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Topological Analysis for Detecting Anomalies (TADA)
in Time Series.

Frédéric Chazal, Clément Levrard, and Martin Royer

Abstract

This paper introduces new methodology based on the field of Topological Data Analysis
for detecting anomalies in multivariate time series, that aims to detect global changes in the
dependency structure between channels. The proposed approach is lean enough to handle
large scale datasets, and extensive numerical experiments back the intuition that it is more
suitable for detecting global changes of correlation structures than existing methods. Some
theoretical guarantees for quantization algorithms based on dependent time sequences are
also provided.

Keywords: Topological Data Analysis, Unsupervised Learning, Anomaly Detection,
Multivariate Time Series, S-mixing coefficients.

1 Introduction

Monitoring the evolution of the global structure of time-dependent complex data, such as,
e.g., multivariate times series or dynamic graphs, is a major task in real-world applications of
machine learning. The present work considers the case where the global structure of interest
is a weighted dynamic graph encoding the dependency structure between the different
channels of a multivariate time series. Such a situation may be encountered in various
fields, such as e.g. EEG signal analysis Mohammed et al. (2023) or monitoring of industrial
processes Li et al. (2022), and has recently given rise to an abundant literature - see, e.g.
Zheng et al. (2023); Ho et al. (2023) and references therein.

The specific monitoring task addressed in this paper is unsupervised anomaly detection,
that is to detect when the dependency structure is far enough from a so-called "normal”
regime to be considered as problematic. From the mathematical point of view, this problem,
in its whole generality, is ill-posed: one has access to unlabeled data, in which it is tacitly
assumed that the normal regime is prominent, the goal is then to label data points as normal
or abnormal in a fully unsupervised way. In this sense, anomaly detection shows clear
connection with outlier detection in robust machine learning (for instance robust clustering
as in Brécheteau et al. (2021); Jana et al. (2024)). For more insights and benchmarks on the
specific problem of anomaly detection in times series the reader is referred to Paparrizos
et al. (2022b) (univariate case) and to Wenig et al. (2022) for the multivariate case.

We introduce a new framework, coming with mathematical guarantees, based upon the
use of Topological Data Analysis (TDA), a field that has know an increasing interest to study
complex data - see, e.g. Chazal and Michel (2021) for a general introduction. Application
of TDA to anomaly detection in time series have raised a recent and growing interest: in
medicine (Dindin et al. (2019); G. et al. (2014); Chrétien et al. (2024)), cyber security
(Bruillard et al. (2016))... And, some general surveys on TDA applications to time series
may be found in Ravishanker and Chen (2019); Umeda et al. (2019).
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In this paper, the adopted approach proceeds in three steps. First, the time-dependency
structure of a time series is encoded as a dynamic graph in which each vertex represents a
channel of the time series and each weighted edge encodes the dependency between the two
corresponding vertices over a time window. Second, persistent homology, a central theory
in TDA, is used to robustly extract the global topological structure of the dynamic graph
as a sequence of so-called persistence diagrams. Third, we introduce a specific encoding of
persistence diagrams, that has been proven efficient and simple enough to face large-scale
problems in the independent case (Chazal et al. (2021)), to produce a topological anomaly
score. As detailed throughout the paper, the scope of the proposed method may be extended
in several ways, encompassing dependent sequences of measures and dependent sequences of
general metric spaces.

1.1 Contributions

Our main contributions are the following.

- We produce a new machine learning methodology for learning the normal topological
behavior in the data spatial dependency structure. This methodology is fully unsupervised,
it does not need to be calibrated on uncorrupted data, as long as the amount of corrupted
data remains limited with respect to the uncorrupted one. The captured information is
numerically proved different and, in several cases, more informative than the one captured
by other state-of-the-art approaches. This methodology is lean by design, and enjoys novel
interpretable properties with regards to anomaly detection that have never appeared in
the literature, up to our knowledge;

- The proposed pipeline is easy to implement, flexible and can be adapted to different
specific applications and framework involving graph data or more general topological data;

- The resulting method can be deployed on architectures with limited computational and
memory resources: once the training phase realized, the anomaly detection procedure relies
on a few memorized parameters and simple persistent homology computations. Moreover,
this procedure does not require any storage of previously processed data, preventing
privacy issues;

- Some convergence guarantees for quantization algorithms - used to vectorize topological
information - in a dependent case are proven. These results do not restrict to the specific
setting of the paper and may be generalized in the general framework of M-estimation
with dependent observations;

- Extensive numerical investigation has been carried out in three different frameworks. First
on new synthetic data directly inspired from brain modelling problems as exposed in
Bourakna et al. (2022), that are particularly suited for TDA-based methods and may
be used as novel benchmark. They are added to the public The GUDHI Project (2015)
library at github.com/GUDHI/gudhi-data. Second on the comprehensive benchmark
"TimeEval”, that encompasses a large array of synthetic datasets Schmidl et al. (2022).
And third on a real-case "Exathlon” dataset from Jacob et al. (2021-07). All of these
experiments assess the relevance of our approach compared with current state-of-the-art
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methods. Our procedure, originating from concrete industrial problems, is implemented
and has been deployed within the Confiance.ai program and an open-source release is
incoming. Its implementation involves only standard, tested machine learning tools.

1.2 Organization of the paper

A complete description of the proposed methodology in provided in Section 2, giving details
on the several steps to build an anomaly score from a multivariate time series. Next, Section
3 theoretically grounds the centroid computation step as well as the anomaly test proposed
in the previous section. Section 4 gathers the numerical experiments in the three different
settings introduced above (synthetic TDA-friendly, TimeEval synthetic, real Exathlon data).
Proofs of our results are postponed to Section 7.

2 Methodology

This section describes the pipeline to build an anomaly score from raw multivariate time
series data (Y;)ep0,] € R x [0, L]. We start with a brief description of the TDA tools that
we use.

2.1 Vietoris-Rips persistent homology for weighted graphs

In this section we briefly explain how discrete measures are associated to weighted graphs,
encoding their multiscale topological structure through persistent homology theory. We
refer the reader to Edelsbrunner and Harer (2010); Chazal et al. (2016); Boissonnat et al.
(2018) for a general and thorough introduction to persistent homology.

Recall that given a set V , an (abstract) simplicial complex is a set K of finite subsets
of V such that 0 € K and 7 C o implies 7 € K. Each set ¢ € K is called a simplex of K.
The dimension of a simplex o is defined as || — 1 and the dimension of K is the maximum
dimension of any of its simplices. Note that a simplicial complex of dimension 1 is a graph.
A simplicial complex classically inherits a canonical structure of topological space obtained
by representing each simplex by a geometric standard simplex (convex hull of a finite set of
affinely independent points in an Euclidean space) and “gluing” the simplices along common
faces. A filtered simplicial complex (K, )aer, or filtration for short, is a nested family of
complexes indexed by a set of real numbers I C R: for any «, 8 € I, if o < 3 then K, C Kjg.
The parameter « is often seen as a scale parameter.

Let G be a complete non-oriented weighted graph with vertex set V' and real valued
edge weight function s : VXV = R, (v,v') > s, satisfying s, ,» := S, for any pair of
vertices (v,v’).

Definition 1 Let anyin < ming yrey Sy and Qmax = MaX, ey Sy be two real numbers.
The Vietoris-Rips filtration associated to G is the filtration (VRa(G))aglamin,amax] With vertez
set V' defined by

o = [vo, -+ ,vk] € VRo(G) if and only if sy, ., < a, forall i,j € [0,k],

for k> 1, and [v] € VRo(G) for any v € V and any & € [amin, Omax]-
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The topology of VR, (G) changes as « increases: existing connected components may
merge, loops and cavities may appear and be filled, etc... Persistent homology provides a
mathematical framework and efficient algorithms to encode this evolution of the topology
(homology) by recording the scale parameters at which topological features appear and
disappear. Each such feature is then represented as an interval [ay, org] representing its life
span along the filtration. Its length ag — ay is called the persistence of the feature. The
set of all such intervals corresponding to topological features of a given dimension d - d =0
for connected components, d = 1 for 1-dimensional loops, d = 2 for 2-dimensional cavities,
etc... - is called the persistence barcode of order d of G. It is also classically represented
as a discrete multiset Dy(G) C [ounin, 0max]? Where each interval [y, ag] is represented by
the point with coordinates (ap, ay) - a basic example is given on Figure 1. Adopting the
perspective of Chazal and Divol (2018); Royer et al. (2021); Chazal et al. (2021), in the
sequel of the paper, the persistence diagram D;(G) will be considered as a discrete measure:
D4(G) = 3_,epy(c) %p Where  is the Dirac measure centered at p. In many practical
settings, to control the influence of the, possibly many, low persistence features, the atoms
in the previous sum can be weighted:

Dqy(G) == Z w(b, d)dp,a)
(b,d)EDa(C)

where w : R? — R, may either be a continuous function which is equal to 0 along the
diagonal or just a constant renormalization factor equal to the total mass of the diagram.
Notice that, in practice, there exist various libraries to efficiently compute persistence
diagrams, such as, e.g., The GUDHI Project (2015).

The relevance of the above construction relies on the persistence stability theorem Chazal
et al. (2016). It ensures that close weighted graphs have close persistence diagrams. More
precisely, if G, G are two weighted graphs with same vertex set Vand edge weight functions
s: VxV —wRand s : V xV — R respectively, then for any order d, the so-called
bottleneck distance between the persistence diagrams Dg(G) and D4(G’) is upperbounded
by [[s = 8'lloc 1= sup, ey [Svwr — 8,,/| - see Chazal et al. (2014) for formal persistence
stability statements for Vietoris-Rips complexes.

2.2 From similarity matrices to persistence diagrams

Our first step is to extract the topological information pertaining to the dependency structure
between channels. To do so, for a window size A, the D-dimensional time serie is sliced into n
sub-intervals. For each sub-interval [st, st + A], we build a coherence graph G, starting from
the fully-connected graph ([1, D], E) and specifying edge values as s; j; = 1 — Cor(Y;,Yj),
that is 1 minus the correlation between channels ¢ and j computed in the interval ¢.

Then, the persistence diagrams of the Vietoris-Rips filtration are computed (one per

homology order), resulting in sequences of diagrams Xt(d)7 with 1 < ¢t < n and d is the
homological order. An example of sequences of windows and corresponding persistence
diagrams is represented Figure 2. In what follows, a fixed homology order is considered, so
that the index d is removed. In practice, the vectorization steps that follows are performed
order-wise, as well as the anomaly detection procedure.
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Figure 1: The persistence diagrams of order 0 and 1 of a simple weighted graph G whose vertices are
4 points in the real plane and edge weigths are given by the squared distances between them. Here
Qmin and amax are chosen to be 0 and 64 respectively. The first line represents G and VR, (G) for
different values of . The persistence barcodes and diagrams of order 0 and 1 are represented in red
and blue respectively on the second line.

Algorithm 1: Persistence diagrams computation from a multidimensional time
serie

Input: p maximal homology order, A window size, s stride.

Data: A multivariate time serie ()0, € R” x [0, L]
1 for ¢ in [0, [(L — A)/s]] do
2 compute similarity matrix on the slice [st, st + A], Sy = 1 — Corr (s s144));
3 compute the Vietoris-Rips filtration for ([1, D], E, St) ;
4 for homology dimension d in [0,p — 1] do
5

‘ compute order d persistence diagram Xt(d) of the Rips filtration;

Output: p (discrete) time series of persistence diagrams Xt(d), te[o,[(L—A)/s]],
defo,p—1].

It is worth noting that other dependency measures such as the ones based on coherence
Ombao and Pinto (2021) may be chosen instead of correlation to build the weighted graphs.
Such alternative choices do not affect the overall methodology as well as the theoretical
results provided below.

In the numerical experiments, we give results for the correlation weights, that have
the advantages of simplicity and carry a few insights: following Bourakna et al. (2022),
such weights are enough to detect structural differences in the case where the channels Y;
are mixture of independent components Z,’s, the weights of the mixture being given by a
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(hidden) graph on the p’s whose structure drives the behavior of the observed persistence
diagrams.

At last, it is worth recalling here that Vietoris-Rips filtration may be built on top of
arbitrary metric spaces, so that the persistence diagram construction may be performed in
more general cases, encompassing valued graphs (with value on nodes or edges) for instance.
The vectorization and detection steps below being based on the inputs of such persistence
diagrams, the scope of our approach is easily extended beyond the analysis of multivariate
time series.
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Figure 2: Left: three sliding windows on an illustrative Ornstein—Uhlenbeck (AR1) synthetic
process with additive, punctual anomalies. Right: corresponding to those sliding windows, the three
topological descriptors (persistence diagrams with Homology dimension 0 (red), 1 (blue) and 2 (green)
features), according to Algorithm 1.

2.3 Centroids computation

Once the mutivariate time series are converted into a sequence of persistence diagrams
(Xi)i=1,...n, the next step is to convert these persistence diagrams into vectors, that roughly
encode how much mass do these diagrams spread into well-chosen areas of R?. To do so,
we begin by automatically choosing these areas, or equivalently centers of these sub-areas,
using the ATOL procedure of measure quantisation from Royer et al. (2021).
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Algorithm 2: Centroid computations - ATOL - Batch algorithm
Input: K: number of centroids. T": stopping time.

Data: Xi,..., X, discrete measures.
Initialization: c(0) = (cgo), e ,cgg)) randomly chosen from X,.

1
2 fort=1,...,7 do

3 for j=1,...,K do
4 Wita —{o R Vi ] [o—c™V) <llz— |} (ties arbitrarily
broken).

5 if Xn(Wth_l) 75 0 then

6 | e (Xaldu) (ulw,,_, () Xn(Wie-1).
7 else

8 ‘ cg-t) + random sample from X,,.

Output: Centroids c(”) = (ch), e ,cg)).

The batch algorithm for computing centers is recalled below. As introduced in Section
2.1, a persistence diagram X; is thought of as a discrete measure on R?, that is

where PD; is the i-th persistence diagram considered as a multiset of points, and w, 4) are
weights given to points in the persistence diagram (usually given as a function of the distance
from the diagonal, see e.g., Adams et al. (2017) for instance). For the batch algorithm, a
special interest is paid to the empirical mean measure:

Algorithm 2 is the same as in the i.i.d. case (Chazal et al., 2021, Algorithm 1). Moreover,
almost the same convergence guarantees as in the i.i.d. case may be proven: for a good-
enough initialization, only 2log(n) iterations are needed to achieve a statistically optimal
convergence (see Theorem 5 below). Therefore, a practical implementation of Algorithm 2
should perform several threads based on different initializations (possibly in parallel), each of
them being stopped after 2log(n) steps, yielding a complexity in time of O(nlog(n) X nsiart)
(where ngqr¢) is the number of threads.

As for the i.i.d. case, an online version of Algorithm 2 may be conceived, based on
mini-batches. In what follows, for a convex set C C R?, we let 7o denote the Euclidean
projection onto C.
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Algorithm 3: Centroid computations - ATOL - Minibatch algorithm
Input: K: number of centroids. ¢: size of mini-batches. R: maximal radius.

Data: Xi,..., X, discrete measures.
1 Initialization: ¢(® = (cgo), e ,cgg)) randomly chosen from X,,. Split Xi,...,X,

into n/q mini-batches of size ¢:
Bl,la Bl,27 Bl,37 Bl,4) ceey Bt,la Bt,2a Bt,?)a Bt,47 s aBT,17 BT,Q, BT,37 BT,47 T= n/4q
2 fort=1,...,7 do

3 for j=1,...,K do
4 Wier —{o R Vi ] [o—c V) <llz— |} (ties arbitrarily
broken).
5 if XBt,l (Wjﬂg_l) 7é 0 then
6 | e s m (X (dw) (ullw, - (0))/ X, (W),
7 else
8 ‘ c§-t) — cg-t*l).
Output: Centroids ¢(T) = (ch), e ,cg)).

Contrary to Algorithm 2, Algorithm 3 differs from its i.i.d. counterpart given in Chazal
et al. (2021). First, the theoretically optimal size of batches is now driven by the decay of
the S-mixing coefficients of the time serie, as will be made clear by Theorem 6 below.

Second, half of the sample are wasted (the By ;’s with even j). This is due to theoretical
constraints to ensure that the mini-batches that are used are spaced enough to guarantee a
prescribed amount of independence. Of course, the even B; ;’s could be used to compute
a parallel set of centroids. However, in the numerical experiments, all the sample is used
(without leaving some space between minibatches), without noticeable side effect.

From a computational viewpoint, Algorithm 3 is single-pass, so that, if 1+ threads
are run, the global complexity is in O(n X ngygrt)-

See an instance of the centroid computations on Figure 3.

2.4 Conversion into vector-valued time series

Once the centroids ¢(?) built, the next step is to convert the persistence diagrams (X;)i=1,..n

into vectors. The approach here is the same as in Royer et al. (2021) denoting by a7 : u —
exp(—u?), a persistence diagram X; is mapped onto

v = (Xildwyar(lu = eVl /o), ..., Xi(duppar(ju = || fox) ) 1
where the bandwiths o;’s are defined by

i 1) (D)
0j = Izn;gl lleg " — ¢ 1/2, (2)

that roughly seizes the width of the area corresponding to the centroid ). Other choices
of kernel 1 are possible (see e.g. Chazal et al. (2021)), as well as other methods for choosing
the bandwidth. The proposed approach has the benefit of not requiring a careful parameter
tuning step, and seems to perform well in practice.

We encapsulate this vectorization method as follows, and an example vectorization is
shown in Figure 4.
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Figure 3: Left: three representative topological descriptors in the form of persistence diagrams with
Homology dimensions 0, 1 and 2. Right: sum of topological descriptors and their centroids (stars in
purple, two by dimension) computed from them in dimensions 0, 1 and 2 according to Algorithm 2
or Algorithm 3.

Algorithm 4: Vectorization step
Input: Centroids cq,...,cx
Data: A persistence diagram X

1 forj=1,...,K do

2 Compute o; as in (2);
3 | vy X(du)par(|lu—cll/o;)
Output: Vectorization v = (vy,...,vk).

2.5 Anomaly detection procedure

We assume now that we observe the vector-valued time serie vy, ..., v, of vectorized per-
sistence diagrams, and intend to build a procedure to determine whether a new diagram
(processed with Algorithm 4) may be thought of as an anomaly.

Our first step is to build a score, based on the "normal” behaviour of the vectorizations
v;’s that are thought of as originating from a base regime. Namely, we build the sample

means and covariances

=

Il
S|
M-

(vi — ) (vi — )" (3)

™M
Il
S|+

=1

In the case where the base sample can be corrupted, robust strategies for mean and covariance
estimation such as Rousseeuw and Driessen (1999); Hubert et al. (2018) may be employed.
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Figure 4: Left: sum of topological descriptors and their centroids (stars in purple, two by dimension)
computed from them in dimensions 0, 1 and 2 by Algorithm 2 or 3. Right: the derived topological
vectorization of the entire time series computed relative to each center according to Algorithm 4.

To be more precise, for a contamination parameter h € [0; 1], we choose the Minimum
Covariance Determinant estimator (MCD), defined by

N

1
Ie arg min Det | — vi —o7)(vs —o7)T |,
oy (II\ > ( ) ) )

H= ,va

— |}| S0 = ) — )7 | (4)
el
where v; denotes empirical mean on the subset I, and ¢y is a normalization constant that
can be found in Hubert et al. (2018). In all the experiments exposed in Section 4, we use
the approximation of (4) provided in Rousseeuw and Driessen (1999).

Now, for a new vector v, a detection score is built via
AT — N
s*(v) = (v =)' S7 v - f), (5)
that expresses the normalized distance to the mean behaviour of the base regime. We refer
to an illustrative example in Figure 5.

If we let 8 denote the score function based on data (Y;);c[o,7], then anomaly detection
tests of the form

Ta(v) = ]l§(v)>ta
may be built. The relevance of this family of test based on § is assessed via the ROC_AUC
and RANGE_PR_AUC metrics of the Application Section 4, see there for more details.
Should a test with specific type I error a be needed, a calibration of ¢, as the 1 — a quantile
of scores on the base sample could be performed. Section 3.2 theoretically proves that this
strategy is grounded.

10
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Figure 5: Left: the derived topological vectorization of the entire time series computed relative
to each center according to Algorithm 4. Right: (top, in blue) the binary anomalous timestamps
y of the original signal, matches (bottom, in orange) the topological anomaly score based on the
dimension 0 and 1 features of Algorithm 5.

2.6 Summary

We can now summarize the whole procedure into the following algorithm, with complementary
descriptive scheme in Figure 6.

Algorithm 5: TADA: Detection score from base regime time series
Input: A window size A, a dimension K. Possibly a stopping time T or a
mini-batch size ¢, and a ratio h (corrupted observations).
Data: A multivariate time serie (Y;).ejo.r) € RP x [0, L] (base regime, possibly
corrupted)
1 Convert (Yt)te[o,L] into n persistence diagrams (X;)i=1,..., via Algorithm 1;
2 Build K centroids (ci, ..., ck) using Algorithm 2 or Algorithm 3;
3 Convert (X;)i=1,..n into v1,...,v, using Algorithm 4;
Output: A score function s : RX — R*, defined by (5).

Note that using Algorithm 2 with 7" = 2[log(n)] (see Theorem 5) and assuming that base
observations are not corrupted results in only two parameters specification for Algorithm 5:
the window size A onto which correlation are computed, and K the size of the vectorizations
of persistence diagrams. At first it seems that choosing the right K has the same amount of
constraints than choosing the right K for k-means imply, but it is actually made slightly
easier by the fact that in this instance the k-means like procedure of Atol operates on the
space of diagrams R2. As for h it is very data-dependent, and optimizing for it is outside of
the scope of this paper. In practice we will use a fixed contamination parameter of 0.1, a
default fixed topological embedding size K = 10, a default fixed number of restart for the
k-means initialisations ngqr+ = 10. As for the sliding window algorithm we use by default a
window of size A = 100 with a stride of s = 10. The window size A is the parameter that
most needs to adapt to the data or learning needs, see more on this in Section 4 Applications.

Our proposed anomaly detection procedure Algorithm 5 has a lean design for the following
reasons. First it has very few parameters coming with default values. Second, very little

11
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Topological Analysis for Detecting Anomalies
(TADA) :
JOUTPUTS
X —»  Sliding Window Algorithm
timeseries = g
0 - ™.
f Topological Embedding
w \ v
timeseries | —» 1. centroids computation I - # | embedding
L window 2. vectorization step N timeseries
' Topological Anomaly Score \
INPUTS: [ L embgg\?;?i%nnl?gsﬁnm{;t(i?:um 1 | timesseries
' 2 mahalanobis distance scoring | anomaly score

Figure 6: TADA general scheme for producing anomaly scores with topological information from the
original timeseries.

tuning is needed. Note that in the entire application sections to come, the only parameter to
change will be the A window resolution parameter, a parameter shared with other methods.
Third, upon learning some data, TADA does not require a lot of memory: only the results
of Algorithms 4 (centroids) and 5 (training vectorization mean and variance) are needed
in order to produce topological anomaly scores. This implies that our methodology is easy
to deploy, and requires no memory of training data which is often welcome in contexts of
privacy for instance. It also means that the methodology will compare very favorably to
methods that are memory-heavy such as tree-based methods, neural networks, etc.

3 Theoretical results

In this section we intend to assess the relevance of our methodology from a theoretical point
of view. Sections 3.1 and 3.2 gives results in the general case where the sample is a stationary
sequence of random measures. Section 3.3 provides some details on how persistence diagrams
built from mulitvariate time series as exposed in Section 2.1 can be casted into this general
framework.

3.1 Convergence of Algorithms 2 and 3

In what follows we assume that X1,..., X, is a stationary sequence of random measures over
R?, with common distribution X. Some assumptions on X are needed to ensure convergence
of Algorithms 2 and 3.

First, let us introduce here M y;

ox (R, M) as the set of random measures that are bounded
in space, mass and support size.

Definition 2 For R, M > 0 and Nyax € N*, we let My, . (R, M) denote the set of discrete
measures on R? that satisfies

12
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1. Supp(p) C B(0, R),
2. p(R?*) < M,
5. |Supp(p)| < Nmax-

Accordingly, we let M(R, M) denote the set of measures such that 1 and 2 hold.

With a slight abuse, if X denote a distribution of random measures, we will write X €
Mn,...(R, M) whenever X € My, (R, M) almost surely. As detailed in Section 3.3,
persistence diagrams built from correlation matrices satisfy the requirements of Definition 2.

In the ii.d. case, Chazal et al. (2021) proves that the output of Algorithm 2 with
T = 2log(n) iterations returns a statistically optimal approximation of

c* € Copr = argminE(X)(du) min _|lu — ¢;||? := F(c), (6)
ce(R2)K 7j=1,..,.K

where E(X) is the so-called mean measure E(X) : A € B(R?) — E(X(A)). Note here that
X € M(R, M) ensures that Cop is non-empty (see, e.g., (Chazal et al., 2021, Section 3)).
For the aforementioned result to hold, a structural condition on E(X) is also needed.

For a vector of centroids ¢ = (ci,...,cx) € B(0, R)*, we let

Wic)={zeR?|Vi<j |z—¢j| <|z—c]| and
Vi>g le—¢ll < llz—ell},
N(c)={z|3i<j zeWic) and [z—cl=lz—ql}

so that (Wi(c), ..., Wy(c)) forms a partition of R? and N(c) represents the skeleton of the
Voronoi diagram associated with ¢. The margin condition below requires that the mass of
E(X) around N(c*) is controlled, for every possible optimal ¢* € Cyp¢. To this aim, let us
denote by B(A,t) the t-neighborhood of A, that is {y € R? | d(y, A) < t}, for any A C R?
and t > 0. The margin condition then writes as follows.

Definition 3 E(X) € M(R, M) satisfies a margin condition with radius ro > 0 if and only
if, for all 0 < t < 1o,

Bpmin
E(X) (B(N(c*),t)) < ,
C*Sellclo)pt ( )( ( (C )7 )) 128R2

where B(N(c*),t) denotes the t-neighborhood of N(c*) and

1. B = infc*ecopt7j¢i ||C;k — C;H,

2. Pmin = infC*GCopt,j:L...,k: E(X) (Wj (C*))

According to (Chazal et al., 2021, Proposition 7), B and pmi, are positive quantities whenever
E(X) € M(R,M). In a nutshell, a margin condition ensures that the mean distribution
E(X) is well-concentrated around k poles. For instance, finitely-supported distributions
satisfy a margin condition. Up to our knowledge, margin-like conditions are always required
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to guarantee convergence of Lloyd-type algorithms Tang and Monteleoni (2016); Levrard
(2018) in the i.i.d. case.

Turning back to our base case of time series of persistence diagrams, we cannot assume
anymore independence between observations. To adapt the argument of Chazal et al. (2021)
in our framework, a quantification of dependence between discrete measures is needed.
We choose here to seize dependence between observation via S-mixing coefficients, whose
definition is recalled below.

Definition 4 Fort € Z we denote by o(—o0,t) (resp. o(t,+00)) the sigma-fields generated
by ..., Xi—1, Xy (resp. Xy, Xy41...). The beta-mizing coefficient of order q is then defined
by

B(q) =supE sup  [P(B | o(—00,1)) — P(B)
teZ | Beo(t+q,400)

Recalling that the sequence of persistence diagrams is assumed to be stationary, its beta-
mixing coefficient of order ¢ may be subsequently written as

B(q) = E(drv (Px,, X411, )0 Xo)r P(Xg X gr1,0)))s

where d7y denotes the total variation distance and Pz denotes the distribution of Z, for
a generic random variable Z. As detailed in Section 3.3, mixing coefficients of persistence
diagrams built from a multivariate time serie may be bounded in terms of mixing coefficients
of the base time serie. Whenever these coefficients are controlled, results from the i.i.d. case
may be adjusted to the dependent one.

We begin with an adaptation of (Chazal et al., 2021, Theorem 9) to the dependent case.

Theorem 5 Assume that Xi,..., X, is stationary, with distribution X € My, . (R, M),

for some Npar € N*. Assume that B(X) satisfies a margin condition with radius o, and

denote by Ry = 163\;31%’ Ko = %. For g € N*, choose T > Hgig;g))w, and let ¢T) denote the

output of Algorithm 2.
If q is such that 8(q)%/q® < n=3, and ¢ ¢ B(Copt, Ro), then, for n large enough, with
probability larger than 1 — cn‘il;]\f —2e™ %, we have

0 min

B2 2 M2 21.2 1
inf [ — ¢*[2 < 20 (q) o deog(k)(

),
2T N
c*€Copt 512R? P2, n (1+2),

for all x > 0, where C is a constant.
Moreover, if q is such that 3(q)/q < n~ ' and c©) € B(c*, Ry), it holds

2 p2 2
E( inf HC(T) . C*H2> < Cdk R ;7\42 log(k) (g)
c*€Copt KgPimin n

Intuitively speaking, Theorem 5 provides the same guarantees as in the i.i.d. case, but
for a ’useful’ sample size n/q that corresponds to the number of sample measures that are
spaced enough (in fact ¢g-spaced) so that they are independent enough in view of the targeted
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convergence rate in g/n. This point of view seems ubiquitous in machine learning results
based on dependent sample (see, e.g., (Agarwal and Duchi, 2013, Theorem 1) or (Mohri and
Rostamizadeh, 2010, Lemma 7)).

Assessing the optimality of the requirements on 5(q) seems a difficult question. Following
(Mohri and Rostamizadeh, 2010, Corollary 20) and comments below, the 5(q) < ¢/n
condition we require to get a convergence rate in expectation seems optimal for polynomial
decays (8(q) = O(¢™%), a > 0) in an empirical risk minimization framework. However, this
choice leads to a convergence rate in (g/n)@1/(42) for Mohri and Rostamizadeh (2010),
larger than our (¢/n) rate. Though the output of Algorithm 2 is not an empirical risk
minimizer, it is likely that it has the same convergence rate as if it were (based on a similar
behavior for the plain k-means case, see e.g., Levrard (2018)). The difference between
convergence rates given in Mohri and Rostamizadeh (2010) and Theorem 5 might be due to
the fact that Mohri and Rostamizadeh (2010) settles in a ’slow rate’ framework, where the
convexity of the excess risk function is not leveraged, whereas a local convexity result is a
key argument in our result (explicited by (Chazal et al., 2021, Lemma 21)).

In a fast rate setting (i.e. when the risk function is strictly convex), (Agarwal and
Duchi, 2013, Theorem 5) also suggests that a milder requirement in 5(g)/q < n~! might
be enough to get a O(g/n) convergence rate in expectation, for online algorithms under
some assumptions that will be discussed below Theorem 6 (convergence rates for an online
version of Algorithm 2). Up to our knowledge there is no lower bound in the case of
stationary sequences with controlled § coefficients that could back theoretical optimality of
such procedures.

At last, the sub-exponential rate we obtain in the deviation bound under the stronger con-
dition 3(q)?/q®> < n~3 seems better than the results proposed in (Mohri and Rostamizadeh,
2010, Corollary 20) or (Agarwal and Duchi, 2013, Theorem 5) in terms of ’large deviations’
(in (g/n)z here to get an exponential decay). Determining whether the same kind of result
may hold under the condition 3(¢q) < ¢/n remains an open question, as far as we know.

Nonetheless, Theorem 5 provides some convergence rates (in expectation) for several
decay scenarii on ((q):

e if B(q) < Cpl, for p < 1, then an optimal choice of ¢ is ¢ = clog(n), providing the same
convergence rate as in the i.i.d. case (Chazal et al., 2021, Theorem 9), up to a log(n)
factor.

e if 5(q) = Cq™%, for a > 0, then an optimal choice of ¢q is ¢ = Cn#l, that yields a
convergence rate in niHa%l.

In the last case, letting a — +oco allows to retrieve the i.i.d. case, whereas a — 0 has for

limiting case the framework when only one sample is observed (thus leading to a non-learning

situation).

Whatever the situation, a benefit of Algorithm 2 is that a correct choice of ¢, thus the
prior knowledge of 5(g), is not required to get an at least consistent set of centroids, by
choosing T' = (ﬁ;%i%)]. This will not be the case for the convergence of Algorithm 3, where
the size of minibatches ¢ is driven by a prior knowledge on .
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Theorem 6 Let g be large enough so that % <n 2 and g > co%log(n), for

a constant cy that only depends on fol B~ (u)du. Provided that E(X) satisfies a margin
condition, if the initialization satisfies the same requirements as in Theorem 5, then the
output of Algorithm 3 satisfies

kdM R?
IE( inf ||c?) —c*H?> < 198 PAMET
c*CCopt pmin(n/Q)

As in Rio (1993), the generahzed 1nverse B~1is defined by 37 (u) = |[{k € N* | B(k) > u}|. In
particular, for (g fo u)du is finite only if @ > 1 (that precludes the asymptotic
a—0).

The requirement 3(q)/q* = O(n~?) is stronger than in Theorem 5, thus stronger that
the 8(q)/q = O(n~!) suggested by (Agarwal and Duchi, 2013, Theorem 5) in a similar online
setting. Note however that for (Agarwal and Duchi, 2013, Theorem 5) to provide a O(q/n)
rate under the requirement 3(q)/q = O(n™!), two other terms have to be controlled:

1. a total step sizes term in 3. |lct — c®=1)|| that must be of order O(1). Controlling
this term would require an slight adaptation of Algorithm 3, for instance by clipping
gradients.

2. aregret term in E (Zthl Xp, (du) [d*(u, c®) — d?(u, c*)]) that must be of order O(q).
The behavior of this term remains unknown in our setting, so that determining whether
the milder condition 5(g)/q = O(n™1) is sufficient remains an open question.

Let us emphasize here that, to optimize the bound in Theorem 6, that is to choose the
smallest possible ¢, a prior knowledge of 5(q) is required. This can be the case when the
original multivariate time serie Y; follows a recursive equation as in Bourakna et al. (2022).
Otherwise, these coefficients may be estimated, using histograms as in McDonald et al.
(2015) for instance.

As in the batch case, the required lower bound on ¢ corresponds to the ”optimal” choice
of minibatch spacings so that consecutive even minibatches may be considered as i.i.d.. It is
then not a surprise that we recover the same rate as in the i.i.d. case, but with n/q samples
(see (Chazal et al., 2021, Theorem 10)). As for the batch situation, several decay scenarii
may be considered:

e for S(q) < Cp, p < 1, choosing ¢ = ¢ 2 2 log( ) for a large enough c¢g is enough to
Ko

satisfy the requirements of Theorem 6, and yields the same result as in the i.i.d. case
((Chazal et al., 2021, Theorem 10)).

e for B(q) = Cq~%, B~ 1(u) = (C'/u)*/*. An optimal choice for ¢ is then Cna%?, leading to a

L 12
convergence rate in n +a+2 .

Let us mention here that the stronger condition in Theorem 6 leads to a slower convergence
bound for the polynomial decay case, compared to the output of Algorithm 2. Again,
assessing optimality of exposed convergence rates remains an open question, up to our
knowledge.
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3.2 Test with controlled type I error rate

In this section, we investigate the type I error of the test
Ta — ﬂs(v)}tn,aa

where s is the score function built in Section 2.5 and ¢, o, will be built from sample to achieve
a type I error rate below .

To keep it simple, we assume that ¥ and g in (3) are computed from a separate sample,
so that we observe

V; = 271/2(% — M)

from a stationary sequence of measures, resulting in a stationary sequence of vectors. Whether
> and p should be computed on the same sample, extra terms involving concentration of 3
and p around their expectations should be added, as in the i.i.d. case.

We let Z denote the common distribution of the s(v;) = ||0;]’s, that represent the
"normal” behavior distribution of the time serie structure. For the test T, introduced above,
its type I error is then

P~z (2] > tna)-

A common strategy here is to choose a ¢, from sample, such as

1 n
= Wifstan <@ =0,
=1

for a suitable § < a. In what follows we denote by # such an empirical choice of threshold. The
following result ensures that this natural strategy remains valid in a dependent framework.

Proposition 7 Let g € [1,n], and «, 0 be positive quantites that satisfy

log(n)
5o (n/q) <6< a.

If t is chosen such that
1 n
=~ Agsi <=9,
i=1

then, with probability larger than 1 — % — B(q), /aiq, it holds

Psjy (12]] > ) < a.

In other words, Proposition 7 ensures that the anomaly detection test ]1”5”25 has a type I
error below «, with high probability. Roughly, this bound ensures that, for confidence levels
a above the statistical uncertainty of order g/n, tests with the prescribed confidence level
may be achieved via increasing the threshold by a term of order /ag/n.

As for Theorem 5 or 6, choosing the smaller ¢ that achieves 3(q)?/q® < a/n? optimizes
the probability bound in Proposition 7:
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e for 3(q) < Cp?, q of order C’log(n) is enough to satisfy 8(q)/q> < n~2, providing the
same results as in the i.i.d. case, up to a log(n) factor.

e for 3(q) = Cq~®, an optimal choice for ¢ is of order n%ars a~1/(2a+3) “that leads to the
same bounds as in the i.i.d. case, but with useful sample size n/q = n#ifial/@“%).
Although this bound might be sub-optimal, it can provides some pessimistic prescriptions
to select a threshold o — 4, provided that the useful sample size n/q is known. For instance,
assuming log(n) < 6, for @ = 5% the minimal ¢ is of order 2.7/4/n/q, that is neglictible
with respect to o whenever n/q is large compared to roughly 3000.

3.3 Theoretical guarantees for persistence diagrams built from multivariate
time series

We discuss here how the outputs (X;);=1,...» of Algorithm 1, based on a D-dimensional time
serie (Yy)e(o;z), fall in the scope of the previous sections. Recall that a persistence diagram
may be thought of as a discrete measure on R? (see Section 2.3). In a nutshell, if (Y;);e[0.z)
is stationary with a certain profile of mixing coefficients, then so would (X¢)¢=1,. n-
Stationarity: Since, for t = 1,...,n, X; may be expressed as f((Yu)ue[s@t—1);s(t—1)+4]> for
some function f, then stationarlty of (Xt)¢=1,...n follows from stationarity of (Y;).c(o;r)-

Boundedness: We intend to prove that the outputs of Algorithm 1 are in the scope of
Definition 2. Let d be an homology dimension, ¢ € [1;n], and recall that X; is the order
d persistence diagram built from the Vietoris-Rips filtration of ([1; D], E, S¢), where E is
the set of all edges and Sy = 1 — Corr(Y{s¢—1);s(t—1)+a]) gives the weights that are filtered
(see Section 2.1). First note that, for every 1 < i,5 < D, S;(; ;) € [0;2], so that every
point in the persistence diagram is in [0;2]2. Next, since a birth of a d-order feature is
implied by an addition of a d-order simplex in the filtration (see for instance Boissonnat
et al. (2018) Section 11.5, Algorithm 11), the total number of points in the diagram is
bounded by ( d +1) At last, for a bounded weight function w, the total mass of X; may be
bounded by (d+1) |w||oo- We deduce that X; € My, (R, M) (Definition 2), with R < 4,

Npax < (d+1) and M < ( X ||w||oo- Note that in the experiments, we set w = 1.

d+1)
Mizing coefficients: Here we expose how the mixing coefficients of (X)i=1,. » (Definition
4) may be bounded in terms of those of (Y;).c(o;z)- Let us denote these coefficients by 3

and B . If the stride s is larger than the window size A, then it is immediate that, for all
q > 1, B(q) < B(gs — A). If the stride s is smaller (or equal) than A, then, denoting by
g = [(A/s)] + 1, we have, for ¢ < qo, 5(q) < 1 (overlapping windows), and, for ¢ > qo,
B(q) < B(qs — A). The mixing coefficients of X; may thus be controlled in terms of those
of Y;. For fixed A and s, this ensures that mixing coefficients of X; and Y; have the same
profile (and leads to the same convergence rates in Theorem 5 and 6).

o If B(q) Cyq®, for Cy,a > 0, then, for any ¢ > qo, 8(q) < Oy (s — A/qo)"“ ¢!, so that
B(q) < —a for some constant C'x (depending on ¢, s and a).

Cxq
e If 3(q) < Cyp4, for Cy > 0 and j < 1, then, for any ¢ > qo, B(¢q) < Cy (pLs~(A/0))a, g0
that 5(q) < Cxp?, for some Cx >0 and p < 1 depending on qq, s and p.
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In turn, mixing coefficients of Y; may be known or bounded, for instance in the case where
it follows a recursive equation (see, e.g., (Pham and Tran, 1985, Theorem 3.1)), or inferred
(see, e.g., McDonald et al. (2015)). Interestingly, the topological wheels example provided in
Section 4.1 (borrowed from Bourakna et al. (2022)) falls into the sub-exponential decay case.

Margin condition: The only point that cannot be theoretically assessed in general for
the outputs of Algorithm 1 is to know whether E(X) satisfies the margin condition exposed
in Definition 3. As explained below Definition 3, a margin condition holds whenever E(X)
is concentrated enough around k poles. Thus, structural assumptions on 1 — Corr (Y|, A])
(for instance k prominents loops) might entail E(X) to fulfill the desired assumptions (as in
Levrard (2015) for Gaussian mixtures). However, we strongly believe that the requirements
of Definition 3 are too strong, and that convergence of Algorithms 2 and 3 may be assessed
with milder smoothness assumptions on E(X). This fall beyond the scope of this paper,
and is left for future work. The experimental Section 4 to follow assesses the validity of our
algorithms in practice.

4 Applications

In order to make the case for the efficiency of our proposed anomaly detection procedure
TADA, we now present an assortment of both real-case and synthetic applications. The first
application we call the Topological Wheels problem that is directly derived from Bourakna
et al. (2022) to show the relevance of a topologically based anomaly detection procedure on
complex synthetic data that is designed to mimic dependence patterns in brain signals. The
second application is an up-to-date replication of a benchmark with the TimeEval library
from Schmidl et al. (2022) on a large array of synthetic datasets to quantitatively demonstrate
competitiveness of the proposed procedure with current state-of-the-art methods. The third
application is a real-case dataset from Jacob et al. (2021-07) consisting in data traces from
repeated executions of large-scale stream processing jobs on an Apach Spark cluster. Lastly
we produce interpretability elements for the anomaly detection procedure TADA.

Evaluation of an anomaly detection procedure in the context of time series data has
many pitfalls and can be hard to navigate, we refer to the survey of Sgrbg and Ruocco
(2023). Here we mainly evaluate anomaly scores with the robustified version of the Area
Under the PR-Curve: the Range PR_AUC metric of Paparrizos et al. (2022a) (later just
"RANGE_PR_AUC”), where a metric of 1 indicates a perfect anomaly score, and a metric
close to 0 indicates that the anomaly score simply does not point to the anomalies in the
dataset. For the sake of comparison with the literature we also include the Area Under
the ROC-Curve metric (later just "ROC_AUC”) although as Sgrbg and Ruocco (2023)
demonstrated it is simply less accurate and powerful a metric in the unbalanced context
of anomaly detection. Therefore each collection of anomaly detection problems will yield
evaluation statistics. To summarize comparisons between algorithms we use a critical
difference diagram, that is a statistical test between paired populations using the package
Herbold (2020). We introduce two other statistical summary of interest:

e the ”# > .9” metric, which we introduce for the number of anomaly detection problems
an algorithm has a RANGE_PR_AUC over .9, which we roughly translates as ”finding”
the anomalies in the dataset or ”solving” the problem,
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e the "#rankl” metric, which we introduce for the number of problems where an algorithm
reaches the best PR_AUC score over other algorithms. If a method reaches a not negligible
number, this indicates that it makes sense to use the method for solving this kind of
problem.

For the purpose of comparison with the state-of-the-art we draw from the recent bench-
mark of Schmidl et al. (2022). We take the three best performing methods from the
unsupervised, multivariate category: the ”KMeansAD” anomaly detection based on k-means
cluster centers distance using ideas from Yairi et al. (2001), the baseline density estimator
k-nearest-neighbours algorithm on time series subsequences ”SubKNN”  and ” TorskAD”
from Heim and Avery (2019), a modified echo state network for anomaly detection. In order
to understand better the value of the introduced topological methodology, we also couple the
topological features of Algorithm 4 to the isolation forest algorithm from Liu et al. (2008)
for an unsupervised anomaly detection method denominated as ” Atol-IF” in reference to the
Royer et al. (2021) paper. For an upper bound on what can be achieved on the first collection
of problem we also couple those topological features to a random forest classifier Breiman
(2001-10), resulting in a supervised anomaly detection method denominated as ” Atol-RF”.
Lastly for discriminating effects of a spectral analysis respective to a topological analysis,
we compute spectral features on the correlation graphs coupled to either an isolation forest
or to a random forest classifier, in an unsupervised anomaly detection method denominated
as ”Spectral-IF” and a supervised one named ”Spectral-RF”.

In practice all those methods involve a form of time-delay-embedding or subsequence
analysis or context window analysis (we use these terms synonymously in this work), that
requires to compute a prediction from a window size number A of past observations. A is
a key value that acts as the equivalent of image resolution or scale in the domain of time
series. In using a subsequence analysis, given a A-uplet of timestamps [t] := (¢1, 2, ..., tA),
once an anomaly score sy is produced it is related to that particular A-uplet but does not
refer to a specific timestep. A window reversing step is needed to map the scores to the
original timestamps. For fair comparison, we will provide all methods with the following
(same) last-step window reversing procedure: for every timestep ¢, one computes the sum of
windows containing this timestep §; := Z[t,]:te[t,} s(¢)- Here we select not to use the more
classical average §; := E[t,]:te[t,] S[v) / E[t,]:te[t,] 1, as this average produces undesirable border
effects because the timestamps at the beginning and end of the signal are contained in less
windows, which in turn makes them over-meaningful after averaging. Using the sum instead
has no effect on anomaly scoring as the metrics are scale-invariant.

For the specific use of TADA in this section, the centroids computation part of Section
2.3 is made using w9y = 1 and computed with the batch version described in Algorithm 2.
Our implementation relies on The GUDHI Project (2015) for the topological data analysis
part, but also makes use of the Pedregosa et al. (2011) Scikit-learn library for the anomaly
detection part, minimum covariance determinant estimation and overall pipelining. The
code is published as part of the ConfianceAl program https://catalog.confiance.ai/
and can be found in the catalog: https://catalog.confiance.ai/records/4fx8n-6t612.
For now its access is restricted but it will become open-source in the following months. All
computations are possible and were in effect made on a standard laptop (i5-7440HQ 2.80
GHz CPU).

20


https://catalog.confiance.ai/
https://catalog.confiance.ai/records/4fx8n-6t612

TADA

4.1 Introducing the Topological Wheels dataset.

In this first application section we introduce a hard, multiple time series unsupervised
problem that emulates brain functions, and then solve the problem with our proposed
method and compare solutions with state-of-the-art anomaly detection methods as well as
supervised concurrent methods.

Bourakna et al. (2022) introduces ideas for evaluating methodologies relying on TDA
such as ours. They allow to produce a multiple time series with a given node dependence
structure from a mixture of latent autoregressive process of order two (AR2). One direct
application for this type of data generation is to emulate the network structure of the brain,
whose normal connectivity is affected by conditions such as ADHD or Alzheimer’s disease.
Therefore in accordance with Bourakna et al. (2022) we design and introduce the Topological
Wheels problem: a multiple time series datasets with a latent dependence structure ”type I”
as a normal mode, and sometimes a ”type II” latent dependence structure as an abnormal
mode. For the type I dependence structure we use a single wheel where every node are
connected by pair, and every pair are connected to two others forming a wheel; then we
connect a pair of pairs forming an 8 shape or double wheel, see Figure 7. And for the type
IT structure we start from a double wheel and add another connection between two pairs.
The first mode of dependence is the prominent mode for the timeseries duration, and is
replaced for a short period at a random time by the second mode of dependence. The total
signal involves 64 timeseries sampled at 500 Hz for a duration of 20 seconds, see Figure 7.
We produce ten such datasets and call them the Topological Wheels problem. It consists in
being able to detect the change in underlying pattern without supervision. We note that
by design the two modes are similar in their spectral profile, so overall detecting anomalies
should be hard for methods that do not capture the overall topology of the dependency
structure. The datasets are available through the public The GUDHI Project (2015) library
at github.com/GUDHI/gudhi-data.

Fio

1 \ / —— TADA (RANGE_PRAUC = 0.97) ‘
—
1 v— Atol-RF (RANGE_PRAUC — 0.88) ‘
0 !
‘“’1 W Spectral- AF (RANGE PRAL (RANGE_PR_AUC = 0.59)
i
;

]

F o —— KMeansAD (RANGE PR_AUC = 0.03) / ‘

T T T T T
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Figure 7: Left: Synthetised time series and the latent generating process (orange) indicating normal
connexion (double circular wheel with middle connexion, on top) or abnormal connexion (double
circular wheel with two connexions, on the bottom). Right: Anomaly scores of all tested methods on
one of the datasets, and their RANGE_PR_AUC metric on comparing with the truth (bottom row)
in parenthesis.
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For learning this problem we use a cross-validation like procedure with a focus on
evaluation: we perform ten experiments and for each experiment, every method is fitted on
one dataset and evaluated on the other nine datasets. We then rotate the training dataset
until all ten datasets have been used for training. We use this particular setup in order to
be able to compare supervised and unsupervised methods on comparable grounds. As for
method calibration we note the following: all methods are given (and use) the real length
of the anomalous segment of A = 500 consecutive timestamps, and since all of them use
window subsequences we set the same stride for all to be s = 10. Lastly for all methods that
use a fixed-size embedding (Atol-based methods and ”Spectral-RF”) we set the same size of
the support to be K = 10.

We first show in Figure 7 the results of one iteration of learning, that is when all methods
are trained on a topological wheels dataset and evaluated on another. The last row of the
figure with label ”truth” shows the underlying signal value of the evaluated dataset. The
other rows are the computed anomaly score of each method along the time x-axis, with
the convention that the lower the score, the more abnormal the signal. The corresponding
RANGE_PR_AUC score of each method is written in the label. This first example confirms
the intuition that methods that do not rely on topology, that is the spectral method, the
k-nearest-neighbour method and the modified echo state network method all fail to capture
the anomaly. This is particularly striking for the spectral method as it was trained with
supervision. On the other hand all methods based on the topological features manage to
capture some indication that there is anomaly in the signal. For the isolation forest method,
even though it clearly separates the anomalous segment from the rest, it is not reliable as it
seems to indicate other anomalies when there aren’t. The random forest supervised method
perfectly discriminates the anomalous segment from the rest of the time series, and so does
our method almost as reliably.

algorithm #xp #>.9 H#rankl med time iqr time
Atol-IF (unsupervised) 90 21 7 21.070 0.099
Atol-RF (supervised) 90 45 38 21.104 0.104
KMeansAD  (unsupervised) 90 0 0 0.801 0.110
Spectral-RF  (supervised) 90 2 3 4.737 0.022
SubKNN (unsupervised) 90 0 0 35.287 0.245
TADA (unsupervised) 90 54 40 21.128 0.115
TorskAD (unsupervised) 90 1 2 112.841 1.973

Table 1: Summary statistics on the Topological Wheels problem for the algorithms evaluated. All
methods could produce scores for the 90 experiments, and without surprise the methods relying on
topological analysis are overwhelmingly dominating other methods in 88 of 90 experiments. Our
unsupervised method TADA is on par with a supervised learning method for the number of problem
where it has the best PR_AUC score (#rankl column). In seconds, the computation median time
(?med time”) and interquartile range (iqr time”) are standard with respect to the data sizes - also
note that computations are not optimized, and in fact performed on a single laptop.

We now look at the aggregated results for the entire problem, see Figure 8 and times
Table 1. We present both ROC_AUC and RANGE_PR_AUC averages with their standard
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Figure 8: Left: aggregated results for the Topological Wheels problem in the form of box plots for
the ROC_AUC and RANGE_PR_AUC metrics, and below them the points the metrics have been
computed from - where each point represent a metric score from comparing an anomaly score to
the underlying truth. Right: autorank summary (see Herbold (2020)) ranking of methods on the
Toplogical Wheels problem, showing competitiveness between our unsupervised TADA method and
the equivalent topological supervised method.

deviations over experiments, as well as the computation times for the sake of completeness.
Neither the spectral procedure nor the echo state network, subKNN or k-nearest-neighbour
method are able to capture any information from the Topological Wheels problem. Using
topological features with an isolation forest yields competitive results but it is simply inferior
to our procedure. This demonstrates that the key information to this problem lies in the
topological embedding which is not surprising, by design. Our procedure solves this problem
almost perfectly, and although it is unsupervised it is as competitive as a comparable
supervised method. This experiment demonstrates the impact of topology-based methods
for anomaly detection, as the non-topology method fail to capture any of the signal in the
datasets. Our proposed TADA method is clearly the best suited for learning anomalies in
this setup.

4.2 A benchmark using the TimeEval library.

We now look at a broader and more general arrays of problems to evaluate the competitiveness
of our method in comparison with state-of-the-art methods. For that purpose, we use the
GutenTAG multivariate datasets, drawn from Wenig et al. (2022). We chose the GutenTAG
datasets for the ability to generate a great (1084) number of varied anomaly detection
problems; they are mostly formed from inserting anomalies of various lengths in frequency
or variance or extremum values into a multivariate time series of 10000 timestamps. As the
anomalies in these dataset seem to have an average size of 100, we set the window sizes of
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the anomaly detectors to be a fixed A = 100. Other than that, all other parameters from
the previous section are left unchanged.
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Figure 9: Left: aggregated results for the TimeEval 1084 GutenTAG synthetic datasets in the form of
box plots for the ROC_AUC and RANGE_PR_AUC metrics, and below them the points the metrics
have been computed from - where each point represent a metric score from comparing an anomaly
score to the underlying truth. Right: autorank summary (see Herbold (2020)) ranking of methods,
showing fourth place ranking for our purely topological TADA method.

algorithm #xp #>.9 FHrankl med time iqr time

Atol-TIF 1084 844 396 4.137 0.029
KMeansAD 1084 366 213 2.327 0.375
Spectral-IF 1084 751 281 1.502 0.014
SubKNN 1084 944 939 1.244 0.502
TADA 1084 021 255 4.525 0.062
TorskAD 1084 37 32 8.459 0.250

Table 2: Summary statistics on the GutenTAG problem set for the algorithms evaluated. Even
though it is ranked fourth by the statistical pairwise-ranking in Figure 9, our unsupervised method
TADA is able to solve roughly half the sets of problems, and being competitive on other 250 of them.
The other topological method Atol-IF is ranked second and is able to solve 844 of the 1084 problems.
In seconds, the computation median time ("med time”) and interquartile range ("iqr time”) are
standard with respect to the data sizes involved - computations are performed on a single laptop.

Statistical summaries and results on the synthetic datasets are shown Figure 9, and in
Table 2. As a remainder, the SubKNN, KMeansAD and TorskAD methods were the top
three performing methods from the largest anomaly detection benchmark to date (see Table
3 from Schmidl et al. (2022)). Our TADA procedure manages to solve roughly half the
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Figure 10: Left: zoom in on a GutenTAG problem instance (sensors selected for visualization) with
a variance anomaly for the last two sensors (purple and red), and the ground truth (last row). Right:
problem ground truth (top row) and the corresponding anomaly scores of each method with their
RANGE_PR_AUC metric in parenthesis. The topological methods TADA and Atol-IF get a good
metric score and manage to find the anomalies, while no other method does.

problems and is a top contender among competitors for about a quarter of them. Atol-IF
performs better than TADA in this instance, which is not surprising as isolation forest retain
much more information from training than TADA, which also implies heavier memory loads.
Overall SubKNN is able to perform the best on those datasets, and TADA and Atol-IF show
good performances, and in some instances only the topological methods manage to solve
the problem, see for instance Figure 10. These results demonstrate competitiveness of our
methodology in the unsupervised anomaly detection learning context.

4.3 Exathlon real datasets

Lastly we turn to a real collection of datasets: the 15 Exathlon datasets from Jacob et al.
(2021-07) consisting in data traces from repeated executions of large-scale stream processing
jobs on an Apach Spark cluster, and anomalies are intentional disturbances of those jobs.

Using the same metrics, collection of anomaly detection methods and exact same
calibration as in the previous TimeEval experiment, we produce the following results. The
main statistical summaries are presented on Figure 11 and Table 3. Overall the topological
methods are strong competitors for these datasets, with TADA coming off as the most often
number one ranked method. Due to the real nature of the datasets it is not surprising
that the studied methods do not ”solve” them in a way those methods were able to solve
the GutenTAG datasets of the Topological Wheels datasets. We show in Figure 12 the one
instance where TADA is able to solve the problem completely, and highlight that is has
happened without any calibration.

One drawback of the topological methods appearing here is the high variance in execution
time, which originates from computing topological features on a great number of sensors,
see Table 4 for a scaling intuition. As our implementation of Algorithm 5 is naive, we point
that there are strategies for optimizing computation times: ripser, subsampling, clustering
that makes sense, etc. Those strategies are outside the scope of this paper.
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Figure 11: Left: aggregated results for the 35 Exathlon real datasets in the form of box plots for
the ROC_AUC and RANGE_PR_AUC metrics, and below them the points the metrics have been
computed from - where each point represent a metric score from comparing an anomaly score to the
underlying truth. Right: autorank summary (see Herbold (2020)) ranking of methods on the real
datasets, showing second and third place ranking for the topological methods Atol-IF and TADA.

algorithm #xp #>.9 Frankl med time iqr time

Atol-IF 15 0 3 9.998  448.273
KMeansAD 15 1 1 3.336 2.568
Spectral-IF 15 0 4 6.212 1.503
SubKNN 15 1 2 8.604 13.357
TADA 15 1 5 11.516  450.723
TorskAD 15 0 0 34.282 37.395

Table 3: Summary statistics on the Exathlon real data problems for the algorithms evaluated. Even
though it is ranked third by statistical ranking in Figure 11, our unsupervised method TADA is the
top RANGE_PR_AUC score (#rankl column) over all problems, which hints that it is able to solve
different sorts of anomaly detection problems than the others. In seconds, the computation median
time ("med time”) and interquartile range (”iqr time”) are high for the topological methods, see
commentaries in the text. Computations are performed on a single laptop.

4.4 Score interpretability

The anomaly score we introduce is constructed from estimating the mean measure of
persistence diagrams supported by K centroids, and analysing the resulting embedding’s
main distribution features. Once these centers are learnt it is possible to engineer anomaly
scores respective to a particular center, or possibly to a set of centers e.g. centers associated
with a particular homology dimension. Let us examine this first possibility, and introduce
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dataset TADA computing time (s) n_sensors n_timestamps
10-2-1000000-67 1127.328406 165 10250
10-3-1000000-75 10.981673 8 46656
10-4-1000000-79 7.367096 3 43086
2.2.200000-69 121.436984 130 2874
3-2_1000000-71 457.991445 194 2474
3-2.500000-70 591.719635 208 2611
5-1.500000_62 14.912100 16 46660
5-2.1000000-72 460.615526 195 2481
6-1_500000-65 11.515798 12 46649
6_3-200000_76 9.138171 7 46654
8-3-200000-73 8.023327 4 46641
8-4.1000000-77 7.096984 2 43078
9-2_1000000-66 3046.870513 239 7481
9_3_500000-74 9.379143 7 46650
9.4.1000000-78 7.405223 3 43105

Table 4: Summary computation times for TADA and problem sizes on the Exathlon real datasets.
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Figure 12: Left: zoom in on dataset 3.2.1000000_71. Right: ground truth (top row) and anomaly
scores for the six methods and their RANGE_PR_AUC score in parenthesis. While all methods
capture locate the beginning of the anomaly period correctly, only TADA manages to catch it in its
entirety.
the center-targeted scores:

~ S—1/2 ~

S; = Eii / ‘Ui - ,ui|7 (7)
where fi, 3 are the estimated mean and covariance of the vectorization v of Algorithm 4

(time indices are implied and ommited for this discussion). These scores can be interpreted
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as testing for anomalies with respect to a single embedding dimension as if the vectorization
had independent components. These center-targeted scores allow to analyze an original
anomaly by looking at the score deviations of each vector component. Because the vector
components are integrated from a learnt centroid, the scores can be traced back to a specific
region in R2, see for instance Figure 13.
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Figure 13: Left: Overall score (top curve, in blue), scores for §; (middle curves, three top ones
for features corresponding to homology dimension 0, three bot ones for features corresponding to
homology dimension 1) and ground truth (bottom curve) on a single Topological Wheels dataset.
The last homology dimension 1 has the strongest correspondance to the overall score, and matches
the underlying truth almost exactly. Right: §; scores of an abnormal persistence diagram on this
dataset, next to the associated quantization centers (colored stars) of Algorithm 2. The scores are
written in a font size proportional to them, so that the more abnormal scores appear bigger. In this
instance the quantization centers in dimension 0 and 1 with the highest persistence react to this
diagram, hinting at a change in the latent data structure as the highest persistence diagram points
are usually associated with signal in comparison with points nearer the diagonal.

This leads to valuable interpretation. For instance if an abnormal score of TADA were
to be caused by a large deviation in a homology dimension 1 center-related component, it is
likely that at that time an abnormal dependence cycle is created for a longer or shorter period
of time than for the rest of the time series, therefore that the dependence pattern has globally
changed in that period of time. See for instance an illustration on the Topological Wheels
problem in Figure 13 where globally changing the dependence pattern between sensors is
exactly how the abnormal data was produced. And in the case that the produced score
is abnormal simply by virtue of a shift in several dimension 0 centers-related components,
it signifies an anomaly in the connectivity dependence structure that does not affect the
higher order homological features, therefore it could be attributed to a default (such as a
breakdown) in one of the original sensors for instance.
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5 Conclusion

It is common knowledge that no anomaly detection method can help with identifying all kinds
of anomalies. The framework introduced in this paper is relevant for detecting abnormal
topological changes in the dependence structure of data, and turns out to be competitive
with respect to other state-of-the-art approaches on various benchmark data sets. Naturally,
there are many different sorts of anomalies that the proposed method is not able to detect
at all - for instance, as the topological embedding is invariant to graph isomorphism, any
anomalies linked to node permutation (change of node labelling) cannot be caught. The same
is true for homothetic jumps: when signals would simultaneously get identically multiplied,
the correlation-based similarity matrix would remain unchanged, leading to unchanged
topological embedding. While such invariances can be thought of as hindrances, they can
also come as a welcome feature if those anomalies are in fact built-in the considered applied
problem - for instance in the case of labeling uncertainties in sensors.

The topological anomaly detection finds anomalies that other methods do not seem to
discover. It is generally understood that topological information is a form of global informa-
tion that is complementary to the information gathered by more traditional approaches, e.g.
spectral detectors. While confirming this, the above numerical experiment also suggest that
topological information is commonly present in various real or synthetic datasets. Therefore
for practical applied purposes it is probably best to use our method in combination with
other dedicated methods, for instance one that focuses on ”local” data shifts such as the
SUBKNN method.

Focusing on the case of detection of anomalies in the dependence structure of multivariate
time series, it appears that the only parameter that requires a careful tuning in our method
is the window size (or temporal resolution) A, as for most of existing procedures (see Section
4). Designing methods to empirically tune this window size, or to combine the outputs of
our method at different resolutions would be a relevant addition to our work, that is left for
future research.

Let us now emphasize the broader flexibility of the framework we introduce. First, it
is not tied to detect changes in correlation structures: we may use Algorithm 1 with other
dissimilarity measures between channels, and in fact we may build persistence diagrams
from a time series of more general metric spaces - e.g. meshed shapes, images... - in the
more general case (as done in Chazal et al. (2021) for graphs). Second, the vectorization
we propose with Algorithm 2 and 4 does not necessarily take a sequence of persistence
diagrams as input: any sequence of measures may be vectorized the same way. It may
find applications in monitoring sequences of point processes realizations, as in evolution
of distributions of species for instance - see, e.g., Renner et al. (2015). And finally, one
may process the output of the vectorization procedure in other ways than building an
anomaly score. For instance, using these vectorizations as inputs of any neural network,
or change-points detection procedures such as KCP (Arlot et al. (2019)) could provide a
dedicated method to retrieve change points of a global structure.
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7 Proofs

Most of the proposed results are adaptation of proofs in the independent case to the
dependent one. A peculiar interest lies in concentration results in this framework, we list
important ones in the following section.

7.1 Probabilistic tools for S-mixing concentration

In the derivations to follow extensive use will be made of a consequence of Berbee’s Lemma.

Lemma 8 (Doukhan et al., 1995, Proposition 2) Let (X;);>1 be a sequence of random
variables taking their vales in a Polish space X, and, for j > 0, denote by

by =E sup |P(B | o(—00,7)) — P(B)]
Beo(j+1,+00)

Then tlgere exists a sequence (X;);>1 of independent rand~om variables such that, for any
i > 1, X; and X; have the same distribution and P(X; # X;) < b;.

The above Lemma allows to translate standard concentration bounds from the i.i.d. frame-
work to the dependent case, where dependency is seized in terms of S-mixing coefficients.

Let us recall here the general definition of S-mixing coefficients from Definition 4. For a
sequence of random variables (Z;);ez (not assumed stationary), the beta-mizing coefficient
of order q is

Blg) =suwpE | sup  [P(B[o(-00,1)) - P(B)
teZ Beo(t4q,+00)
If the sequence (Z;)icz is assumed to be stationary, (q) may be written as
B(q) = E(drv (Px, X i1 )lo (o Xo) PXg X gs10)))s

where dry denotes the total variation distance. We will make use of the following adaptation
of Bernstein’s inequality to the dependent case.

Theorem 9 (Doukhan, 199/, Theorem 4) Let (Xy)iez be a sequence of (real) variables with
B-mizing coefficients (5(q))qen+, that satisfies

1.VteZ E(X,) =0,
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To apply Theorem 9, a bound on the variance term is needed. Such bounds are available
in the stationary case under slightly milder assumptions (see, e.g., Rio (1993)). For our
purpose, a straightforward application of (Rio, 1993, Theorem 1.2, a)) will be sufficient,
exposed below.

n

S

t=1

Lemma 10 Let X; denote a centered and stationary sequence of real variables with 5-mixing
coefficients (5(q))qen=, such that | X;| < M a.s..
Then it holds

2

1 " 1
) X | <4aMm? L (w)du,
2|2 |

where B_l(u) = ZkeN ]lﬁ(k)>u'

7.2 Proofs for Section 3
7.2.1 PROOF OF THEOREM 5

Proof [Proof of Theorem 5|

We begin by the proof of Theorem 5. It follows the proof of (Chazal et al., 2021, Theorem
9) in the i.i.d. case, with adaptations to cope with dependency using Lemma 8.

To apply Lemma 8, first note that the space M(R, M), endowed with the Levy-Prokhorov
metric, is a Polish space (see, e.g., (Prokhorov, 1956, Theorem 1.11)). Using Lemma 8 as in
(Doukhan et al., 1995, Proof of Proposition 2) yields the existence of X1,...,X, such that,
denoting by Y} (resp. Y},) the vector (X(k=1)g+15 - - - » Xkq) (resp. (X(k,l)qﬂ, oy Xpq)), for
1 < k <n/q, it holds:

e For every k > 1 Y}, has the same distribution as Y}, and P(ffk #Yy) < B(q).
e The random variables (Y2)r>1 are independent, as well as the variables (Yor—1)g>1-

For any c € B(0, R)*, we denote by 7(c) (resp. 1m(c)) the vector of centroids defined by,
forall j =1,... k,

Kn(du) [uly, o) ()]
pj(c)

Xo(du) [ully, o) ()]
pj(c)

m(c); = o mfe)j = ;
where p;(c) (resp. p;(c)) denotes X,,(W;(c)) (resp. ):(n(Wj(c))), adopting the convention
mj(c),mj(c) = 0 when the corresponding cell weight is null.

The following lemma ensures that m(c) contracts toward c*, provided ¢ € B(c*, Rp).
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Lemma 11 With probability larger than 1 — 16e—c1mPmin/(@M) _ 26— 4t holds, for every
Cc < B(C*, Ro),

2
. so 3 . D} Ll d
Iin(e) = eI < Flle = P+ G5 4 Zﬂx %)

min pmln

where Dy, /g = Rﬂjﬁ‘/& (k\/dlog(k) + \/5)

The proof of Lemma 11 is postponed to Section 7.2.3. Equipped with Lemma 11, we first
prove recursively that, if ¢(®) € B(c*, Ry), then w.h.p., for all ¢t > 0 ¢ € B(c*, Ry). We let
)1 be defined as

n 2
1
0 = { CokR*M? <n§ ﬂxiﬂ) /Poin < R3/8
i=1

2
Noting that E (n Do Ly e ) <E (% Yo ]lXi;,éXi) = B(q), Markov inequality yields

kM?
Wﬁ(Q)-

0 min

P(Qf) <C

Choosing = = c¢1(n/q)k2p?,,/M? in Lemma 11, for ¢; small enough yields, for (n/q) large
enough,
R} R3

. N 3
[(c) — c*||? < ZR(Q) tg T ? = R},

with probability larger than 1 — 18e~C1n%6Pmin/aM* — C’IJE%Q B(q), provided ¢ € B(c*, Ry).
0 min
Denoting by 29 the probability event onto which the above equation holds, a straightforward
recursion entails that, if ¢(9) € B(c*, Ry), then, for all t > 1 ¢® = m(c*~V) € B(c*, Ry), on
Qo.
Then, using Lemma 11 iteratively yields that, on Qs N, where P(Q25) < 2e™*, for all
t > 1, provided ¢© € B(c*, Ry),

2
Hc“)—cll2<<4) e =t + €1 + G <nZ“X#5‘i) v
=1

min pmln

Theorem 5 now easily follows. For the first inequality, let t > 1, then, using Markov

inequality again gives
(Zﬂm q/n) aa)

Thus, the assumption 5%(q)/q¢® < n~3 entails that

3\ D kR?M?
® *2<<> R} + Oy Lt
c | < 1 + Oy
H H 4 ’ pr2nin p?mn(n/Q)
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—e1nRgpln/aM? Cﬁ’gjf B(q) — q/n —2e~7 that is larger
0F min

with probability larger than 1 — 18e

2
than 1 — C-2EM~_ _ 9p—z
NEGPmin

For the second inequality, denote by Z; the random variable

Z

n

2
i} 3\* } R2M2k2dlog(k ER2M? [ 1
16 = (3 1 - P - 1 s e, St ) | Lo
1

2 2
min pmin i=

+

and remark that (8) entails

We deduce that

which leads to

E(le” —c*|*) < E(le” - c*|*La,) + 4kR*MP(Q5)

3\ ' R2M2k2dlog(k
<E(Z) + () 1c® — e*|2 + ¢y 4 2 og (k)
4 n min
kR2M? 1< ’ )
+ Cy 2 E n;% 4%, + 4k R2MP(Q5).

Noting that

i=1 =1
and using
kM?
pa) < (et 4 K 5p)
0Pmin
kM?
< C—5—(B(g) + (a/n
o (3(0) + (a/)
2
o=
" KoPmin
whenever 5(g) < ¢/n leads to the result. [ ]
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7.2.2 PROOF OF THEOREM 6

Proof [Proof of Theorem 6] This proof follows the steps of (Chazal et al., 2021, Proof of
Lemma 18).

As in the proof of Lemma 11, let X1,..., X, be such that, denoting by Y}, (resp. Y3)
the vector (X(x_1)g+1,- > Xq) (resp. (X(k—l)q-l-h o ,qu)), for 1 <k < n/q, it holds:

e For every k > 1Y}, has the same distribution as Y, and P(Y}, # Yi) < B(q).
e The random variables (Ya)r>1 are independent, as well as the variables (Yor—1)g>1-

Let A} denote the event
Ay = {ijl,...,n/q Y; :}N’]}

A standard union bound yields that P(A9 ) < 28(q). On Ay, the minibatches used by
Algorithm 3 may be considered as independent, so that the main lines of (Chazal et al.,
2021, Proof of Lemma 18) readily applies, replacing X;’s by X;’s. In what follows we let ¢
denote the output of the t-th iteration of Algorithm 3 based on X1,. .., X,.

Assume that n > k, and ¢ > C’p]QV[2 log(n), for a large enough constant C' that only

depends on fol B~ (u)du, to be fixed later. For t < n/(4q) =T, let As1 and A;3 denote the
events

» . Pmin
At = {v] =Lk D) — ;W) < g }

Ags = {w =1,...,k H / (@ — u)nwj(éu))(u)(i&(s) — E(X))(du)

Mkdpmin
<8Ry min L
C }

where p;(t) = X ;o) (W; (€®)). Then, according to Theorem 9 with z = 2log(n) and Lemma
t

10 to bound the corresponding o, for j € {1,3}, P(A:;) < 4dk/n? + 2kdB(gn/18), for n large
enough.
Further, define

Agt = m Aj,l N Aj73.

J<t

Then, provided that g > cozzd]\;[j log(n), where ¢y only depends on fol B~ (u)du, we may
min"'0

prove recusively that
vp<t &P e B(c*, Ry)

on A¢; whenever ¢© = ¢ ¢ B(c*, Ry) (first step of the proof of (Chazal et al., 2021,
Lemma 18)).

Next, denoting by a; = ||[¢® — c*||?

14,,, we may write

E(atJrl) < Il“--1:(||6(t-’_1) - C*”2]1At+1,1]114gt) + R1>
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with

Ry < 4kR? (B( f+1,3))
16k*dR? (n™2 + B(q/18))
3

QdeRQ(q/n)Q,

NN N

recalling that 3(q/18)/q?> < n~2. Proceeding as in (Chazal et al., 2021, Proof of Lemma 18),
we may further bound

_ . 2-K 12kdM R?
E(Hc(tJrl) —cC ”2]114t+1,1]114<t) < <1 - 1) E( t)

t+1 Pmin(t +1)2’

for some K7 < 0.5. Noticing that k¥ < M/pmin and ¢t +1 < T'= n/(4q) yields that

2-K 14kdM R?
E(ais1) < (1— ) (ar)

t+1 pmin(t“‘l)Q‘
Following (Chazal et al., 2021, Proof of Theorem 10), a standard recursion entails

28kdM R?
E(ay) < oMM I
pmint

for t < n/(4q). At last, since [|¢™) — c¢*||?14, = [|c™) — c*||*1 4, , we conclude that

Ellc™) —c*|* <E([e) — c*||) + 4kR*P(AS) )
- . . 4kR?
SE(|6D — c*|*a,,) + 4kR*P(AS ) + 0]
16k2R2d
<E(ar) + ————
(n/q)
kM R2d

<128 ,
Pmin(1/q)

where k < M /pmin and T = % have been used. [ |

7.2.3 PrROOF OF LEMMA 11

Proof [Proof of Lemma 11| Assume that ¢ € B(c*, Ry), for some optimal c* € Cypt. Then,
for any K > 0, it holds

lin(e) = *[* < (1 + K) () — e*[* + (1 + K~ |rm(e) — m(c)|. 9)

The first term of the right hand side may be controlled using a slight adaptation of
(Chazal et al., 2021, Lemma 22).
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Lemma 12 With probability larger than 1 — 16e~%, for all c € B(0, R)* and j € [1,k], it

holds
. 8Mcpqlog(k)log(2nNpax S8Mqx
(0) > ny(e) — ey () logCnma) | 8Maz,

. 8Mcpqlog(k) log(2nNmax SMqx
Bi(e) < pjle) + (31 ) -

n \/8Mcoqlog(k) log(2nNmax) n 8Mqx
n n

pj(c),

where cg 1s an absolute constant. Moreover, with probability larger than 1 — 2e™*, it holds

sup (/(Cj — )y (o) (u)():(" B E<X))<du>>j1k

ceB(0,R)k
RM,/q
<Co— (k\/dlog(k:) + \/a?) ,

where Cy 1s an absolute constant.
Proof [Proof of Lemma 12] We intend here to recover the standard i.i.d. bounds given in
(Chazal et al., 2021, Lemma 22). To this aim, we let p;o(c) and p;1(c) be defined by

2 n/2q
ﬁ]r - qZYQS r

X, is a measure in M(R, M), with total

(2
for r € {0,1}, where Vosy = L Zt 8(2; r—1)gt1
number of support points bounded by ¢Nmax, and remark that

5i(€) = 5 (Biol©) + ia(c)).

Since E(}:/Qs,r)(Wj (c)) = pj(c), and the p;,(c)’s are sums of n/2q independent measures
evaluated on W;(c), we may readily apply (Chazal et al., 2021, Lemma 22) replacing n by
pi(c)’s.

j
n/(2q) to each of them, leading to the deviation bounds on the p;(c)

For the third inequality of Lemma 12, denoting by
n/2q

: 2
j q Z Y25 I
for j € {0,1}, it holds, for any ¢ € B(0, R)*,

</(cj —u)ly;(c) (u) (X, — E(X))(du))j:L...,k

(¢ = W)Ly, o) (W) (X1 — E(X))(du) )
</ )i

) |
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Since each of the ):(n,j’s are i.i.d. sums of discrete measures (the }:/25_]-’8), (Chazal et al.,
2021, Lemma 22) readily applies (with sample size n/(2q)), giving the result. [ ]

We now proceed with the first term in (9) as in (Chazal et al., 2021, Proof of Lemma 17).
Using the first two inequalities of Lemma 12 with z = ¢1npmin/M yields a probability event
)1 onto which

X 63 Punin 31
pj(c) > @pj(c) - glin P @pmina
i 33

Pi(©) < Sopile”).

Combining this with the inequality of Lemma 12 yields, for n large enough and all ¢ €
B(c*, Ry), with probability larger than 1 — 16e~¢1"Pmin/" _ 9¢=%

~ * * C
|7 (c) — c*||* < 0.65]|c — c¢*||? + pQ—Di/q. (10)

min

The precise derivation of (10) may be found in (Chazal et al., 2021, Proof of Lemma 17,
pp.34-35). Plugging (10) into (9) leads to, for a small enough K,

njq T Callin(c) —m(e)||?,

. « 3 . C
lin(e) —e*|* < S lle —c*[* + 27 Puq

4

min

with probability larger than 1 — 16e¢1"Pmin/n _ 2¢=7
It remains to control the last term [|72(c) — m(c)||?>. To do so, note that, for every

j:17"'7j7

M n
<2 s, (11)

and
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On g, it holds, for every j =1,... k,

Iy (@) = 1ivs (©)]| = X”(d“)g(“gﬂ@(“)] <du>£ﬁ(ﬂv)v<c>< )]
< HXn(du) [uﬂWJ @ ]H pjlc ﬁjtc)

+ ﬁ;c) | (Katdw) - X, (du)) [, @)] |
< R| j(c)v_cf)?y( anM Z X,
n
< Cn];fn ; Iy g,
Squaring and taking the sum with respect to j gives the result. |
7.2.4 PROOF OF PROPOSITION 7
Proof [Proof of Proposition 7| Let Zy,..., Z, denote the sequence ||01]],...,|0,||, that is a

stationary S-mixing sequence of real-valued random variables. For s € R, we let

1 n
- ﬁ Z ]lZ»;>t7
i=1

and F(t) =P(Z > t), and £ be such that Fy,(f) < a —§. In the i.i.d. case, we might bound
sup, (F(t) — Fy(t))/\/Fy(t) using a standard inequality such as in (Boucheron et al., 2005,
Section 5.1.2).

As for the proofs of Theorem 5 and 6, we compare with the i.i.d. case by introducing
auxiliary variables.

We let Z1, ..., Z, be such that, denoting by Y}, (resp. ffk) the vector (Z(y_1)g+15- - > Zkq)
(resp. (Z(k—1)g+1>- - > Zkq)), it holds
e For every 1 < k< n/qYy~ Y, and P(Yy # f/k) < B(q).

e (Y5;)k>1 are independent, as well as (Yor_1)k>1-

Let F,(t) denote 31", 1., Then, for any ¢t € R, we have
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If 0 is the event {% S Ly .7 <4/ %}, that has probability larger than 1—3(q)v/n/(aq)
(using Markov inequality as before), then on §2; it readily holds

aq

<a—d0+ + (F(f) — E, (D). (12)

n
It remains to control the stochastic term (F(f) — Fj,(£)). To do so, we denote by

~ 1 (2j-1)q

Xayo(t)=5 o i
i=2(—1)g+1

B 1 2jq

Xjpt)y== > 1z,

q i=(2j—1)gq+1

for j € [1,n/(2¢)] and t € R. Note that, for any o € {0,1}, X;,’s are i.i.d., take values in
[0, 1], and have expectation F'(t). Next, we define, for 1 < j < n/2q and t € R,

~ 2q ~

Fro(t) = — > Xio()
j=1

- 2 /20

Foi(t) = o X;a(t),
j=1

and we note that F,(t) = %(Fmo(t) + F,.1(t)). Since the F, ,’s are sums of i.i.d. random
variables, the following concentration bound follows.

Lemma 13 For j € {0,1}, and x such that (n/2q)x® > 1, it holds

P ( sup (F(t) — anj(t)) >2r | < 2n67(n/2q)1‘2.
teR F(t)

A proof of Lemma 13 is postponed to the following Section 7.2.5. Now, choosing r =
924/ 18 entails that, with probability larger than 1 —4(q/n) — 8(q)\/n/(aq),

F(£)<a6+\/?+4\/qloi(m\/%,
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which leads to

\/% < 2\/‘”05(”) + \/a — 5+ \/?quoi(”).

Choosing § > 4y/ay/ (ﬂ%g(m + 1/ 2 ensures that the right-hand side is smaller than /. W

7.2.5 PROOF OF LEMMA 13

Proof [Proof of Lemma 13] The proof follows the one of (Chazal et al., 2021, Lemma 22)
verbatim, at the exception of the capacity bound, that we discuss now. To lighten notation
we assume that we have a n/(2q) sample of Y;’s, with Y; = (Z(;_1)¢11,- - -, Ziq) € R?, and
we consider the set of functionals

1 q
F: {y:(zl,...,zq)v—)qz:]lzi>t}.
i=1

Following (Chazal et al., 2021, Lemma 22), if Sz(y1, - .,Yn/(2¢)) denotes the cardinality of
{f(yl), cois fWny29)) | [ € F}, we have to bound

SEY1s - Yoy@q) Y1+ Yo 2g)):

where the Y;’s are i.i.d. copies of the Y;’s. Since, for every yi,... s Yn/q» Tecalling that
Y = (z(ifl)qul’ cee 7Ziq)7 it holds

S]:(yla .- '7yn/q) < {(]121>t7 s ’Il‘zn>t) | te R}7

we deduce that

S]:(}/l? . 'aYn/(Qq)aYi,a s 7:/(2(])) < n.

The remaining of the proof follows verbatim (Chazal et al., 2021, Lemma 22). |
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