in black and red

4

3

2

5 6

7

8

1

(c) Precedence digraph I⃗
corresponding to I

4

3

2

5 6

7

8

91

(d) red(I⃗) in black and
red(I⃗′) in black and red

1 2 3

P

5

S

4

P

6 78

S

P

S

P

(e) Decomposition tree of the
SP-digraph red(I⃗)

Figure 1 Two examples: a set of intervals (in black) corresponding to the digraph I⃗ such that
red(I⃗) is an SP-digraph, and another set of intervals (in black and red) corresponding to the digraph
I⃗′ such that red(I⃗′) is not an SP-digraph.

S(D⃗1, D⃗2): the digraph obtained from the disjoint union of D⃗1 and D⃗2 by adding all arcs131

from k1 to s2 is a SP-digraph (series operation).132

Any SP-digraph D⃗, can be assigned a binary rooted decomposition tree tree(D⃗) where133

there is a one-to-one mapping between the leaves of tree(D⃗) and the vertices of D and each134

internal node of tree(D⃗) either corresponds to a parallel (P) or series (S) operation. Several135

decomposition trees may be associated to a same SP-digraph. For instance, the Figure 1e136

represents a decomposition tree of the SP-digraph red(I⃗) in Figure 1d.137

In what follows, we extend the series composition to more than two digraphs by setting138

S(D⃗1, . . . , D⃗p) = S(D⃗1, S(D⃗2, . . . , D⃗p)). Given a set of vertices X, we also set P (X) to be139

the pairwise parallel composition of the vertices of X.140

The name SP-digraphs [12] can be confusing. Indeed, on the one hand, Series-Parallel141

undirected graphs is a well studied graph class in graph theory, but underlying undirected142

graphs of SP-digraphs are not undirected Series-Parallel graphs [3, 14]. On the other hand143

SP-digraphs are actually more related to cographs (another graph class which is well studied144

in graph theory due to its relationship with clique-width, twin-width, modular decompositions,145

and graphs defined by induced subgraph obstructions since cographs are exactly P4-free146

graphs) [3]. Precisely, it can be easily proved that, given a digraph D, red(D) is SP if and147

only if the underlying graph of tc(D) is a cograph [4, 13].148

The relaxation using SP-digraphs is polynomial, however, there are interval graphs I149

such that red(I⃗) is not SP. For instance, the digraph I ′ of Figure 1b (black and red) leads150

to the precedence digraph red(I⃗ ′) of Figure 1d (black and red) which is not an SP-digraph.151

Indeed, the (undirected) path (7, 9, 6, 8) is an induced P4 in the underlying undirected graph152

C. Bonnin et al 23:5

Algorithm 1 Heuristic 1

Data: the tasks Tj (corresponding to an interval graph I) ordered by non decreasing
release dates ri < rj (1 ≤ i ≤ j ≤ n)

Result: an SP-sub-digraph of red(I⃗)
1 Sol = {(path1 = (T1), deadline1 = d1)}
2 for i = 2 to n do
3 Let j ≤ |Sol| be the smallest integer such that deadlinej ≤ ri

4 if j exists then add Ti at then end of pathj and replace deadlinej by di

5 else add (path|Sol|+1 = (Ti), di) to Sol

6 return the disjoint union of the directed paths pathj, for 1 ≤ j ≤ |Sol|.

Algorithm 2 Heuristic 2 A

Data: an interval graph I
Result: An SP sub-digraph of red(I⃗)

1 if I is complete then // the tasks pairwise intersect
2 return P (I); // all the vertices of I are in parallel

3 K ← a minimal vertex separator; // a selection criteria can be added
4 Let (C1, . . . , Cp) be the connected components of I \K sorted by release dates

// for any k < k′, max{di | Ti ∈ Ck} ≤ min{rj | Tj ∈ Ck′}
5 return P (P (K), S(A(C1),A(C2), . . . ,A(Cp)))

G of I⃗ ′ which implies that G is not a cograph, and so red(I⃗ ′) is not an SP-digraph.153

A first approach to compute a lower bound of 1|rj ; dj |
∑

wjCj is then to compute a154

SP-subgraph I⃗ ′ of the precedence digraph I⃗ of the interval graph I in order to use the155

algorithm to solve 1|sp-graph|
∑

wjCj . The goal is then to find the "best" SP-digraph possible156

in order to compute a "good" lower bound. A first criteria to look at is then to of course to157

minimize the number of lost arcs from I. The following heuristics compute I⃗ ′ from I⃗.158

Heuristic 1. (naive but very easy to implement and very fast algorithm) Recall159

that a stable set in a graph is a set of vertices that are pairwise non-adjacent. If X is a stable160

set of V (I) (i.e., the set of vertices of I), then the tasks of X must be put in series (in order161

of the rj). Partitioning the vertex-set of an interval graph I into a minimum number of162

stable sets can be done in linear time [9] (such a minimum number of stable sets equals the163

chromatic number of I and can be computed in polynomial time, e.g. , by a greedy colouring164

following the order of the vertices in the order of the rj). Finally, the SP sub-digraph I⃗ ′ is165

defined by putting in series the vertices in a same stable set and finally putting in parallel all166

stable sets. See Algorithm 1 and an example of its execution in Figure 2a.167

Heuristic 2. A (more evolved) It relies on the parallel structure of the minimal separators168

of I. Recall that K ⊆ V is a minimal separator if there exist u, v ∈ V \ K such that169

all paths between u and v intersect K and K is minimal by inclusion. Note that, in any170

interval graph, any minimal separator induces a clique [5]. In an interval graph I, let171

(O1 = L, O2, . . . , Op−1, Op = R) be the connected components of I \K. Roughly, the “left"172

part L is the connected component of I \ K containing the task with minimum release173

date and the “right" part R is the connected component of I \K containing the task with174

maximum deadline. Finally, (O2, . . . , Op−1) are connected components of simplicial vertices175

(their neighbourhoods induce a clique) adjacent to K, ordered in non-decreasing release date.176

CVIT 2016

23:6 Another relaxation for the COMPLETION

2path1 5 6 8

3path2 7 9

1path3

4path4

(a) Result of Algorithm 1 on the
intervals described in Figure 1a.

C1

C1
1

2

3

C1
2

5

4

C2

C2
1

6

C2
2

9

8

7

1

(b) Result of Algorithm 2 on the
intervals described in Figure 1a, with

first separator {1}.

C1

2

3

C2

5

C3

C3
1

6

C3
2

9

8

7

1

4

(c) Result of Algorithm 2 on the
intervals described in Figure 1a,

with first separator {1, 4}.

Figure 2 Examples of executions of Algorithm 1 and Algorithm 2.

2, 3, 4,
1

K1

4, 5,
1

K2

6, 7,
1

K3

7, 8,
1

K4

8, 9,
1

K5

Figure 3 Clique path of the interval graph I′ in Figure 1a.

The recursive family of heuristics A consists first in well choosing a minimal separator K177

(for instance, balancing the sizes or weights of R and L) and then in proceeding recursively178

(on L and R). Precisely, A(I) returns P (P (K), S(A(L),A(O2), . . . ,A(Op−1),A(R))), that179

is, A is applied recursively on each component of I \K, then composes their results in series180

“from left to right" and finally adds the tasks of K in parallel. See Algorithm 2 and an181

example of its execution in Figure 2b. More precisely, in the example, Algorithm 2 first182

considers the minimal separator {1} (here, the separator is chosen in a balanced way, i.e., , so183

that the size of R and L are as close as possible) and is applied recursively to both connected184

components O1 = R and O2 = L of I ′ \ {1}. Then, in R (resp., in L), Algorithm 2 considers185

the separator {4} (resp., {7}). Another example of execution is given in Figure 2c where the186

first considered separator is {1, 4} and so I ′ \ {1, 4} has three connected components.187

3.2 Second approach: toward Pseudo-SP-digraphs188

The advantage of previous heuristics is that they returned an SP-sub-digraph I⃗ ′ of I⃗ which189

allows to compute in polynomial time a solution of 1|sp-graph|
∑

wjCj which provides a190

C. Bonnin et al 23:7

1
2

3

4
5

6

7

8
9

(a) A set of intervals

1 3 5 7 9

2 4 6 8

(b) The corresponding interval
graph I and a clique path CP =

({1, 2, 3}, {3, 4, 5}, {5, 6, 7}, {7, 8, 9}).

1

3

2 4

5

6

7

8

9

(c) The Pseudo-SP digraph
D(I, CP)

1 2 3

P

4 5

P

3

P

S

{1, 2}
{4, 5}

6 7

P

S
{4, 5}

{6, 7}

8 9

P

S
{5, 6}

{8, 9}

(d) Decomposition Tree of the
Pseudo-SP digraph D(I, CP).

Figure 4 An example of a set of intervals I such that I⃗ = D(I, CP) is Pseudo-SP.

lower bound for 1|rj ; dj |
∑

wjCj . On the other hand, the computed precedences digraph I⃗ ′191

may lose many arcs compared with I⃗ and so could lead to a poor lower bound. This section192

presents another approach that might provide better lower bounds. This approach relies on193

the definition of a new class of sub-digraphs of precedence digraphs of interval graphs which194

is actually a superclass of the one of SP-digraphs (this is where we hope that using these195

new sub-digraphs, we may obtain better lower bounds).196

What follows relies on representations of interval graphs as paths of maximal cliques.197

Recall that a vertex-set X ⊆ V induces a maximal clique if the vertices of X are pairwise198

adjacent (i.e., , X induces a complete graph) and no superset Y of X induces a complete199

graph. To any interval graph I, it can be assigned a clique-path (K1, . . . , Kℓ) such that Ki is200

a maximal clique of I; I = I[
⋃

i≤ℓ Ki]; and, for every v ∈ V (I) and i ≤ k ≤ j, v ∈ Ki ∩Kj201

implies that v ∈ Kk. Note that, in that case, Ki ∩Ki+1 induces a minimal separator for all202

1 ≤ i < ℓ. Moreover, note that an interval graph I may have several clique-paths and that a203

clique-path of I can be computed in linear time. An example is given in Figure 3.204

Given an interval graph I and a clique path CP = (K1, . . . , Kℓ) of it, let define the graph205

D(I, CP) on the same vertex-set and such that, for every 1 ≤ i < ℓ, there is an arc from206

every vertex u ∈ Ki \Ki+1 to any vertex v ∈ Ki+1 \Ki. An example is given in Figure 4c.207

Note that, for any interval graph I with clique-path CP , D(I, CP) is a subgraph of208

red(I⃗) but there are examples where red(I⃗) and D(I, CP) may be different even if D(I, CP)209

is an SP digraph (see I ′ in Figure 1d, D(I ′, CP) (where CP is the clique-path of Figure 3)210

can be obtained from red(I⃗ ′) by removing the arc from the task 6 to the task 9). To go211

further in that direction, let us define the new following digraph class.212

A digraph D is a Pseudo-Serie-Parallel digraph (PSP-digraph) if it can be built recursively213

as follows. A vertex is a PSP-digraph. Given two PSP-digraphs D1 and D2 with respective214

sources s1 and s2 and respective sinks k1 and k2:215

the disjoint union of D1 and D2 is a PSP digraph (parallel operation);216

CVIT 2016

23:8 Another relaxation for the COMPLETION

the digraph obtained from the disjoint union of D1 and D2 by adding all arcs from217

X ⊆W1 to Y ⊆ S2 is a PSP-digraph (pseudo-series operation).218

There is a connection between interval graphs and PSP-digraphs. We can prove that:219

▶ Lemma 1. For any interval graph I with clique-path CP , D(I, CP) is a PSP digraph.220

It is easy to prove that D(I, CP) is a sub-digraph of I⃗ and so, an optimal solution of221

1|PSP − diagraph|
∑

wjCj is a lower bound of 1|rj ; dj |
∑

wjCj .222

To any PSP-digraph D, we can assign some binary rooted tree tree(D) (a decomposition223

tree) where there is a one-to-one mapping between the leaves of tree(D) and the vertices of224

D and each internal node of tree(D) either corresponds to a parallel or to a pseudo-series225

operation (labelled with the corresponding sets X and Y). An example is given in Figure 4d226

where, for the series-node (labeled with S), the label of the edge going to its left (resp., right)227

child represents the set X (resp., the set Y) such that all arcs are added from X to Y . A228

PSP-digraph may have several decomposition trees.229

Let tree(H) be a decomposition tree of a PSP-digraph H = (V, A). We define a new230

transformation in order to strengthen the relationship between PSP-digraphs and interval231

graphs. Let F (H) be the result of the following recursive algorithm (which is simply a232

bottom up dynamic programming on the nodes of tree(H)).233

if tree(H) is a single leaf, which corresponds to v ∈ V = {v}, then let F (tree(H)) = ({v});234

otherwise, let ro be the root of tree(H) and let l and r be the left and right children of ro.235

Let (Dl, Sl, tree(H)l) and (Dr, Sr, tree(H)r) be the Pseudo-SP obtained from the subtrees236

tree(H)l, tree(H)r of tree(H) \ ro rooted respectively in l and r. Let F (tree(H)l) =237

(Kl
1, . . . , Kl

ml) and F (tree(H)r) = (Kr
1 , . . . , Kr

mr). Let tree(H)′
l ⊆ tree(H)l and S′

r ⊆ Sr238

be the labels of the edges between ro and respectively l and r. Let F (tree(H)) =239

(Kl
1 ∪ (Sr \ S′

r), . . . , Kl
ml ∪ (Sr \ S′

r), Kr
1 ∪ (tree(H)l \ tree(H)′

l), . . . , Kr
mr ∪ (tree(H)l \240

tree(H)′
l)). If tree(H)′

l ∪ S′
r = ∅ (parallel composition), then let us remove the clique241

Kr
1 ∪ (tree(H)l \ tree(H)′

l).242

▶ Lemma 2. For any decomposition tree tree(H) of a PSP digraph H, then F (tree(H)) is243

a path of cliques of an interval graph IH defined on the same set of vertices as H. Moreover,244

D(IH , F (tree(H))) = H.245

The natural next question is to know whether 1|PSP−diagraph|
∑

wjCj can be computed246

in polynomial time. The strong relationship between interval graphs and PSP-digraphs, and247

the fact that SP-digraphs is a subclass of PSP-digraphs where our scheduling problem is248

polynomial-time solvable let us hope that the algorithm of Lawler [12] (for SP-digraphs)249

may possibly be extended for PSP-digraphs. Our future work will consist in designing a250

polynomial-time exact algorithm (or to prove that this problem is NP-complete).251

4 Conclusion and prospects252

To conclude, we have identified a second polynomial relaxation for the completion constraint.253

This relaxation is not preemptive and requires a SP precedences digraph to compute a lower254

bound on the weighted flowtime. As, it is NP-hard to keep all the information from the255

time windows, we proposed two heuristics for building a SP precedences digraph from the256

time windows. We also proposed an extension of the SP-digraphs that can capture more257

information from the time windows, but the complexity of the scheduling problem is unknown.258

The short-term prospect is to integrate the two heuristics into the completion constraint259

and to compare their performances with the original relaxation used in the completion260

C. Bonnin et al 23:9

constraint. The second short-term prospect is to answer the open question about the261

complexity of our extension of the PSP-digraphs. Last, the long-term prospect is to design262

filtering algorithms for the time windows of the tasks.263

CVIT 2016

23:10 Another relaxation for the COMPLETION

References264

1 Christoph Ambühl, Monaldo Mastrolilli, Nikolaus Mutsanas, and Ola Svensson. On the265

approximability of single-machine scheduling with precedence constraints. Math. Oper. Res.,266

36(4):653–669, 2011. doi:10.1287/moor.1110.0512.267

2 Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Constraint-based scheduling: applying268

constraint programming to scheduling problems, volume 39. Springer Science & Business Media,269

2001. doi:10.1007/978-1-4615-1479-4.270

3 Andreas Brandstädt, Van Bang Le, and Jeremy P Spinrad. Graph classes: a survey. SIAM,271

1999. URL: https://books.google.ca/books?id=vt5lhYqCYLMC&l.272

4 Christophe Crespelle and Christophe Paul. Fully dynamic recognition algorithm and certificate273

for directed cographs. Discret. Appl. Math., 154(12):1722–1741, 2006. doi:10.1016/j.dam.274

2006.03.005.275

5 G. A. Dirac. On rigid circuit graphs. Abhandlungen aus dem Mathematischen Seminar der276

Universität Hamburg, 25:71–76, 1961.277

6 Christian Fiegl and Carsten Pontow. Online scheduling of pick-up and delivery tasks in hospitals.278

Journal of Biomedical Informatics, 42(4):624–632, 2009. URL: https://www.sciencedirect.279

com/science/article/pii/S1532046409000239, doi:10.1016/j.jbi.2009.02.003.280

7 Filippo Focacci, Andrea Lodi, and Michela Milano. Cost-based domain filtering. In Joxan Jaffar,281

editor, Principles and Practice of Constraint Programming – CP’99, volume 1713, pages 189–282

203, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg. doi:10.1007/978-3-540-48085-3_283

14.284

8 Ravindra Gokhale and M. Mathirajan. Scheduling identical parallel machines with machine285

eligibility restrictions to minimize total weighted flowtime in automobile gear manufacturing.286

The International Journal of Advanced Manufacturing Technology, 60(9):1099–1110, June 2012.287

doi:10.1007/s00170-011-3653-3.288

9 Martin Charles Golumbic. Algorithmic graph theory and perfect graphs. Elsevier, 2004.289

10 Gero Greiner, Tim Nonner, and Alexander Souza. The bell is ringing in speed-scaled290

multiprocessor scheduling. Theory of Computing Systems, 54(1):24–44, January 2014.291

doi:10.1007/s00224-013-9477-9.292

11 András Kovács and J. Christopher Beck. A global constraint for total weighted completion time293

for unary resources. Constraints, 16(1):100–123, 2011. doi:10.1007/s10601-009-9088-x.294

12 E.L. Lawler. Sequencing jobs to minimize total weighted completion time subject to preced-295

ence constraints. In B. Alspach, P. Hell, and D.J. Miller, editors, Algorithmic Aspects296

of Combinatorics, volume 2 of Annals of Discrete Mathematics, pages 75–90. Elsevier,297

1978. URL: https://www.sciencedirect.com/science/article/pii/S0167506008703236,298

doi:10.1016/S0167-5060(08)70323-6.299

13 L. Stewart and University of Toronto. Dept. of Computer Science. Cographs : a Class of300

Tree Representable Graphs. Technical report (University of Toronto. Department of Computer301

Science). University of Toronto, Department of Computer Science, 1978. URL: https://books.302

google.fr/books?id=8sL_MwEACAAJ.303

14 Jacobo Valdes, Robert E. Tarjan, and Eugene L. Lawler. The recognition of series parallel304

digraphs. In Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing,305

STOC ’79, page 1–12, New York, NY, USA, 1979. Association for Computing Machinery.306

doi:10.1145/800135.804393.307

https://doi.org/10.1287/moor.1110.0512
https://doi.org/10.1007/978-1-4615-1479-4
https://books.google.ca/books?id=vt5lhYqCYLMC&l
https://doi.org/10.1016/j.dam.2006.03.005
https://doi.org/10.1016/j.dam.2006.03.005
https://doi.org/10.1016/j.dam.2006.03.005
https://www.sciencedirect.com/science/article/pii/S1532046409000239
https://www.sciencedirect.com/science/article/pii/S1532046409000239
https://www.sciencedirect.com/science/article/pii/S1532046409000239
https://doi.org/10.1016/j.jbi.2009.02.003
https://doi.org/10.1007/978-3-540-48085-3_14
https://doi.org/10.1007/978-3-540-48085-3_14
https://doi.org/10.1007/978-3-540-48085-3_14
https://doi.org/10.1007/s00170-011-3653-3
https://doi.org/10.1007/s00224-013-9477-9
https://doi.org/10.1007/s10601-009-9088-x
https://www.sciencedirect.com/science/article/pii/S0167506008703236
https://doi.org/10.1016/S0167-5060(08)70323-6
https://books.google.fr/books?id=8sL_MwEACAAJ
https://books.google.fr/books?id=8sL_MwEACAAJ
https://books.google.fr/books?id=8sL_MwEACAAJ
https://doi.org/10.1145/800135.804393

	1 Introduction
	2 The COMPLETION constraint
	3 Computing a lower bound a using graph theory
	3.1 First approach: using the SP-digraphs
	3.2 Second approach: toward Pseudo-SP-digraphs

	4 Conclusion and prospects

