N

N
N

HAL

open science

A Trace Formula for Foliated Flows.
Eric Leichtnam, Yuri A Kordyukov, Jestis A. Alvarez Lopez

» To cite this version:

Eric Leichtnam, Yuri A Kordyukov, Jesis A. Alvarez Lopez. A Trace Formula for Foliated Flows..

2024. hal-04604073

HAL Id: hal-04604073
https://hal.science/hal-04604073

Preprint submitted on 6 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-04604073
https://hal.archives-ouvertes.fr

Jestis A. Alvarez Lépez
Yuri A. Kordyukov

Eric Leichtnam

A TRACE FORMULA FOR FOLIATED
FLOWS



https://orcid.org/0000-0001-6056-2847
https://orcid.org/0000-0003-2957-2873
https://orcid.org/0000-0002-5058-5508

J.A. Alvarez Lépez
Department of Mathematics and CITMAga, University of Santiago de Compostela,
15782 Santiago de Compostela, Spain.

E-mail : jesus.alvarez@usc.es

Y. A. Kordyukov

Institute of Mathematics, Ufa Federal Research Center,
Russian Academy of Sciences, 112 Chernyshevsky street, 450008 Ufa, Russia.

E-mail : yurikor@matem.anrb.ru

FE. Leichtnam

Institut de Mathématiques de Jussieu-PRG, CNRS,
Batiment Sophie Germain (bureau 740), Case 7012, 75205 Paris Cedex 13, France.

E-mail : eric.leichtnam@imj-prg.fr

2000 Mathematics Subject Classification. — 58A14, 57R30.

Key words and phrases. — Foliation, foliated flow, simple closed orbit, trans-
versely simple preserved leaf, conormal distributions, dual-conormal distributions,
small b-calculus, b-trace, Riemannian foliations of bounded geometry, leafwise forms,
reduced leafwise cohomology, leafwise Hodge decomposition, Witten’s complex, leaf-
wise Witten’s complex, b-Connes-Euler characteristic, Lefschetz distribution.

The authors are partially supported by the grants MTM2017-89686-P and PID2020-
114474GB-100 (AEI/FEDER, UE) and ED431C 2019/10 (Xunta de Galicia, FEDER).
April 15, 2024



A TRACE FORMULA FOR FOLIATED FLOWS

Jests A. Alvarez Lépez @, Yuri A. Kordyukov ©,
Eric Leichtnam

Abstract. — Let F be a transversely oriented foliation of codimension one on a
closed manifold M, and let ¢ = {¢'} be a foliated flow on (M, F). Assume the closed
orbits of ¢ are simple and its preserved leaves are transversely simple. In this case,
there are finitely many preserved leaves, which are compact. Let M° denote their
union, and let M = M \ M° and F! = F|y;1. We consider two topological vector
spaces, I(F) and I'(F), consisting of the leafwise currents on M that are conormal
and dual-conormal to M, respectively. They become topological complexes with the
differential operator dx induced by the de Rham derivative on the leaves, and they
have an R-action ¢* = {¢'*} induced by ¢. Let H®I(F) and H*I'(F) denote the
corresponding leafwise reduced cohomologies, with the induced R-action ¢* = {¢**}.
H®I(F) and H*I'(F) are shown to be the central terms of short exact sequences
in the category of continuous linear maps between locally convex spaces, where the
other terms are described using Witten’s perturbations of the de Rham complex on
M? and leafwise Witten’s perturbations for F'. This is used to define some kind of
Lefschetz distribution Lgis(¢) of the actions ¢* on both H*I(F) and H*I'(F), whose
value is a distribution on R. Its definition involves several renormalization procedures,
the main one is the b-trace of some smoothing b-pseudodifferential operator on the
compact manifold with boundary obtained by cutting M along M°. We also prove a
trace formula describing Lgis(¢) in terms of infinitesimal data from the closed orbits
and preserved leaves. This solves a conjecture of C. Deninger involving two leafwise
reduced cohomologies instead of a single one. This memoir is the conclusion of a
program started about ten years ago by the three authors.
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Résumé. — Soit F un feuilletage orienté transversalement de codimension un sur
une variété fermée M, et soit ¢ = {¢'} un flot feuilleté sur (M, F). Supposons que les
orbites fermées de ¢ soient simples et que ses feuilles préservées soient transversale-
ment simples. Dans ce cas, il existe un nombre fini de feuilles conservées, compactes.
Soit MY désignant leur union, et soit M = M\ M° et F1 = F|yn. Nous con-
sidérons deux espaces vectoriels topologiques, I(F) et I’(F), constitués des courants
dans le sens des feuilles sur M qui sont conormaux et dual-conormaux & M?°, re-
spectivement. Ils deviennent des complexes topologiques avec 'opérateur différentiel
dF induit par la dérivée de Rham sur les feuilles, et ils sont munis d’une R-action
¢* = {¢'*} induit par ¢. Désignons par H*I(F) et H*I'(F) les cohomologies co-
homologies réduites dans le sens des feuilles correspondantes, munie de le R-action
¢* = {¢t*}. HCI(F) et H*I'(F) se révelent étre les termes centraux des suites
exactes courtes dans la catégorie des applications linéaires continues entre espaces lo-
calement convexes, ou les autres termes sont décrits en utilisant les perturbations de
Witten du complexe de Rham sur MY et les perturbations de Witten dans le sens des
feuilles pour F!. Ceci est utilisé pour définir une distribution (sur la droite réelle R)
de type Lefschetz Lgis(¢) associée a I'action de ¢* sur les deux cohomologies H*I(F)
et H*I'(F) simultanément. Sa définition implique plusieurs procédures de renormali-
sation, la principale est la b-trace d’'un opérateur b-pseudodifférentiel de lissage sur la
variété compacte avec frontiere obtenue en coupant M le long de M°. Nous prouvons
également une formule de trace décrivant Lqgis(¢) en termes de données infinitésimales
provenant des orbites fermées et des feuilles préservées. Ceci résout une conjecture
de C. Deninger impliquant deux cohomologies réduites au niveau des feuilles au lieu
d’une seule. Ce mémoire est la conclusion d’un programme entamé il y a une dizaine
d’années par les trois auteurs.
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CHAPTER 1

INTRODUCTION

1.1. Deninger’s program

Let (M,F) be a smooth foliated manifold. The leafwise cohomology, H®(F), is
defined with the complex of differential forms on the leaves that are smooth on M,
C>®(M;AF) (AF = NT*F ® C), equipped with de Rham differential operator along
the leaves, dx. This differential complex is not elliptic, it is only leafwise elliptic.
Therefore H®(F) may be of infinite dimension and non-Hausdorff with the topology
induced by the C* topology. Thus it makes sense to consider the reduced leafwise
cohomology, H*(F) = H*(F)/0. (The reduced cohomology is defined and denoted
in a similar way for any complex with a compatible topology, called a topological
complex.)

A flow ¢ = {¢'} on M is said to be foliated if it maps leaves to leaves; equiva-
lently, its infinitesimal generator Z is an infinitesimal transformation of (M, F), or
the induced section Z of the normal bundle NF = TM/TF is parallel with respect
to the Bott partial connection. In this case, there is an induced R-action ¢* = {¢**}
on (C*°(M;AF),dr), which induces an R-action ¢* = {¢**} on H*(F). Moreover, ¢
induces a local flow ¢ on local transversals of . Some leaves may be preserved by ¢,
which correspond to the fixed points of ¢. If these fixed points of ¢ are simple, then
the leaves preserved by ¢ are called transversely simple (Section [£.1.2).

Assume M is closed, codim F = 1, the closed orbits are simple, the preserved
leaves are transversely simple, and ¢ is transverse to the non-preserved leaves. With
these conditions, C. Deninger has conjectured that the supertrace of ¢* on H*(F)
makes sense as a distribution Lgis(¢) on R (its Lefschetz distribution), and it has an
expression involving infinitesimal data from the preserved leaves and closed orbits (a
dynamical Lefschetz trace formula).

This problem is a part of a program proposed by Deninger, whose goal is the study
of arithmetic zeta functions by finding an interpretation of the explicit formulae as a
dynamical Lefschetz trace formula for some (M, F, ¢) of this type [Den98) [Den01),
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Den02], [Den05, Den08]. The precise expression of the trace formula was previously
suggested by Guillemin [Gui77]. Further developments of these ideas were made in
[IDS02], Miim06), Kop06}, Lei08), Kop11), Leil4, KP15, Kim17, Den22), [Den23].

It became clear that more generality is needed to draw arithmetic consequences
(perhaps foliated flows on possibly singular foliated spaces of arithmetic nature). But,
even for (M,F,¢) as above, this problem is difficult and interesting; for instance,
H*(F) is not appropriate in general [DS01]. Besides its own interest, a solution
might provide techniques to deal with more general settings. Moreover, we believe
that the techniques developed in this paper will be useful in arithmetic once the
appropriate framework allowing to interpret the Weil’s explicit formulae for arithmetic
zeta functions as Lefschetz trace formulae will have been discovered.

1.2. Case with no preserved leaves

The first two authors proved such a trace formula when ¢ has no preserved leaves
[ALKO02], and extended it for transverse actions of Lie groups |[ALKOS|. In this
case, F is Riemannian; i.e., it is locally described by Riemannian submersions for
some Riemannian metric g on M (a bundle-like metric). Using g, we get the leafwise
coderivative 0 and the leafwise Laplacian Ax. Then the leafwise heat operator
defines a continuous map |[ALKO1]

(1.2.1) C>®(M;AF) x [0,00] = C°(M;AF), (a,u) e “Ara.
It follows that there is a leafwise Hodge decomposition
(1.2.2) CO(M;AF)=kerAr @imdr $imdr ,

and therefore the orthogonal projection Il = e~ 47 to ker Ax induces a leafwise
Hodge isomorphism

(1.2.3) H*(F)=kerAr .

This is surprising because Az is only leafwise elliptic; somehow, the transverse rigid-
ity of Riemannian foliations makes up for the lack of transverse ellipticity. These
properties may fail for non-Riemannian foliations [DS01].

Furthermore, for all f € C°(R) and 0 < u < oo, the operator

(1.2.4) P.;= /R(;St*e_“Aff(t) dt

is smoothing, and therefore of trace class, its supertrace Str P, ; depends continuously
on f and is independent of u, and the limit of Str P, s as u | 0 gives the expected
contribution of the closed orbits [ALKOZ, ALKOS]. By and , the
mapping f — Str P, can be considered as the Lefschetz distribution Lqis(¢), solving
the problem in this case.
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1.3. General case

This publication is a continuation of the works [ALKOl, ALKO02, ALKOSL re-
called in Section Our main goal is to propose an extension of the trace formula
to the case where there are (compact) leaves preserved by ¢, which are very relevant
in Deninger’s program. Examples of foliations with such foliated flows can be easily
constructed by using foliation surgeries.

1.3.1. Ingredients of the trace formula. — Assume F is transversely oriented
for the sake of simplicity. Thus, by Frobenius theorem, F is defined by a 1-form
w with dw = n Aw (TF = kerw). Except in trivial cases, the existence of leaves
preserved by ¢ prevents F from being Riemannian (it is impossible to choose n = 0),
yet F has a precise description [ALKL22]. For instance, there is a finite number of
preserved leaves, which are compact. Let M? denote the union of the leaves preserved
by ¢, M' = M\ M° and F' = F|pp.

All versions of leafwise reduced cohomologies we will consider have an action ¢* =
{¢**} induced by ¢, which is invariant by leafwise homotopy equivalences. Thus, up
to leafwise homotopies, we can assume ¢! = id on M°. Then, for every leaf L C MP°,
there is some s, € R* such that, on the normal bundle NL = T, M /TL, the normal
tangent map is ¢L = e*r*. The numbers s, will be ingredients of the trace formula.
Moreover F' becomes a transversely complete R-Lie foliation with the restriction of
Z. So F is a particular case of foliation almost without holonomy [Hec72, Hec78§].

Take a Riemannian metric g on M so that w is the transverse volume form. The
corresponding leafwise metric is denoted by gz. We can suppose 1 vanishes on TF =+,
and therefore it can be considered as a leafwise form, and we have dzn = 0. Further-
more, on some tubular neighborhood T' = (—¢,¢) x M° (e > 0) of M in M, we can
suppose 1 and g7 are lifts of their restrictions to M?, and the fibers of the projection
@ : T — MO are orthogonal to the leaves and agree with the orbits of ¢. Thus there
are no closed orbits of ¢ in T'. The projection p : T' — (—¢, €) is a defining function of
M on T (dp # 0 on M° = p~1(0)), which can be assumed to satisfy dzp = pn on T
and ¢'*p = e”Ltp around every leaf L C M°. We can choose any 7|0 in some fixed
real cohomology class ¢ € H'(M?) determined by F, and there is no restriction on
the choice of g 0.

For every closed orbit ¢ of ¢, let ¢(c) denote its smallest positive period. The
condition on ¢ to be simple means that id _¢§Z(c) : T, F — T F is an isomorphism for
any p € ¢ and k € Z*, whose determinant is independent of p, and its sign denoted
by €.(k). The integers ¢(c) and e.(k) will be also ingredients of the trace formula.

Let g' be the bundle-like metric of F! such that it defines the same orthogonal
complement (TF')L as g, its restriction to TF! is g7, and Z|s1 is of norm one with
the induced Euclidean structure on NF!. Then F' has bounded geometry with g'
in the sense of [San08), ALKL14|. Let w' denote the transverse volume form of F!
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defined by g' and the transverse orientation given by Z|;;1. The transverse density
|w!| can be considered as an invariant transverse measure of F!.

By cutting M along MY, we get a compact manifold with boundary M with a
foliation F tangent to OM . This allows us to apply tools from b-calculus [Mel93,
Mel96]. For instance, g' and w' are restrictions to M* = M of a b-metric gy, and a
b-form wy, on M, and therefore |w!| is the restriction of the b-density |wy|.

We can suppose there is some boundary-defining function p on M (p > 0 and
dp # 0 on OM = p~1(0)) such that the lift  of n to M satisfies dzp = pn on M,
and p is the lift of |p| on a collar neighborhood T = [0,¢) x OM of OM. The lift of
# to M is a foliated flow ¢ = {¢'} of (M, F).

We will use the b-integral uf a0 depending on the choice of a trivialization v of
NOM satisfying dp(v) = 1. We can apply UfM to b-densities on M; the usual
integral of their restrictions to M may not be defined. Assume dim F is even, which
is the relevant case in Deninger’s program. Then the product of the leafwise Euler
density e(F) and |wp| is the restriction of a b-density on M, obtaining a b-calculus
version of the Connes’ |wy|-Euler characteristic of F,

Nl (F) = [ elF) e

which will be called the b-Connes-Euler characteristic of F defined by |wy| (or of
F! defined by |w!]). This number will be another ingredient of the trace formula,
also denoted by b>(|w1|(.7-'1). The b-integral can be used to define the b-trace "Tr of
smoothing b-pseudodifferential operators on M ; these operators may not be of trace
class. The corresponding concept of b-supertrace will be used, denoted by PStr.
With this generality, 7 are not true for C°°(M; AF). Using the space
C~°(M;AF) of leatwise currents does not work either. Instead, we will use the
topological complex of leafwise currents that are conormal and dual-conormal at M°
[KN65, [Hor71], [Hor85, Section 18.2], [Mel96, Chapters 4 and 6], [ALKL23.

1.3.2. Conormal and dual-conormal leafwise currents. — We first recall the
definitions and some properties of conormal and dual-conormal distributions at M?°.
Let Diff(M, M°) be the filtered algebra of differential operators on C>° (M) generated
by C°°(M) and the vector fields on M tangent to M, and let H*(M) be the Sobolev
space of order s € R. A distribution u € C~°°(M) is said to be conormal at M°
of Sobolev order s if Diff(M, M®)u C H®(M). These distributions form a Fréchet
space (¥ = I(S)(M, M?Y) endowed with the projective topology given by the maps
P: I — H*(M) (P € Diff(M, M°)). The spaces I(*) form an inductive spectrum
defining an LF-space I = I(M, M°) = |J, I®), with continuous inclusions C*(M) C
I C C~>(M). (All inclusions considered here are continuous.) See |[ALKL23| for
the properties of I and of other related spaces.
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All spaces of distributions considered here, and their properties, have straightfor-
ward extensions for distributional sections of vector bundles. In particular, for the
density bundle Q = QM, we get the strong dual I'(M,L) = I(M,L;Q)), simply
denoted by I’. The elements of I’ are called dual-conormal distributions; in fact,
CPM)cI' cC (M) with INI'=C>*(M)

Let also K = K(M,M") C I be the closed subspace consisting of elements
supported in M% On the other hand, via the lift to M, we get another space,
J = J(M, M), which is isomorphic to the space of extendable distributions on
M conormal at the boundary [Mel96l Chapter 4]. There are canonical injections
C>®(M)c JcCC®M"Y). Let K' = K'(M,L) and J' = J'(M, L) be defined like I".
We get J' € C~°°(M). Moreover there are short exact sequences in the category of
continuous linear maps between locally convex spaces [Wen03l, Chapter 2],

(1.3.1) 0-K5T18 750,

’
L

(1.3.2) 0Kl e,

where ¢ is the inclusion map and R is defined by restriction to M?!, and is the
transpose of the version of with Q (R’ = ' and / = R"). These sequences are
relevant because K, J, K’ and J' have better descriptions than I and I’. So
and will play an important role.

Using the vector bundle AF, we get the spaces of conormal and dual-conormal
leafwise currents at MO, I(F) = I[(M, MY AF) and I'(F) = I'(M, M° AF), as well
as the spaces K(F), J(F), K'(F) and J'(F), with a similar notation. All of them
are topological complexes with dr, and have R-actions ¢* = {¢'*} induced by ¢,
compatible with dz. They give rise to the conormal and dual-conormal leafwise
reduced cohomologies, H*I(F) and H*I'(F), as well as the reduced cohomologies
H*K(F), H*J(F), H*K'(F) and H*J'(F). Al of them with induced R-actions
¢* = {¢'*}. The bars are omitted from the notation if the cohomologies are not
reduced. There are versions of (1.3.1) and (1.3.2)) for the spaces K(F), I(F), J(F),
K'(F), I'(F) and J'(F), where ¢, R, '/ and R are cochain maps. The induced maps
in cohomology (resp., reduced cohomology) are denoted by ¢y, Ry, ¢, and R, (resp.,

L., R., 7, and R.).

*9 *

1.3.3. Witten’s perturbed complexes. — To describe the reduced cohomologies
of Section with the R-actions ¢*, we will use the Witten’s perturbation d,, =
d+ unA on C*®(L;A) (A = AL = ANT*L ® C), for u € R and every leaf L C M.
Its cohomology is denoted by H ;(L) The corresponding perturbed codifferential and
Laplace operators are denoted by J,, and A,,.

1.3.4. Leafwise Witten’s perturbed complexes. — Recall that dzp = pn on
M and OM = p~1(0). We will also use the leafwise Witten’s perturbation

dFu=dr +pmN=p Hdgp"
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on the Sobolev spaces HE> (M; AF) = HE>(M'; AF") defined with g, = g*. Their
reduced cohomologies are denoted by HYH>(F) (F = F|y, = F'). They satisfy
obvious versions of (1.2.1)—(1.2.3). We have the isomorphisms
(1.3.3) P (HE®(M;AF), dF ) = (p"H*>(M;AF),dF) .
Let also d)Z* = p F@"*pt on HE> (M ; AF), which induces an endomorphism qSL* of
HpH*®> (F). For y < 4/, the inclusions

p! HE(M;AF) C p" HE®(M; AF)
correspond via (1.3.3)) to the maps
(1.3.4) P HE (M AF) — HE°(M; AF) .
The corresponding perturbed leafwise codifferential and Laplace operators are de-

noted by 6£, and Ax . Finally, for f € C*(R), p € Rand 0 < u < oo, we will use
the operator

Pous= /qu;* e~ UuAFp f(t)dt
on HE°(M; AF), which is a version of (T.2.4).

1.3.5. Main results leading to the trace formula. — Concerning the above
reduced cohomologies, the following are our main achievements.

Theorem 1.3.1. — We hcw
KF) =@ C>L:n), dr=@dyr, ¢ =@e
L.k L.k L.k

H*K(F)=H*K(F) = @H:k_l(L) . Pt = @ef(kJrl)uLt :
Lk Lk

where L runs over the set of leaves contained in M° and k runs over Ny.

The first identity of Theorem m follows by considering the partial derivatives 5‘§
(k € Np) of leafwise currents of (M, F) that are of Dirac type at the leaves L C MY.
It is a consequence of the properties of p, n and ¢* on T.

Now consider p, n and ¢ on (M, F).

Theorem 1.3.2. — Using (1.3.3)) with HOO(M;A.’F), we get
J(F) = p"H>(M; AF) = lim H*(M; AF)

14

dFEMd77M’ ¢t*5h£¢z*’

(MWith some abuse of notation, we write @,, A = @,,, Am and [],, A = [1,,, Am if Am = A for
all m.
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where the inductive limits are defined with the maps (1.3.4) as pu | —oo. Moreover,
there are linear identities,

H*J(F) = hﬂH;HOO(]O-') . ot = hg@* .
Theorem 1.3.3. — We have a short exact sequence

0= HYK(F) & H*1(F) i meJ(F) > 0.
Theorem 1.3.4. — Using L and k like in Theorem[1.3.1], we have

= HC—OO(L;A) , dr szk oot EHek%Lt’
o Lk

L.k
H*K'(F)= H'K'(F) = [[H} L), ¢ =]]e".
k

The identity of Theorem [1.3.4]is a consequence of the version of Theorem for
K(F;QM). The shift in the role played by k is due to the introduction of QM.

Theorem 1.3.5. — Using (1.3.3) with H=>°(M; AF), we get
ﬂp”H (M; AF) = lim H™>(M; AF)

dr =lmdr,, ¢ =lmg,’
where the projective limits are defined with the maps (1.3.4) as u 1 +00. Moreover,
there are linear identities,

H*J'(F)=lim HYH ®(F), ¢'* =limg,".

There is no essential difference between J(F) and J(F; QM) because F has the
invariant transverse density |wp|. Thus Theorem follows from Theorem m
Theorem 1.3.6. — We have a short exact sequence

0 H*K'(F) &= H*I'(F) &= H*J/(F) < 0.

Recall the definition of P, , s given in Section [I.3.3}

Theorem 1.3.7. — P, . is a smoothing b-pseudodifferential operator, and the
map f + PStr P,, . ; defines a distribution on R.

Now we will use the integers ¢(c) and e.(k) associated to every closed orbit ¢, and
the b-Connes-Euler characteristic Px o, |(F) = x| (F).

Theorem 1.3.8. — We have
h?& Str P,y = Xt | (F )+ Zf Z k) f(kt(c)) ,

keZx*

where ¢ runs in the set of closed orbits of ¢.
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Recall that the definition of n was given in Section [1.3.1

Theorem 1.3.9. — If dim F is even, then we can choose n and g on M° so that

f— lim (bStr P, r— "Str Pu,uo,f)

u1T+o0, upd0

defines a tempered distribution Z,, on R, and Z,, — 0 as pu — Foo.

In Theorem for more general choices of n and g on M, the limits of Z,, as
it — Foo are multiples of the Dirac mass §y. These limits may not be zero because
the b-trace does not vanish on commutators (it is not a trace). This additional
contribution of the b-trace shows up like the eta-invariant of manifolds with boundary
[Mel93]. When dim F is even, we can prescribe any limit of Z, as u — +oo with
appropriate choices of 7 and g on M° [ALKL21} (see Theorem ; in particular,
we can prescribe the zero limit. This makes "Str P, ,, ; behave like a supertrace as
W — Foo0.

1.3.6. The Lefschetz distribution. — It seems there is no reasonable definition
of Lais(¢) with a single leafwise reduced cohomology. However, H*I(F) and H*I'(F)
together will do the job. Though this may look strange, we hope this idea will be
valid in further developments of Deninger’s program.

To begin with, by Theorem [1.3.3| and Theorem |1.3.6} it is enough to consider the
actions ¢* on H*K (F), H*J(F), H*K'(F) and H*J'(F).

Let us try to define Lefschetz distributions Lgis i (¢) and Lgis,kx/(¢) of ¢ on
H*K(F) and H*K'(F). By Theorem and Theorem and since all twisted
cohomologies Hp (L) have the same Euler characteristic x(L), it makes some sense to
define, on R*,

Lais, x (¢) = Z X(L)Ze*(k“)”bt = Z ﬂ’

e%Lt -1
x>0 k=0 2 t>0
- x(L)
Ldis,K’(¢) = Z X(L) Zek%Lt = Z 1 — exrt :
x1,t<0 k=0 »xp,t<0

In each of these distributions, the conditions on the leaves L C M° guarantee that
their contribution to the trace is defined; the other leaves in M° are omitted as a
way of renormalization. Every L has a contribution to just one of these distributions
on R*. Taking into account all contributions from leaves L C M in Lais x (¢) and
Lais, k' (¢), we get a combined Lefschetz distribution on R*,

L
Lais,x,x (¢) = Z |eji(t_)1| '
L
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By changing variables and using L’Héspital’s rule, it follows that every function |e*Lt—
1/7! on R* can be extended to a distribution W, on R given by [Bar81]

i = [ (L0 20,

lert — 1] |se|t

Thus Lais i,k (¢) can be extended to R as the distribution
Lais, k50 (6) = > x(L) Wy, .
L

Next, by Theorem like in the case of ([1.2.4), we can consider the mapping

— lim Str P
fro N PStrP. g

as the distributional supertrace of the action ¢}, on }_I;Hioo(}') Since P ¢ is
not of trace class, its b-supertrace is used here instead of the supertrace as a way
of renormalization. By Theorem and Theorem [1.3.5] it makes sense to define
the Lefschetz distributions of ¢ on H*J(F) and H*J'(F), denoted by Las s(¢) and
Lais, (), by

(Lais.s(¢), f) = lim | lim "StrPy .

Lais.y (¢), f) = lim lim PStrP, ., r.
(Liss.y (9), /) = Jim_ lim St Py g

From now on, assume dim F is even (the relevant case in Deninger’s program is
dim F = 2). By Theorems and we can choose 7 and g on M so that

Lais, 1($) = Lais /() = "X | (F1) 60 + > £(c) D eclk) Spue) -
c kezx

The notation Lg;s s, (¢) may be used for this distribution, which is considered as a
common feature of the actions ¢* on H*I(F) and H*I'(F).

Finally, by Theorems and it makes sense to define the combined Lef-
schetz distribution

Lais(¢) = Lais,1,1(¢) = Lais, ik, k' (¢) + Lais, s,/ (¢) -

By Theorems and the trace formula conjectured by Deninger is satisfied:

Theorem 1.3.10. — Using the preserved leaves L and the closed orbits ¢, we have
Lais(8) = > X(L) Wi + "X | (F1) 60 + > L(e) Y €clk) Sreqey -
L c keZx

1.4. Short guide

Our arguments involve tools from two different sources: Analysis and Foliations.
Concerning Analysis, we mainly use conormal and dual-conormal distributions, anal-
ysis on manifolds of bounded geometry and small b-calculus. Concerning Foliations,
we mainly use local Reeb’s stability, suspension foliations, Riemannian foliations, and
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differential forms and currents on foliated manifolds. For the readers’ convenience,
the needed basic concepts and results from those areas are recalled in Chapters
and The specialists on any of them may skip the corresponding chapter, except
perhaps the notation. A few short proofs are also recalled in Chapter 2| because their
arguments will be used.

Chapter 4] contains a more specific description of foliations with simple foliated
flows, explaining all topological and geometric objects that will be used in our analysis.
We specially focus on the case of suspension foliations, which describe F on a tubular
neighborhood T of MP°.

Chapter [5| is devoted to the study of the action ¢* on H®*I(F) and H*I'(F),
showing Theorems to

Finally, Chapter @ is devoted to the study of PStr P 1u,f» Showing Theorems m
to



CHAPTER 2

ANALYTIC TOOLS

2.1. Section spaces and operators on manifolds

The field of coefficients is K, equal to R or C. We typically consider K = C, and
the few cases where K = R will be indicated without changing the notation.

2.1.1. Topological vector spaces. — Let us recall some concepts and fix some
conventions concerning topological vector spaces (TVSs); see [Edw65, [Hor66)
Ko6t69, [Sch71l, NB11l, [Wen03| for other concepts we use. We always consider
(possibly non-Hausdorff) locally convex spaces (LCSs); the abbreviation LCHS is
used in the Hausdorff case. Local convexity is preserved by all operations we use.
For instance, we will use the (locally convex) inductive/projective limit of any
inductive/projective spectrum (or system) of continuous linear maps between LCSs.
If the inductive/projective spectrum is a sequence of continuous inclusions, then
the inductive/projective limit is the union/intersection, always endowed with the
inductive/projective limit topology. This applies to the locally convex direct sum
and the topological product of LCSs. LF-spaces are not assumed to be strict. The
(continuous) dual X’ of any LCS X is always endowed with the strong topology.

Now fix an inductive spectrum of LCSs of the form (X;) = (Xo C X3 C ), and
let X = J, Xi. The condition on (X}) to be acyclic means that, for all k, there is
some k' > k such that, for all ¥’ > k', the topologies of X}, and Xy~ coincide on some
0-neighborhood of X}, [Wen03l, Theorem 6.1]. In this case, X is Hausdorff if and only
if all X, are Hausdorff [Wen03l Proposition 6.3]. It is said that (Xj) is regular if
any bounded B C X is contained and bounded in some step Xj. If moreover the
topologies of X and X}, coincide on B, then (Xj) is said to be boundedly retractive.
The conditions of being compactly retractive or sequentially retractive are similarly
defined, using compact sets or convergent sequences.
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If the steps Xj are Fréchet spaces, the above properties of (Xj) only depend
on the LF-space X [Wen03, Chapter 6, p. 111], and therefore they are consid-
ered as properties of X. In this case, X is acyclic if and only if it is bound-
edly/compactly/sequentially retractive [Wen03l, Proposition 6.4]. As a consequence,
acyclic LF-spaces are complete and regular [Wen03| Corollary 6.5]. A topological
vector subspace Y C X is called a limit subspace if Y = J, (X NY}) as TVSs.

Assume the steps X, are LCHSs. It is said that (Xj) is compact if the inclusion
maps are compact operators. Then (X}) is acyclic, and so X is Hausdorff. Moreover
X is a complete bornological DF Montel space [Kom67, Theorem 6’].

The above concepts and properties also apply to an inductive/projective spectrum
of LCSs consisting of continuous inclusions X, C X, for < r’ in R because (), X, =
N Xr,, and U, X, = U, X, for sequences rj, | —oo and s T +oc.

In the category of continuous linear maps between LCSs, the exactness of a se-
quence 0 - X — Y — Z — 0 means that it is exact as a sequence of linear maps
and consists of topological homomorphisms [Wen03| Sections 2.1 and 2.2].

Given LCSs X and Y, let L(X,Y) denote the LCS of continuous linear maps
X — Y with the topology of uniform convergence over bounded subsets. If X and Y
are Banach spaces, then L(X,Y) is also a Banach space whose norm may be denoted
by ||| x,y, with possible simplifications to avoid redundant notation. If X =Y, then
the notation End(X) is used, as well as ||-||x if X is a Banach space.

The following construction will be often used. Given a linear subspace A of closed
operators, densely defined in X and with values in Y, we get the LCS

(2.1.1) Z:{ue ﬂdomA|A-uCY}
AcA

with the projective topology given by the maps A: Z —Y (A € A). If Y is a Fréchet
space, L(X,Y) C A and A/L(X,Y) is countably generated, then Z is easily seen to
be a Fréchet space. If moreover Y is a Hilbertian space, then Z is easily seen to be a
totally reflexive Fréchet space using [Val89] Theorem 4].

A Hilbertian space is a TVS X endowed with a family of Hilbert-space scalar
products, all of them with equivalent norms defining the topology of X, but none of
them is distinguished.

2.1.2. Smooth functions on open subsets of R". — For any open U C R"
(n € Ng = NU{0}), we use the Fréchet space C*°(U) of smooth (K-valued) functions
on U, whose topology is described by the semi-norms
(2.1.2) lullgor = sup  |0lu(@)],

zeK, |I|<k

for any compact K C U, k € Ny and I € Nj, with standard multi-index notation.
For any S C U, let CZ(U) C C*°(U) be the topological vector subspace of smooth
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functions supported in S. The strict LF-space of compactly supported functions is
(2.1.3) W) =JogW),
K

for compact subsets K C U.
Straightforward generalizations to the case of functions with values in K! (I € N)
can be given by

(2.1.4) SUK)=CHU) oK .

(The notation C%, or CZ7 refers to both C*° and Cg°.)

2.1.3. Vector bundles. — We fix a smooth n-manifold M and a (K-) vector bundle
E of rank [ over M. Let E, C E (x € M) denote the fibers of E, 0, the zero element
of E;, and Op the zero section of E. Let Q%E (a € R) be the line bundle of a-
densities of E, and o(E) the flat line bundle of its orientations; as usual, we write
QF = Q'E. Recall that Q°F @ Q°F = Q***E. We use the notation AE = A E* for
the exterior bundle of the dual bundle. We may denote A*PE = A'E, and use similar
notation with other gradings and bigradings. For any submanifold L C M, we also
write E, = E|r. As particular cases, we have the tangent and cotangent R-vector
bundles, TM and T*M, and the associated K-vector bundles o(M) = o(TM) ® K,
AM =ATM @K, Q°M = Q°TM @ K and QM = QTM = A"M ® o(M).

2.1.4. Smooth and distributional sections. — Concerning spaces of distribu-
tional sections, we follow the notation of [Mel96l, [Hor83), [H6r85], with some minor
changes to fit our notation for foliations. The precise references of the properties
recalled here are given in [ALKL23, Section 2.4].

Consider the Fréchet space C*°(M; E) of smooth sections of E, whose topology is
described by semi-norms ||| x o+ defined like in (2.1.2), using charts (U,z) of M and
diffeomorphisms of triviality Eyy = U x K! with K € U. Redundant notation is sim-
plified as usual. For instance, in the case of the trivial vector bundle of rank 1 (resp.,
1), we write C>°(M) (resp., C°°(M,K!)). We also write C*(L, E) = C*°(L, E,) and
C>®(M;Q*) = C°(M;QM). If M is fixed, the notation C*>°(F) = C*°(M; E) can
be used, but it may be confusing because the space of smooth functions on E is also
used. In particular, X(M) = C°°(M;TM) is the Lie algebra of vector fields. The sub-
space C°(M; E) is defined like in Section[2.1.2] and the strict LF-space C°(M; E) is
defined like in , using compact subsets K C M. There is a continuous inclusion
C*®(M;E) C C*°(M;E).

The notation C*°(M; E), or C*(E), is also used with any smooth fiber bundle E,
obtaining a completely metrizable topological space with the weak C'*° topology.

The space of distributional sections with arbitrary/compact support is

(2.1.5) CLX(M; E) = C5.(M; E* 9 Q) .
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The canonical pairing of any u € C7§° (M;E) and v € é’?(M, E* ® Q) is denoted
by (u,v) (or (u,v) if the notation (-,-) is used for other purposes). Integration of
smooth densities on M and the canonical pairing of £ and E* define a continuous
dense inclusion C%(M; E) C 0730 (M;E). f U C M is open, the extension by zero
defines a TVS-embedding CF>(U; E) C CE>(M; E).

The above spaces of distributional sections can be also described in terms of the
corresponding spaces of distributions as the algebraic tensor product as C°°(M)-
modules [ALKL23, Eq. (2.5)]

(2.1.6) C2°(M; E) = C52°(M) @ ar) O (M3 E)

This tensor product has an induced topology so that this is a TVS-identity. Expres-
sions like hold for most of the LCSs of distributional sections we will consider,
which are also C°°(M)-modules. Thus, from now on, we will often define and study
those spaces for the trivial line bundle or density bundles, and then the notation for
arbitrary vector bundles will be used without further comment, and the properties
have straightforward extensions.

Given a smooth submersion ¢ : M — M’, a smooth/distributional section of E has
compact support in the vertical direction if its support has compact intersections with
the fibers of ¢. They form the LCHSs CE>(M; E). Here, O (M; E) has the inductive
topology defined like in the case of C°(M; E), using (2.1.2) and (2.1.3) with closed
subsets K C M whose intersection with the fibers is compact. C;*°(M; E) has the
projective topology defined by the (product) maps f : C>*°(M; E) — C;>°(M; E),
for f € C°(M). A version of is also true for C_,>°(M; E) in this case.

Consider also the Fréchet space C*(M) (k € Ng) of C* functions, with the semi-
norms ||-|| g o+ given like in (2.1.2), the LF-space C¥(M) of C* functions with compact
support, defined like in , and the space C_’;k(M ) of distributions of order k
with arbitrary /compact support, defined like in . There are continuous dense

inclusions

(2.1.7) Ch(M) C Ch (M), CLF (M) D CLFM) (k< k),
with
(2.1.8) (Che(M) =Cu(M), [T (M) = Co=(M) .

k k

The space | J,, ¢’ ~% (M) consists of the distributions with some order. If M is compact,
then every C*(M) is a Banach space and |, C' ~F(M) = C~°°(M).

C°(M) and C*(M) are complete and Hausdorff. C%.(M) and C.’“/C(M) are ultra-
bornological and barreled. C’f:o(M ) is a Montel space (in particular, barreled) and
reflexive. C7, (M) is a Schwartz space, and therefore €, (M) is ultrabornological.
C>(M) is distinguished. Ci/SO(M) is webbed.
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The type of notation introduced in this section will be used with any LCHS and
C*°(M)-module continuously included in C*°(M; E).

2.1.5. Linear operators on section spaces. — Let F and F' be vector bundles
over M, and let A : C*(M;E) — C™(M;F) be a continuous linear map. The
transpose of A is the continuous linear map

A Co®(M;F*eQ) - C°(M; E*®9Q) ,
(A'v,u) = (v, Au) , weCX(M;E), veC.>*(M;F*®Q).

For instance, the transpose of C°(M; E* ® Q) C C®°(M; E* ® Q) is a continuous
dense injection C;*°(M;E) C C~>°(M;E). If A" restricts to a continuous linear
map CX(M;F* @ Q) — C>®(M;E* @ Q), then A" : C;>°(M;E) — C~>(M;F)
is a continuous extension of A, also denoted by A. The Schwartz kernel, Ky €
C~>®(M?* FX (E* ®Q)), is determined by the condition (K4,v ® u) = (v, Au) for
u € CX(M;E) and v € C°(M; F* ® Q). The Schwartz kernel theorem [HOr71l
Theorem 5.2.1] states that we have a linear isomorphism

(2.1.9) L(CX(M;E),C~®(M;F)) = C~°(M*FR (E*®QM)), A K4 .
Using that (F* @ Q)* @ Q = F, we get
Kao=R'EKpeC ®(M*(E*@Q)XRF),

where R : M? — M? is given by R(z,y) = (y,z). If K4 is C*, we can write

(2.1.10) Au(z) = /MKA<w7y>u<y>, Ao@) = [ Kata)otw)

for u € C°(M; E) and v € CX(M; F* ® Q).

There are versions of the construction of A' and A' when both the domain and
codomain of A have compact support, or no support restriction. For example, for any
open U C M, the transpose of the extension by zero C°(U; E*®Q) C C&°(M; E*®Q)
is the restriction map

(2.1.11) C~(M;E) - C(U,E), u—uly,

and the transpose of the restriction map C*°(M; E* @ Q) — C° (U, E* ® Q) is the
extension by zero

(2.1.12) C-®(U;E) C C;=(M;E) .

Inclusion maps may be denoted by ¢ and restriction maps by R, without further com-
ment. The singular support of any u € C~°°(M; E), singsupp u, is the complement
of the maximal open subset U C M with u|y € C*(U; E).
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2.1.6. Pull-back and push-forward of distributional sections. — Any
smooth map ¢ : M’ — M induces the continuous linear pull-back map

(2.1.13) ¢*: C®°(M;E) = C®(M';¢*E) .
If ¢ is a submersion, then it also induces the continuous linear push-forward map
(2.1.14) bu s CZ(M'; 6" E ® Qpper) = CF(M; E)

where Qgper = Qaper M’ = QV for the vertical subbundle V = ker ¢, € TM’. More-
over, the map ([2.1.14) has a continuous extension

(2.1.15) ¢i : CX(M';¢0*E @ Qpiper) = C(M; E) |

also called push-forward map. Using (2.1.14)) and any partition of unity {);} of M
consisting of compactly supported smooth functions, the map (2.1.15) is given by

(2.1.16) G = bu(¢"N; ) .
J

Since ¢*QM = QTM/V) = Q.. ® QM’, transposing the versions of (2.1.13)
and (2.1.14) with E* ® QM and using (2.1.5)), we obtain continuous extensions
of (2.1.14)) and (2.1.13) Theorem 6.1.2],

(2.1.17) Gy : O (M';¢*FE @ Qper) — CT°(M; E)

(2.1.18) ¢*: C™®(M;E) = C~°(M';¢*E) ,

also called push-forward and pull-back maps. Again, has a continuous exten-
sion,

(2.1.19) by : C°(M'; " E @ Qper) — C~°(M; E)

also called push-forward map, defined like with .

If ¢ : M’ — M is a local diffeomorphism, we can omit Qgpe, in the push-forward
maps. If moreover ¢ is proper, the compositions ¢,¢* and ¢* ¢, are defined on smooth

or distributional sections with compact support or no support condition.
The spaces C°(M'; ¢*E) and C*(M’; ¢* E @ Qaper) become C° (M )-modules via
the homomorphism of algebras, ¢* : C°(M) — C°°(M'), and we have

(2.1.20) CI& (M3 6" E) = C3° (M) @ce (ary CF (M E)
(2.1.21) C& (M6 E @ Qpiver) = O3 (M5 Qiber) ®coe (ar) C (M5 E) .
Using (2.1.6), (2.1.20) and (2.1.21]), we can describe (2.1.13))-(2.1.19) as the C*°(M)-

tensor products of their trivial-line-bundle versions with the identity map on the

space C°°(M; E). This kind of description is valid with other spaces of distributional
sections with the obvious extensions of and (2.1.21)). Thus, in this chapter, we
will mainly consider the pull-back and push-forward between spaces of distributions.
Only the special case of the pull-back and push-forward between spaces of currents
will be briefly indicated a few times.
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2.1.7. Differential operators. — Let Diff (M) C End(C7,(M)) be the subalge-
bra and C°°(M)-submodule of differential operators, filtered by the order. Every
Diff™" (M) (m € Ny) is spanned as C°°(M)-module by all compositions of up to m
elements of X(M), considered as the Lie algebra of derivations of C7, (M). In partic-
ular, Diff’ (M) = C>(M).

On the other hand, let

P(T*M) = @ P (T* M) C C=(T*M)
m=0
be the subalgebra and C°°(M)-submodule of functions whose restriction to the fibers
are polynomials, equipped with the grading given by the degree; in particular,

POYT*M)=C®*(M), POT*M)=x(M)®C.
For every order m, the principal symbol exact sequence
(2.1.22) 0 — Diff ™~ (M) — Diff™(M) 2= P™)(T*M) — 0

is defined so that the principal symbol of any X € X(M) C Diff' (M) is 01(X) = iX €
PO(T*M), and @,, 0y induces an isomorphism of graded algebras and C°°(M)-
modules,

P pift™ (M)/ Diff ™~ (M) = P(T*M) .
m=0
For vector bundles E and F' over M, the above concepts can be extended by taking
the C'*°(M)-tensor product with C*°(M; F ® E*), obtaining

Dift™ (M; E, F) C L(C.(M; E), C%,(M; F)) ,
P"(T*M; F @ E*) C C®(T*M;7*(F ® E*)) ,

where 7 : T*M — M is the projection. So Diff’(M; E, F) = C(M;F @ E*). If
E = F, we write Diff (M; E), which is a filtered algebra. The principal symbol o, on
Diff"™"(M; E, F) is given by the C°°(M)-tensor product of with the identity
map on C°°(M; F®E*). Redundant notation is simplified like in Section Recall
that A € Diff™"(M; E, F) is elliptic if 0,,,(A)(p,§) is an isomorphism for all p € M
and 0 # € € Ty M. If E is a line bundle, then [ALKL23, Eq. (2.13)]

(2.1.23) Dift™ (M; E) = Diff™ (M) .

For m =0, we get C*°(M; E® E*) = C>®(M).

For all A € Diff""(M; E), we have A" € Diff""(M; E*®1), and therefore A has con-
tinuous extensions to an endomorphism A of €7, (M; E) (Section . A similar
map is defined when A € Diff"(M; E, F).

The canonical coordinates of R™ x R™ = R"™ x R™* = T*R" are denoted by (x,&) =
(xt, . 2™ €N €M), Let do = dot Ao Ada™, dE = dEY A - ANdED, DT = DI =
(=)oy = (=)0, 1 (i = vV—1) and ¢ = €. €0 (I = (iy,...,in,) € NJ). For
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any open U C R™ and 4 = 7 /., ar(z) D! € Diff™(U), write A = a(z, D) for
a(@,€) = X 11<m ar(z) €1, and then o,,(A) = 2itj=m ar(z) €. We have

(2.1.24) Au(z) = (27r)‘"/ e =8 a(z, )a(€) de |

n

for all w € C°(U), where @ is the Fourier transform of u. The local extension of this
expression to the case where A € Diff™(M; E| F) is straightforward, using charts of
M and local trivializations of F and F', and taking local coefficients a; with values
in C" @ C™* = C™* (I and I’ are the ranks of E and F).

2.1.8. Symbols. — For any open U C R™ and | € Ny, a symbol of order at most
m € R on U x R!, or simply on U, is a function a € C°°(U x R!) such that, for any
compact K C U, I € N} and J € N},

o125) ol [DLDa(z.6)
1. allg.r,0m == sup
ek, cert (1+[€]) 1
They form a Fréchet space S™(U x R!) with the semi-norms (2.1.25). There are

continuous inclusions
(2.1.26) S™U xRY c S™ (U xRY  (m<m),
giving rise to the LCSs
S*®(U xR = JS™MU xR, S™UxR)=()S"UxR").

S>®(U x R!) is an LF-space, and therefore barreled, ultrabornological and webbed
IALKL23, Proposition 3.1]. It is also a filtered algebra and C>(U)-module with the
pointwise multiplication. The homogeneous components of the corresponding graded
algebra are denoted by SU™ (U x R!). The Fréchet space S~°°(U x R!) is a filtered
ideal and C*°(U)-submodule of S>=(U x R!). The notation S™(R!), ST><(R!) and
Sm)(R!) is used when U = R? = {0}.

Consider the first-factor projection U x R! — U to define C2°(U x R!). There are
continuous inclusions

(2.1.27) CX(U xRY c 87U xR, S®U xRY) c C®U xR ;

in particular, $°°(U x R!) is Hausdorff. The following properties hold |[ALKL23,
Corollaries 3.4-3.6 and Remark 3.8]: The topologies of S (U x R') and C>°(U x R!)
coincide on S™(U x R!), however the second inclusion of is not a TVS-
embedding; C°(U x R!) is dense in S®(U x R!); and S*®(U x R!) is an acyclic
Montel space, and therefore complete, boundedly/compactly/sequentially retractive
and reflexive.

With more generality, a symbol of order m on a vector bundle E over M is a
smooth function on FE satisfying (2.1.25)) via charts of M and local trivializations of
E, with K contained in the domains of charts where F is trivial. As above, they
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form a Fréchet space S™(F) with the topology described by the semi-norms given
by this version of . The version of in this setting is true, obtaining
the corresponding spaces ST (F) and SU™ (E). The above properties have obvious
extensions to this setting.

Given another vector bundle F' over M, the C°°(M)-tensor product of the above
spaces with C>(M; F) gives spaces S™(E; F), S*>(E;F) and S (E;F), satis-
fying analogous properties. Now becomes C2(E;m*F) C S™°(E; F) and
S®(E;F) C C™®(E;n*F), where 7 : E — M is the projection.

2.1.9. Pseudodifferential operators. — The notation of Section is used
here. For any a € S™(U x R™), the expression (2.1.24]) defines a continuous linear
map A = a(x, D) : C*(U) — C*°(U), with Schwartz kernel

Kaw) = )" ([ e 9atoeac ) .

using an oscillatory integral, which is defined as a tempered distribution [Mel81]
Eq. (4.2)], [H6r83l, Section 7.8].

Take an atlas {Ug,zr} of M and an associated C*° partition of unity {fx}. Via
every chart (Ug,zy), for all a € S™(T*Uy), the above procedure defines a continuous
linear map a(zy, Dy, ) : CZ(Uy) = C(Uy).

Let A C M? be the diagonal. A pseudodifferential operator of order at most m on
M is a continuous linear map A : C°(M) — C°°(M) such that K, is C> on M2\ A,
and, for all k, the operator fpA : C°(Uy) — C°(Uy) is of the form ay(zk, D,, ) for
some ay, € S™(T*Uy), which is supported in 7~ (supp fx), where w : T*M — M is the
projection. They form a C*°(M?)-module ™ (M) with the pointwise multiplication
of their Schwartz kernels by smooth functions on M?. Moreover >, aj, € S™(T*M)
defines a class o,,(A) € S™)(T*M), called the principal symbol, which is independent
of the choices involved, obtaining an exact sequence of C*°(M?)-modules,

0 — U HM) — O™(M) 2= ST M) -0,

where S (T*M) is a C°°(M?)-module via the restriction linear map C>(M?) —
C>®(A) = C*(M). Then ¥(M) := J,, ¥"™(M) is a filtered C°>°(M?)-module, and
U=>°(M) :=,, ¥ (M) is the submodule of the operators with C* Schwartz ker-
nel (the smoothing operators). All of these concepts are independent of the choices
involved. If m € Ny, then

Diff "(M)={Ae€ U™ (M) |suppKas C A} .

These concepts and properties can be extended to vector bundles by taking the
C°°(M?)-tensor product with C°°(M?; F X E*), like in the case of differential oper-
ators (Section 2.1.7). In this case, we use the notation U™ (M; E, F) (or ¥™(M; E)
if £ =F), S"™(T*M;F ® E*), etc. Recall that an operator A € U™ (M; E, F) is
called elliptic if 0,,(A) has an inverse in S\~ (T*M; F, E); i.e., any representative
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of 0, (A) is an isomorphism at (p,§) € T*M if ¢ is far enough from 0, in Ty M. The
space U™ (M; E, F) is preserved by taking transposes. Thus any A € U™ (M; E, F)
has a continuous extension (Section [2.1.5)

A:CZ®°(M;E) - C™(M; F),

and sing supp Au C singsuppu for all u € C;°°(M; E) (pseudolocality). Moreover
A€ U=®°(M;E,F) just when it defines a continuous map

A:C7®°(M;E) = C*(M;F) .

It is said that A is properly supported if both factor projections M2 — M have proper
restrictions to supp K 4. In this case, A defines continuous linear maps (Section [2.1.5])

A:CE(M;E) = CX(M;F), A:C °(M;E)— C *(M;F),

which gives sense to the composition of properly supported pseudodifferential op-
erators. Any pseudodifferential operator is properly supported modulo smoothing
operators, and the symbol map is multiplicative.

If Ae U~°(M; FE) and P,Q € Diff(M; E), then

(2.1.28) Kpag(z,y) = P. QyKa(z,y) .

2.1.10. L? and L*> sections. — The Hilbert space L?(M;Q'?) of square-
integrable half-densities is the completion of Cg°(M; Qv 2) with the scalar product
(u,v) = [}, uv. The induced norm is denoted by |-||.

If M is compact, L?(M;E) can be described as the C°(M)-tensor product of
L2(M;Q'?) and C®(M;Q~'/2® E). Tt is a Hilbertian space with the scalar products
(u,v) = [,,(u,v)w, determined by the choice of a Euclidean/Hermitian structure (-, -)
on E and a non-vanishing w € C*(M; ).

When M is not assumed to be compact, any choice of (-,-) and w can be used to
define L2(M; E) and (-,-). Now L?(M; E) and the equivalence class of ||| depends
on the choices involved. The independence still holds for sections supported in any
compact K C M, obtaining the Hilbertian space L%-(M; E). These spaces give rise
to the strict LF-space L?(M; E) like in . We also get the Fréchet space

L2, (M; E) = {u € C==(M; B) | C2*(M)u C LX(M:E) },

loc
defining the topology like in (2.1.1). If M is compact, then LfOC/C(M; E)=L*(M;E)
as TVSs. The spaces Lf, , (M; E) satisfy the obvious version of (2.1.5).

Any A € Diff™(M; E) can be considered as a densely defined operator in L?(M; E).
Its adjoint A* is the closure of the formal adjoint A* € Diff"™(M; E), determined by
the condition (u, A*v) = (Au,v) for all u,v € C°(M; E).

We can also use (-, -) to define the Banach space L (M; E) of essentially bounded
sections, with the norm |lu|g~ = esssup,c,s |u(x)]. There is a continuous injec-
tion L>(M;E) C L} (M;E). If M is compact, the equivalence class of ||| is

independent of (-, -).
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2.1.11. Sobolev spaces. — Suppose first that M is compact. The Sobolev space
of order s € R is the Hilbertian space

(2.1.29) H*(M;E)={uec C>(M;E) | V*(M;E)ucC L*(M;E)},

with the topology like in . It can be equipped with any scalar product (u, v)s =
(14 P)*u,v), for any nonnegative symmetric elliptic P € Diff>(M; E) (by the elliptic
estimate), where (-,-) is defined like in Section and (1 + P)® is given by the
spectral theorem. Let ||-||s denote the corresponding norm. We have

(2.1.30) US(M;E)L*(M;E) = H *(M;E) = H*(M; E* ® Q).

If s € N, we can use Diff*(M; F) instead of ¥*(M; F) in (2.1.29)) and the first equality
of (2.1.30)). There are dense compact inclusions (Rellich theorem)

(2.1.31) H*(M;E) C H* (M;E) (s'<s).

So the spaces H*(M, E) form a compact spectrum. Moreover, there are continuous
dense inclusions, for s > k + n/2,

(2.1.32) H*(M;E) c C*¥(M;E) c H*(M; E) ,
(2.1.33) H*(M;E) > C'"*(M;FE)> H*M;E) .

The first inclusion of ([2.1.32)) is the Sobolev embedding theorem, and (2.1.33)) is the
transpose of the version of (2.1.32) with EF* ® QM. So

(2.1.34) C*(M;E)=(\H*(M;E) C>(M;E)=|JH(M;E).

Any A € U™(M; E) defines a bounded operator A : HS"™(M; E) — H*(M;E).
This can be considered as a densely defined operator in H*(M; E), which is closable
because, after fixing a scalar product in H*(M; E), the adjoint of A in H*(M; E) is
densely defined since it is induced by A* € U™ (M; E* ® Q) via the identity of real
Hilbert spaces, H*(M; E) = H*(M; E)' = H=*(M; E* ®Q), where the bar stands for
the complex conjugate. In the case s = 0, the adjoint of A is induced by the formal
adjoint A* € O™ (M; E); if A € Diff"™"(M; E), then A* € Diff™(M; E).

If M is not assumed to be compact, then H*(M; E) can be defined as the com-
pletion of C°(M; E) with respect to the scalar product (-,-)s defined by the above
choices of (-,-), w and P; in this case, H*(M; E) and the equivalence class of ||||s
depend on the choices involved. With this generality, (2.1.29)) and the first equality

of (2.1.30) are wrong, but the second equality of (2.1.30)) is true.

Like L120c/c<M?E) (Section [2.1.10), we can define the Fréchet space H{ (M;E)

and the strict LF-space HZ(M; E), which satisfy the versions of the second equal-
ity of (switching the support condition like in (2.1.5)) and (2.1.31)—(2.1.33).
These spaces agree with H*(M; E) if M is compact. For any open U C M, the
restriction map defines a continuous linear map H{ (M;E) — H} (U; E),
and the extension by zero defines a TVS-embedding HS(U; E) C HE(M; E).
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In this case, any A € ¥ (M; E) defines continuous linear maps A : HS(M; E) —
H ™(M;E). If A € Diff"(M;E), then it defines continuous linear maps A :

loc
H oo (M; E) = HZ,™ (M5 F).

c/loc
{i‘or example, H*(R™) can be defined with (u,v), = ((1 + A)%u,v), involving the
Laplacian A = — 3", 92 and the standard scalar product on L?(R™). Recall that the
Fourier transform, f — f, defines an automorphism of the Schwartz space S (R™),
which extends to an automorphism of the space S(R™)" of tempered distributions

[H6r83l, Section 7.1], which in turn restricts to a TVS-isomorphism
(2.1.35) H*(R™) = LX(R™, (1 + [€[%)°d¢), f f.

We can use to give an alternative description of H? /IOC(M ; E) for arbitrary M
and E. First, Hj (R™) C H*(R"™) has the subspace topology for any compact K C R".
Next, for any open U C R™, we can describe HZ (U) by using Hi(U) = Hj(R™) for all
compact K C U, and we can describe H{ (U) by using H3(U), as explained before.
Then a locally finite atlas and a subordinated C'* partition of unity can be used in
a standard way to describe H)y . (M). Finally, HZ,  (M; E) can be described as the
C°°(M)-tensor product of HZ (M) with C°(M; E), or, equivalently, using local
diffeomorphisms of triviality of E.

The norm on L(H™(M;E), H™ (M; F)) (resp., End(H™(M; E))) will be simply
denoted by [|[lm,ms (vesp., [|*[|m)-

2.1.12. Weighted spaces. — Assume first that M is compact. Take any
h € C*(M) which is positive almost everywhere. Then the weighted Sobolev
space hH*(M;E) is a Hilbertian space; a scalar product (-,-)ppgs is given by
(u,V)prs = (h~tu,h~1v),, depending on the choice of a scalar product (-,-)s on
H*(M;E) (Section 2.1.11). The corresponding norm is denoted by ||[pg=. In
particular, we get the weighted L? space hL*(M;E). We have h > 0 just when
hH™(M; E) = H™(M;E); in this case, (-,-)pms can be described like (-,-)s using
h~2w instead of w. Thus the notation hH™(M; E) for h > 0 is used when changing
the density; e.g., if it is different from a distinguished choice, say a Riemannian
volume.

If M is not compact, hH*(M; E) and (u,v)pms depend on h and the chosen
definitions of H*(M;E) and (u,v)s (Section R.I.11). We also get the weighted
spaces hH?, (M;FE), and the weighted Banach space hL>°(M; E) with the norm

c/loc
lu|lpre = ||/h’1u||Loo. There is a continuous injection hL>(M; E) C hL (M;E).

2.1.13. Topological complexes. — Recall that a complex (C, d) (over C) consists
of a (Z-) graded vector space C' = C*® and a linear map d : C' — C which is homoge-
neous of degree 1 and satisfies d> = 0. If moreover C is a TVS and d is continuous,
then (C,d) is called a topological complex. Then ker d and im d are topological graded
subspaces, and the cohomology H*(C,d) = kerd/imd becomes a graded TVS. Tts
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maximal Hausdorff quotient, H*(C,d) := H*(C,d)/0 = kerd/imd, is called the re-
duced cohomology. Let [u] € H*(C,d) and [u] € H*(C,d) denote the elements defined
by any u € kerd. If C is a LCS, then H*(C,d) and H*(C,d) are also LCSs because
this property is inherited by subspaces and quotients [Sch71l Section I1.4]. We may
use the notation Z = ZC =kerd, B = BC =imd and B = BC = imd.

We always assume C' has finitely many nonzero homogeneous components, say

C=C"q.--®CN. Sodis given by a finite sequence of length N,

00 Do, ot L AN N

Negative or decreasing degrees may be also considered without any essential change.
Continuous homomorphisms between topological complexes induce continuous lin-
ear maps between the corresponding cohomologies and reduced cohomologies. (Usu-
ally, the term chain/cochain complex is used for decreasing/increasing degrees, and
chain/cochain maps for the corresponding homomorphisms, but we will ignore that
difference.)

The transpose of (C,d) is the topological complex (C’, d*), graded by (C")" = (C")’
(r=0,...,N). For any [f] € H*(C’,d"), we have fd = d'(f) = 0, and therefore f
induces an element of H*(C,d)’. This defines a canonical continuous linear map
H*(C',d") — H*(C,d)".

Proposition 2.1.1. — The canonical map H®*(C',d") — H*(C,d)" is:

(i) surjective if C is a LCHS; and

(ii) njective if C is a Fréchet space and imd is closed.

Proof. — Property is an easy consequence of the Hahn-Banach theorem [Sch71l
Theorem 11.4.2].

Property follows easily from the open mapping theorem [Sch71l Theo-
rem IT1.2.1] and the Hahn-Banach theorem. O

Remark 2.1.2. — Extensions of can be given by more general versions of the
open mapping theorem (see e.g. [Bould]).

2.1.14. Differential complexes. — Recall that a differential complezx of order at
most m is a topological complex of the form (C*°(M; E), d), where F is a (Z-) graded
vector bundle and d € Diff™(M; E); it will be simply denoted by (E,d). Necessarily,
it is of finite length, say E = E° @ --- @ EV and d is given by the sequence

C(M; E®) 5 0 (M; BY) & ... 224 o (M EY)

The compactly supported version (C°(M; E),d) may be also considered, as well as
the distributional versions (C;?(M;E),d). Recall that (F,d) is called an elliptic
complex of order m if moreover the symbol sequence,

0 Tn( )@, 1 (@)@, | omldy) (PO
(2.1.36) 0— EY B! -

N
Ep —0,
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is exact for all p € M and 0 # § € TyM. If N =1, this agrees with the ellipticity of
do € Diff™(M; E°, E1).

Equip E with a Hermitian structure so that its homogeneous components are
orthogonal, and equip M with a Riemannian metric g, inducing a volume density
on M. Consider the corresponding scalar product on L?(M;E). Then the formal
adjoint § = d* also defines a differential complex, giving rise to symmetric differential
operators D = d+6 and A = D? = d§ +6d. The ellipticity of the differential complex
d is equivalent to the ellipticity of the differential complex §, and it is also equivalent
to the ellipticity of the differential operator D (or A).

In the rest of Section [2.1.14] suppose M is closed and d is elliptic. Then D and A
have a discrete spectrum. Moreover, we have the following Hodge-type decomposition,
and associated equalities and isomorphism:

C®(M;E)=ker A®imd ®imd ,
(2.1.37) imd@imd=imD =imA ,
kerd Nkerd = ker D = ker A 2 H*(C>*(M; E),d) .

Writing C' = C*°(M; E), it follows from that d : imé§ — imd and § : imd —
im§ are TVS-isomorphisms.

Consider also the operators d, 6, D and A on C~>°(M; E) (Section [2.1.7). Then
(C~>°(M;E),d) is another topological complex, and the analogue of (2.1.37) is
satisfied with C~°°(M; E). By ellipticity and since M is compact, A has the
same kernel in C*°(M; E) and in C~°°(M; E), obtaining a canonical isomorphism
H*(C*(M;E),d) =2 H*(C~>(M; E), d).

2.2. Conormal distributions

The space of conormal distributions plays a very important role in our work.
We mainly follow [KN65, Hor71], [Hor85, Section 18.2], [Sim90, Chapters 3-5],
[Mel96, Chapters 4 and 6], [MUO8| Chapters 3 and 9], which are oriented to the role
they play in pseudodifferential operators and generalizations of those operators. The
study of its natural topology was begun in [Mel96, Chapters 4 and 6] and continued
in [ALKL23|.

For the sake of simplicity, we consider the case of the trivial line bundle first. But
all definitions, properties and notation have obvious extensions for arbitrary vector
bundles, like in Sections and [2.1.9] either by using local trivializations, or by
taking C°°(M)-tensor products with spaces of smooth sections. When needed, the
case of arbitrary vector bundles will be used without further comment.

2.2.1. Differential operators tangent to a submanifold. — Let L be a regular
submanifold of M of codimension n’ and dimension n”, which is a closed subset.
Let X(M,L) C X(M) be the Lie subalgebra and C°°(M)-submodule of vector fields
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tangent to L. Using X(M, L) instead of X(M), we can define the filtered subalgebra
and C'*°(M)-submodule Diff (M, L) C Diff (M) like in Section We have

(2.2.1) A € Diff(M,L) = A* € Diff(M, L; Q) .

By the conditions on L, every Diff"(M,L) (m € Np) is locally finitely C°°(M)-
generated, and therefore Diff (M, L) is countably C°°(M)-generated. The surjective
restriction map X(M,L) — X(L), X — X]|r, induces a surjective linear restriction
map of filtered algebras and C*° (M )-modules,

(2.2.2) Diff(M,L) — Diff(L), A~ A|L .
Let (U, z) be a chart of M adapted to L; i.e., it is a diffeomorphism
r=(zt...,2") = (2/,2"): U= U xU",
o= ™), 2 =" 2", Lo:=LNU={z' =0},

for some open U’ € R™ and U” c R™". If L is of codimension one, then we will
use the notation (z,y) instead of (z’,2"). For every m € Ny, Diff " (U, Lg) is C*°(U)-
spanned by the operators 2’197,05, with |J| + |K| < m and |I| = |J|; we may use the
generators 97,05

x!!

2'T as well, with the same conditions on the multi-indices.

2.2.2. Conormal distributions when M is compact. — Suppose M is compact.
Then the space of conormal distributions at L of Sobolev order at most s € R is the
LCS and C*°(M)-module
(2.2.3) I(M,L) = {ue C~ (M) | Diff(M,L)u Cc H(M)},
with the topology like in (2.1.1). This is a totally reflexive Fréchet space [ALKL237
Proposition 4.1]. We have continuous inclusions
(2.2.4) IO(M, L)y c I¢V (M, L) (s <),
and consider the LCSs and C*°(M)-modules

I(M,L) = 1M, L), 1°(M,L)=()I(M,L).

Thus I(M, L) is a Hausdorff LF-space (Section , and I(™) (M, L) is a Fréchet
space and submodule of I(M, L). The elements of I(M, L) are called conormal dis-
tributions of M at L (or of (M, L)). The spaces I¢*)(M, L) form what is called the
Sobolev-order filtration of I(M, L), or the Sobolev-order inductive spectrum defining
I(M,L). From (2.2.3), it follows that there are canonical continuous inclusions,

(2.2.5) C>®(M) c 1™ (M,L), I(M,L)c C~>(M).
Indeed, C°°(M) is dense in I(M, L) [Mel96, Eq. (6.2.12)], JALKL23, Corollary 4.6].
I(M, L) is barreled, ultrabornological, webbed, acyclic and a Montel space,

and therefore complete, boundedly/compactly/sequently retractive and reflexive
[ALKL23, Corollaries 4.2 and 4.7] (Section [2.1.1)).
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2.2.3. Filtration of I(M,L) by the symbol order when M is compact. —
Take a chart of M adapted to L, (U,z = (2/,2”)), like in Section 2.2.1] We use
the identity U” x R" = N*U”, and the symbol spaces S™(U" x R"') = §™(N*U")
(Section 2.1.8)). The following holds true for s,/m € R [H6r85, Theorem 18.2.8],
[Mel96, Proposition 6.1.1], [MUOS, Lemma 9.33], [ALKL23, Remark 4.4]:

— If s < —m —n’/2, then the map CX(N*U") — C>*(U), a — u, given by
u(e) = (20) " [ Dalar ) de
Rn/
has a continuous extension S™(N*U") — I(9)(U, Ly).
— If m > —s —n’/2, then the map C°(U) — C*°(N*U"), u — a, given by

a(@”.€) = / e (el ") da
Rn/

induces a continuous linear map I.” (U, Lo) — S™(N*U").
In what follows, it is convenient to use
ald¢| € S™(N*U";QN*U") = S™(N*Lo; QN*Lyg) .

Assume M is compact. Take a finite cover of L by relatively compact charts (Uj, z;)
of M adapted to L, and write L; = L NUj. Let {h, f;} be a C™ partition of unity
of M subordinated to the open covering {M \ L,U;}. Then I(M, L) consists of the
distributions u € C~°°(M) such that hu € C>°(M \ L) and f;u € I,(U;, L;) for all j.
Every fju is given by some a; € S*(N*L;; QN*L;) as above. For
(2.2.6) m=m-+n/4d—n'/2,
the condition a; € S™(N*Lj;QQN*L;) describes the elements u of a C°°(M)-
submodule I"™(M,L) C I(M,L), which is independent of the choices involved
IMUOQS8| Proposition 9.33] (see also [Mel96, Definition 6.2.19] and [Sim90, Defini-
tion 4.3.9]). Moreover, applying the versions of semi-norms (2.1.2) on C*°(M \ L) to
hu and the versions of semi-norms (2.1.25) on S™(N*L;; QN*L,) to every a;, we get
semi-norms on I"™ (M, L), which becomes a Fréchet space [Mel96l Sections 6.2 and
6.10].

The version of (2.1.26) for the spaces S™(N*L;; QQN*L;) gives continuous inclu-
sions
(2.2.7) I'™(M,L)C I (M,L) (m<m').

The element o,,(u) € S (N*L; QN*L) represented by >oja; € ST(N*L;QN*L) is
called the principal symbol of w. This defines the exact sequence

0— I YM,L)— I™(M,L) 2= S™(N*L; QN*L) - 0 .
We also get continuous inclusions

(2.2.8) [Em=n/Ar ) (A L) ¢ I™(M, L) ¢ 1™ /4=9) (M, L) ,
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for all m € R and € > 0 (cf. [Mel96| Eq. (6.2.5)], [MUQS8| Eq. (9.35)]). So
I(M,L) = JI™(M, L), I®(M,L)=I"°(M,L):=()\I"(M,L).

The spaces I"™(M, L) form what is called the symbol-order filtration of I(M,L), or
the symbol-order inductive spectrum defining I(M, L).

2.2.4. I(M,L) for non-compact M. — If M is not assumed to be compact, the
spaces and properties of Sectionsandcan be extended as follows [ALKL237
Sections 4.2.2 and 4.3.3].

We can similarly define the LCHS I'7)(M, L) by using C,%*(M) and Hy, (M),
Every I®)(M, L) is a Fréchet space. We can describe LES)(M, L)=Ug IS) (M, L) like
in ([2.1.3)), which is a strict LF-space, and therefore I.(M,L) = [J, IC(S)(M, L) is an
LF-space; moreover Io(M, L) = |Jy Ix (M, L). We also have the LCHS IC(OO)(M, L)=
N, 1) (M,L). All of these spaces are modules over C*°(M); I.(M,L) is a filtered
module and IC(OO)(M ,L) a submodule. The extension by zero defines a continuous
inclusion I.(U,LNU) C I.(M,L) for any open U C M. We also define the space
I(®)(M, L) like in the compact case, as well as the space |J, I*)(M, L), which con-
sists of the conormal distributions with a Sobolev order. But now let (cf. [HOr85|
Definition 18.2.6])

(2.2.9) I(M,L) = {uecC(M) | C*(M)uc I.(M,L)},

which is a LCS with the topology like in ([2.1.1). We have I(M, L) = |J,I®)(M, L)
if and only if L is compact; thus the spaces I¢*)(M, L) form a filtration of I(M, L)
just when L is compact. There is an extension of for non-compact M, taking
arbitrary/compact support; in particular, I.,.(M, L) is Hausdorff. The density of the
smooth functions with arbitrary/compact support is also true.

The definition of I"™(M, L) can be immediately extended assuming {U;} is lo-
cally finite. We can similarly define I7*(M, L) for all compact K C M, and then
define I™(M, L) like in . The space of conormal distributions with a symbol
order is J,, I"™ (M, L), and let I;;’o(M, L) =N, I%(M, L). There are extensions

of (2:2.7) and (2:2.8). So U,, I™(M,L) = J,I®(M, L), I.(M,L) = {J,, I™(M, L)
and 1G9(M,L) = I1,2°(M,L). U, I"™(M,L) and L;,(M,L) are acyclic Montel
spaces, and I(M, L) is a Montel space.

If M is the domain of a given smooth submersion, the LCHS I.,(M; E) can be

defined like C;>°(M; E), using I.(M; E) instead of C*°(M; E).

2.2.5. Pseudodifferential operators vs conormal distributions. — Using the
diagonal A C M?, the Schwartz kernel isomorphism restricts to linear isomor-
phisms

U(M;E, F) = I™(M?,A; FR (E* @ QM)), A Ky,
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and a similar one for the whole of ¥(M;E,F). Via them, ¥"™(M;E,F) and
V(M; E,F) become LCHSs satisfying the properties of the corresponding spaces
of conormal distributional sections. In this case, we have m = m in and
om(A) = om(Ky) for any A € ¥™(M; E, F) [Hor65, [KN65|, [H6r85, Chap-
ter XVIII], [Sim90, Chapter 6].

2.2.6. Dirac sections at submanifolds. — We have QONL ® QL = QM. The
transpose of the restriction map C(‘f? (M; EQQM) — C’f/o. (L; E®Q M) is a continuous
inclusion

(2.2.10) CIX(LiE®@QTINL) C C 2 (M; E),

w0y, (0f,v) =(wv[r), veCH(M;E"®Q).
By restriction of (2.2.10)), we get a continuous inclusion [GS77, p. 310],
(2.2.11) F(LiE®QTINL) C C (M E) ;

in this case, we can write (0},v) = [, wv|r. This is the subspace of d-sections or
Dirac sections at L. Actually, the inclusion ([2.2.11]) induces a continuous injection
[ALKL23, Corollary 4.9]
(2.2.12) S(LEQQINL) C Hy, (M5 E) (s < —n'/2),
with
— —n'/2
(L E®@QTINL) N H (M E) =0

For instance, for any p € M and u € E, ® Q' M, we get 6% € HS(M;E) if

s < —n/2, with (6, v) = u-v(p) for v € C*(M; E* ®Q), obtaining a continuous map

(2.2.13) MxC®¥(M;E@Q ™) = H:(M;E),  (p,u) — 55 .

As a particular case, the Dirac mass at any p € R™ is §, = 5,1)®|dxrl € H:(R™).
The Schwartz kernel of any A € L(C~*°(M;E),C>(M;F)) has the following
description: for all ¢ € M and u € E; ® Q1

(2.2.14) Ka(-,q)(u) = AsY .

2.2.7. Differential operators on conormal distributional sections. — Any
A € Diff*(M; E) induces continuous linear maps [Mel96], Lemma 6.1.1]

(2.2.15) A IS (M, L B) — 1570 (M, L; B)

which induce a continuous endomorphism A of I.,.(M,L; E). If A € Diff(M, L; E),
then it clearly induces a continuous endomorphism A of every I .(/SC (M, L; E).
By (2.2.10), for A € Diff(M,L;E) and u € C’_?’OC(L;E ® Q7INL), we have

[ALKL23, Eq. (4.17)]
(2.2.16) ASY =o' A= ((AY|L)! € Diff(L; E® Q~'NL) ,
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where A* € Diff (M, L; E* @) and (A")|, € Diff (L, E* ® QM) using the vector bun-
dle versions of (2.2.1)) and (2.2.2)). By (2.2.16)), Diff (M, L; E) preserves the subspace
of Dirac sections given by (2.2.11]). Thus (2.2.12)) induces a continuous inclusion

(2.2.17) (L E@QTINL) CIN(M,LE) (s < —n'/2).

2.2.8. Pull-back of conormal distributions. — If a smooth map ¢ : M’ — M
is transverse to a regular submanifold L C M, which is a closed subset, then L’ :=
¢~ Y(L) € M’ is a regular submanifold, which is a closed subset. The trivial-line-

bundle version of ([2.1.13)) has continuous extensions
(2.2.18) ¢* : I™(M, L) — I™*/4(M' L)) (m eR),

where k = dim M — dim M’ [Sim90, Theorem 5.3.8], Proposition 6.6.1].
Taking inductive limits and using ([2.2.8]), we get a continuous linear map

(2.2.19) ¢* : I(M,L) — I(M', L) .

If ¢ is a submersion, this is a restriction of (2.1.18]). In the case of a vector bundle F
over M, we get

(2.2.20) ¢ I(M,L; E) — I(M',L';¢"F) ,

given by the C'°°(M)-tensor product of the map (2.2.19) and the identity map on
C>°(M; E), using the versions of (2.1.6) and (2.1.20]) for spaces of conormal distribu-
tions (see Section [2.1.6).

2.2.9. Push-forward of conormal distributions. — Let ¢ : M’ — M be a
smooth submersion, and let L € M and L' C M’ be regular submanifolds, which are
closed subsets, such that ¢(L') C L and the restriction ¢ : L' — L is also a smooth
submersion. Then ([2.1.14)) and (2.1.15) have continuous extensions

(2.2.21) Gu: I (M, L3 Qpper) = I 2N L) (meR),

where k = dim M’ —dim M and | = dim L' —dim L [Sim90, Theorem 5.3.6], [Mel96]
Proposition 6.7.2]. Taking inductive limits, we get a continuous linear map

(2.2.22) ¢* : IC/CV(M/, L/; Qﬁber) — IC/A(M, L) s
which is a restriction of (2.1.17)). In the case of a vector bundle E over M, we get
(2.2.23) Oy : IC/CV(M’7L’;¢*E® Qsiber) = Ie).(M, L; E)

is given by the C'*°(M)-tensor product of (2.2.22)) and the identity map on C*°(M; E),
using the obvious versions of (2.1.6) and (2.1.21]) for spaces of conormal distributions
(see Section [2.1.6). The map ([2.8.24)) is also a restriction of ([2.8.13]).
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2.3. Dual-conormal distributions

The dual space I(M, L; E)' [Mel96, Chapter 6] also plays an important role in
our work. Again, the case of I(M, L) is considered first; its extension for any vector
bundle E can be made like in Section 2:2] and will be considered without further
comment.

2.3.1. Dual-conormal distributions when M is compact. — Consider the no-
tation of Sections and [2.2.3] where M is assumed to be compact. The space of
dual-conormal distributions of M at L (or of (M, L)) is [Mel96], Chapter 6]

(2.3.1) I'(M,L) = I(M,L; Q) .
Let also
(2.3.2) I'(M, L) =T1"9(M,L;Q), I'™(M,L)=I"(M,L;Q) .

I'(M, L) is a complete Montel space, and every I’ (*)(M, L) is bornological and bar-
reled [ALKL23| Corollaries 5.1 and 5.2].

Transposing the versions of (2.2.4) and (2.2.7) with QM , we get continuous linear
restriction maps, for s’ < s and m < m/,

(2.3.3) I'CY ML)« T'®(M,L), I'™ (ML)« I'"(M,L) .

These maps form projective spectra (the Sobolev-order and symbol-order spectra),
giving rise to @I’(S)(M,L) as s T +oo and @I’m(M, L) as m | —oco. Similarly,
from (2.2.5)), we get continuous inclusions,

(2.3.4) C=(M) > I'(M,L) > C¥(M) ,

and (2.2.8) gives rise to continuous linear restriction maps

(2.3.5) A= (VL) I'(ML L) < I' A /49 (A L)
for all m € R and € > 0. We also have [ALKL23, Corollary 5.3]

(2.3.6) (M, L) = lim I'®)(M, L) = lim I'"™(M, L) ,

as s T 400 and m | —oo, where the last equality follows from .

The left-hand-side maps of have dense images, which follows from conse-
quences of the Hahn-Banach theorem [NB11l Theorems 7.7.5 and 7.7.7 (c)], using
that their transposes are the analogs of the inclusions with QM by the reflex-
ivity of the spaces I*)(M, L; Q) (Section . Similarly, the inclusions are

dense.



2.3. DUAL-CONORMAL DISTRIBUTIONS 31

2.3.2. Dual-conormal distributions when M is non-compact. — If M is not
supposed to be compact, the above concepts and properties can be extended as follows.
We can similarly define the space I (M, L) of dual-conormal distributions supported
in any compact K C M. Then define the LCHSs, I/(M,L) = |Jx I} (M, L) like
in (2.1.3), and I'(M, L) like in using I.(M, L) instead of I.(M, L). These spaces
satisfy a version of , interchanging arbitrary/compact support like in .
I'(M, L) is a complete Montel space, and is also true. Similarly, we can define

the spaces I’ /(CS)(M ,L)and I’ /"S(M , L), which satisfy a version of interchanging
the support condition. Moreover and have obvious extensions.

If M is the domain of a given smooth submersion, the LCHS I/ (M; E) can be
defined like C,>°(M; E), using I.(M; E) instead of CZ°(M; E).

2.3.3. Conormal distributions vs dual-conormal distributions. — Assume
M is compact. Then [ALKL23, Theorem 8.11]

I(M,L)NI'(M,L) = C®(M).

2.3.4. Differential operators on dual-conormal distributional sections. —
For any A € Diff(M; E), the transpose of A* on I,,.(M, L; E* ® Q) (Section [2.2.7) is
a continuous endomorphism A of I’ / (M, L; E), which is a continuous extension of A

on C°(M; E), and a restriction of A on C~°°(M; E) (Section [2.1.7)). By (2.2.15)), if

A € Diff""(M; E), we get induced continuous linear maps

(2.3.7) AT (ML) = 1™ (M, L; B)

If A € Diff(M,L; E), the transpose of A" of IC(ZS)(M,L;E* ® ) is a continuous
endomorphism A of I_'/(j)(M, L;E).

2.3.5. Pull-back of dual-conormal distributions. — With the notation and

conditions of Section transposing the compactly supported cases of (2.2.21]
and (2.2.22) with QM , we get continuous linear maps

¢* '™ (M, L) — I'™H/2=k4\' L)) (m eR),
(2.3.8) ¢*: I'(M,L) — I'(M', L) .

In the case of a vector bundle E over M, like in (2.2.20)), we get
(2.3.9) ¢*:I'(M,L;E) - I'(M',L"; *F) .

The map (2.3.9) is an extension of (2.1.13)) and a restriction of (2.1.18]).
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2.3.6. Push-forward of dual-conormal distributions. — With the notation
and conditions of Section [2.2.8] suppose ¢ is a submersion. Transposing the versions
of (2:2.18) and (2.2.19) with QM, and using an analog of (2.1.16)), we get continuous
linear maps,

bo s LT (M L' ® Qpper) — L7 H4(M,L) (meR),

c/ev /-
(2.3.10) Oy : é/CV(M/,LI;Qﬁber) — I(':/,(M, L.
In the case of a vector bundle E over M, like in (2.2.23)), we get
(2.3.11) Oy é/CV(M’7L';¢*E® Qfiber) — Ié/_(M,L;E) .

The map ([2.3.10) is an extension of (2.1.14]) and a restriction of (2.1.17)).

2.4. Bounded geometry

2.4.1. Basic notation. — The concepts recalled here become relevant when M is
not compact. Equip M with a Riemannian metric g, and let V denote its Levi-Civita
connection, R its curvature tensor, and inj,;, > 0 its injectivity radius (the infimum of
the injectivity radius at all points). If M is connected, we have an induced distance
function d. If M is not connected, we can also define d taking d(p,q) = oo if p and ¢
belong to different connected components. Observe that M is complete if inj,, > 0.
For r > 0,p € M and S C M, let B(p,r) and B(p,r) denote the open and closed
r-balls centered at p, and Pen(S,r) and Pen(S,r) denote the open and closed 7-
penumbras of S (defined by the conditions d(-,S) < r and d(-,S) < r, respectively).
We may add the subscript “M” to this notation if needed, or a subscript “a” if we
are referring to a family of Riemannian manifolds M,.

2.4.2. Manifolds and vector bundles of bounded geometry. — Recall that
M is said to be of bounded geometry if inj,, > 0 and sup|V™R| < oo for every
m € Ny. This concept has the following chart description.

Theorem 2.4.1 (Eichhorn [Eic91]; see also [Roe88, [Sch96, [Sch01])

M is of bounded geometry if and only if, for some open ball B C R™ centered
at 0, there are normal coordinates y, : V, = B at every p € M such that the corre-
sponding Christoffel symbols F;k, as a family of functions on B parametrized by i, j,
k and p, lie in a bounded set of the Fréchet space C*°(B). This equivalence holds as
well replacing the Cristoffel symbols with the metric coefficients g;;.

Remark 2.4.2. — Any non-connected Riemannian manifold of bounded geometry
can be considered as a family of Riemannian manifolds (the connected components),
which are of equi-bounded geometry in the sense that they satisfy the condition of
bounded geometry with the same bounds.



2.4. BOUNDED GEOMETRY 33

Example 2.4.3. — Typical examples of manifolds of bounded geometry are Lie
groups with left invariant metrics, covering spaces of closed Riemannian manifolds
and leaves of foliations on closed manifolds.

From now on in this section, assume M is of bounded geometry and consider the
charts y, : V,, = B given by Theorem The radius of B will be denoted by 7.

Proposition 2.4.4 (Schick [Sch96l Theorem A.22], [Sch01l Proposition 3.3])
For every multi-index o, the function |0r(yqy,')| is bounded on y,(V, N V),
uniformly on p,q € M.

Proposition 2.4.5 (Shubin [Shu92| Appendix Al.1, Lemma 1.2])
For any 0 < 2r < g, there is a subset {py} C M and some N € N such that
the balls B(py,r) cover M, and every intersection of N 4+ 1 sets B(py,2r) is empty.

A vector bundle E of rank [ over M is said to be of bounded geometry when it is
equipped with a family of local trivializations over the charts (V}, y,), for small enough
70, with corresponding defining cocycle a,, : V, NV, — GL(C,1) € C*!| such that,
for all multi-index c, the function [r(apqy, ')| is bounded on y,(V, N V,), uniformly
on p,q € M. When referring to local trivializations of a vector bundle of bounded
geometry, we always mean that they satisfy this condition. If the corresponding
defining cocycle is valued in U(l), then E is said to be of bounded geometry as a
Hermitian vector bundle. Euclidean vector bundles of bounded geometry are similarly
defined.

Example 2.4.6. — The vector bundle E associated to the principal O(n)-bundle
P of orthonormal frames of M and any unitary representation of O(n) is of bounded
geometry in a canonical way. In particular, this applies to TcM and AM. If the
representation is unitary, then bounded geometry holds as a Hermitian vector bundle.
The same is true if we use any reduction @ of P with structural group H C O(n) and
any unitary representation of H.

Example 2.4.7. — Bounded geometry is preserved by operations of vector bundles
induced by operations of vector spaces, like dual vector bundles, direct sums, tensor
products, exterior products, densities, etc.

Example 2.4.8. — Let E be a vector bundle E over a closed Riemannian manifold
M, and let M be a covering of M. Then the lift E of E to M is of bounded geometry
in a canonical way.

2.4.3. Uniform spaces. — For every m € Ny, a function v € C™(M) is said to
be C™-uniformy bounded if there is some C,, > 0 with [V u| < C,, on M for all
m’ < m. These functions form the uniform C™ space CI} (M), which is a Banach
space with the norm [|-[[cm defined by the best constant C,. As usual, we write
Cup(M) = CO (M) = C(M) N L>(M). Equivalently, we may take the norm [I-llem
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defined by the best constant C}, > 0 such that [0 (uy, ')| < C;, on B for all p € M
and |I| < m; in fact, it is enough to consider any subset of points p so that {V,}
covers M [Sch96l, Theorem A.22], [Sch01l, Proposition 3.3]. The uniform C> space
is the Fréchet space C7p (M) = (0, Cl (M), with the semi-norms ||-||cm or H||’C&L)
It consists of the functions u € C°°(M) such that all functions uy, ! lie in a bounded
set of C°(B).

The same definitions apply to functions with values in C'. Moreover the definition
of uniform spaces with covariant derivative can be also considered for non-complete
Riemannian manifolds.

Proposition 2.4.9 (Shubin [Shu92 Appendix Al.1, Lemma 1.3]; see also [Sch01],
Proposition 3.2])

Givenr, {pi} and N like in Proposition[2.4.5 there is a partition of unity { fi}
subordinated to the open covering {B(pk,r)}, which is bounded in the Fréchet space

CH(M).

For a Hermitian vector bundle F of bounded geometry over M, the uniform C™
space CIt (M; E) can be defined by introducing ””/CG’% like the case of functions, using
local trivializations of E to consider every uy, ! in C™(B,C') for all u € C™(M; E).
Then, as above, we get the uniform C* space C5(M; E), which consists of the sec-
tions u € C°°(M; E) such that all functions uy, ! define a bounded set of C5(B; Cl).
In particular, X,,(M) := C(M;TM) is a CS(M)-submodule and Lie subalgebra
of X(M).

The subset Xcom(M) C X(M) of complete vector fields satisfies X,n(M) C
Xeom(M) [ALKL20, Proposition 3.8].

2.4.4. Differential operators of bounded geometry. — Like in Section [2.1.
by using Xu,(M) and CS2 (M) instead of X(M) and C*°(M), we get the filtered
subalgebra and Cgp (M )-submodule Diff,, (M) C Diff (M) of differential operators of
bounded geometry. Observe that

(2.4.1) m (M) = {u e C™(M) | Diff™ (M)u C L®(M)} .

The concept of Diff,, (M) can be extended to vector bundles of bounded geometry E
and F over M by taking the CS5 (M )-tensor product with C2(M; F @ E*), obtaining
the filtered CS (M )-submodule Difty,(M; E, F) C Diff(M; E, F') (or Diff v, (M; E) if
E = F). Bounded geometry of differential operators is preserved by compositions and
by taking transposes, and by taking formal adjoints in the case of Hermitian vector
bundles of bounded geometry; in particular, Diff,,(M; E) is a filtered subalgebra of
Diff(M; E). Using local trivializations of E' and F over the charts (V,,yp), we get a
local description of any operator in Diff} (M; E, F) by requiring its local coefficients
to define a bounded subset of the Fréchet space C>(B,C! @ C™*), where [ and I’ are
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the ranks of £ and F' (Section [2.1.7)). If E is a line bundle of bounded geometry, then
[ALKL23, Eq. (2.24)]

(2.4.2) Diff™ (M; E) = Dift™ (M) .

Let Py, (T*M) C P(T*M) be the graded subalgebra generated by Plgg) (T*M) =
C%(M) and P‘Ei) (T*M) = Xub(M), which is also a C2(M)-submodule. Restrict-
ing (2.1.22)), we get a short exact sequence with o, : Diff (M) — Pég) (T*M). By
taking the C%(M)-tensor product with CS2(M; F ® E*), we get Pég) (T*M; F® E*)
and a short exact sequence with oy, : Diffy (M; E, F) — Pﬂ)n) (T*M; F @ E*).

Using the norms ””/CS’L’ it easily follows that every A € Diff}; (M; E, F') defines
bounded operators A : C"\7*(M; E) — C%, (M; F) (s € Ny), which induce a continu-
ous linear map A : CX(M; E) — Cx(M; F).

Example 2.4.10. — In Example the Levi-Civita connection V induces a
connection of bounded geometry on FE, also denoted by V. In particular, V itself is
of bounded geometry on T'M, and induces a connection V of bounded geometry on
AM. This holds as well for the connection on F induced by any other Riemannian
connection of bounded geometry on T'M.

Example 2.4.11. — Bounded geometry of connections is preserved by taking the
induced connections in the operations with vector bundles of bounded geometry in-

dicated in Example

Suppose E and F' are Hermitian vector bundles of bounded geometry. Then any
unitary connection V of bounded geometry on E can be used to define an equivalent
norm [|-||cm on every Banach space Cfft (M; E), like in the case of CJ (M).

It is said that A € DIt (M; E, F) is uniformly elliptic if, given Hermitian metrics
of bounded geometry on E and F, there is some C' > 1 such that, for all p € M and
el M,

(2.4.3) CTHE™ < lom(A)(p. )] < ClE™ .

This condition is independent of the choice of the Hermitian metrics of bounded
geometry on E and F. Any A € Dift]} (M; E, F) satisfies the second inequality.
Ezample 2.4.12. — In Example for any A € Diff™(M;E), its lift A €
Diff " (M; E) is of bounded geometry in a canonical way. Moreover A is uniformly
elliptic if A is elliptic.

2.4.5. Sobolev spaces of manifolds of bounded geometry. — For any Hermi-
tian vector bundle E of bounded geometry over M, any nonnegative symmetric uni-
formly elliptic P € Diff%, (M; E) can be used to define the Sobolev space H*(M; E)
(s € R) with a scalar product (-, ), (Section[2.1.11)). Any choice of P defines the same
Hilbertian space H*(M; E), which is a CS(M)-module. In particular, L?(M; E) is
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the C%(M)-tensor product of L2(M;0Q'/2) and C%(M; E @ Q~1/2), and H*(M; E)
is the C5p (M)-tensor product of H*(M) and Cgy(M; E). For instance, we may take
P = V*V for any unitary connection V of bounded geometry on F.

Example 2.4.13. — In Example and according to Example|2.4.12] H® (M, E)
can be defined with the lift P of any nonnegative symmetric uniformly elliptic P €

Diff*(M; E).
For s € Ny, the Sobolev space H®(M) can be also described with the scalar product
)= 30 3 [ fple) ortun ) - 01 (v )
k |I|<s

using the partition of unity {fx} given by Proposition [Sch96, Theorem A.22],
[Sch01l, Propositions 3.2 and 3.3, [Shu92, Appendices A1.2 and Al.3]. A similar
scalar product (-, -)’ can be defined for H*(M; E) with the help of local trivializations
defining the bounded geometry of E. Every A € Diffl} (M; E, F) defines bounded
operators A : H™"$(M;E) — H*(M;F) (s € R), which induce continuous maps
A H*®(M;E) — H*>®(M;F). For any almost everywhere positive h € C>(M),
we have hH™(M; E) = H™(M; E) if and only if h > 0 and h*! € C(M).

If m" > m + n/2, then Hm'(M;E) C CR(M;E), continuously, and therefore
H>(M;E) C CX(M;E), continuously [Roe88, Proposition 2.8]. The Schwartz
kernel mapping, A — K 4, defines a continuous linear map [Roe88|, Proposition 2.9]

(2.4.4) L(H™(M;E),H®*(M;F)) - CX(M; FR (E*®Q)) .

Remark 2.4.14. — By (2.2.14)), forany A € L(H=*°(M; E), H*(M; F)) and r > 0,
supp Ka C { (p.q) € M* [ d(p,q) <1}

if and only if supp Au C Pen(suppu,r) for all u € H=°(M; E).

Let R be the Fréchet space of rapidly decreasing functions on the real line. If
P e Diff [} (M; E) is uniformly elliptic and essentially self-adjoint, then the spectral
theorem defines a continuous functional calculus

R — L(H™>(M; E), H*(M; E)) , ¢ —(P).
Thus, by (2.4.4)), the linear map

is continuous [Roe88| Proposition 2.10].
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2.4.6. Maps of bounded geometry. — For a € {1,2}, let M, be a Riemannian
manifold of bounded geometry, of dimension n,. Consider a normal chart y, , :
Va,p = Bq at every p € M, satisfying the statement of Theorem Let r, denote
the radius of B,. For 0 < r < rg, let By, C R" denote the ball centered at the
origin with radius . We have Ba(p,7) = yo (Ba.r)-

A smooth map ¢ : M7 — M, is said to be of bounded geometry if, for some
0 <r < andall p € M, we have ¢(Bi(p,7)) C Va4(p), and the compositions
y2,¢(p)¢yi; define a bounded set in the Fréchet space C*°(By -, R™?). This condition
is preserved by the composition of maps. The set of smooth maps M; — My of
bounded geometry is denoted by Cgp (M, Ma).

Let ¢ € Cx(My, Ms). For every m € Ny U {oo0}, using ||H/Cg{{) in the case where
m < 00 (Section it follows that ¢* induces a continuous linear map [ALKL2O7
Eq. (19)]

(2.4.6) @ : Clt (Ma; A) — CI (Mq; A) .

Recall that ¢ is called uniformly metrically proper if, for any s > 0, there is some
ts > 0 so that, for all p,q € M,

da(d(p), ¢(q)) < s = di(p,q) < ts .

For all m € No U {00}, if ¢ € C¥ (M, Ms) is uniformly metrically proper, then ¢*
induces a continuous linear map [ALKL20, Eq. (21)]

(2.4.7) @ H™(Ma; A) — H™(Mq; A) .

If ¢ € Diffeo(M;, M), and both ¢ and ¢! are of bounded geometry, then ¢ is
uniformly metrically proper. In this case, can be continuously extended to
Sobolev spaces of order —m.

The pull-back of a vector bundle of bounded geometry by a map of bounded ge-
ometry is of bounded geometry.

Homomorphisms of bounded geometry between vector bundles of bounded geom-
etry have an obvious definition, but we will not use them.

2.4.7. Smooth families of bounded geometry. — Let T be a manifold, and let
pry : M x T — M denote the first factor projection. A section u € C*°(M x T;pr; E)
is called a smooth family of smooth sections of E (parametrized by T), and we may
use the notation v = {w; | t € T'}, where uy = u(-,t) € C*°(M; E). Its T-support
is {teT |u #0}. If the T-support is compact, then u is said to be T-compactly
supported. It is said that u is T-locally C°°-uniformly bounded if any t € T is in
some chart (O, z) of T such that the maps u(y, x 2)~! define a bounded subset of
the Fréchet space C™°(B x z(0),Cl), using local trivializations of E over the normal
charts (Vp, yp)-

A smooth family of differential operators, A = { A, |t € T} C Diff(M; E, F), can
be defined by using smooth families of C-valued functions, tangent vector fields and
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sections of C*(M; F ® E*), like in Section m For this A, the T-support and the
property of being T'-compactly supported is defined like in the case of smooth families
of sections. If the smooth families of functions, tangent vector fields and sections used
to describe A are T-locally C*°-uniformly bounded, then it is said that A is of T'-local
bounded geometry (cf. Section .

A smooth map ¢ : My x T — M, is called a smooth family of smooth maps
M; — My (with parameters in T). It may be denoted by ¢ = {¢' | t € T},
where ¢! = ¢(-,t) : My — M. Tt is said that ¢ is of T-local bounded geometry if
every t € T is in some chart (O, z) of T such that, for some 0 < r < r1, we have
d(Bi(p,) x O) C Vs g for all p € My, and the compositions ys 5@ (Y1, X 2) 77,
for p € M, define a bounded subset of the Fréchet space C*°(B; , x z2(0),R"?). The
composition of smooth families of maps parametrized by T has the obvious sense and
preserves the T-local bounded geometry condition. In particular, the R-local bounded
geometry condition makes sense for a flow ¢ = {¢'} on M. Given X € Xcom(M)
with flow ¢, we have X € X, (M) if and only if ¢ is of R-local bounded geometry
[ALKL20, Proposition 3.18].

2.4.8. Differential complexes of bounded geometry. — With the nota-
tion of Section assume that M, E and d are of bounded geometry (Sec-
tion . Then we may also consider the topological complexes (C3x(M; E), d) and
(H*>*(M; E),d) (Sections and [2.4.5)).

(E, d) is said to be uniformly elliptic if D (or A) is uniformly elliptic (Section;
this is equivalent to the obvious extension of (2.4.3)) for (2.1.36]). In this case, a version
of is true for (H*>°(M; E), d), where the reduced cohomology is used instead
of the cohomology, and the closures of the images of d, §, D and A are used instead
of their images.

2.5. Small b-calculus

R. Melrose introduced b-calculus, a way to extend calculus to manifolds with
boundary [Mel93, [Mel96]. We will only use a part of it, called small b-calculus.
For the sake of simplicity, we consider only compact manifolds with boundary, and
the concepts and notation given here can be extended to the non-compact case like in
Section [2.1} using compactly supported versions or local versions; some non-compact
manifolds with boundary will be used in the paper. For the same reason, several
kinds of section spaces and operators will be only defined in the case of functions
or half-b-densities. Their extension to arbitrary vector bundles can be defined with
tensor product expressions, like in Section Most of these extensions will be used
without further comments.
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2.5.1. Some notions of b-geometry. — Let M be a compact (smooth) n-
manifold with boundary, whose interior is denoted by M. There exists a function
x € C®(M) so that x > 0, OM = {x = 0} and dz # 0 on M, which is
called a boundary-defining function. Let { NOM C NOM be the inward-pointing
subbundle of the normal bundle to the boundary. There is a unique trivializa-
tion v € C®(OM; +NOM) of {NOM so that dz(r) = 1. Take a collar neigh-
borhood T = [0,€6)), X OMy of OM. (In a product expression, every factor
projection may be indicated as subscript of the corresponding factor.) Given co-
ordinates y = (y',...,y" ') on some open V C OM, we get via w coordinates
(2,9) = (z,y',...,y"" 1), adapted (to OM), on the open subset U = [0,¢9) x V C M.
There are vector bundles over M, PT'M and PT*M, called b-tangent and b-cotangent
bundles, which have the same restrictions to M as TM and T*M , and such that
20,041, ...,0,n—1 and x Yz, dy', ..., dy" ! extend to local frames around boundary
points. This gives rise to versions of induced vector bundles, like PQ*M := Q¢ (PT M)
(s € R) and PQM := QM. We have

(2.5.1) C>®(M; Q%) = 2°C>°(M; Q%) .

Thus the integration operator [ o 18 defined on 2C>°(M; bQ), and induces a pairing
between C>°(M) and zC>(M; Q).

At the points of OM, the local section zd, is independent of the choice of
adapted local coordinates, spanning a trivial line subbundle "NOM C Ty, M with
TOM = PTon M/PNOM. So PQg,, M = Q°0M ® Q°(PNOM), and a restriction map
C>=(M; Q%) — C>®(0M;Q*) is locally given by

dI S s
w=a(w,y) |Zdy| = ulors = a(0,y) |dy]"

A Riemannian structure g on PTM is called a b-metric. Locally,

dan 2 n—1 dx n—1
= i B A ) J ok
g aO(gj) +2Za0jxdy +Zajkdy dy )
j=1 jk=1
where ag, ap; and aj, are C* functions, provided that g is positive definite. If
moreover ag = 1+ O(2?) and ag; = O(x) as x | 0, then g is called ezact. In this case,
the restriction of g to T' = (0, 9) x OM is asymptotically cylindrical, and therefore the
restriction of g to M is a complete Riemannian metric. This restriction is of bounded
geometry if it is cylindrical around the boundary; i.e., taking €y small enough, we have
g= (%””)2 + h on T for some Riemannian metric h on M (considering h = w*h).

2.5.2. Supported and extendible smooth functions. — Let M be any closed
manifold containing M as submanifold of dimension n (for instance, M can be the
double of M). Let M’ = M \M , which is another compact submanifold with boundary
of M, of dimension n and with 9M’ = M N M’ = M.
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The concepts, notation and conventions of Section have straightforward ex-
tensions to manifolds with boundary, like the Fréchet space C°°(M). Its elements are
called extendible functions because the continuous linear restriction map

(2.5.2) R:C®(M) — C>®(M)

is surjective; in fact, there is a continuous linear extension map E : C*(M) —
C°°(M) [Seeb4]. Since C=(M) and C°°(M) are Fréchet spaces, the map
is open by the open mapping theorem, and therefore it is a surjective topological
homomorphism. Its null space is 5%, (M).

The Fréchet space of supported functions is the closed subspace of the smooth
functions on M that vanish to all orders at the points of OM,

(2.5.3) C®(M) = (] 2™C®(M) C C™(M) .

m>0

The extension by zero realizes C°°(M) as the closed subspace of functions on M
supported in M,

(2.5.4) C®(M) = C%(M) c C®(M) .
By ([2:5.3),

(2.5.5) tmC® (M) =C>®(M) (meR),
and therefore, by ,

(2.5.6) C=(M;PQ°) = C®°(M;Q°) (s€R).

We can similarly define Banach spaces C*(M) and C*(M) (k € Ny) satisfying the

analogs of (2.5.2)—(2.5.4]), which in turn yield analogs of the first inclusions of (2.1.7]),
obtaining C>®(M) = ), C*(M) and C*(M) = ), C*(M).

2.5.3. Supported and extendible distributions. — The spaces of supported
and extendible distributions on M are

C™®(M) = C®(M;Q) , C~®(M)=C>(M;Q)".

These are barreled, ultrabornological, webbed, acyclic DF Montel spaces, and there-
fore complete, boundedly /compactly/sequentially retractive and reflexive [ALKL23,
Proposition 6.1]. Transposing the version of (2.5.2)) with QM , we get [Mel96, Propo-
sition 3.2.1]

(2.5.7) C™>°(M) = C32° (M) C C~>°(M) .

Similarly, (2.5.4]) and (2.5.3]) give rise to continuous linear restriction maps

o

(2.5.8) R:C (M) —» C~>®(M),
(2.5.9) R:C™°(M) —» C~>=(M) ,
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which are surjective topological homomorphisms ﬂm Proposition 6.2]. Ac-

cording to (2.5.7), the map (2.5.9) is a restriction of (2.5.8]). There are continuous
dense inclusions [Mel96, Lemma 3.2.1]

(2.5.10) CX(M) c C=(M) C C®(M) c C~>=(M),

the last one given by the integration pairing between C°°(M) and C*°(M;). The
restriction of this pairing to C°°(M; Q) induces a continuous dense inclusion

(2.5.11) C®(M) c C~=(M) .

Moreover ([2.5.9) is the identity map on C*°(M).
As before, from (2.5.5) and ([2.5.6), we get

(2.5.12) 2"CT®(M) =C"(M) (m€eR),
(2.5.13) C™°(M; Q%) = C~°(M;Q°) (s€R).

The Banach spaces C'~*(M) and C'~%(M) (k € Ny) are similarly defined. They
satisfy the analogs of (2.5.7)—(2.5.13), and the analogs of the second inclusions
of (2-1.7)), obtaining |J, C'~F(M) = C~(M) and |J, C"~*(M) = C=>°(M).

2.5.4. Supported and extendible Sobolev spaces. — The supported Sobolev
space of order s € R is the closed subspace of the elements supported in M,

v v

(2.5.14) H*(M) = H3,;(M) C H*(M) .

On the other hand, using the map (2.5.9)), the extendible Sobolev space of order s is

v

H*(M) = R(H*(M)) with the inductive topology given by the linear map
(2.5.15) R: H*(M) — H*(M) .

The null space of (2.5.15)) is HJSW,(]\Z/) The analogs of (2.1.31))—(2.1.34) hold true
in this setting using C*>°(M) and C**°(M). Furthermore the spaces H*(M) and

H? (M) form compact spectra of Hilbertian spaces.
The following properties are satisfied [Mel96), Proposition 3.5.1]. C°°(M) is dense
in H*(M), we have

(2.5.16) H*(M)=H™*(M;Q), H*(M)=H*(M;Q),
and the map (2.5.9) has a continuous restriction
(2.5.17) R:H*(M)— H*(M),

which is surjective if s < 1/2; and injective if s > —1/2. In particular, HO(M) =
HO(M) = L*(M). The null space of ([2.5.17) is Hg,,(M).
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2.5.5. The space CgACjIO(M) — The indicated properties of (2.5.8) and (2.5.9)
mean that we have short exact sequences in the category of continuous linear maps

between LCSs (see also [Mel96, Proposition 3.3.1]),

0— C™°(M') % o) & e~ (M) — 0,

(2.5.18) 0— Coe(M) 5 C=(M) L& o> (M) > 0.
From (2.5.7)), we get
(2.5.19) Cone(M) = Cof (M) € C~=(M) .

The analogs of the second inclusion of , and hold true for
the spaces C, (M) and H3,,(M). Thus the spaces Chyf (M) and H,, (M) form
spectra with the same union; the spectrum of spaces HgM (M) is compact.

The following properties hold for Cé,_]\?[o(M) [ALKL23, Corollary 6.4 and 6.5]:
it is a limit subspace of the LF-space C~°°(M); and it is barreled, ultrabornologi-
cal, webbed acyclic DF Montel space, and therefore complete, reflexive and bound-
edly/compactly/sequentially retractive. A description of Cg o (M) will be indicated

in Remark 2.6.1]

2.5.6. Differential operators acting on C~>°(M) and C~>°(M). — The no-
tions of Section [2.1.7] also have straightforward extensions to manifolds with bound-
ary. The action of any A € Diff (M) on C°(M) preserves C* (M), giving rise to
extended continuous actions of A on C~°(M) and C~°°(M). They fit into commu-
tative diagrams

C—(M) —2— C=(M) (M) —2— C==(M)

(2.5.20) Rl lR T T

C~®°(M) —2— C=°(M)  C®(M) —2—5 C®(M).

However the analogous diagram

(2.5.21) T TL
C®(M) —2— (M)

may not be commutative. Using the notation u — u. for the injection C*°(M) C
C=>(M) of ([2.5.10), we have A(uc) — (Au). € Cyyr (M) for all u € C*°(M) [Mel96),
Eq. (3.4.8)].

From and its version for vector fields, we get a surjective restriction map

(2.5.22) Diff (M) — Diff (M), A~ Ay .
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For any A € Diff(M) with A|y; = A, we have the commutative diagrams
C~(M) —2— C™(M)  C~(M) —"— C~(M)

(2.5.23) Rl lR T T

Co=(M) —"— C™=(M), (M) —— C72(M),
where the left-hand side square extends the left-hand side square of (2.5.20)).
If A € Diff™ (M) (m € Np), its actions on C~>°(M) and C~°(M) define continuous

linear maps,
(2.5.24) A:HS(M) = H™(M), A:H(M)— H*™(M).

The maps (2.5.17)) and (2.5.24)) fit into a commutative diagram given by the left-hand
side square of (2.5.20)).

2.5.7. Differential operators tangent to the boundary. — The concepts of
Section can be generalized to the case with boundary when L = OM [Mel96,
Chapter 6] (see also [Mel93, Section 4.9]), giving rise to the Lie subalgebra and
C°(M)-submodule X, (M) C X(M) of vector fields tangent to OM, called b-vector
fields. We have X,(M) = C(M;PTM). Using X,(M) like in Section we
get the filtered C'*°(M)-submodule and filtered subalgebra Diffy, (M) C Diff (M) of
b-differential operators; they are the operators A € Diff(M) such that is
commutative [Mel96l, Exercise 3.4.20]. The definition of Diff,(M) can be extended
to arbitrary vector bundles like in Section [2.1.7] The condition of being tangent to
the boundary is closed by taking transposes and formal adjoints. The restriction

map satisfies

(2.5.25) Diff (M, 0M )|y = Diff, (M) .

For all @ € R and k € Ny, we have [Mel96l Eqgs. (4.2.7) and (4.2.8)]

(2.5.26) Difff (M) 2 = 2% Difff (M) .

Diff (M) is spanned by 90, and Diffy, (M) as algebra, and therefore

(2.5.27) Diff* (M) 2% C 2°~* Diff* (M) .

2.5.8. Conormal distributions at the boundary. — The spaces of supported

and extendible conormal distributions at the boundary of Sobolev order s € R are
the C°°(M)-modules and LCSs,

A (M) = {ue (M) | Diffy(M)u c H* (M)} ,
A (M) = {ue C~(M) | Diffy(M)u c H* (M)} ,

with the topologies defined like in (2.1.1]), which are totally reflexive Fréchet spaces
[ALKL237 Proposition 6.6]. They satisfy the analogs of the continuous inclu-
sions (2.2.4)), giving rise to the filtered C'°°(M)-modules and LCSs of supported and
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extendible conormal distributions at the boundary,
(2.5.28) AM) = JA® (M), AM) =AW (M),
which are barreled, ultrabornological and webbed [ALKL23, Corollary 6.7]. By
definition, there are continuous inclusions
(2.5.29) AM)c C=>=(M), AM)c C~>(M).
Thus A(M) and A(M) are Hausdorff. We have
(2.5.30) AW (M) =), (AD (M) =C>=(M),
S s
obtaining continuous dense inclusions [Mel96| Proposition 4.1.1 and Lemma 4.6.1]

(2.5.31) C®(M)c AM), C>(M)c AM),AM).

By (2.5.31)) and the density of the inclusions (2.5.10)) and (2.5.11)), it follows that the
inclusions ([2.5.29) are also dense. On the other hand, by elliptic regularity, we get

continuous inclusions [Mel96| Eq. (4.1.4)]

(2.5.32) A(M)| gy, AM) € C=(M) .
The maps restrict to continuous linear maps
(2.5.33) R:A® (M) — A®) (M),

which are surjective for s < 1/2 and injective for s > —1/2. If s = 0, then (2.5.33) is a
TVS-isomorphism because H°(M) = H°(M). The maps (2.5.33) induce a surjective
topological homomorphism [Mel96], Proposition 4.1.1], [ALKL23, Proposition 6.8]

(2.5.34) R:AM) — A(M) ,
which is the identity on C*°(M).
2.5.9. The spaces z™L>*(M). — For m € R, consider the weighted space
a™L> (M) (Section [2.1.12)). There is a continuous inclusion
™ L®(M) C CT(M) .
For m’ < m, we also have a continuous inclusion
(2.5.35) 2L (M) C 2™ L®(M) ,

and C°(M) is dense in z™L>(M) with the topology of ™ L>(M) |[ALKL23|
Proposition 6.10].
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2.5.10. Filtration of A(M) by bounds. — For every m € R, let
A" (M) ={ue C™°(M) | Diff,(M)u C 2™L>*(M) } .

This is another C*°(M)-module and Fréchet space with the topology like in (2.1.1)).
By (2.5.35)), there is a continuous inclusion

(2.5.36) A™(M) C A™ (M) (m/ <m) .

Moreover there are continuous inclusions [Mel96, Proof of Proposition 4.2.1]

(2.5.37) AB(M) ¢ A™(M) ¢ AN ANy (m<s—n/2-1).
Hence
(2.5.38) AM) = JA™(M) .

Despite of defining the same LF-space, the filtrations of A(M) given by the spaces
AG) (M) and A™ (M) are not equivalent because, in contrast with (2.5.30)),

Co(M) = [ A™(M) .
The following is true [ALKL23, Corollaries 6.14-6.16 and 6.39 and Remark 6.41]:
the topologies of A(M) and C*°(M) coincide on every A™ (M) (however the second
inclusion of (2.5.32) is not a TVS-embedding); C2°(M) is dense in every A™(M),

and therefore in every A®) (M) and A(M); and A(M) is an acyclic Montel space, and
therefore complete, boundedly/compactly/sequentially retractive and reflexive.

2.5.11. A(M) and A(M) vs I(M,OM). — The restriction maps define
continuous linear maps
R: I (M,0M) — A® (M) ,
which induce a surjective topological homomorphism [ALKL23, Proposition 6.18]
(2.5.39) R:I(M,0M) — A(M) .
The null space of is Inp/(M,&M). There are TVS-identities
(2.5.40) A My = 13 (01, 0M)
inducing a TVS-isomorphism [ALKL23, Corollary 6.20]
(2.5.41) AM) 55 1y (M, 0M) .

Moreover Ip;(M,dM) is a limit subspace of the LF-space I(M,OM) |[ALKL23,
Proposition 6.19].



46 CHAPTER 2. ANALYTIC TOOLS

2.5.12. Filtration of A(M) by the symbol order. — Like in (2.5.40)), let
(2.5.42) A™(M) = I (M, M) c I"™(M,dM) (m € R),

which are closed subspaces satisfying the analogs of (2.2.7) and (2.2.8). Thus
A(M) = JA™(M), (M) =A™ (M),

and the TVS-isomorphism ([2.5.41]) is also compatible with the symbol filtration.
A(M) is an acyclic Montel space, and therefore complete, boundedly /compactly /sequentially
retractive and reflexive [ALKL23, Corollary 6.22].

2.5.13. The space K(M). — The condition of being supported in OM defines the
LCHSs and C*°(M)-modules

KE(M) = A5, (M), K™(M) = Ay (M), K(M) = Aga (M) .

These are the null spaces of the corresponding restrictions of the map (2.5.34)) to
AE) (M), A™(M) and A(M). They satisfy the analogs of (2.2.4), (2.2.7) and (2.2.8),
obtaining |J, K®)(M) =, K™(M).

The properties of mean that the following sequence is exact in the category
of continuous linear maps between LCSs:

(2.5.43) 0— K(M) % A L& A(M) > 0.

It is called the conormal sequence at the boundary. We have
K@ (M) = {u € Cyyy (M) | Diffy(M)u C Hjp (M)}

with the topology defined like in . The following properties hold [ALKL23,
Propositions 6.24 and 6.25 and Corollaries 6.26-6.28]: every K(*)(M) is a totally
reflexive Fréchet space; K(M) is a limit subspace of the LF-space A(M); and K (M)
is barreled, ultrabornological, webbed and an acyclic Montel space, and therefore

complete, boundedly/compactly /sequentially retractive and reflexive.
The TVS-isomorphism (|2.5.41)) restricts to a TVS-identity

(2.5.44) K(M) = I (M,0M)

which in turn restricts to identities between the LCHSs defining the Sobolev-order
and symbol-order filtrations, according to (2.5.40) and ([2.5.42]).
A description of K®)(M) and K(M) will be indicated in Remark

2.5.14. Action of Diff(M) on A(M), A(M) and K(M). — Any A € Diff(M)
defines continuous endomorphisms A of A(M), A(M) and K(M). If A € Diff*(M),
these maps also satisfy the analogs of (2.2.15). If A € Diff,(M), then it defines
continuous endomorphisms of A®) (M), A®) (M), A™(M) and K*)(M). All of these
maps are restrictions of the endomorphisms A of C=°°(M), C=°°(M) and C>(M),
and extensions of the endomorphisms A of C°°(M) and C*(M).
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2.5.15. Partial extension maps. — Given linear subspaces, X C A(M) and Y C
A(M), amap E: X — Y is called a partial extension map if R(Y) C X and RE = 1
on X. The surjectivity of is given by the following result. Its proof is recalled
here because it will play an important role in our work.

Proposition 2.5.1 (Cf. [Mel96| Section 4.4]). — For all m € R, there is a con-
tinuous linear partial extension map E, : A™ (M) — A®) (M), where s = 0 if m > 0,
and m > s € Z~ if m < 0. Form >0, E,, : A™(M) — A (M) is a continuous
inclusion map.

Proof. — First, let us consider the non-compact n-manifold with boundary R} :=
[0,00) x R*~! whose double is R™. Consider the canonical coordinates on R} given
by the factor projections, z : R} — [0,00) and y : R} — R"~1. We use the obvious
generalization to the non-compact case of the spaces of extendible and supported
conormal distributions at the boundary, of Sobolev order s, whose definitions involve
H (R}) and H{ (R}) like in Sectionm

For m > 0, since ™ L>°(R}) C L} .(R}), continuously, we get A™(R}) < AO)(RY),
continuously. This also follows from using that A (R?) = A©)(R?). Thus
FE,,, must be the inclusion map in this case.

Now fix m < 0. For 0 < § <1 such that m+d <0if m # —1, and m+ 9 < 0 if

m = —1, we have a continuous linear map J : A™(R}) — A™*9(R7}) defined by

(2.5.45) Jutay) = [ (e de
1
So, for —m < —s =: N € N, we get the continuous linear maps (see Section [2.5.14)
gy 0 Eo. (0 aN .
A™(RY) = A°(RY) = AO(RY) = AP(RY)
whose composition is the desired extension E,,. For all u € A™(R7), we have
(2.5.46) ORT Nsupp E,,u C {0} X y(suppu) .

Consider now a compact manifold with boundary M. Cover M with a finite
collection of adapted charts (Uj, (x;,y;)), and let {\;, u} be a partition of unity
subordinated to the open covering {U;, M} of M. By the case of R?, we directly get
A™(U;) € AO(U;), continuously, if m > 0. By ([2:5.46), if m <0 and —m < N € N,
we get a continuous linear partial extension map E,, j : A™(U;) — AN)(U;), which
preserves the condition of being compactly supported. Then the result follows with
Ep i A™(M) — A®) (M) defined by E,,u = pu + > Emi(Aju). O

Remark 2.5.2. — Consider the case where m < 0 in the proof of Proposition [2.5.1
Taking a collar neighborhood of the boundary, T' = [0, €), X M, we can use adapted
charts (U; = [0,€) x V}, (z,y;)) defined by charts (V},y;) of 0M, like in Section
Then the operators 0, € Diff(U;) can be combined to define an operator 9, € Diff(T"),
which indeed is the derivative operator on C*°(T) = C*°([0,¢), C*°(OM)). On the
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other hand, by integrating from e to z, like in , we get a continuous linear
map J : A™(T) — A™H9(T); in fact, this defines a continuous endomorphism .J of
C>(T). In this way, a continuous linear extension map Epr : A™(T) — AGN(T)
can be defined like in the case of R?. Then E,, : A™(M) — A®) (M) can be given by
Epnu = pu+ E,, v(Mu), where {), u} is a partition of unity subordinated to the open
covering {T, M} of M.

Remark 2.5.3. — A version of Proposition with a vector bundle E over M
can be achieved by taking the C°°(M)-tensor product with the identity map on
C>®(M;E® E*). We can also adapt the proof as follows. With the notation of Re-
mark there is an identity Er = @w*Egpyr = [0,€) X Egpr over T, which induces
trivializations Ey, = [0,€) x Ey, = [0, €) x V; x C! over domains U; = [0,€) x V;. Like in
Remark these local trivializations can be used to define 9, € Diff' (T; E), which
is considered as the derivative operator on C*°([0,¢€), C®(OM; E)) = C®(T; E). As
usual, integration by parts shows that

(2.5.47) ot = —0, e DIff (T; F* @ Q) .
If E = AM, then 9, € Diff'(T; A) is the Lie derivative with respect to 9, € X(T).

Remark 2.5.4. — By (2.5.46)), all steps of the proof of Proposition have
obvious compactly supported versions. This also applies to Remarks and

Given m and s satisfying the conditions of Proposition let us denote by E,, s
the partial extension map constructed in the proof of Proposition This notation
will make it easier to analyze its dependence on m and s in the following result.

Proposition 2.5.5. — Let ' < s and m’ < m such that the maps Ey, s, By and
E, ¢ are defined. Then E,, su = En gu for allu € A™(M).

Proof. — According to the proof of Proposition [2.5.1] it is enough to consider the
case of RY.

If m’ > 0, there is nothing to prove.

In the case m < 0, we have 5,8’ € Z~ with m’ > s > 5. Let N = —s, N' = —5'
and k=s—s =N — N in Z*. Since A°(R}) C L°(RY), the composition

ARY) Ly AORT) o AO(RT) Ly AP (RD)

is equal to the inclusion map A°(R}) < AR (R}). So, for all u € A™(R}), since
JNu € A°(R?), we have

By st = By g = 0N N w = 0NoE T JNuw = 0N JNu = By qu .

In the case m’ < 0 < m, we have s = 0 and m’ > s’ € Z~. Then the result follows
with a similar argument using k = —s’' € Z*. O
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Corollary 2.5.6. — For all s and m such that the map E,, s is defined, we have
E,su=u foralue C(M).

Proof. — Use that C°(M) € A™(M) and apply Proposition m O
Remark 2.5.7. — The proof of Proposition can be also applied to maps E,, s
with m > 0 and s € Z~, defined E,, like in the case m < 0. Including these maps,

the map F, s of the statement is always defined under the other assumptions.

Remark 2.5.8. — Proposition and Corollary are also true with the def-
initions of F,, given in Remarks and with similar proofs.

2.5.16. L2 and L half-b-densities. — We have

[N

(2.5.48) L2(M; Q7)) = 2 2 L2 (M;Q?) ,
(2.5.49) L®(M;Q2) = 273 L°(M;Q2) |
where ([2.5.48)) holds as Hilbert spaces, and (2.5.49]) holds as LCHSs endowed with a
family of equivalent Banach space norms [ALKL23, Eqs. (6.51) and (6.52)).
Equip M with a b-metric g (Section , and endow M with the restriction of

g, also denoted by g. With the corresponding Euclidean/Hermitean structures on
QY20 and PQY2M, we get L°(M;Q2) = L>(M;"Qz) as Banach spaces.

2.5.17. b-Sobolev spaces. — For m € Ny, the b-Sobolev spaces of order £m are
the C°°(M)-modules and Hilbertian spaces defined by the following analogs of (2.1.29)

and (E130):
HM(M;PQ%) = {u € L3(M;°Q?) | Diff*(M;PQ2)u C L2(M;PQ2)},
Diff" (M; Q%) L2(M; PQ3) = H;™(M;PQ%) = H"(M;PQ3) .
Any finite set of C°°(M)-generators of Diff"(M;PQ1/?) defines a scalar product on

HE™(M;PQ/?). The intersections/unions of the spaces H{(M;PQ'/?) (m € Z) are
denoted by HF>°(M;PQ'/2). In particular, H®(M;PQY2) = A0 (M;PQ1/2).

2.5.18. Weighted b-Sobolev spaces. — We will also use the weighted b-Sobolev
space *H™M(M;PQY2) (a € R), another Hilbertian space defined like in Sec-
tion [2.1.12, We have |[ALKL23, Section 6.19]

() = HI (M;PQ%) = C=(M;PQF) .
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2.5.19. Action of Diff}'(M) on weighted b-Sobolev spaces. — We have
(2.5.50) Diff" (M;>Q?) = Diff{* (M) = Diff{"(M;Q3) ,

like in (2.1.23). Moreover any A € Difff(M;PQ'/2) defines continuous linear maps
[Mel93, Lemma 5.14]

A xaHg”(M;bQ%) — xaH];”_k(M;bQ%) ,

which induce a continuous endomorphism A of 2% H=>(M;Q/?).

2.5.20. A description of A(M). — In this subsection, unless the contrary is in-
dicated, assume the following properties:

(A) M is of bounded geometry with g.
(B) The collar neighborhood T' of OM can be chosen so that:
(a) every A € X(OM) has an extension A’ € X,(T) such that A" is w-
projectable to A, and A’|; is orthogonal to the w-fibers; and
(b) :{ub(M)'ff is C’fjﬁ(]\%ﬂf-genera‘sed by x0, and the restrictions A’|; of the
vector fields A’ of [(a)] for A € X(0M).

For instance, and are true if 1" is cylindrical with ¢ (Section . The

following properties hold [ALKL237 Corollaries 6.32, 6.34, 6.35, 6.37, 6.38 and 6.40
and Propositions 6.33 and 6.36]: the restriction to M defines a continuous injection
C*®(M) C Cx(M) (thus C (M) becomes a C*°(M)-module); as C (M )-modules,
Diff}i, (M) = Diffy! (M) @ o (ar) Con (M)
Diff?} (M; Q%) = Difff" (M;"Q%) @ oo (1) CS5 (M) 5
as C*°(M)-modules and Hilbertian spaces, for m € Z,
H™(M;QV%) = Hy(M;PQV2) . H™(M) =27 VPH (M),

HiOO(M; 91/2) = HbiOO(M, le/Q) ’ H:l:oo(M) _ x—l/QHbioo(M) :

as C°°(M)-modules and LCHSs, for m € R,
.Am(M; Ql/?) = $m+l/2H§o(M; le/Z) ,

(2.5.51) A™(M) = a™HP (M) = a™t/2H>™(M) ,
(2.5.52) AM) = JamH2 (M) = Ja™H>(M) .

Actually, the first identities of (2.5.51)) and (2.5.52)) are independent of g, and therefore
they hold true without the assumptions and @ [ALKL237 Remark 6.41].
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2.5.21. Dual-conormal distributions at the boundary. — Consider the

LCHSs Section 18.3], [Mel96], Chapter 4],
K/(M) = R(M; Q)" A(M) = AM; Q) A'(M) = A(M; )’

which are complete Montel spaces [m, Proposition 6.42]. The elements of
A'(M) (resp., A'(M)) will be called extendible (resp., supported) dual-conormal dis-
tributions at the boundary. Consider also the LCHSs

KO (M) =KE(M;Q), K™(M) = K7™ (M;9Q)
and, similarly, define A’ (M), A™(M), A')(M) and A'™(M). The spaces

K (M), A" (M) and A’ (5)(M) are bornological and barreled m Corol-
lary 6.43]. The transpositions of the analogs of (2.2.4) and (2.2.7) for the spaces
KE(M;Q), K™ (M;Q), A®)(M;Q) and A™(M;Q) are continuous linear restriction
maps

K'CO(M) — KO, K'™(M) — K™ (M),

A —» A, A™M) — A™ (M),
for s < s’ and m < m’. These maps form projective spectra, giving rise to projective
limits. The spaces K'(*)(M), K'™(M), A')(M) and A'™(M) satisfy the analogs
of (2.3.5)) and (2.3.6) [ALKL23| Corollary 6.44].

Similarly, transposing the analogs of (2.2.4]) and (2.5.36)) for the spaces A(M, QM),

we get continuous inclusions

AN > AV (MY, A™(M) D> A (M)

for s < s/ and m < m/. The version of (2.5.37) with QM yields continuous inclusions

(2.5.53) A (M) > A™(M) D A @AmOD (A (m>s4+n/2+1).
We also have Corollary 6.44]
(2.5.54) A=A M) = A™M),

where the last equality is a consequence of (2.5.53)).
Transposing the versions of (2.5.3)), (2.5.29)) and (2.5.31)) with QM , we get contin-
uous inclusions Section 4.6]

(2.5.55) (M

Cc> c A(M)c C™>=(M),C~>=(M),
(2.5.56) O (M

)
) € A'(M) € C=%(M),C™>(M)

and R : O~ (M) — C~°°(M) restricts to the identity map on A’(M) and A’(M).

The first inclusion of (2.5.50) is dense; in fact, C°(M) is dense in every A'™(M),
and therefore in A’(M) [ALKL23, Corollary 6.50 and Remark 6.51].
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2.5.22. Dual-conormal sequence at the boundary. — Transposing maps in
the version of (2.5.43)) with QM , we get the sequence

(2.5.57) 0« K'(M) &2 A/ (M) & A(M) 0,

where R’ =t and / = R!. It is called the dual-conormal sequence at the boundary of
M, which is exact in the category of continuous linear maps between LCSs [ALKL237
Proposition 6.45].

2.5.23. A(M) and A(M) vs A'(M). — Using (2.5.29), (2.5.31) and (2.5.55)), we
have [Hor85| Proposition 18.3.24], [Mel96, Theorem 4.6.1]

(2.5.58) AM)N A (M) = C>®(M) .

2.5.24. A description of A’(M) — If and are true, then, for m € R
[ALKL23, Corollaries 6.48 and 6.49],

(2.5.59) A'™(M) = 2™ H; > (M) = 2™~ 2 H-(M)
(2.5.60) A'(M) = (a™Hy (M) = (a™H > (M) .

The first identities of (2.5.59)) and (2.5.60) are independent of g, and hold without
the assumptions and

2.5.25. Action of Diff(M) on A'(M), A'(M) and K'(M). — Any A € Diff(M)
induces continuous linear endomorphisms A of A’'(M), A'(M) and K'(M) [Mel96,
Proposition 4.6.1], which are the transposes of A® on A(M;Q), A(M;Q) and
K(M; ) (Sections and . If A € Diff*(M), these maps satisfy the analogs
of 2.37). If A € Diff,(M), it induces continuous endomorphisms of A’'()(M),
A (M), A (M) and K'9)(M).

2.5.26. The b-stretched product. — Let Yi,...,Y,. be the connected compo-
nents of M. Consider the submanifold B := U;:1 sz of the C'*° manifold with
corners M?. Tts inward-pointing spherical normal bundle is S, NB = ; NB/R*,
where RT acts on y NB by multiplication. The b-stretched product M]f is the com-
pact smooth manifold with corners obtained from M? by blowing-up B [Mel93]
Sections 4.1 and 4.2], [Mel96, Chapter 4], with corresponding surjective smooth
blow-down map B, : MZ — M?; namely, M? = S NB L (M?\ B), and 3y, is the
combination of the projection S, NB — B and the identity map on M? \ B. The
topology and C structure of MZ can be described as follows.

For any C! curve x : [0,1] — M? with x(0) € B and x((0,1]) € M?\ B, let
X : [0,1] — M be the lift of y so that x(0) is defined by x’(0). Then a subset
UcC Mg is open if it has open intersections with Sy NB and M?\ B, and, for any
such curve y with x([0,1]) C U, we have 7([0,1]) C U for all C! curve 7 : [0,1] — M?>
of the same type as x and C'-close enough to x.
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Let = and z’ denote the lifts to M? of the boundary-defining function = from the
left and right factors. The C*° function
x—a

T c M2\ (OM)? — [~1,1]

has a continuous extension 7 to the open neighborhood Sy NB U (M?\ (OM)?) of
S.NB in MZ. Then C* (M) is locally generated by 7 and S;:C>°(M?).
The manifold with corners M2 has three boundary hypersurfaces,

£ 5oM(B)., b= G NOM x 3T, tb— BN x O31) |

called the front face, and the left and right boundaries. They satisfy IbNrb = 0.
Another embedded, compact submanifold of MS is the b-diagonal, Ay, = Bgl(A \ B),
where A C M? is the diagonal. We have Ay  ff, Ay = A, Nff = 9A, and
ApNlb = Ay Nrb = (. Moreover 8y : Ay, — A = M is a diffeomorphism, where the
last identity is given by the diagonal map.

Let also z = Bz and 2/ = Bf2’ on MZ. Thus r = z +2’ is a defining function of ff
in M? (in the same sense as in Section for OM). For adapted local coordinates
(z,y), the lifts y and ¢y’ of y to open subsets of M? and M are defined like z and
z'. Then (r,7,y,y’) or (z,7,y,y’) are local coordinates of M around points of ff, the
submanifold Ay, is locally described by the conditions 7 = 0 and y = ¢/, and Ay g is
locally described by the conditions 7 = 7 = 0 and y = y’. Other local coordinates
(r,s,9,9') or (z,8,y,y') of M around points of ff are defined using the function
147 =z

_l_T:?:Mﬁ\rb—)(O,oo).

S

With the obvious extensions to manifolds with corners of some concepts of Sec-
tions and we get the following [Mel93| Section 4.5]. First,

PTM? = (PTM)?, PTME = B (PTM?),
Xp(M?) = C®°(M*%PTM?), X, (M?E) = C°(M?*,°TM) .

Second, any vector field in X(M?, B) can be lifted to a vector field in X(M?, ff);
in particular, the lifts to M? of X,(M), from the left and right factors, generate
Xp(M?) over C*°(M?). Third, there is a lifting map S} : Xy,(M?) — Xp,(M?2), whose
image spans Xp (M) over C*°(MZ). It induces a lifting map 87 : Diff}'(X?) —
Diff}' (M), whose image spans Diff}' (M) over C*° (M) [Mel93| Exercise 4.11]. For
instance, using the above local coordinates, the lift of 29, is $(1+7)rd, +3(1—72)0;.
Finally, the lift to M? of X,(M) from the left factor of M? is a Lie subalgebra of
xb(Mg) transverse to Ay, giving rise to natural isomorphisms NA, = PTM and
N*Ay, =2 PT* M [Mel93, Lemmas 4.5 and 4.6]. Thus there is a canonical isomorphism
POV2(M2)|a, = PQOM (cf. [Mel93| Eq. (4.125)]).
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2.5.27. The b-pseudodifferential operators. — A refinement of the Schwartz
kernel theorem gives a bijection [Mel93, Lemma 4.20]

L(C™(M;P03), 0™ (M: Q) — O~ (M 53 (*QF B°Q1))
A kg, (Auv) = (ka, Biv@w), uve C®(M; Q7).

The concept of conormal distributional sections can be also extended to sub-
manifolds whose boundary is given by a transverse intersection with the bound-
ary faces, like A, C M2. Then a continuous linear map A : C®(M;PQY?) —
C=°(M;P0/?) is called a b-pseudodifferential operator of order at most m € R if
ka € I™(MZ, Ay; B (PQY2KPQY2)) and k4 vanishes to all orders at 1bUrb [Mel93)
Definition 4.22]. Such operators form a C*(M2)-module WI*(M;PQ/2), obtaining
the filtered C°°(M2)-module Wy, (M;PQY2) = (J, WM (M;PQ1/2). The submodule
U0 (M;PQY2) =, U (M;PQY2) (resp., Diffy,(M;PQ1/2)) of Wy,(M;PQY/2) con-
sists of the operators A € Wy, (M;PQ/2) with smooth x4 (resp., suppsa C Ayp). The
obvious generalization of the definition of principal symbol, like in Section [2.2.3] now
gives the principal b-symbol exact sequence,

0 — UL PQE) o U (M;POE) “2my SO (BT bQE) 0

The principal b-symbol is used to define b-ellipticity like ellipticity in the case of
pseudodifferential operators (Section .

Omitting PQY/2, if A € ¥, (M) and & := k4 is supported in the domain of a
chart (z,s,y,9’), then we can write k = x/(z, s,y,y’) s~ 'dsdy’ because k is rapidly
decreasing as s | 0 and as s T +00, obtaining

x ds
2.5.61 N2 dy
(2.5.61) u(z,y) /W/ (z,5,9,9) (S,y)sdy,

for all u € C° (M) supported in the domain of the chart (z,7).

Any A € U (M;PQ1/?) defines continuous endomorphisms A of C°°(M;P0/?)
and C*°(M;P01/?) [Mel93], Propositions 4.29 and 4.34 and Exercise 4.33]. In this
sense, Uy (M bQl/ 2) becomes a filtered algebra with the operation of composition
[IMel93|, Propositions 5.20], and the principal b-symbol map is multiplicative.

2.5.28. The indicial family. — Let A € U*(M;"QY2) (m € R) and write & =
ka. Roughly speaking, the indicial family of A is an entire family, I,(A,\) €
U™ (OM;QY2) (X € C), depending on the trivialization v of y NOM (Section 7
defined by taking the “fiberwise” Mellin transform of certain conormal distributional
section defined by x|g. Thus I,(A4, ) = 0 for all A just when k|g = 0.

The indicial family can be also described as follows. For z € C and m € R,
the mapping A — x7?Ax® defines an automorphism of \Ilgl(M;bQI/Q) [Mel93|,
Proposition 5.7]. Hence every A € Wy, (M;Q'/?) defines a continuous endomor-
phism A of z*C>(M;P0'/2) (k € N). Therefore a continuous endomorphism Ay of
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C>°(OM;0Y/?) is well defined by Agv = Aulans if u € C°(M;PQY2) with ulpn = v
[Mel93|, Eq. (5.31)]. Then [Mel93, Proposition 5.8]
(2.5.62) L(AN) = (27 Az, .

We will only use the indicial family in the following cases, where PQ/? is omitted
for the sake of simplicity. First, if A € ¥, °°(M) and  is supported in the domain of
a chart (z,s,y,y’), as described in (2.5.61)), then I, (A, \) € \Ilgoc(aM;Ql/Q) is given
by

(2.5.63) Kroanw,y) = / sT6(0,5,9,9)
0

The support condition can be obviously removed by using a partition of unity or a
collar neighborhood of M. Second, if A € Diff},’ (M) (m € Np) is locally given by

A= > aji(xy)(eD,) D},
JHHI|<m

ds

S .

using adapted local coordinates (z,y), then
(2.5.64) LAXN = Y a(0,y)ND] .
JHI|I<m
The indicial family is multiplicative [Mel93l Corollary of Proposition 5.20], and

compatible with the operation of taking formal adjoints of b-differential operators
(Cf. [Mel93| Eq. (4.112)]).

2.5.29. The b-integral. — The b-integral is a linear map “[ = ", : C1(M;PQ) —
C, depending on v, defined by [Mel93, Lemma 4.62]

/u:lim(/ u+1ne/ uL> ,
el0 T>e€ oM

using a boundary-defining function z with dz(r) = 1. Another trivialization p €
C*>®(M; + NOM) is of the form p = av for some 0 < a € C*°(0M), and

w v
/u— /uz/ Ina-ulgp -
oM

Lemma 2.5.9. — 'ff is continuous with the C topology on C*(M;PSY).

Proof. — Consider a chart (V,y) of OM, and the adapted local coordinates (x,y)
on U = [0,6), x V C M (¢ > 0). Since | = [, on CH(M;PQ) = CH(M;Q), it
is easy to see that it is enough to prove the continuity of Vf on CH(U; Q). Every
u € CH(U;"Q) is of the form u(z,y) = a(z,y) |z~ dz dy| for some a € C}(U). Then

Ju=teo- [ a0y ([ [t a0, )
V/u

Hence

< 1v.(1 : 0,9) + o - dpal€, ) 0
< vo n €g I;leagla( )| +eo (gggg[}\ za(€,y)
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Corollary 2.5.10. — Let T and T’ be collar neighborhoods of OM in M with T' C
T. For any sequence uy, in C*(M;PQ), if up|r — 0 in CY(T; Q) and limy, fM\T, up =
a € C, then limy Vfuk =a.

Proof. — Let {\, u} be a smooth partition of unity of M subordinated to the open
covering {7, M\ T"}. Then limj Auy = 0 in C1(M;®Q), obtaining limy, “[ Aug = 0 by
Lemmaw Moreover limy, f MAT Aug = 0. Therefore

v v
lim /uk = lim /,uuk = lim pug = lim U =a. O]
k k k M\T/ k ]\/[\T/

Remark 2.5.11. — Consider a collar neighborhood of OM in M of the form T =
[0,€), X OMy, and the intermediate space

CHT;*Q) = CY([0,€), CH(OM;PQanr))
c COY(T;PQ) .= C*([0,¢€), C°(OM;PQanr))
c CUT;PQ) = C°([0,€), CO(OM;PQanr))

Then VfM is actually defined on
{ue COM;Q) | ulr € CLHT;PQ)

and the proof of Lemma shows that it is continuous with the obvious topology
defined by the topologies of C°(M;?€Q) and C%(T;PQ). So Corollary [2.5.10|is true
with the weaker condition ug|r — 0 in C%1(T;PQ).

2.5.30. The b-trace. — Any A € ¥, *®(M;PQ/?) is of trace class if and only if
A € ¥, (M;PQY?) (ie., kalg = 0). The b-trace PTr : U, *(M;PQ1/2) — C is an
extension of the trace Tr : 7W > (M;PQ1/2) — C given by

14

b

TI"AZ/ HA|AL,;
M

using the canonical isomorphism PQY/2(M2)|a, = PQM (Section [2.5.26). If A, B €
W, °°(M;PQY/2), then [Mel93| Proposition 5.9]

1 [T

(2.5.65) PTr[A, B] = Tr(Ox1, (A, \) I,(B,\) dX .

=
This equality also holds if A € Diff,(M;"QY/2) and B € W, >°(M;>Q1/?) [Mel93|
Lemma 5.10].

If F is a Zy-graded Hermitian vector bundle over M with degree involution w
(wu = (—1)ku for uw € E¥ and k € Z,), and A € ¥ *°(M;E) is homogeneous of
degree zero, then its b-supertrace is "Str A = PTr(Aw).  This notion extends the
supertrace Str(B) of any homogeneous operator B € r¥_*°(M; E) of degree zero.
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2.6. Conormal sequence

In this section and the next one, for the sake of simplicity, we only consider sub-
manifolds of codimension one because that is the only case we use. However, the
results can be extended to submanifolds of arbitrary codimension with more work.

2.6.1. Cutting along a submanifold. — Again, for brevity reasons, we consider
only the case of a closed manifold and the trivial line bundle. Like in other sec-
tions, the spaces of distributions we are going to define have obvious extensions to
non-compact manifolds and arbitrary vector bundles, taking compact support or no
support conditions, and taking regular submanifolds that are closed subspaces. We
will consider those types of extensions without further comment.

Let M be a closed connected manifold, and L C M be a (possibly non-connected)
regular closed submanifold of codimension one. M \ L may have several connected
components. First assume also that L is transversely oriented. Then, like in the case
with boundary (Section [2.5.1]), there is some real-valued smooth function z on some
tubular neighborhood T of L in M, with projection w : T'— L, so that L = {z = 0}
and dr # 0 on L. Any function x satisfying these conditions is called a defining
function of L on T. We can suppose T = (—¢€,€); X Ly, for some ¢ > 0. (If
M and L were not compact, and L were a regular submanifold that is a closed
subset, then the tubular neighborhood would have a more involved expression, using
a smooth positive function e(y) on L instead of a fixed positive number €.) For any
atlas {Vj,y;} of L, we get an atlas of T' of the form {U; = (—e€,€) x V, (z,y)},
whose charts are adapted to L. The corresponding local vector fields 9, € X(Uj)
can be combined to define a vector field 9, € X(T'); we can consider 9, as the
derivative operator on C*°(T) = C*((—e¢,€), C>(L)). For every j, Dift(U;, L N Uj)
is spanned by x0,, 5‘}, ceey 8;1_1 using the operations of C*°(U;)-module and algebra,
where 8% = 8/9y¥. Using T = (—€,€), x L, any A € Diff(L) induces an operator
1® A € Diff(T, L), such that (1 ® A)(u(z)v(y)) = u(z) (Av)(y) for u € C*°(—¢,¢)
and v € C°°(L). This defines a canonical injection Diff (L) = 1 Diff (L) C Diff(T, L)
so that (1 ® A)|, = A. (This also shows the surjectivity of in this case.)
Moreover Diff(T") (resp., Diff (T, L)) is spanned by 0y (resp., x0;) and 1 @ Diff(L)
using the operations of C°°(T')-module and algebra. Clearly,

(2.6.1) [0,,1@DIff(L)] =0, [0, 20,) = 8y ,
yielding
(2.6.2) [0, Diff*(T, L)]  Diff*(T, L) + Dift*~Y(T", L) 8, .

Diff*(T, L) and Diff*(T') satisfy the obvious versions of (2.5.26) and (2.5.27).

For a vector bundle E over M, there is an identity Er = (—¢,€) x Ef over T =
(—€,€) x L, which can be used to define 9, € Diff' (T’; E). With this interpretation of
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0, and using tensor products like in , the vector bundle versions of the concepts
and properties of this section are straightforward.

Let M be the smooth manifold with boundary defined by “cutting” M along L;
i.e., modifying M only on the tubular neighborhood T' = (—¢, €) x L, which is replaced
with T'= ((—¢,0] U [0,€)) x L in the obvious way. (M is the blowing-up [M, L] of M
along L [Mel96, Chapter 5].) Thus M = L U L because L is transversely oriented,
and M = M \ L. A canonical projection 7w : M — M is defined as the combination
of the identity map M — M \ L and the map T' — T given by the product of the
canonical projection (—e, 0] LI [0,€) — (—¢,€) and idy. This projection realizes M as
a quotient space of M by the equivalence relation defined by the homeomorphism
h = hg xid of 0M = 9T = ({0} U {0}) x L, where hg switches the two points of
{0} L {0}. Moreover 7 : M — M is a local embedding of a compact manifold with
boundary to a closed manifold of the same dimension.

Like in Section [2:.1.6] we have the continuous linear pull-back map

(2.6.3) 7 C°(M) — O (M) ,

which is clearly injective. The transpose of the version of (2.6.3) with QM and
QM = 7*QM is the continuous linear push-forward map

(2.6.4) m, : C™®°(M) — C~>°(M),

which is a surjective topological homomorphism [ALKL23, Proposition 7.4].

After distinguishing a connected component Lq of L, let M and L be the quotients
of MUM = M x Zs and OM UOM = 0M X Zs by the equivalence relation
generated by (p,a) ~ (h(p),a) if w(p) € L\ Lo and (p,a) ~ (h(p),a+1) if w(p) € Ly
(p € (L) = OM in both cases). Let us remark that M may not be homeomorphic
to the double of M, which is the quotient of M x Zs by the equivalence relation
generated by (p,0) ~ (p, 1), for p € 9IM. Note that M is a closed connected manifold
and L is a closed regular submanifold. Moreover the quotient T of T UT becomes a
tubular neighborhood of L in M. The combination 7 L7 : M LU M — M induces a
two-fold covering map 7 : M — M, whose restrictions to L and T are trivial two-fold
coverings of L and T, respectively; i.e., L=LUL and T= TuT. The group of deck
transformations of 7 : M — M is {id, a} where o : M — M is induced by the map

: M X Zy — M X Zs defined by switching the elements of Zs. The composition
of the injection M — M X Zs, p — (p,0), with the quotient map M U M — M
is a smooth embedding M — M. This will be considered as an inclusion map of a
regular submanifold with boundary, obtaining OM = L.

Since 7 is a two-fold covering map, we have continuous linear maps (Section

Tyt C®(M) = C®(M), 7 :C®(M)— C>®(M),
(2.6.5) L OTO(M) —» C®(M), & :C (M) — C (M),
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both pairs of maps satisfying
(2.6.6) AT =2, T =A,,

where A, : C’ioo(M) — Cioo(l\j) is given by A,u = u + o,u. Using the contin-
uous linear restriction and inclusion maps given by (2.5.2) and (2.5.7)), we get the
commutative diagrams

C=(M) —2 (M) CT®(M) —— C~®(M)
(2.6.7) ﬁﬁ T,,* w*l lﬂ
Cee(M) C=(M), C7*(M) C (M),

the second one is the transpose of the density-bundles version of the first one.

2.6.2. Lift of differential operators from M to M. — For any A € Diff (M),
let A € Diff(M ) denote its lift via the covering map # : M — M. The action of A on
CTo(M ) corresponds to the action of A on C’ioo(M) via 7% : CF®(M) — Cioo(M)
and 7, : CE°(M) — C*>(M). According to ), Alas € Diff(M ) is the lift of
A via the local embedding 7 : M — M, sometimes also denoted by A. The action
of A on C*(M) (resp., C~°°(M)) corresponds to the action of A on C°(M) (resp.,
C7>(M)) via 7= : C*(M) — C*(M) (resp., . : C°(M) — C~=(M)). If
A € Diff (M, L), then A € Diff(M, L) and A|ps € Diff,(M) by (2.5.25).

2.6.3. The spaces CT>°(M, L). — Consider the closed subspaces,
(2.6.8) C>®(M,L) c C*(M), C*M,L)cCkM) (keNy),

consisting of functions that vanish to all orders at the points of L in the first case,
and that vanish up to order k£ at the points of L in the second case. Then let

C~(M,L)=C>*(M,L;Q), C'~*M,L)=CFM,L;Q) .

C~>°(M,L) is a barreled, ultrabornological, webbed, acyclic DF Montel space,
and therefore complete, boundedly/compactly/sequentially retractive and reflexive
IALKL23. Corollary 7.1]. Note that (2.6.3) restricts to TVS-isomorphisms

(2.6.9) 7 C®(M,L) = C®°(M), = :C*M,L)= C*(M) .

Taking the transposes of its versions with density bundles, it follows that (2.6.4))
restricts to TVS-isomorphisms

(26.10)  w, :C (M) = C (ML), m, :C' *M)ZC' ML) .

So the spaces C>°(M, L), C*(M, L), C=>(M, L) and C' ~*(M, L) satisfy the analogs
of (2.1.7) and (2.1.8).

On the other hand, there are Hilbertian spaces H" (M, L) (r > n/2) and H'*(M, L)
(s € R), continuously included in C°(M, L) and C~°°(M, L), resp., such that the
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second map of (2.6.9) for £ = 0 and the first map of (2.6.10) restrict to a TVS-

isomorphisms

(2.6.11) m  H'(M,L) = H" (M), m,:H (M) = H'*(M,L).
For s = 0, the second TVS-isomorphism of becomes

(2.6.12) m,  L2(M) = L2(M) .

By (2.5.16),

(2.6.13) H' ~"(M,L)= H"(M,L;Q) , H"(M,L)=H ""(M,LQ) .

Now, the second identity of can be used to extend the definition of H" (M, L)
for all r € R.

Alternatively, we may also use trace theorems [Ada75l Theorem 7.53 and 7.58]
to define H™ (M, L) for m € Z*, and then use the first identity of to define
H' ™ (M, L).

From (2.6.3), (2.6.4), (2.6.11) and the analogs of (2.1.32)-(2.1.34) mentioned in
Section we get

(2.6.14) C™(M,L)=(\H"(M,L), C~>(M,L)=|JH*(M,L),

as well as a continuous inclusion and a continuous linear surjection,

(2.6.15) C¥(M)cC(H'*(M,L), C M)+« |JH (M,L).

By (2.6.13) and (2.6.14)),
(2.6.16) C®(M,L) = C~>®(M,L;Q)’ .

The transpose of the version of the first inclusion of ([2.6.8)) with QM is a surjective
topological homomorphism [ALKI23| Proposition 7.4]

(2.6.17) R:C~°(M)— C~(M,L),

whose restriction to C°° (M) is the identity. It can be also described as the composition
C=°(M) =5 0= (M) & (M) = ¢—°(M, L) .

The canonical pairing between C°° (M) and C*°(M, L; Q) defines a continuous dense
inclusion

(2.6.18) C®(M)cC C™(M,L)
such that (2.6.17) is the identity on C*°(M). We also get commutative diagrams
C®(M) +— C®°(M)  C~*°(M) —2— (M)

(2.6.19) .,T*T gTﬂ-* ml glm

C®(M) «—— C>®(M,L), C~°(M) —2%— Cc=°(M,L),
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the second one is the transpose of the density-bundles version of the first one.

2.6.4. The space C;*°(M). — The condition of being supported in L define closed
subspaces,
Co=(M)cCc=(M), C " (M)c ¥ M), Hi(M)c H (M),

which are the null spaces of restrictions of (2.6.17)). These spaces satisfy continuous

inclusions analogous to (2.1.7), (2.1.31)) and (2.1.33). The following properties hold
ALKL23, Corollaries 7.2 and 7.3]: C*°(M) is a limit subspace of the LF-space

C~°(M); and it is a barreled, ultrabornological, webbed, acyclic DF Montel space,
and therefore complete, boundedly /compactly/sequentially retractive and reflexive.

According to ([2.5.19) and Section we have ﬂml Eq. (7.19)]
(2.6.20) Comt (M) = Cp>(M) ® C;> (M),

The maps (2.6.4) and (2.6.5) have restrictions

(2.6.21) mo =7 Copy (M) = C(M), 7 : O (M) = Copg (M) .

Using (2.6.20)), these maps are given by m.(u,v) = u+ v and 7*u = (u, u).
Moreover the right-hand side diagram of (2.6.19) can be completed to get the
commutative diagram

0= Cp¥(M) —— C~°(M) —2— (M) -0

(2.6.22) ml ml glm
0— Cy®(M) —“s C~°(M) —2— C=°(M,L) - 0.

The bottom row of this diagram is exact in the category of continuous linear maps

between LCSs by the properties of (2.6.17)).

2.6.5. A description of C > (M). — According to (2.2.10) and Sections m
and we have TVS-isomorphisms

o~

(2.6.23) or O™ (L;Q 'NL) = 9C~°(L; Q" 'NL) c C;> (M),
for m € Ny, inducing TVS-isomorphisms ﬂm‘, Proposition 7.7]

(2.6.24) P o= 'NL) = (M),
m=0
k ~
(2.6.25) P cm L' NL) = ¢ F (M) (k€ No)
m=0

Remark 2.6.1 (See [Mel96| Exercise 3.3.18]). — In Section[2.5.5] for any compact

manifold with boundary M, the analogs of (2.6.24)) and (2.6.25)) for C(;A‘}O(M) follows
from their application to ng\(’f(M)
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2.6.6. Action of Diff(M) on C~>°(M,L) and C[™(M). — For every A €
Diff (M), A* preserves C>°(M, L; ), and therefore A induces a continuous linear
map A = A" on C~>°(M, L). By locality, it restricts to a continuous endomorphism
A of C>°(M).

2.6.7. The space J(M,L). — According to Sections and there is a

LCHS J(M, L), with a dense continuous inclusion

(2.6.26) J(M,L) c C™>°(M,L),

so that restricts to a TVS-isomorphism

(2.6.27) m,  AM) = J(M, L),

where A(M) is defined in ([2.5.28). By (2-5.32), there is a continuous inclusion
J(M,L)c C*(M\L).

We also get spaces J*)(M, L) and J™(M, L) (s,m € R) corresponding to A®) (M)
and A™ (M) via (2.6.27)). Let & be an extension of |x| to M so that it is positive and
smooth on M \ L. Its lift w*x is a boundary-defining function of M, also denoted

by «. Using the first map of (2.6.10)) and second map of (2.6.11), and according to
Section [2.6.2] we can also describe

(2.6.28) JO(M, L) ={ue C~(M,L) | Diff(M,L)u c H'*(M, L)},
J™(M,L) = {ueC™°(M,L) | Diff(M,L)u C £™L>®(M)} ,

with topologies like in (2.1.1)). These spaces satisfy the analogs of (2.2.4]), (2.5.28)
and (2.5.36)—(2.5.38)). Using ([2.6.15)) and (2.6.28])), we get a continuous dense inclusion

[ALKL23, Corollary 7.14]
(2.6.29) C=(M) cC J(M,L) .

In fact, C>°(M \ L) is dense in every J)(M,L) and J™(M, L), and therefore in
J(M,L) ﬂm Corollaries 7.14 and 7.17 and the analog of Remark 6.41 for
J(M,L)]. Moreover the following properties hold Corollaries 7.11-7.13
and 7.15): every J®)(M, L) is a totally reflexive Fréchet space; J(M, L) is barreled, ul-
trabornological, webbed and an acyclic Montel space, and therefore complete, bound-
edly/compactly/sequentially retractive and reflexive; and the topologies of J(M, L)
and C°(M \ L) coincide on every J™ (M, L).

2.6.8. A description of J(M,L). — Take a b-metric g on M satisfying
and (Section [2.5.20), and consider its restriction to M. Consider also the
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boundary-defining function  of M (Section [2.6.7)). Taking m € R, we have TVS-
isomorphisms Corollaries 7.16 and 7.18]
(2.6.30) J™(M, L) = 2™ HP (M) = & /2H>® (M) ,

(2.6.31) J(M, L) = | Jz"H* (M) = | Ja" H>(M) .

The first isomorphisms of (2.6.30)) and (2.6.31]) are independent of g; thus they hold
without assuming and ALKIL23, the analog of Remark 6.41 for J(M, L)].

2.6.9. I(M,L) vs A(M) and J(M,L). — According to Sections and
we have the continuous linear maps
(2.6.32) 7 I(M,L) — I(M,L), # :I(M,L)—I(M,L),

which are restrictions of the maps , and therefore they satisfy . These
maps are compatible with the symbol and Sobolev filtrations because 7 : M — M is
a covering map (Sections and .

Since gives a TVS-embedding A(M) C I(M,L), which preserves the
Sobolev-order and symbol-order filtrations, the map 7, of has the restric-
tion

(2.6.33) e AM) = I(M,L) .
By and according to Section the map restricts to a TVS-
isomorphism
(2.6.34) 7 AO(M) S 1O(M, L) .
On the other hand, the map restricts to a continuous linear map
(2.6.35) R:I(M,L)— J(M,L),

which is the identity on C*° (M), and can be also described as the composition
I(M, L) =5 I(M, L) & A(M) == J(M, L)

Both (2.6.33) and (2.6.35|) are surjective topological homomorphisms ﬂm
Proposition 7.29], and therefore C*°(M) is dense in J(M,L) |ALKL23, Corol-

lary 7.32].
2.6.10. The space K (M, L). — Like in Section [2.5.13] the condition of being sup-
ported in L defines the LCHSs and C°°(M)-modules

K® (M, L)y =1, L)y, K™M,L)=I7(M,L), K(M,L)=I,(M1L).

These are closed subspaces of 1(8)(M, L), I?*(M, L) and I(M, L), respectively; more
precisely, they are the null spaces of the corresponding restrictions of the map (2.6.35)).
The identity (2.6.20|) restricts to a TVS-identity

(2.6.36) K(M)=K(M,L) & K(M,L) .
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Furthermore the maps (2.6.21)) induce continuous linear maps
(2.6.37) e  K(M) - K(M,L), 7 :K(M,L)—K(M).

Using , these maps are given by . (u,v) = v+ v and 7*u = (u,u).

By and (25.42), K®)(M,L) and K™(M, L) satisfy analogs of (2.6.36)),
using K(*) (M) and K™ (M). The following properties hold true HM&L Corollar-
ies 7.19-7.21 and 7.23]: K(M, L) is a limit subspace of the LF-space I(M, L); every
K®) (M, L) is a totally reflexive Fréchet space; moreover it is barreled, ultrabornologi-
cal and webbed, and therefore so is K (M, L); and K (M, L) is an acyclic Montel space,
and therefore complete, boundedly /compactly/sequentially retractive and reflexive.

Example 2.6.2. — With the notation of Section Diff(M) = K(M?,A) be-
comes a filtered C'°°(M?)-submodule of ¥(M), with the order filtration corresponding
to the symbol filtration. In this way, Diff(M) also becomes a LCHS satisfying the
above properties. If M is compact, it is also a filtered subalgebra of ¥(M).

2.6.11. A description of K(M,L). — By (2.2.17) and (2.2.15), for s < —1/2,
every isomorphism (2.6.23)) restricts to a TVS-isomorphism

(2.6.38) O C®(L: Q" 'NL) = 9" C™(L; Q" 'NL) ¢ K~™) (M, L),
Then (2.6.24) restricts to a TVS-isomorphisms ﬂm‘, Proposition 7.26]

(2.6.39) é C®(L: Q" 'NL) = K(M, L),
m=0
(2.6.40) P c~@a'NL) S KO (ML) (s<-1/2).

1
m<—s—3

Remark 2.6.3. — In Section [2.5.13] for any compact manifold with boundary
M, the analogs of (2.6.39) and (2.6.40) for (M) follows from their application to

K(M,dM) using (2.5.44).

2.6.12. The conormal sequence. — The diagram ([2.6.22)) has the restriction

0= K(M) —— AM) —E— AM) =0

(2.6.41) ml w*l %lﬂ'*

0— K(M,L) —— I(M,L) —2— J(M,L)—=0.
The bottom row of (2.6.41)) is exact in the category of continuous linear maps between
LCSs ALKLZ&L Corollary 7.30]; it will be called the conormal sequence of M at L
(or of (M, L)).
The surjectivity of (2.6.35)) can be realized with the partial extension maps given by

the following consequence of Proposition whose proof is recalled by its relevance
in Chapters 5] and [6]
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Corollary 2.6.4 (ﬂm, Corollary 7.31]). — For all m € R, there is a con-
tinuous linear partial extension map E,, : J™(M,L) — I®)(M, L), where s = 0 if
m>0,andm >s €Z ifm<0. Form>0, E, : J"M,L) — IOM) is a
continuous inclusion map.

Proof. — By the commutativity of (2.6.41]) and using Proposition[2.5.1} we can define
Ep o J™(M, L) — I®)(M, L) as the composition

w b . i
J™M, L) T Am™(M) Zz 4G (M) T 1) (M, L)
The last assertion follows from Propositions [2.5.1 and [2.5.5[ and (2.6.34]). O

According to this proof, Remarks [2.5.2] to 2.5.4] 2.5.7] and [2.5.8] Proposition [2.5.5
and Corollary [2.5.6] have obvious versions for the maps given by Corollary 2:6.4]

2.6.13. Action of Diff(M) on the conormal sequence. — According to Sec-
tion every A € Diff(M) defines a continuous linear map A on I(M, L), which
preserves K (M, L), and induces a continuous linear map A on J(M,L). This map
satisfies the analog of .

The map A on J(M, L) can be also described as a restriction of A on C~*°(M, L)
(Section. On the other hand, according to Section the lift A € Diff(M)
defines continuous linear maps on the top spaces of which correspond to the
operators defined by A on the bottom spaces via the maps m,. If A € Diff(M, L),
then it defines continuous endomorphisms A of J)(M, L) and J™ (M, L).

2.6.14. Pull-back maps on the conormal sequence. — Consider the notation
and conditions of Section m By the exactness of the conormal sequences of (M, L)
and (M’, L') in the category of continuous linear maps between LCSs, the map (2.2.19))
induces continuous linear maps,

(2.6.42) ¢*: K(M,L)— K(M' L"),

(2.6.43) ¢*  J(M,L) —» JM', L) .

The map ([2.6.42)) is the restriction of (2.2.19)), which is well defined because the

map (2.2.19) can be locally defined, and (2.6.43)) is the induced map in the quotient.
These maps are compatible with the maps ¢ and R of the conormal sequences, and

satisfy the analog of (2.2.20)).

2.6.15. Push-forward maps on the conormal sequence. — Consider the nota-

tion and conditions of Section Like in Section [2.6.14] the map (2.2.22)) induces

continuous linear maps,
(2.6.44) ¢s: K(M',L; Qgper) = K(M, L),
(2.6.45) du t J(M', L' Qaper) = J(M, L) .
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They are also compatible with the maps ¢ and R of the conormal sequences, and

satisfy the analog of (2.2.23)).

2.6.16. Case where L is not transversely orientable. — If L is not transversely
orientable, we still have a tubular neighborhood T of L in M, but there is no defining
function x of L in T trivializing the projection w : T'— L. We can cut M along L
as well to produce a bounded compact manifold, M, with a projection w : M — M
and a boundary collar T" over T'.

Using a boundary-defining function & of M, we get the same definitions, prop-
erties and descriptions of C*>°(M, L) and J(M, L) (Sections [2.6.3] [2.6.7) and [2.6.8).
C;°(M) and K(M,L) also have the same definitions (Sections [2.6.4] and [2.6.10).
However (2.6.20]) and (2.6.36) are not true because the covering map = : OM — L is
not trivial, and the descriptions given in ([2.6.24]), (2.6.25)), (2.6.39) and (2.6.40) need
a slight modification. This problem can be solved as follows.

Let # : L — L denote the two-fold covering of transverse orientations of L,
and let & denote its deck transformation different from the identity. Since the lift
of NL to L is trivial, # on L = {0} x L can be extended to a two-fold covering
#:T := (—¢,€)y x L — T, for some ¢ > 0. Tts deck transformation different from
the identity is an extension of & on L = {0} x L, also denoted by . Then L is
transversely oriented in 77 i.e., its normal bundle NL is trivial. Thus C’L_OO(T ) and
K (T, L) satisty (2.6.20)), (2.6.24)), (2.6.25)), (2.6.36)), (2.6.39) and (2.6.40). Since NL =
#*NL, the map & lifts to a homomorphism of N L, which induces a homomorphism
of Q7'NL also denoted by &. Let L_; be the union of non-transversely oriented

connected components of L, and L; the union of its transversely oriented components.
Correspondingly, let Ly = #~'(Ly;) and Ty = (—€,€) x Li;. Since 6*2 = +x on
T4, the isomorphisms (2.6.24)), (2.6.25), (2.6.39) and become true in this
case by replacing C"(L; Q" INL) (r € Z U {#£oo}) with the direct sum of the spaces

{ueC"(Lyy;Q 'NLyy) | 6%u=+u}.

The other results about C7°°(M) and K(M,L) (Sections [2.6.4] [2.6.5, [2.6.10

and [2.6.11)) can be obtained by using these extensions of (2.6.24)), (2.6.25)), (2.6.39)
and (2.6.40) instead of (2.6.20) and (2.6.36). Sections [2.6.12] to [2.6.15| also have

strightforward extensions.

2.7. Dual-conormal sequence

2.7.1. The spaces K'(M, L) and J'(M, L). — Consider the notation of Section|2.6|
assuming that L is transversely oriented; the extension to the non-transversely ori-
entable case can be made with the procedure of Section [2.6.16] Like in Sections [2.3.1]

and [2.5.21] let
K'(M,L)=K(M,L;Q) , J(M,L)=J(M,L;Q) .
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By (2.6.27) and (2.6.36),
(2.7.1) K'(M)=K'(M,L)® K'(M,L), A(M)=J(M,L).
Let also

(272) {K’(S) (M,L) =K (M, L;Q) , K'™(M,L)=K ™(M,LQ),
J'E(M, L) =T (M, L), ™M, L) =J"™(M,L;Q)
which satisfy the analog of . Like in Section for s < s and m < m’, we
get continuous linear restriction maps
K'C)(M,L) - K'®(M,L), K'™M,L)— K™ (M,L),
and continuous injections
JEN M, L)y (M, Ly, J™(M,L)cJ™M,L),

forming projective spectra. By (2.7.1) and its analog for the spaces , and
according to Section[2.5.21] we get that the spaces K'(*)(M, L) and K'™ (M, L) satisfy
the analogs of (2.3.5) and (2.3.6)), and the spaces J'*)(M, L) and J'™(M, L) satisfy
the analogs of (2.5.53) and (2-5.54) [ALKL23, Corollary 8.3]. Furthermore, K’(M, L)
and J'(M, L) are complete Montel spaces m Corollary 8.1], and K'() (M, L)
and J'*)(M, L) are bornological and barreled Corollary 8.2].

Like in Section the versions of (2.6.16), (2.6.26) and (2.6.29) with QM
induce continuous inclusions

(2.7.3) C™°(M) > J'(M,L) > C®(M,L) .

2.7.2. A description of J'(M,L). — With the notation and conditions of Sec-
tion we have the following m Corollaries 8.4 and 8.5]:

(2.7.4) J'™M(M, L) = & H;®(M) =™ 2 H (M) ,
(2.7.5) J'(M, L) = (" Hy ®(M) = (a™H (M) .

Actually, the first isomorphisms of (2.7.4]) and (2.7.5) are independent of g, and hold

true without the assumptions and |(B)| Furthermore C°(M \ L) is dense in every
J'™(M, L) and in .J'(M, L) |ALKL23. Corollary 8.6]. Therefore the right-hand side

inclusion of ([2.7.3)) is also dense.

2.7.3. Description of K'(M,L). — The transposes of the versions of ([2.6.39)
and (2.6.40) with QM are TVS-isomorphisms ﬂm, Corollary 8.7],

(2.7.6) K'(M,L) = ﬁ (L),
m=0
(2.7.7) EOmn = [ o=@ (s>1/2),

m<s—1/2
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because

C®(L;Q 'NL® QM) = C>®(L;Q) = C~>°(L) .
2.7.4. Dual-conormal sequence. — The transpose of the density-bundles version
of (2.6.41)) is the commutative diagram

0 K'(M) % a(M) «“— A(M)«0

(2.7.8) ”*T ,,*T ,,*Tg
0 K'(M,L) « % P(M,L) «“— J(M,L)+0,

where R’ = (* and «/ = R*. Its bottom row is exact in the category of continuous linear
maps between LCSs m Proposition 8.8], and is called the dual-conormal
sequence of M at L (or of (M, L)).

2.7.5. Action of Diff (M) on the dual-conormal sequence. — With the nota-
tion of Section consider the actions of A* and A' on the bottom and top spaces
of the version of with QM and QM. Taking transposes again, we get induced
actions of A and A on the bottom and top spaces of , which correspond one
another via the linear maps 7*. These maps satisfy the analogs of .

2.7.6. Pull-back maps on the dual-conormal sequence. — Consider the
notation and conditions of Section (the same as in Section [2.2.9). Like

in Section transposing the compactly supported case of the analog of ([2.2.23))
for (2.6.44)) and (2.6.45)) with E = QM, we get continuous linear maps,

(2.7.9) ¢*  K'(M,L) —» K'(M', L),
(2.7.10) ¢*: J'(M,L) — J'(M',L) .

They are compatible with the maps ¢/ and R’ of the dual-conormal sequences, and

satisfy the analog of (2.3.9)).

2.7.7. Push-forward maps on the dual-conormal sequence. — Consider the
notation and conditions of Section (the same as in Section [2.2.8)). Like in Sec-

tion|2.3.6} transposing the analogs of (2.2.20) for (2.8.20) and (2.8.21) with £ = QM,
and using an analog of (2.1.16)), we get continuous linear maps,

(2.7.11) byt K'(M', L Qner) — K'(M, L),
(2.7.12) Go : J (M L Qpiper) — J' (M, L) .

They are compatible with the maps ¢/ and R’ of the dual-conormal sequences, and

satisfy the analog of (2.3.11]).
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2.8. Currents

Here, again, the manifold M may not be compact, and L. C M is a regular sub-
manifold that is a closed subset. When using J(M, L; A) or K(M, L;A), it is also
assumed that L is of codimension one.

2.8.1. Differential forms and currents. — Consider the space C*°(M;A) of
smooth differential forms, and the space C~°°(M;A) of currents. The most typi-
cal example of elliptic complex is given by the de Rham derivative d on C*°(M;A),
giving rise to the de Rham cohomology H®(M). The extension of d to C~°°(M;A)
is another topological complex, which produces isomorphic cohomology [dR84]. We
typically consider cohomology with complex coefficients without further comment;
real cohomology classes are only considered in a few cases, where it is indicated; the
same applies to other cohomologies that will be considered. The basic properties of
(C*>*(M;A),d) and H*(M) can be seen in [dR84, [BT82]; for instance, the general
properties of elliptic complexes apply in this setup (Section . Some properties
will be seen in Section [2.9] with more generality.

A Riemannian metric g on M defines a Hermitian structure on AM, also denoted
by g. Then we have the additional operators 0 (the de Rham coderivative), D and A
(the Laplacian) of Section If needed, the subscript “M” may be added to this
notation, and to other similar notation.

We may also consider the de Rham complex with coefficients in a flat vector bundle
F,d=d> on C®(M;A® F). As above, g and a Hermitian structure on F induce
additional operators § = 67, D = D¥ and A = A7

For any V € X(M), let vy and Ly denote the corresponding inner product and Lie
derivative on C®(M;A). For n = V° € C®(M;AY), we write no = —(nA)* = —uy.
Let w be the degree involution on AM. For the bundle of Clifford algebra of T*M,
we have the identity CI(T*M) = AgM defined by the symbol of filtered algebras.
Via this identity, the left Clifford multiplication by 7 is ¢(n) = nA + na, and the
composition of w with the right Clifford multiplication by 7 is é(n) = nA — n.

2.8.2. Product of differential forms and currents. — The exterior product of
smooth differential forms has continuous extensions

(2.8.1) CEX(M;A) @ CT®(M;A) — C~=(M;A) ,

For example, with the notation of Section [2:2.6] assuming that M and L are oriented,
it easily follows that, for a« € C°(M;A) and 8 € C*(L; A® Q" INL),

(2.8.2) aned =508 5B g = gl

(DThis holds with more generality under conditions on the wavefront set [H6r71, Theorem 8.2.10],
but we will not use it.
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2.8.3. Currents on oriented manifolds. — Assume M is oriented. The orien-
tation induces a canonical identity QM = A™M. Then, for every degree k, the non-
degenerate pairing A*M @ A"“*M — A" M defined by the wedge product induces a
canonical identity

(2.8.3) (A*M)* @ QM = A"FM .
By (2.8.3)), the space (2.1.5) becomes
(2.8.4) C&(M; AF) = O (M; A"

in this case. This identity corresponds to a pairing

CTE(M; A" @ CF(M; A" %) — €,
which will be denoted with parentheses to distinguish it from the scalar product. This
pairing can be given by the composition of (2.8.1) and the extension

Co®(M;A")—=C, aw—(a1),

of [}, : CX(M;AM) — C.
2.8.4. Hodge operator on oriented manifolds. — Continuing with the assump-
tion of orientation, let x on AM denote the C-linear extension of the Hodge operator x

on the real forms, which is unitary, and let * denote its C-antilinear extension. These
operators are determined by the conditions, for «, 8 € C°(M;A),
aAxf = g(a,B) dvol = a A %3,
where dvol = 1 is the volume form. Recall that, on C>(M; A¥),
x2 = (1) R = ()T s dwe o= (=)™ s pAK,
(2.8.5) dx=(-1)Fx6, dx=(-D)"1xd, Ax=xA,
nAx = (=1)F « na, nox= (=11

The equalities ([2.8.5]) are also true with %, and can be extended to C~°°(M; A).
For all a € C°(M;A*) and 8 € C®(M; A"F),

aAB= (=)o A%28 = (—1)F g (o, %B) dvol ,

* A .

yielding
(2.8.6) (@, 8) = (=1)*"**{a,%5) .
2.8.5. Pull-back and push-forward of currents. — Given a smooth map ¢ :

M’ — M, recall that its tangent map T'¢ = ¢, : TM' — T M defines a homomorphism
¢y : TM' — ¢*T M, which induces a homomorphism

(2.8.7) ¢ ¢*AM — AM' .
Then recall that the pull-back homomorphism
(2.8.8) ¢* : C®°(M;N) — C®(M'; \)
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can be given as the composition

(2.8.9) C°(M; A) L5 0 (M " AM) 25 0 (M5 A) |

where the first map ¢* is given by (2.1.13), and the second map ¢* is induced
by (2.8.7).

Now, suppose ¢ is a submersion and its vertical subbundle V is oriented. Let
Top : AV — A™PV denote the canonical projection. The orientation of V gives a
canonical identity Qgper = APV, So

6" AM @ Qpper = ¢*AM @ APV C ¢*AM @ AV = AM' .

Moreover, Tyop : AV — A™PY induces a projection

(2810) Top © AM' — ¢*AM ® Qgber -
The push-forward homomorphism or integration along the fibers [BT82, Section 1.6],
(2.8.11) s é’;’cv(M’;A) — Oy (M;A)

can be described as the composition

(2.8.12) %5 (M5 ) T2 O (M5 67 AM © Qpper) 255 C25. (M5 A)

c/cv c/ev

where i, is induced by (2.8.10)), and ¢, is given by (2.1.14) with £ = AM.

We also get the push-forward and pull-back maps on currents,

(2.8.13) oM C’C_/‘Zi(M’;A) — C’C_/(_X’(M;A) ,
(2.8.14) ¢* CT®(M;A) = C~(M";A)
given by the compositions
—00 Ttop —00 * ¢* o0
(2815) C/CV(MI;A) — C/CV(M/; ¢ AM ® Qﬁber) — CC/(M,A) 3
(2.8.16) O~ (M: A) 25 ¢~ (M"; " AM) L5 ¢~ (M"; A)

where ¢, and the first map ¢* are given by (2.1.17)—(2.1.19) with £ = AM, and 7y
is induced by (2.8.10). The notation f¢ is also used for ¢, or f. if ¢ is a trivial

bundle with typical fiber F.

Proposition 2.8.1. — The compactly supported case of (2.8.13|) is the transpose
of (2.8.8), and (2.8.14) is the transpose of the compactly supported case of (2.8.11)).

Proof. — By passing to double covers of orientations, we can assume M and M’ are
oriented, and therefore we can use . By the density of the space of smooth
forms in the space of currents (Section , it is enough to check the statement on
smooth forms, where it is given by [BT82] Proposition 6.15 (b)]: for « € C*°(M;A)
and 8 € CX(M'; N),

@ap)= [ sans=[ anss=(aos. =
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2.8.6. Homotopy operators. — Recall that any smooth homotopy, H : M’ x I —
M (I =[0,1]), induces a continuous homotopy operator h : C°(M’; A) — C>°(M; A)
(a linear map, which is homogeneous of degree —1, and satisfies Hy — H = hd + dh,
where Hy = H(-,t) : M’ — M). For instance, we can take h equal to the composition
[BT82, Section 4]

(28.17) 0 (M5 A) 2 00" x 10y 2 0 (1)

2.8.7. Pull-back of conormal currents. — With the notations and conditions of

Section the map has a continuous extension

(2.8.18) ¢ I(M,L: A) — I(M', L; A) |

which can be given as the composition

(2.8.19) I(M,L:A) 25 1M, L' 6" AM) 25 I(M, L: A)

where the first map ¢* is given by (2.2.20)) with £ = AM, and the second map ¢*
is induced by (2.8.7). If ¢ is a smooth submersion with oriented vertical subbundle,

then (2.8.18)) is also a restriction of (2.8.14)).

Similarly, when L is of codimension one, there are continuous homomorphisms,

(2.8.20) ¢ K(M,L;A) — K(M',L';A)

(2.8.21) o J(M,L; A) — J(M', L; A)

which can be given as the compositions

(2.8.22) K(M,L: A) 25 K(M', L' 6*AM) 25 K(M', L; A)
(2.8.23) J(M,L; A) 25 J(M' L 6" AM) 25 J(M', L: A)

where the first maps ¢* are given by the analogs of (2.2.20) with £ = AM for (2.6.42))
and ([2.6.43)), and the second maps ¢* are induced by (2.8.7)).

2.8.8. Push-forward of conormal currents. — With the notations and condi-
tions of Section [2.2.9] assume also that the vertical subbundle of ¢ is oriented. Then
the push-forward homomorphism ([2.8.11)) has a continuous extension

(2824) O Ic/cv(Mla Ll; A) - IC/~(Ma L,A) )

which can be described as the composition

Ttop

(2825) IC/CV(M/? L/; A) E— Ic/cv(Mle/; d)*AM oY Qﬁber) ¢—*> IC/(Ma LvA) ;

where 7yop is induced by (2.8.10)), and ¢, is given by (2.2.23) with £ = AM. The
map ([2.8.24) is also a restriction of (2.8.13]).

Similarly, if L is of codimension one, there are continuous homomorphisms,
(2.8.26) Gu i Kejoy(M',L's A) = K (M, L; A)
(2.8.27) bu : oy (M’ L' A) = Joy. (M, Ly A) .
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which can be described as the compositions
(2828) KC/CV(M/7 L,; A) Eip_) KC/CV(M/a L/; ¢*AM Y Qﬁber) &) Kc/(Ma L; A) )
(28.29)  Jojer (M, L5 ) 2% Jo oo (M!, L' 6*AM @ Qger) 22 Ty (M, L; A)

where the maps o, are induced by (2.8.10)), and the maps ¢, are given by the analogs
of (2.2.23) with £ = AM for (2.6.44) and ([2.6.45).

2.8.9. Pull-back of dual-conormal currents. — Consider the notations and

conditions of Section (the same as in Section [2.2.9). The map (2.8.8) has a

continuous extension
(2.8.30) ¢* I'(M,L;A) — I'(M', L'; A)
which can be given as the composition
(M, L:A) 25 I'(MY, L 6 AM) 25 T'(M', L' A)
using like in . The map is also a restriction of .

Similarly, when L is of codimension one, there are continuous homomorphisms,
(2.8.31) ¢*: K'(M,L;\) — K'(M',L";A) ,
(2.8.32) ¢*  J(M,L;A) — J'(M',L';A) ,
which can be given as the compositions
K'(M, L; A) 25 K'(M', I " AM) 255 K'(M, I3 A)

J(M,L: A) 25 J'(M', L' 6" AM) 25 J'(M', L'; A)

using the analogs of (2.3.9) for (2.7.9) and (2.7.10) like in (2.8.22)) and (2.8.23)).

2.8.10. Push-forward of dual-conormal currents. — With the notations and
conditions of Section [2.3.6] assume also that the vertical subbundle of ¢ is oriented.
Then the map (2.8.11]) has a continuous extension

(2.8.33) G Lo (M, LIS A) — IL, (M, L; A)

c/cv

which can be described as the composition

LM L A) T2 1 (MY L " AM @ Quver) 2 1L, (M, L; A)

c/cv c/ev

using (2.3.11)) like in (2.8.25]). The map ([2.8.33)) is also a restriction of ([2.8.13]).
Similarly, if L is of codimension one, there are continuous homomorphisms,
(2.8.34) by : é/CV(M/,L';A) — Ké/.(M,L;A) ,

(2.8.35) bu: I (M L' A) — Jé/,(M,L;A) ,

c/ev
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which can be described as the compositions

(M',L'; A) 22y (M, L'; " AM & Qgper) 2 KL, (M, L; A)

C/cv
Lee (M L' A) 225 1 (ML 6" AM ® Qger) LN Il (M,L; A)
using the analogs of (2.3.11) for (2.7.11)) and (2.7.12) like in (2.8.28)) and ([2.8.29).

Proposition 2.8.2. — The compact-support cases of m are trans-
poses of (2.8.18), (2.8:20) and [2.8:21); and (2.8.30)-([2.8.32) are tmnsposes of the
compact-support cases of (2.8.24), (2.8.26)) and ([2.8.27]).

Proof. — We have the commutative diagrams

c/cv

I.(M', L', A) e I.(M,L; A) I'(M',L'; A) A I'(M,L; A)

I I ! I

C=(M5A) —2 C(M;A)  C=°(M';A) 2 — C=(M;A),
where the vertical arrows are continuous dense inclusions given by (2.2.5) and (2.3.4)
with AM. By Proposition 2:8.1] the transpose of the first diagram is

o, o) <2 pr LA

l !

C=°(M";A) «2— C=%(M;A) ,
where the vertical arrows are again inclusion maps. Comparing the second and third
diagrams, we get

(2.8.36) () =" : I'(M,L; A\) — I'(M',L; A) .
The analogous argument with the commutative diagrams

LM, LAY «2— [(M,L;A)  I(M', L A) —2— I)(M,L;A)

I I ! |

Co(M';A) 2 C®(M;A)  Co°(M';A) —2 Co°°(M;A)
shows that
(2.8.37) (¢")' = ¢y : I.(M', L'; ) — I'(M, L; A) .

Next, consider the commutative diagrams

Ko(M', L' A) —2 Ko(M,L;A)  K'(M',L';A) «2— K'(M,L; A)

| L I

L(M', I A) —2 I(M,L;A) (M, L5A) 2 I'(M,L;A) .
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As above, comparing the second one with the transposition of the first one, and
using (2.8.36) and the surjectivity of R' : I'(M, L; A) — K'(M, L; A) (Section [2.7.4)),
we get

(¢)' = 0" : K'(M,L; A) — K'(M',L';\) .

A similar argument with the commutative diagrams
KM, L5A) <2 K(M,L;A) KM, L';A) —2 K'(M,L;A)

| l ol [k
(M LAY <2 (M, L;A) LM, LA —2 T(M,L;A),
using , shows that
(07)" = ¢u s Ko(M', L's A) — K({(M, L; A) .
Now, consider the commutative diagrams

J(M', L A) =2 JU(M,L;A)  J(M, L A) <2 — J/(M, L; A)

RT TR L/J/ J{Ll
L(M', L' A) —2 I (M,L;A)  I'(M',L;A) «2— I'(M,L;A) .

Again, comparing the second one with the transposition of the first one, and us-
ing (2.8.36)) and the injectivity of o/ : J'(M, L;A) — I'(M, L; A) (Section [2.7.4)), we
get

(6:)' = 6"+ J'(M,L;A) — J'(M', L';A) .
Finally, the same argument with the commutative diagrams
J(M' L5 A) <2 JM,L; ) JU(M', L5 A) —2— JI(M, L; A)
d [n ‘] g
IM, LA <2 [(M,L;A)  I(M', L' A) —2 T'(M,L;A),
using , gives
(0°)" = u s JUM', L's A) = JUM, L; A) . m

2.9. Witten’s perturbation of the de Rham complex

2.9.1. Witten’s complex. — The notation z = y + i\ € C (i = /—1) will be
used for a complex parameter. Any closed real n € C*°(M;A') induces the Witten’s
operators on C*°(M; A), depending on the parameter z € C [Wit82, [Nov81), Nov82|,
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Paj87, BF97],

d,=d+zn\, 0,=d,=0—-2zna,
(2.9.1) D.=d. + 0. =D+ pcé(n) +irc(n) ,

A, =D?=d,0, +6,d, = A+ pH, — i), + [2]*n)?,
where H,, = Ly + L3, is of order zero and J,, = Ly — Lj, is of order one. Here, d. is
an elliptic complex, giving rise to the twisted cohomology H? (M), whose isomorphism
class depends only on the real class ¢ := [n] € H'(M) and z € C. The more explicit
notation d.y, 0.y, D, and A,, may be used if needed.

Suppose the manifold M is closed, and let n = dim M. Then A, has a discrete
spectrum, and the perturbed operators satisfy . We get the twisted Betti
numbers, 8% = BE(M,¢) = dim H*(M) (k = 0,...,n), whose alternate sum is the
Euler characteristic, >, (—1)*8% = y(M) [Far04, Proposition 1.40]. Every ¥ is in-
dependent of z outside a discrete subset of C, where 8* jumps (Mityagin and Novikov
[Nov02, Theorem 1]). This ground value of 8¥, denoted by gk, = B, (M,&), is
called the kth Novikov Betti number. — Moreover 8% = pk for |u| > 0 [Far95]
Theorem 2.8], [BF97, Lemma 1.3] [ALKL21| Eq. (2.9)].

Since 7 is real, we have d.a = dza for all & € C*°(M;A). So conjugation induces
a C-antilinear isomorphism H¥(M) = HE(M), yielding g* = g~.

For a € C*°(M;A") and g € C°°(M; A), we have

(2.9.2) dlaNB)=d.aNB+(—1)"and_.f.

It follows that the mappings (a, ) — a A 8 and (a, B) — a A § induce maps,
(29.3)  HI(M)x H* ,(M)— H™ (M), HI(M)x H*.(M)— H"(M),

the first one is bilinear and the second one is sesquilinear. By density and continuity,

the formula ([2.9.2)) has an extension to the product (2.8.1]) of smooth differential forms

and currents.

2.9.2. Interpretation as coefficients in a flat line bundle. — If n = dF for
some real function F' € C*° (M), we get the original operators introduced by Witten
[Wit82], which satisfy

d, = ¢ *F de*F = ¢—\F d, CAF 5 = oFF § e = g iAF 5, ¢NF
(2.9.4) { D, = ¢ D, N A, = eI A, v
Thus we have an isomorphism of differential complexes,
1 (C™(M; A),d:) = (C™(M; ), d)

which induces an isomorphism H? (M) = H*(M).

Let £ be the trivial line bundle M x C with the flat structure that corresponds to
the trivial flat structure by the multiplication isomorphism e : £ — M x C, (p,u)
(p,eF'Ply). Tts flat covariant derivative is determined by the condition d“1 = dF.
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Every power L7 is similarly defined by the function zF. We have d, = d*° on
C>®(M;A) = C>®(M;A® L?). Moreover §, = 0°" and A, = A" using the standard
Hermitian structure on £*.

For arbitrary 7, take the minimal regular covering = : M — M so that the lift 7 of
7 is exact, say 77 = dF for some real function F' € COO(M). Thus dg; = e~ dy et
on COO(M; A) corresponds to das,, on C°°(M;A) via the injection 7* : C°(M;A) —
c> (M, A). Let T' = Aut(w) be the group of deck transformations of M. The action
of every v € I' will be denoted by T, or by p — « - p. Since dF is I'-invariant, there
is a monomorphism I' = R, v + ¢,, so that F(y-p) = F(p) + ¢, for all p € M; its
image is the group of periods of the cohomology class [n].

Let £ be the flat line bundle over M defined with F as above. The flat structure
of £ is invariant by the first factor action of I' on Z, given by v -1 (p,u) = (v - p,u).
Thus the corresponding quotient Hermitian line bundle £ = M x C has an induced
flat structure determined by the condition d1 = zn. We have d, = d¢™, §, = 6%
and A, = AX" on C®(M;A) = C®°(M; A ® L?).

Using the monomorphism I' = R*, v+ a, := e®’, we can also define the diagonal
action of ' on M x C, v- (P, u) = (y-p,ayu), which preserves the vector bundle and
trivial flat structures. Moreover the isomorphism ef : L — MxC is equivariant
with respect to the first factor and diagonal actions of I'. Hence £ can be also
described as the quotient of the trivial flat line bundle M x C by the diagonal action
of I'. Let w € COO(M; [Z) be defined by @(p) = (p,e” ), which corresponds to
1e C’OO(M) = C’°°(]\A/[/; L) by the isomorphism e : £ — M x C. This section is
T-invariant and satisfies d£@ = N®w in C™ (M :A®L). So it induces a non-vanishing
section w of £ satisfying d“w = n®w in C®°(M; A ® £). Furthermore

CEO(M; A ® L7) = CF°(M; A) ® Rw* = CE2(M;A),
(2.9.5) A =d,®1=d,, H'(M)=H*"(M,CL?),
0=0,®1=6,, D=D,®1=D,, A=A, 1=A,,

writing d = d¢7, § = 67, D = D", A = A", Since (L#)* = L7#, this gives an
interpretation of (2.9.2) and (2.9.3).

2.9.3. Witten’s perturbation vs pull-back and push-forward homomor-
phisms. — For a smooth map ¢ : M’ — M, let ' = ¢*n. The homomorphism
¢* 1 C®(M;A) = C®(M'; A) satisfies ¢*d.,, = d.,y¢*. If ¢ is a smooth submersion,
then ¢, : C’é’?cv(M’;A) — C’é’}’.(M;A) satisfies ¢.d.,y = d.,¢. by [BT82, Proposi-

tion 1.6.14 and 1.6.15 (a)].

2.9.4. Perturbation of pull-back homomorphisms. — Considgz the notation
of Section For a smooth map ¢ : M — M, take a lift ¢ : M — M. Then ¢ :=
e *F ¢ 2 = e#(@"F=F) ¢ is an endomorphism of (C°°(M; A), dsz ) by (2.9.4). We
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have T (¢*F — F) = ¢*F — F for all v € T, obtaining T¢% = ¢:T. So ¢% induces
an endomorphism ¢* of (C°(M;A),d.), which depends on the choice of the lift ¢ of
¢. In the case of a flow ¢ = {¢'} on M, there is a unique lift to a flow b= {(Z)t} on
M , giving rise to a canonical definition of ¢'*, called the perturbation of ¢** defined
by n with parameter z.

2.9.5. Witten’s operators on oriented manifolds. — In this subsection, as-
sume M is oriented. If moreover M is closed, then the maps (2.9.3) and integration
on M define nondegenerate pairings,

(2.9.6) HE(M) x H'*(M) - C, HFM)x H' (M) - C,
the first one is bilinear and the second one is sesquilinear. Therefore 8% = ,Bf;k =
nt =B
2.9.6. Witten’s operators vs Hodge star operator. — Continuing with the
condition of orientation, the equalities yield
6, = (1)l d_ k= (=)L xd %,
(2.9.7) dox=(=1)Fx6_5, G.x=(-1)""Txd o, Ax=xA_;,
dox=(-1)*%6_., 6, x=(-1)""'xd_., A x=%A_..

Then we get a linear isomorphism * : ker A, — ker A_; and an antilinear isomorphism
* : ker A, — ker A_,. If M is closed, they induce an explicit linear isomorphism
H¥(M) = H"_*(M) and an antilinear isomorphism H*(M) = H",*(M) by ([2.1.37).

Using (2.9.2)) and the Stokes theorem, we get
(2.9.8) d, = (1) 1tat

—z

as maps C~®(M;A*) — C~>°(M;A*+!) using (2.8.4). This identity also follows
from (2.8.5), (2.9.7) and (2.8.6): for a € C°(M;A*) and B € C>(M; A" F1),

(dsar, f) = (=) d a,55) = (—1)EFDHH 0, 5.%6)
= (=" o, %d_.f) = (-1 (0, d_2f) .

This argument also applies to §, and A, giving
5. = (=1)F6", : O (M; AF) — C7=(M; AP
(2.9.9) A, =AY C7®(M;AF) = C7°(M; AF) .
2.9.7. Perturbed operators with two parameters. — We will also consider
perturbed operators of the form
D.w=d.+6s, A..=D,=db+06d,

depending on two parameters z, 2z’ € C. They are not symmetric if z # 2/, but their
leading symbol is symmetric.
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2.9.8. Witten’s operators on manifolds of bounded geometry. — Consider
now the notation of Sections and Assume M is of bounded geometry
and n € C(M;A') (Section . Then the differential complex d, is uniformly
bounded and uniformly elliptic for all z € C.

Using also the notation of Section [2.9.4] assume that ¢ : M — M is of bounded
geometry. Then ¢*F — F induces a function in C2(M). For m € NgU{oo}, it follows
from that ¢F defines a continuous linear endomorphism of CJ}(M;A) f. If
moreover ¢ : M — M is uniformly metrically proper, then, by , @% also defines
a continuous linear endomorphism of H™(M;A).

If ¢ is a diffeomorphism and both of ¢*! are of bounded geometry, then ¢} defines
a continuous linear endomorphism of H™(M;A) for all m € Z U {£oo}. To show
this, we can assume M is oriented with a standard argument using the covering of
orientations. Then, by the version of second equality of for open manifolds
and (2.8.3), ¢% on H-™(M;A) (m € Ny U {oo}) is the transpose of (¢~!)*_ on
H™(M;A™*).

In the cases of C22(M;A) and HE>°(M;A), all of the above endomorphisms are
cochain maps with d,.

The symmetric hyperbolic equation

(2.9.10) Oray = tD,ap, og=a,

on any open subset of M and with ¢ in any interval containing 0, any solution satisfies
the finite propagation speed property [CheT73, Proof of Proposition 1.1] (see also
[CGT82] Theorem 1.4], [Roe98|, Proof of Proposition 7.20])

(2.9.11) supp a; C Pen(supp a, |t]) .

In particular, given any a € C°°(M;A), this is true for a; = e™P=q.

For ¢ € R (Section , we may use the notation k, = ky . = Ky(p,), where
¥(D,) is given by the spectral theorem. We may also use the notation k. = ky, »
for any family of functions i, € R depending on a parameter u.

For any 1 € S (Section [2.9.12), we have [Roe88), Proof of Theorem 5.5]

+Oo . ~
(29.12) w0 = (2m)t [ P de
According to Remark [2.4.14} it follows from (2.9.11]) and (2.9.12) that, for all » > 0,
(2.9.13) supp ) C [—r,7] = suppky.. C { (p,q) € M? | d(p,q) <7} .
'U/ZL'Z

For instance, for ¢, (z) = e "* (u > 0), we get the perturbed heat kernel k., , =
K, —ua.. Tt satisfies the following estimate like the usual heat kernel [BE91]: for all
ug > 0 and mq,mo, m3 € Ng, there are Cy,Cy > 0 so that, for all 0 < u < ug,

(2_9_14) |3£nl v;nzv;ns kz,u(p, q)| < Cluf(n+m2+m3)/2fm1efcgdz(pyq)/u ]
In particular, k., € CS(M? AKX (A* ® Q)) for every u > 0.
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To estimate more general kernels, consider the Fréchet algebra and C[z]-module .4
which consists of the functions 9 : R — C that can be extended to entire functions
on C such that, for every compact K C R, the set {x — ¢(z+idy) | y € K}
is bounded in S [Roe87, Section 4]. It has the following properties: A C S; A
contains all functions with compactly supported smooth Fourier transform, as well as
the Gaussian = — e’””2; if v € Aand u > 0, then ¢, € A, where ¢, (z) = (uzx);
and, by the Paley-Wiener theorem, for every ¢ € A and ¢ > 0, there is some A, > 0
such that, for all £ € R,

(2.9.15) |(6)| < Apelel,

Define the semi-norms ||-||4,c,» (C > 0 and r € Ny) on A by

“+ o0
— 3 9F ) Clel
I¥llacr —jrfggr/_oo €0 (E)] e dE

Lemma 2.9.1. — If ¢ € A and N > n/2, then, for any W > 0, there is some
Cy = Cf(z,W) > 0 such that, for allp,q € M and m,m1, ms € No with mi+ms < m,

V5 Va2ks (0, @) < Cre™™ PO aw, s -

Proof. — Using ([2.9.11)), (2.9.12)) and the Sobolev embedding theorem, one can show
that, for every € > 0, there is some Cy = Cy(z,€) > 0 so that, for all ) € A and

»,q €M,
k(. )| < Co / (1= 82)V(e)| de
[€]>d(p,q)—e€

Hence, for some fixed ¢ > 0, we obtain that, for any W > 0, there is some C; =
C1(z,W) > 0 such that, for all p,q € M,

k) < Co [ e~ WIEL| (1 — 2)N3h(£)| ™ 1e d
[€]>d(p,q)—e
+oo R
< Cre Wi [ (1= )N (e)| e g

= Cre” MDY 4w -
By using (1 + 22)™(z) (m € Np) instead of ¥ (x), we also get
(14 A2 )™ (1 + Az )™k (p, )| < Cre™ VPO aw, v

according to ([2.8.4) and (2.9.9), yielding the estimate of the statement. O

2.9.9. Witten’s operators on regular coverings of compact manifolds. —
Let 7 : M — M, T', v-p, T, and gz; be like in Section m Recall that M is
bounded geometry with g7
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Let |-| : T' — Ny denote the word length function defined by any finite set of
generators 7, ..., of T'; recall that || is the minimum length of the expressions of
~ as products of elements %-il. It is well known that there is some ¢; > 1 such that

(29.16) et Il < dgg(y-5.5) < er bl
for all p € M and ~ € T'. Therefore, given any compact K C M 2 we have
(2.9.17) et =2 <dg(v-5,9) <yl + e

for all v € T and (p, §) € K, where c; = maxdg;(K) > 0.

Let 1 be a closed real 1-form on M whose lift to M is exact; say 7 = dg; F' for some
FeC®(M,R). For z€C,let D, = Dprny Ay =App 2, Dy, = D~ and A, = Az |
(Section . For any ¢ € R, let k. = Kyp,) and k, = K, (Section @ .
For every p € M, let [p] = w(p). We look for condltlons on v to get

(2.9.18) k=([0), @) = > Tk (v - 5,9)

for all p, G € M, using the identity
Aw.ﬁM X (AqM* & QqM) = A[p]M X (A[q]M* (9 Q[q]M) .

In particular, ) holds if ¢) € C°(R), which can be proved as follows In this
case, k, is supported in a penumbra of the diagonal (Section . By (2-9.17),
taking K = F? for some fundamental domain F C M , it follows that the right-hand
side of has a finite number of nonzero terms. So it defines a smooth section
on M?, which can be checked to be k, using (2.2.14)).

Examples where fails are easy to construct. For instance, if T is non-
amenable, it is well known that the spectrum of A on functions has a gap of the form
(0, €) for some € > 0, and therefore fails for (D) and (D) if ¢ is even and
supported in (—¢,€), with (0) # 0.

Consider the Fréchet algebra and C[z]-module A of Section [2.9.8

Proposition 2.9.2. — Ifl/) € A, then ) holds, where the series is convergent
in the Fréchet space C°(M?%; AM X (AM* ® QM))

Proof. — First, let us prove that the series is uniformly convergent with all covariant
derivatives on any fixed compact subset K C M2,

By Lemma [2.9.1] for any W > 0 and N > n/2, there is some C; = Cy(z, W) > 0
such that, for all p,q € M, m € Ng and mq + mg < m,

Ve Ik (5, @) < Cre™ i PD ]| gy x o
Then, by (2.9.17),

(2.9.19) Vv k(v 5.9)] < Crem s g awnm
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for v €T, (p,§) € K and my +my < m, where C] = C1e"Ve2. Since the growth of T
is at most exponential, there is some Wy > 0 such that

(2.9.20) Y el oo,
~el

Choosing W > ¢; W, it follows from (2.9.19) and (2.9.20) that there is some C =
C(z, K,W,N) > 0 such that

(2.9.21) |V (5,0 < C e llawm
yel’
So the series in ([2.9.18) is uniformly convergent on K with all covariant derivatives.
The identity (2.9.18)) for any ¢ € A follows from (2.9.21]), approximating v in A

by a sequence of functions with compactly supported Fourier transform. O

Remark 2.9.3. — Proposition [2:.9.2] will be applied to an abelian covering. In that
case, or, more generally, when I' has polynomial growth, its proof can be slightly
modified so that it works for any ¢ € S. However not only this proposition, but also
the estimate will be used later, and we need ¥ € A to get the exponential
factor of this estimate.

2.9.10. Local index formula for the Witten’s complex. — Suppose M is
of bounded geometry and consider the perturbed heat operator e~*2= (¢ > 0) in
L?(M;A), defined by the spectral theorem. By the ellipticity of A, the opera-
tor e~*4= is smoothing and let k., € C%(M?; A K (A* ® Q)) denote its Schwartz
kernel (the perturbed heat kernel). It has an asymptotic expansion as ¢ | 0 in
CR(M?* AKX (A* ®Q)) of the form

o0

(2922) kz,t(p7 q) ~ ht(pv q) Z tj(_)z,j (p7 q) : |dV01|(q) 9
§=0
where |dvol| denotes the Riemannian density and
hi(p,q) = We*qu)% , 0., €CR(M*ARAY) .

This expression can be formally differentiated to obtain also asymptotic expansions of
the derivatives of k. ;(p, q) with respect to ¢, p and q. On the diagonal A C M?, the
terms O ; can be locally described with algebraic expressions of the local coefficients
of the metric and the form 7, and their derivatives. When z = 0, we simply write
k: and ©;. (See e.g. [Gil95, Section 1.8.1] or [BGVO04, Section 2.5].) We have
©..;(p,p) =O,,;(p,p) by since 7 is locally exact.

For even n, let e(M, g) € C°(M; A®0o(M)) = C(M;Q) denote the Euler density
of (M, g) (the representative of the Euler class given by the Chern-Weil theory).

Theorem 2.9.4 ([BZ92, Theorem 13.4]; see also |[ALG21, Theorem 1.5])
We have:
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(i) str®, ;(p,p) =0 for j <n/2; and,
(ii) if n is even, then str©. ,/2(p,p) | dvol(p)| = e(M, g)(p).

Remark 2.9.5. — In the given references, Theorem [2.9.4) was stated for compact
manifolds, but its proof is a local computation, and therefore compactness is irrel-
evant. We have an additional proof of Theorem using Getzler’s rescaling,
following [BGV 04, Section 4.3]. In the case n = 2, this can be also checked directly.
We omit the details of our alternative proof for brevity reasons.

2.9.11. Local Lefschetz trace formula for the Witten’s complex. — Let ¢ :
U — V be a smooth map between open subsets of M with U C V, whose fixed
point set is denoted by Fix(¢). Recall that a fixed point p of ¢ is called simple if the
eigenvalues of ¢ : T,M — T, M are different from 1. This means that the graph of ¢
is transverse to A in M2 at (p, p); in particular, p is isolated in Fix(¢). In this case,
let

(2.9.23) €p = €p(¢) = signdet(id =, : T,M — T, M) € {£1} .

Assume V is simply connected, and therefore n = dF on V for some F € C>®(V).
Consider the perturbed linear map ¢* = e*(¢"F=F) ¢p* . ¢* AV — AU (2 € C) (Sec-
tion . Take any relatively compact open neighborhood W of p in U such that
WNFix(¢) = {p}. Without loss of generality, we can assume that U is an open subset
of a manifold of bounded geometry (or even of a closed manifold), where 1 and ¢ can
be extended to a closed real 1-form and a smooth map.

Proposition 2.9.6. — For all z € C,
thn [ stn(62hea(0(0).0) = 0(6)
t40 qEW

Proof. — This follows like in the analytic proof of the Lefschetz trace formula [AB67]
(see also [Roe98l, Chapter 10] or |[Gil95| Section 3.9]), using and the expres-
sion

A F@)=F@) =1 1 O(|z]) ,

in terms of normal coordinates x = (x!,...,2™) centered at p. O

2.9.12. A tempered distribution associated to some closed 1-forms. — As-
sume M is closed, and let S = S(R) (Section [2.1.11]). We would like to define a limit

(2.9.24) Z=2Z(Mg,n) = lim_ 7,

in &, where Z, = Z,,(M,g,n) € S’ (1> 0) should be given by

(2.9.25) (Zu, )= —% /000 /+0<> Str (nA 5Ze*“Az) f(v)d\du,
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for all f € S, where Str denotes the supertrace. If Z(M,g,—n) is defined, then
Z,(M,g,n) € S is defined for y < 0, and, in &',

_Z(Mvga _77) = ;1,11)13100 Z#(Magvn) .

Theorem 2.9.7 (JALKL21, Theorems 1.1-1.4]). — Let M be a closed manifold of
dimension n. For every real class &€ € HY (M) and T > 0, there is some n € £ and
some Riemannian metric g on M such that and define the tempered
distribution Z = 1dg, using the Dirac distribution dy on R. If n is even, this property
holds for all 7 € R, and we can choose n € & so that Z(M,g,+n) is defined and
+Z(M,g,£n) = 7.

Remark 2.9.8. — If n is even, we can choose 1 and g in Theorem [2:9.7] so that
Z(M,g,+n) = 0.



CHAPTER 3

FOLIATION TOOLS

3.1. Foliations

Standard references on foliations are [HH81l, [HH83|, [CLN85, [God91), [CC00,
CCO03], and for analysis on foliations see [Con82, [MS88].

3.1.1. Basic concepts. — Recall that a (smooth) foliation F on a manifold M,
with codimension n’ and dimension n” (codim F = n/, dim F = n'’), can be described
by a foliated atlas {Ug,z} of M. The foliated charts or foliated coordiates (Uy,xy)
are of the form

(3.1.1) T = (aj;c,l'%) U — 25 (Ug) = Zg ¥ B,/C/ ,

where By is an open ball of R™" and X, is open in ]R”,, and the corresponding changes
of coordinates are locally of the form

(3.1.2) zy ! (u,v) = (hig(u), ik (u, v)) -

We will use the notation

op = (x), .. 2f) = @, )

It is also said that (M, F) is a foliated manifold. The open sets Uy and the projections
x}, : Uy — Xy are said to be distinguished, the fibers of x}, are called plagues, and the
fibers of z}, are called local transversals defined by (U, zx), which can be identified
with Y via :1:;§ Thus the sets Y;, can be considered as local transversals of F with
disjoint closures. The open subsets of all plaques form a base of a topology on M,
called the leaf topology, becoming a smooth manifold of dimension n”” with the obvious
charts induced by {Uyg, xx}, and its connected components are called leaves. The leaf
through any point p may be denoted by L,. The F-saturation of a subset S C M,
denoted by F(S), is the union of leaves that meet S.



86 CHAPTER 3. FOLIATION TOOLS

Foliations on manifolds with boundary are similarly defined, assuming the bound-
ary is either tangent or transverse to the leaves; we will only use the case where the
boundary is tangent to the leaves (it is a union of leaves).

If a smooth map ¢ : M’ — M is transverse to (the leaves of) F, then the connected
components of the inverse images ¢~!(L) of the leaves L of F are the leaves of
a smooth foliation ¢*F on M’ of codimension n’, called pull-back of F by ¢. In
particular, for the inclusion map of any open subset, ¢ : U < M, the pull-back ¢*F
is the restriction F|y.

Any connected manifold M can be considered as a foliation with one leaf, also
denoted by M. On the other hand, we can consider the foliation by points on M,
denoted by M?® (6 refers to the discreteness of the leaf topology). Given foliations F,
on manifolds M, (a = 1,2), the products of leaves of F; and JF» are the leaves of the
product foliation F1 X Fa, whose charts can be defined using products of charts of F;
and fg.

3.1.2. Holonomy. — After considering a refinement if necessary, we can assume
the foliated atlas {Uy, xx} is regular in the following sense: it is locally finite; for every
k, there is a foliated chart (ﬁk,ik) such that U, C Uy and 7j extends zj; and, if
Uw == UpNU; # (), then there is another foliated chart (U, z) such that U, UU; C U.
In this case, holds on the whole of Uy, obtaining the elementary holonomy
transformations hy : ©(Uk) — 2, (Ukr), determined by the condition hya) = x) on
Uki- The collection {Ug, x},, hii} is called a defining cocycle. The maps hy; generate
the holonomy pseudogroup H on 3 := | |, ¥, which is unique up to certain equivalence
of pseudogroups [Hae80]. This ¥ can be considered as a complete transversal of F,
in the sense that it meets all leaves. The notation (X,#) may be also used. The
H-orbit of every p € ¥ is denoted by H(p). The maps zj, induce a homeomorphism
between the leaf space, M/F, and the orbit space, 3/H.

The paths in the leaves are called leafwise paths when considered in M. Let
c¢:I:=10,1] = M be a leafwise path with p := ¢(0) € Uy and q := ¢(1) € U;. There
is a partition of I = [0,1], 0 = tg < t; < -+ < t;,, = 1, and a sequence of indices,
k=ki, ko, ... kyn =1, such that ¢([t;—1,t;]) C Uy, for i =1,...,m. The composition
he = bk, ke, 1 - - Pkoky, Wherever defined, is a diffeomorphism with x},(p) € dom h. C
Y and afg(q) = hc.l‘;c(p) € imh. C ¥;. The tangent map Res : Tzk(p)Zk. — T$£(q)zl
is called infinitesimal holonomy of c. The germ h. of h. at x} (p), called germinal
holonomy of c, depends only on F and the end-point homotopy class of ¢ in L = L,,.
In particular, taking ¢ = p and [ = k, this defines the holonomy homomorphism
onto the holonomy group, h = hy, : 71(L,p) — Hol(L,p). The isomorphism class
of Hol(L, p) is independent of p; thus the notation Hol L may be used, like 71 L. If
Hol L is trivial, then L is said to be without holonomy. Residually many leaves have
no holonomy [Hec77, [EMTT7T7]. If all leaves have no holonomy, then F is said to
be without holonomy. The kernel of h : m L — Hol L defines the holonomy cover
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L=IL"of L. If Disa compact domain of a leaf L with smooth boundary, then F
can be completely described in some neighborhood of D in M by the composition

mD — mL 2 Hol L,

where the first homomorphism is induced by D — L [Hae62, Section 2.7] (see
also [HH81l, Theorem 2.1.7], [CLN85, Theorem IV.2], [God91l Theorem II.2.29],
[CCO00, Theorem 2.3.9]). This description, called Reeb’s local stability, involves the
so-called suspension foliation, which allows the lifting of smooth paths from L to
nearby leaves, continuously in the C*° topology.

3.1.3. Infinitesimal transformations and transverse vector fields. — The
vectors tangent to the leaves form the tangent bundle TJF C T M, obtaining also the
normal bundle NF = TM/TF, the cotangent bundle T*F = (T F)* and the conormal
bundle N*F = (NJF)*, the flat line bundles of tangent/normal orientations, o(F) =
o(TF) and o(NF), the tangent/normal density bundles, Q°F = Q*TF (a € R) and
Q°NF (removing “a” from the notation when it is 1), and the tangent/normal exterior
bundles, AF = ANT*FQC and ANF = A N*FRC. Again, we typically consider these
density and exterior bundles with complex coefficients, without changing the notation;
the few cases of real coefficients will be indicated. The terms tangent/normal vector
fields, densities and differential forms are used for their smooth sections. Sometimes,
“leafwise” is used instead of “tangent”. Any X € TM (resp., X € X(M)) canonically
defines an element of NJF (resp., C°°(M;NF)) denoted by X. For any smooth
local transversal ¥ of F through a point p € M, there is a canonical isomorphism
T,X = N, F.

A smooth vector bundle F over M, endowed with a flat T'F-partial connection, is
said to be F-flat. For instance, NF is F-flat with the Bott T F-partial connection
V7, given by V{;X = [V, X] for V € X(F) := C®°(M;TF) and X € X(M). For
every leafwise path c¢ from p to ¢, its infinitesimal holonomy can be considered as a
homomorphism A, : N, F — N F, which is the V7 -parallel transport along c.

X(F) is a Lie subalgebra and C*°(M)-submodule of X(M), whose normalizer is
denoted by X(M, F), obtaining the quotient Lie algebra X(M, F) = X(M, F)/X(F).
The elements of X(M,F) (resp., X(M,F)) are called infinitesimal transformations
(resp., transverse vector fields). The projection of every X € X(M,F) to X(M, F) is
also denoted by X in fact,

XM, F)={X € C®(M;NF)| VX =0} CC®(M;NF).

Any X € X(M) is in X(M, F) if and only if every restriction X|y, can be projected
by x}., defining an H-invariant vector field on X, also denoted by X. This induces a
canonical isomorphism of X(M, F) to the Lie algebra X(X, H) of H-invariant tangent
vector fields on X.
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When M is not closed, we can consider the subsets of complete vector fields,
Xeom(F) C X(F) and Xeom (M, F) C X(M,F). Let Xeom(M,F) C X(M,F) be the
projection of Xcom (M, F).

3.1.4. Holonomy groupoid. — On the space of leafwise paths in M, with the
compact-open topology, two leafwise paths are declared to be equivalent if they have
the same end points and the same germinal holonomy. This is an equivalence relation,
and the corresponding quotient space, ® = Hol(M, F), becomes a smooth manifold
of dimension n+ n’ in the following way. An open neighborhood i of a class [c] in &,
with ¢(0) € Uy and ¢(1) € Uy, is defined by the leafwise paths d such that d(0) € Uy,
d(1) € Up, x,.d(0) € domh,, and hq and h. have the same germ at z.d(0). Local
coordinates on il are given by [d] — (d(0),z]d(1)). Moreover, & is a Lie groupoid,
called the holonomy groupoid, where the space of units & = M is defined by the
constant paths, the source and range projections s, : & — M are given by the first
and last points of the paths, the operation is induced by the opposite of the usual
path product, and the inversion is induced by the usual path inversion. Note that &
is Hausdorff if and only if H is quasi-analytic in the following sense: for any h € H
and open O C ¥ with O C domh, if h|o = idp, then h is the identity on some
neighborhood of O. Observe also that s, : & — M are smooth submersions, and
(r,s) : & — M? is a smooth immersion. Let Rr = {(p,q) € M? | L, = L, } C M?,
which is not a regular submanifold in general, and let A C M? be the diagonal. We
have (r,5)(®) = Rr and (r,s)(6() = A. For any leaf L and p € L, we have
Hol(L,p) = s~ 1(p) N r~Y(p), the map r : s7!(p) — L is the covering projection
L' - I and s : r~1(p) — L corresponds to r : s7*(p) — L by the inversion of &.
Thus (7, 8) : & — M? is injective if and only if all leaves have trivial holonomy groups,
but, even in this case, this map may not be a topological embedding. The fibers of
s and 7 define smooth foliations of codimension n on . We also have the smooth
foliation s*F = r*F of codimension n’ with leaves s71(L) = r=1(L) = (r,s)"1(L?)
for leaves L of F, and every restriction (r, s) : (r,s)"!(L?) — L? is a smooth covering
projection.

Let Fi, = Flu,, & = Hol(Ug, Fi) and Ry = Rr,. The set |J, & (resp., U, Ri)
is an open neighborhood of &©) in & (resp., of A in Rz). Furthermore, by the
regularity of {Uy,zy}, the map (r,s) : |, &, — M? is a smooth embedding with
image |J,, Ri; we will write (J, &, = U, Re-

3.1.5. The convolution algebra on & and its global action. — Consider the
notation of Section For the sake of simplicity, assume & is Hausdorff [Con79].
The extension of the following concepts to the case where & is not Hausdorff can be
made like in [Con82].

Given a vector bundle E over M, let S = r*E ® s*(E* ® QF), which is a vector
bundle over &. Let CX(6;S5) C C*°(8;S) denote the subspace of sections k €
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C°°(®; S) such that supp kNs~1(K) is compact for all compact K C M; in particular,
C2(B;8) = C(6;.5) if M is compact. Similarly, define C22(&; S) by using r instead
of s. Both C2(®;S) and C2(&;S) are associative algebras with the convolution
product defined by

(h+k) () = [

s(e)=s(v)

(e ) ) = / k1 (8) a(617) |

r(8)=r(7)
and CX.(;9) := C2(8;5) NCX(;.5) and C°(B;.S) are subalgebras.

CSsr

The global action of C(B;S) on C(M; E) is the left action defined by
(wo)= [ K@)uls()
r(v)=p

In this way, C°(®;S) can be considered as an algebra of operators on C*°(M; E).

Ccr
Moreover C.(®;S) preserves C°(M; E), obtaining an algebra of operators on
C°(M; E). Tt can be said that these operators are defined by a leafwise version of a
smooth Schwartz kernel (cf. Section [2.1.5)).

Let S’ = r*(E* ® OF) ® s*E. The mapping k +— k', k*(y) = k(y~1), defines anti-
homomorphisms C) (&;5) = CF)(6;5") and C.(8;.5) — CZ(8; 57), obtaining
a leafwise version of the transposition of operators (cf. Section. Similarly, using
E = QY2F, or if FE has a Hermitian structure and we fix a non-vanishing leafwise
density, we get a leafwise version of taking adjoint operators. Moreover, in this case,

C(8;5) is *-algebra.

3.1.6. Leafwise metric. — A Euclidean structure gz on T'F is called a leafwise
(Riemannian) metric of F. The corresponding leafwise distance is the map dr :
M? — [0,00] given by the distance function of the leaves on R, taking dr(M? \
Ry) = co. For p € M, S C M and r > 0, the open and closed leafwise balls,
Br(p,r) and Bx(p,r), and the open and closed leafwise penumbras, Penx(S,r) and
Penz(S,r), are defined with d like in the case of Riemannian metrics (Section .
The Levi-Civita connection on the leaves defines a T'F-partial connection on T'F, also
denoted by V7.

Equip the foliation 7*F on & with the leafwise Riemannian metric so that the
foliated immersion (r, s) : (&, r*F) — (M?, F?) is isometric on the leaves. Let d, :
& — [0, 00| denote the leafwise distance for the foliation on & defined by the fibers of
7, and consider the corresponding open and closed leafwise penumbras, PenT(QS(O)7 r)
and Pien,.(Qi(O),r). Note that we get the same penumbras by using s instead of
r; indeed, they are given by the conditions d%! < r and d%! < r, resp., where
dhe': & — [0,00) is defined by

d%!(v) = inflength(c) ,

with ¢ running in the piecewise smooth representatives of ~.
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For example, if M is endowed with a Riemannian metric, its restriction to the
leaves defines a leafwise Riemannian metric. In this case, d > djs (the distance
function of M), and the leafwise metric of 7*F is given by the Riemannian metric on
& so that the immersion (r,s) : & — M? is isometric.

By the smooth lifting of leafwise paths to nearby leaves, it easily follows that dl}_Pl :
® — [0,00) and dr : RF — [0,00) are upper semicontinuous. Moreover ngl =dr
on |J, &, = U, Ri. Using the convexity radius (see e.g. [Pet98| Section 6.3.2]), it
follows that, after refining {Uy,zy} if necessary, we can assume dzx is continuous on

Ui R

Lemma 3.1.1. — The following properties hold for any compact K C M?:

(i) If K C Rz, then dr|k reaches a finite mazimum at some point.
(ii) If KNA =0, then inf dx(K) > 0. If moreover inf dx(K) is small enough, then
it is the minimum of dr|k .

Proof. — Using that K is compact, A = {dr = 0}, Rr = {dr < oo}, and |J, Ry is
a neighborhood of A in Rx containing K N {dr < r} for some r < 0, we get |(i)| by
the upper semicontinuity of dr, and by the continuity of dz on (J, Rx. O

Remark 3.1.2. — The obvious version of Lemma for di°! and compact subsets
of & can be proved with analogous arguments.

From now on, suppose the leaves with gr are complete Riemannian manifolds.
Then their exponential maps define a smooth map expy : TF — M.

With the notation of Section let C5°(®;5) C C(&;S) denote the sub-
space of sections supported in leafwise penumbras of &(®. This is a subalgebra
of C2.(8;5), and the leafwise transposition restricts to an anti-homomorphism

csr

C(®;5) — Cp°(®;5") JALKL20, Section 4.6].

3.1.7. Foliated maps and foliated flows. — A foliated map ¢ : (My,F1) —
(Ms, F») is a map ¢ : My — M that maps leaves of F; to leaves of F. In this case,
assuming that ¢ is smooth, its tangent map defines homomorphisms ¢, : TF; — T F;
and ¢, : NF; — NJF,, where the second one is compatible with the corresponding
flat partial connections. We also get an induced Lie groupoid homomorphism Hol(¢) :
Hol(M, Fy) — Hol(Ms, F»), defined by Hol(¢)([c]) = [¢c]. The set of smooth foliated
maps (M, F1) — (Ms, Fs) is denoted by C*°(My, Fi; Ms, F2). A smooth family
¢ ={¢" |t € T} of foliated maps (M, F;) — (M, F2) can be considered as the
smooth foliated map ¢ : (My x T, F; x T%) — (Mo, F).

For example, if a smooth map v : M’ — M is transverse to a foliation F on M,
then it is a foliated map (M',y*F) — (M, F). Moreover ¢, : Ny*F — NF restricts
to isomorphisms between the fibers; i.e., it induces an isomorphism v, : N¢*F =N
P*NF of * F-flat vector bundles over M’.
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Let Diffeo(M, F) be the group of foliated diffeomorphisms (or transformations) of
(M, F). A smooth flow ¢ = {¢'} on M is called foliated if ¢* € Diffeo(M, F) for all
t € R. More generally, a local flow ¢ : 0 — M, defined on some open neighborhood 2
of M x {0} in M xR, is called foliated if it is a foliated map (€2, (F xR%)|q) — (M, F).
Then X(M,F) consists of the smooth vector fields whose local flow is foliated, and
Xcom(M, F) consists of the complete smooth vector fields whose flow is foliated.

Let X € Xeom(M, F), with foliated flow ¢ = {¢'}, and let ¢ be the local flow on ¥
generated by X € X(X,H) (Sections and . The following properties hold
[ALKL20, Section 4.8]: via z}, : Uy — Xy, the local flow defined by ¢ on every Uy
corresponds to the restriction of ¢ to ¥j; and ¢ is H-equivariant in an obvious sense.

Take another vector field Y € Xcom(M, F) with foliated flow ¢ = {¢'}.

Lemma 3.1.8. — We have Y = X if and only if ¢'(L) = *(L) for allt € R and
every leaf L.

Proof. — The condition Y = X is equivalent to ¢ = 1), which means that the local
flows defined by ¢ and ¥ on every Uy correspond to the same local flow on X via
7). In turn, this is equivalent to the existence of some open 2 C M x R, containing
M x {0}, such that ¢(p,t) and ¥(p,t) are in the same leaf for all (p,t) € Q. But this
is equivalent to ¢*(L) = *(L) for all leaf L and ¢ € R because ¢ and v are foliated
flows. O

A smooth homotopy H : My x I — My (I = [0,1]) between foliated maps ¢, :
(My, F1) — (Mas,Fs) is said to be leafwise (or integrable) if it is a foliated map
(My xI,Fy xI) = (Ma, F2). When there is such a leafwise homotopy, it is said that
¢ and 1 are leafwisely homotopic.

A smooth leafwise homotopy between foliated flows on (M,F), ¢ = {¢'} and
¢ = {Y'}, is a smooth family H = {H'}, where every H' : M x I — M is a
leafwise homotopy between ¢! and !; in other words, it can be considered as a
leafwise homotopy H : M x R x I — M between the corresponding foliated maps
¢, 1 (M xR, F xR?) — (M, F). If moreover every H(-,-,s): M x R — M is a flow,
then H is called a smooth flow leafwise homotopy.

Proposition 3.1.4. — Let XY € Xcom(M,F), with foliated flows ¢ = {¢pt} and
= {4}, such that V :=Y — X € X(F). Then there is a flow leafwise homotopy
H:MxRx1T— M between ¢ and 1 such that H(p,t,s) = ¢'(p) for all p € M with

o' (p) = ¢ (p).

Proof. — Since X € Xeom(M,F) and V € X (F), we have Z; = X + sV €
Xeom(M,F) (s €I). Let & : M x R — M denote the flow of every Z,. Since Z, = X
for all s, it follows from Lemmal[3.1.3|that the statement holds with H : M xRxI — M
defined by H(-,-,s) = &s. O
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3.1.8. Differential operators on foliated manifolds. — Like in Section [2.1.7]
using X(F) instead of X(M), we get the filtered subalgebra and C°°(M)-submodule
of leafwise differential operators, Diff(F) C Diff (M), and a leafwise principal symbol
exact sequence for every order m,

0 — Diff™(F) s Diff™(F) 225 PO (T*F) =5 0.

Moreover these concepts can be extended to vector bundles E and F' over M like in
Section obtaining the filtered C'*°(M)-submodule Diff (F; E, F) (or Diff (F; E)
if E = F) of Diff(M; E, F), and the leafwise principal symbol “o,, : Diftf™(F; E, F) —
P™(T*F; F ® E*). The diagram

Diff™(F; E, F) —2my Pm)(T*F;F @ E*)

I l

Diff"™(M; E,F) —"— P™)(T*M;F ® E*)

is commutative, where the left-hand side vertical arrow denotes the inclusion ho-
momorphism, and the right-hand side vertical arrow is induced by the restriction
homomorphism T*M — T*F. The condition of being a leafwise differential operator
is preserved by compositions and by taking transposes, and by taking formal adjoints
in the case of Hermitian vector bundles; in particular, Diff(F; F) is a filtered subal-
gebra of Diff (M; E). It is said that A € Diff""(F; E, F) is leafwisely elliptic if the
symbol 7,,,(A)(p,§) is an isomorphism for all p € M and 0 # £ € Ty F. In this way,
the concepts of leafwise differential compler and its leafwise ellipticity can be defined
like in Section 2.1.14

A smooth family of leafwise differential operators, A = {A4; | t € T} C
Diff " (F; E, F), can be canonically considered as a leafwise differential operator
A € Diff™(F x T%;pr} E,pri F), where pr; : M x T — M is the first-factor
projection.

On the other hand, considering the canonical injection N*F C T*M, it is said
that A € Diff"™(M; E, F) is transversely elliptic if the symbol o,,(A)(p,£) is an iso-
morphism for all p € M and 0 # £ € Ny F. The concept of transverse ellipticity has
an obvious extension to differential complexes like in Section

We can use Diff(F; E) to define variants of the section spaces recalled in Sec-
tion [2:1.4] For instance, for m € Ny, we have the LCHS

CY™(M;E) = {u € C(M;E) | Dif"™(F;E)-u C C(M;E) },

with the topology defined like in (2.1.1). Let also C%OO(M;E) =, CO™(M;E).
If F is described by a submersion @ : M — M’, then the subscript @ may be used
instead of F, which agrees with the notation already used in Remark

3.1.9. Transverse structures. — Recall that (X, H) denotes the holonomy pseu-
dogroup of F. An (invariant) transverse structure of F is an H-invariant structure on
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Y. It can be also considered as a V7 -parallel structure on NF. For our purposes, it is
enough to consider structures on ¥ (resp., on NF) defined by smooth sections of bun-
dles associated with T (resp., NF) satisfying some conditions. For instance, we will
use the concepts of a transverse orientation, a transverse Riemannian metric and a
transverse parallelism. The existence of these transverse structures defines the classes
of transversely orientable, (transversely) Riemannian, and transversely parallelizable
(TP) foliations.

A transverse orientation of F can be simply described as an orientation of N.F,
which is necessarily V¥ -parallel. It can be determined by a non-vanishing real form
w € COO(M;A"lN}"); i.e., some real w € COO(M;A"l) defining F in the sense that
TF ={Y € TM | tyw = 0}. By Frobenius theorem, the integrability of T'F
means that dw = 1 A w for some real n € C°(M;A'), which is unique modulo
C°(M;A*NF). All other pairs of differential forms w’ and ' satisfying these condi-
tions are of the form w’ = efw and 1’ = n + df for any real function f € C*°(M). We
have dw = 0 just when w defines an invariant transverse volume form. Any invariant
transverse volume form w defines an invariant transverse density |w| € C*°(M; QNF),
which can be considered as an invariant transverse measure.

Remark 3.1.5. — Even when F is not transversely oriented, it is defined by some
real w € C®(M; A" NF @ o(NF)) = C®(M;QNF), and we have dw = w A 7 for
some real 1-form 7, as above.

A transverse parallelism can be described as a global frame of NF consisting of
transverse vector fields X1, ..., X,/. If its linear span is a Lie subalgebra g C X(M, F),
it is called a transverse Lie structure, giving rise to the concept of (g-)Lie foliation.
If moreover Xi,..., X, € Xcom(M,F), then the TP or Lie foliation F is said to be
complete.

Let G be the simply connected Lie group with Lie algebra g as above. Then
F is a g-Lie foliation just when 7 is equivalent to some pseudogroup generated by
restrictions of some left translations on some open T' C G, which is complete just
when we can take T' = G.

Similarly, a transverse Riemannian metric can be described as a V7 -parallel Eu-
clidean structure on NF. It is always induced by a Riemannian metric on M such
that every x}, : Uy — X is a Riemannian submersion, which is called a bundle-like
metric. Thus F is Riemannian if and only if it can be endowed with a bundle-like
metric on M.

It is said that F is transitive at a point p € M when the evaluation map ev), :
X(M,F) — T,M is surjective, or, equivalently, the evaluation map &v, : X(M,F) —
N, F is surjective. The transitive point set is open and saturated. If F is transitive
at every point, then it is called transitive. If evy(Xoom(M,F)) spans T,M for all
p € M, then F is called transversely complete (TC'). Since ev,, : Xeom(F) — TpF is
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surjective [Mol88) Section 4.5], F is TC if and only if &V, (Xcom (M, F)) spans NpF
for all p e M.

All TP foliations are transitive, and all transitive foliations are Riemannian. On
the other hand, Molino’s theory describes Riemannian foliations in terms of TP foli-
ations [Mol88]. A Riemannian foliation is called complete if, using Molino’s theory,
the corresponding TP foliation is TC. Furthermore Molino’s theory describes TC
foliations in terms of complete Lie foliations with dense leaves. In turn, complete
Lie foliations have the following description due to Fedida [Fed71, [Fed73| (see also
IMol88| Theorem 4.1 and Lemma 4.5]). Assume M is connected and F a complete g-
Lie foliation. Let G be the simply connected Lie group with Lie algebra g. Then there
is a regular covering 7 : M— M (the holonomy covering), a fiber bundle D : M—G
(the developing map) and a monomorphism h : T' := Aut(r) = 7 L/m L — G (the
holonomy homomorphism) such that the leaves of F := 7*F are the fibers of D, and
D is h-equivariant with respect to the left action of G on itself by left translations.
As a consequence, 7 restricts to diffeomorphisms between the leaves of F and F. The
subgroup Hol F = im h C G, isomorphic to T, is called the global holonomy group.

The Molino’s description also gives a precise equivalence between the holonomy
pseudogroup H and the pseudogroup on G generated by the action of Hol F by left
translations. Thus the leaves are dense if and only if Hol F is dense in G, which means
g=X(M,F).

The F-leaf through every p € M will be denoted by Eﬁ. Since D induces an
identity M /.7? = @, the 7-lift and D-projection of vector fields define identities

(3.1.3) X(M,F)=%(M,F,T)=%(G,Hol F) .

(Given an action, the group is added to the notation of a space of vector fields to
indicate the subspace of invariant elements.) These identities give a precise realization
of g C X(M, F) as the Lie algebra of left invariant vector fields on G.

If a smooth map ¢ : M’ — M is transverse to F, since v, : NY*F — NF
restricts to isomorphisms between the fibers and is compatible with the corresponding
flat partial connections (Section 7 it follows that any transverse structure of F
canonically induces a transverse structure of ¢*F of the same type.

3.1.10. Foliations of codimension one. — In this section, assume F is of codi-
mension one (n’ =1 and n” = n — 1). Then the notation (z,y) = (x,9%,...,y" 1)
used for the foliated coordinates instead (2, z").

Suppose also that F is transversely oriented. Thus there are real forms w,n €
C°(M;A') such that w defines F and its transverse orientation, and dw = n A w
(Section [3.1.9). There is some X € X(M) with w(X) = 1; in fact, X € C(M; NF)
and w determine each other. Now F is Riemannian just when w can be chosen so
that dw = 0; i.e., X € X(M,F). Actually, F is an R-Lie foliation in this case because
R - X is a Lie subalgebra of X(M, F).

is
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3.1.11. Complete R-Lie foliations. — F is a complete R-Lie foliation when there
is some Z € Xcom(M, F) so that Z has no zeros. This means that the orbits of the
foliated flow ¢ : M x R — M of Z are transverse to F. Its Fedida’s description
is given by some 7 : M — M, D : M — Rand h: T — R (Section. Let
Ze xcom(ﬂ, F) and 6 : M x R — M be the lifts of Z and ¢. Then Z is I-invariant
and D-projectable. Without loss of generality, we can assume D.Z =0, € X(R),
where = denotes the standard global coordinate of R. Thus (,Z; is I'-equivariant and
induces via D the flow ¢ = {¢'} on R defined by ¢*(z) = t + x. Since ¢! preserves
every Hol F-orbit in R if and only if ¢t € Hol F, it follows that ¢’ preserves every leaf
of F if and only if ¢ € Hol F.

3.1.12. Foliations almost without holonomy. — Assume M is compact. It
is said that F is almost without holonomy when all non-compact leaves have no
holonomy. The structure of such a foliation was described by Hector [Hec72, Hec78].
In the case where F has a finite number of leaves with holonomy and is transversely
oriented, the description of F is as follows. Let MY be the finite union of compact
leaves with holonomy. Let M* = M \ M°, whose connected components are denoted
by M} (I =1,...,k), and let F! = ]-"\Mll. Then, for every [, there is a connected
compact manifold M;j, possibly with boundary, endowed with a smooth transversely
oriented foliation F; tangent to the boundary, such that, equipping M := ||, M,
with the combination F of the foliations F;, there is foliated smooth local embedding
w: (M,F)— (M,F), preserving the transverse orientations, so that:
— M — M} is a diffeomorphism for all I (we may write M, = M}y
— mw:0M — MO is a 2-fold covering map; and
— every J is one of the following models:
(0) F; is given by a trivial bundle over [0, 1],
(1) F = Fil 5z, 1s given by a fiber bundle over St or
(2) all leaves of F; are dense in M.

Thus M is obtained by gluing the manifolds M; along corresponding pairs of bound-
ary components. Equivalently, M can be described by cutting M along MY like in
Section[2.6] Since F is transversely oriented, the restriction of 7w : 9M — MO to every
connected component of M is a diffeomorphism to its image. Thus OM = ML MPO.
The restriction of F to the interior M is denoted by F. Thus  restricts to a foliated
diffeomorphism (M, F) = (M*, F1).

Remark 3.1.6. — In the above description, we have the following:

(i) If Fiis a model then ]-'g becomes a complete R-Lie foliation after a possible
change of the differentiable structure of Ml, keeping the same differentiable
structure on the leaves [Hec78| Theorem 2].

(i) The description holds as well if M is any finite union of compact leaves, includ-
ing all leaves with holonomy. In particular, if F; is a model with OM; = 0,
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then M; = M can be cut into modelsl@‘by adding compact leaves to M°. Con-
versely, if all foliations F; are models @ then F is a model with OM = ().

3.2. Differential forms on foliated manifolds

3.2.1. The leafwise complex. — Let dr € Diff*(F; AF) be given by (dra)|r =
dr(alr) for every leaf L and o € C*°(M;AF). Then (C*°(M;AF),dr) is a differ-
ential complex, called the leafwise or tangential (de Rham) complex. The elements
of C*°(M;AF) are called leafwise forms; the leafwise forms in ker dr (resp., imdr)
are called leafwise-closed forms (resp., leafwise-exact forms). The leafwise complex
gives rise to the leafwise or tangential cohomology H®(F). The leafwise complex is
not elliptic if n’ > 0, and therefore it makes sense to consider also its reduced coho-
mology H*(F) (Section . The more precise notation H*C*®(F) = H*(F) and
H*C>(F) = H*(F) may be also used. Recall that we typically take complex coeffi-
cients without any comment; the case of real coefficients will be indicated. Compactly
supported versions may be also considered when M is not compact.

We can also take coefficients in any complex F-flat vector bundle E over M, ob-
taining the differential complex C™(M; AF ® E) with dr € Diff'(F; AF ® E), and
the corresponding cohomology, H*(F; E), and reduced cohomology, H*(F; E). For
example, we can consider the vector bundle E defined by the GL(n')-principal bundle
of (real) normal frames and any unitary representation of GL(n’), with the F-flat
structure induced by the F-flat structure of NF. A particular case is ANJF, which
gives rise to the differential complex (C*°(M; AF @ ANF),dr). Note that

(3.2.1) AF=AF@A°NF CAF®@ANF,

and therefore C°°(M; AF) becomes a subcomplex of C°(M;AF @ ANF) with dr.

3.2.2. Bigrading of differential forms. — Consider any splitting
(3.2.2) TM=TF&H=TF&NF,

for some vector subbundle H C TM. Recall that AH = A H* ® C. The split-
ting (3.2.2)) induces a decomposition

(3.2.3) AM=AF®AH 2 AF @ ANF,

giving rise to the bigrading of AM defined by

(3.2.4) AYM=A"FRAN'H=ZANFRQSA'NF,

and the corresponding bigrading of C*°(M; A) with bihomogeneous components

C®(M; A*") = C®(M; A"F @ A“NF) .
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In particular, A%*M = A'F and A*°M = A“H, and then the identity of
become APPM @ AYOM =AM, a®@ =aAp.

This bigrading depends on H, but the spaces A=% M and C*°(M;AZ%") are in-
dependent of H (see e.g. [AL89]). There are canonical identities

(3.2.5) AZW M/AZTY M = A M = AF @ AYNF
where only A“ M depends on H.

3.2.3. Bihomogeneous components of the derivative. — The de Rham deriva-
tive on C*°(M; A) decomposes into bihomogeneous components,

(3.2.6) d=do1+dio+dz-1,

where the double subscript denotes the corresponding bidegree. By comparing bide-
grees in the anti-derivation formula of d, we also get that every d;1—; (¢ € {0,1,2})
satisfies the same anti-derivation formula. Thus dy _; is of order 0. The other compo-
nents, do,; and dj o, are of order 1. Moreover, do _; = 0 if and only if H is completely
integrable. By comparing bi-degrees in d2 = 0, we get [AL89]

(3.2.7) gy =doad1o+ diodor =0.

So (C*°(M;A),do,1) is a differential complex of order one. In fact, via ,
(3.2.8) doy = dF .

Moreover

(3.2.9) do1 = d: C(M;A™*) — C®(M; A" *+1) .

3.2.4. Basic complex. — It is said that a € C*°(M;A) is a basic form if 1xa =
txda = 0 for all X € X(F). This means that « is an F-parallel section of ANF =
A*OM; ie., a € C°(M;A*%) Nkerdy. The basic forms form a subcomplex of the
de Rham complex, called the basic complex. It is isomorphic to the complex of H-
invariant forms on ¥ via the distinguished projections z}, : Uy — Xj (Section .

3.2.5. Bihomogeneous components of the coderivative. — Given a leafwise
metric gz, the coderivative on the leaves defines an operator é € Diff! (M; AF), like
in the case of dr.

Fix a Riemannian metric g on M. Using H = TF* and taking formal adjoints
in (3.2.6) and (3.2.7), we get a decomposition of the coderivative on C'°(M; A),

(3.2.10) 6= (50,_1 + (5_1,0 + (5_271 s
and the bihomogeneous components §_; ;1 = dj ; _; satisfy the analog of (3.2.7).

(1) This order in the wedge product, introduced in |ALKL20] and different from [ALKO1], produces
simpler sign expressions. However, the transverse degree is written first in the bigrading, like in the
extension to foliations of the Leray-Serre spectral sequence.
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The metric ¢g induces a leafwise metric gz. It also induces an Euclidean structure
on NJF, which in turn induces a Hermitian structure on ANJF. Thus the adjoint
dr = d¥% is also defined on C*°(M;AF ® ANF). The analogue of (3.2.8),

(3211) 60’,1 = 5]:

via , holds if and only if g is bundle-like [ALKL20, Lemma 4.12]. Thus, in
this case, § = §p,_1 = 07 on C°(M;A%*) = C°(M; AF) via ([3.2.1]) and (3.2.4).

The following operators will be also used:

Do =do1+00,-1, Di=dio+6-10,
(3.2.12) 9
Ag = Dy = dp,100,—1 + do,—1do,1 -
3.2.6. Bigrading vs orientations. — Recall that a transverse orientation of F

can be described by a non-vanishing real form w € C>(M; A" NF) = C>(M; A""0).
According to Section there is a real 1-form 7 satisfying dw = n A w. We write
n = 1o +n1, where g € C°°(M; A%') is determined by w, and 1, € C*°(M; AM) can
be chosen arbitrarily.

On the other hand, an orientation of T'F is called a (leafwise or tangential) orienta-
tion of F, which can be described by a non-vanishing real form x € C*(M; A"”}') =
C>(M; A%""). Tt is said F is oriented if it is endowed with an orientation. Given
transverse and tangential orientations of F, described by forms w and y as above,
we consider the induced orientation of M defined by the non-vanishing real form
X Aw € C®(M; A" ") = C=(M;A").

Suppose that M is a Riemannian manifold and take H = TJF*. Then, us-
ing , the induced Hodge star operators, x on AM, xr on AF and x; on AH,

) |

satisfy®)| [ALT91, Lemma 4.8], JALKO1, Lemma 3.2], JALKL20, Eq. (42)]

(3.2.13) o= (—1) 0" Vs @y s ABYM — AT TE VL

If w=%,1and xy =*r£1, then x Aw = x1. We have

(3.2.14) O iiin = (1)l d, ik

on C®(M;A¥), and

(3.2.15) 5r = (=)t T A

on C°°(M; A F). Using (3.2.13)—(3.2.15), we easily get
d0,—1 = 6F + Mo

on C°°(M;A%) = C(M; A" F).

()The sign of this expression, used in [ALKLZO, Eq. (42)], is different from the sign used in
|ALKO1, Lemma 3.2] by the different choices of induced orientation of M.
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3.2.7. Leafwise Euler form. — If F is oriented, then QF = A M = A FLIf
moreover F is equipped with a leafwise Riemannian metric g7 and n”’ is even, then
the leafwise Euler form e(F,gr) € C°(M; A" F) = C®(M;QF) is defined by the
Euler form of the leaves (Section [2.9.10). When F is not oriented, e(F, gr) is defined
as an element, of C°(M; A" F @ o(F)) = C=(M; QF).

3.2.8. Leafwise currents. — We may also consider the continuous extension of
dr to C~°(M; AF) (Section 7 defining another topological complex whose co-
homology and reduced cohomology are denoted by H*C~%°(F) and H*C~>(F) (see
Section [3.2.1). The elements of C~°°(M;AF) are called leafwise currents. In gen-
eral, C*°(M;AF) — C~°°(M; AF) does not induce an isomorphism in cohomology
or reduced cohomology (consider a foliation by points).

Like in , the exterior product has continuous extensions,

CE®(M;AF) @ CF°(M;AF) — C~(M;AF),

with a corresponding extension of the property of dr to be a derivation. Given
a leafwise metric g on M, we can also consider the continuous extension dr to
C~°(M;AF)

The concept of leafwise currents with coefficients in any F-flat vector bundle £ can
be also considered, and the obvious notation is used for the corresponding topological
complex and its cohomology and reduced cohomology. In particular, E' can be any
vector bundle associated with NF.

3.2.9. Bigrading of currents. — Consider also the bigrading of C~>°(M;A) in-
duced by the bigrading of AM, and the continuous extensions to C~°(M; A) of the
operators d; 1—;, which satisfy (3.2.8) and (3.2.9). Given a metric g on M, we can
also consider the continuous extensions of the operators §_; ;_1 to C~>°(M; A).

If M is oriented, then (2.8.3)), (2.8.4) and (2.9.8) for z = 0 give

(3216) (A“vv]\/[)* QROM = Anlfu,n"va 7
(3.2.17) C_OO(M; A“v”) = CSO(M, An’—u,n”—v)/ 7
(3218 dox = (<), s CROLAY) = CROLAS)

When M is not oriented, these identities hold after adding the tensor product with
o(M) to the exterior bundles in the right-hand sides, or working locally, or passing to

the double cover of orientations. By (3.2.9)), if u = n/, then (3.2.18)) agrees with (2.9.8)
for z = 0 on C~°(M;A"'*). By (3.2.3), (3.2.8) and (3.2.9), if u = 0, then (3.2.16)~

become

(32.19) (A*F)@QM=A""""M=A""FRAN'NF=A"""FQQNF,
(32.20)  C ®°(M;AF) = CX(M; A" "' =v) = C®(M; A" " F@ QNF)' |
(3221) dr=(-1)"""d" = (-1)""d% : CT(M;A°F) = C~°(M; AT F) .
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3.2.10. Pull-back of leafwise forms. — Let ¢ € C°(M’', F'; M, F). Like
in (2.8.8) and (2.8.9)), the homomorphisms ¢, : TF — TF and ¢, : NF' — NF

induce continuous homomorphisms,
(3.2.22) " (C®(M;AF @ ANF),dr) — (C®(M'; AF @ ANF'),dz) ,
(3.2.23) 6"+ (C%(M; AF), dy) — (C™(M; AF), dp) |

the second one is a restriction of the first one according to (3.2.1).
On the other hand, ¢* : C*°(M;A) — C>°(M’; A) has restrictions

¢* 1 C®(M; A=) — C®(M'; A=)
which induce (3.2.22)) using (3.2.5).

3.2.11. Bihomogeneous components of pull-back homomorphisms. — For
any smooth map ¢ : M’ — M, the homomorphism ¢* : C®°(M;A) — C*°(M';A)
decomposes into bihomogeneous components,

¢* = ...+¢i1,1+¢370+¢1‘,_1+...
If p € C(M',F'; M, F), then ¢ _; = 0 for i < 0. Moreover, via (3.2.3),
(3.2.24) ¢8,0 =o*,

where the right-hand side is (3.2.22)).

3.2.12. Bihomogeneous components of the Lie derivative. — For any X €

X(M), by comparing bidegrees in Cartan’s formula, Lx = dix + txd, we get a

decomposition into bi-homogeneous components,
Lx=Lx_11+Lxo0+Lx1,-1+Lx2-2.

For instance,

(3.2.25) Lxo00=4doitvx +ivxdos +diotarx +taHxdio,

where V : TM — TF and H : TM — H denote the projections defined by .
By comparing bidegrees in the derivation formula of Lx, we also get that every Lx ; —;
(¢ € {-1,0,1,2}) satisfies the same derivation formula. Thus £x _11, Lx,1,-1 and
Lx o o are of order zero. For the sake of simplicity, we will write © x = Lx,0,0, which
is of order 1.

If X € X(M,F), then Lx,_1 1 =0, obtaining

(3.2.26) Oxdy1 = do19x

by comparing bi-degrees in the formula £xd = dLx. On the other hand, by (3.2.25)),
if X € C°(M; H), then, for all f € C>*(M),

(3.2.27) Osx = [Ox

on C®(M;A%*) = C®(M;AF). If diof = 0, then (3.2.27) holds on C°°(M;A)
by (3.2.25) and the derivation formula of ©x.
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3.2.13. Local descriptions. — Let (U,z) be a foliated chart of F, with x =
(2/,2"), like in (3.1.1). To emphasize the difference between the coordinates ' and
2", we use the following notation on U or z(U). Let 2'* = 2% and 9] = 9; for i < n/,
and 2" = z* and 9! = 9; for i > n’. Thus, when using z/* or 8/, it will be un-
derstood that i runs in {1,...,n’}, and, when using 2" or 9/, it will be understood
that ¢ runs in {n’ + 1,...,n}. For multi-indices of the form J = {ji1,...,5,} with
1 <41 <---<jp <n,let de’/ = dad* A--- A dz?" be denoted by da’/ or da”’ if J
only contains indices in {1,...,n'} or {n’ 4+ 1,...,n}, respectively. Using functions
fr e C>®(U), dr on U can be described by

(3.2.28) dr(frda") =0 fr da" A dx'"" .
Since the forms da’’ are basic, (3.2.8) on U means that
(3.2.29) do1(fryda’" nda'") = dz(frydx"") nda'” |

using functions fr; € C*(U).
Given a metric g on M, the local description

(3.2.30) 50’,1(f11 dz"" A d$/J) = (5]:(f1] dm"l) Adz'”

is satisfied just when g is bundle-like JALKO1, Lemma 3.4]; in fact this is a local

expression of (3.2.8)).
From (3.2.25)), we also get that, on C°°(U, A**),

(3.2.31) dio = da"" N Opo .
Since d; o is an anti-derivation, it follows that

(3.2.32) dyo(fryda’ Ada') = (1)@ go,(frs da"") Ada’* A da' .

3.2.14. Bigrading of leafwise forms. — Suppose F is subfoliation of another
smooth foliation G on M. Like in Section [3.2.2] for any choice of a complement G of
TF in TG, we have AG = AF ® AG, obtaining a bigrading of AG defined by A*“*G =
A’ FRA"G, and a corresponding bigrading of C*°(M; AG). The decomposition
has an obvious version for dg satisfying analogous properties.

3.2.15. Push-forward and pull-back of leafwise currents. — With the nota-
tion of Section [2.8.5] assume ¢ : M’ — M is a smooth submersion and V oriented.
Using any complement H of V in TM’, we get a corresponding bigrading of AM’ with
?*AM @ Qaper M’ = A*PM’. Suppose M is equipped with a smooth foliation F,
and let 7' = ¢*F. Choose complements, H of TF in TM and H' of TF' in TM'.
The tangent map ¢. defines an identity H' = ¢*H. Consider the bigradings of AM

and AM’' induced by (F,H) and (F', H'). Then the maps (2.8.11)—(2.8.14) have
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restrictions compatible with dy 1,
Gu: CHR(M;A™®) = CHX(M;AP) (p=dimV),

¢* O™ (M;A"®) — C~°(M'; A™*) .
For w = 0, by (3.2.1), they are continuous homomorphisms,

(3.2.33) 6u : (CHN (M AF),dpr) = (C2(M; AF), dr)

(3.2.34) ¢*  (C(M; AF),dr) — (C~°(M'; AF),dr) .

Like in (2.8.13)-(2.8.16), the maps (3.2.33) and (3.2.34) can be also defined as the
compositions

(3.2.35) CEX (M AF) T2 CE2 (M 6"AF) 2 CH% (M AF)

(3.2.36) O~ (M; AF) L5 0~=(M';¢*AF) 25 C=°(M'; AF') .

We can directly extend the definition of to the case where M’ is a manifold
with boundary, assuming F' is tangent or transverse to the boundary. It is a cochain
map when F’ is tangent to the boundary. If F’ is transverse to the boundary and
Olonp : OM' — M is a submersion, the Stokes’ formula gives

(3.2.37) Gudr — drde = (Plon )™ : O (M'; AF') — C°(M;AF) ,
where ¢ : OM' — M’.

3.2.16. Leafwise homotopy operators. — With the notation of Section [2.8.6
suppose M and M’ are equipped with respective smooth foliations F and F’', H
is a leafwise homotopy, and consider H; : C®(M;AF) — C*(M';AF") (t € I).
Then we similarly get a continuous linear map h : C°(M;AF) — C°(M'; AF'),
called a leafwise homotopy operator, which is homogeneous of degree —1 and satisfies

Hf — Hj = hdr 4+ drh. By using (3.2.23)), (3.2.37) and (3.2.33)), h can be given as

the composition

(3.2.38) (M AF) 25 0 (M x AF x 1)) 35 o (' AF) .

So Hy and H; induce the same homomorphisms H*C*(F) — H®*C*(F’') and
H*C>(F) — H*C>™(F").

Suppose H is transverse to F and H*F = F'xI. Let pry : M'xI — M’ denote the
first-factor projection. Consider the bigradings defined by F, F’, and complements
H and H' of their tangent bundles. So H, defines a homomorphism pr; H — H
whose restrictions to the fibers are isomorphisms. Then is the bihomogeneous
component of bidegree (0, —1) of (2.8.17).

If moreover H is a submersion, then and give a continuous exten-
sion of the maps of ,

i

C=°(M;AF) Z5 = (M’ x I; A(F' x 1)) 15 ¢ (M'; AF) .
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Their composition, h : C™°(M;AF) — C~°(M';AF'), satisfies Hf — Hf =
hdx + dz/h. Thus Hy and H; also induce the same homomorphisms H*C~>°(F) —
H*C~°(F') and H*C~%°(F) — H*C~>®(F").

3.3. Witten’s perturbation on foliated manifolds

The operators acting on differential forms on foliated manifolds (Section [3.2)) are
extended now by taking Witten’s perturbations (Section [2.9)).

3.3.1. Perturbation vs bigrading. — Using the notation of Sections [2.9.1]
and writ n = mo +m with 9 € C®(M;A%) = C°(M;A'F) and
m € C°°(M;AM9). The condition dn = 0 means

(3.3.1) do,1mo = d1,0m = d1,0m0 + doim = 0.
Like in and , we get
d,=d,p1+d.10+de,—1, 6,=00-1+0;-10+0-21,
where
d.o1=dox+zmA, d:10=dio+zmA,
0,0-1=2001—2M0d, 0z—10=0_10—Z2M.

We will also use the perturbed versions of the operators (3.2.12)), denoted by D. o,
D, | and A, o, defined with the operators d ; 1—; and 0, ; ;1.

There is an obvious analog of for the operators d ; 1—;, giving rise to analo-
gous relations for the operators d, ; ;1. In particular, d, o ; and d, 9,1 define leafwise
differential complexes. By (2.9.7), the expressions (3.2.14) and (3.2.15) have direct
extensions to this setting as well.

Concerning uniform leafwise/transverse ellipticity, symmetry and being non-
negative, the perturbations d o1, 0.0,-1, D0, D, 1 and A, satisfy the same
properties as do.1, do,—1, Do, D1 and Ag.

By , on a foliated chart (U, x), we get

d1,0770 = d.%'/i A\ ®H&;770 = _®H6i770 A dLL'/i .
But, writing 1, = h; d2"7, by (3.3.1)),
d170770 = 7d0717’]1 = 7a;/hi dﬁC”j A de/i .
So
Oma,Mo = 8;’hi dz'"7 .
Then, since O gy, is a derivation, on C*°(M;AF),
(3.3.2) [© 06, M0 = (Om0,m0)A = 8 hi dx" A = (drhi)A = [dF, hi] .

(3)In JALKL20, Section 11], we took € C°°(M; A%1). However a general 7 is needed, and therefore
additional work is required in Sections and
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Thus (3.2.26]) has the following change in this setting:
[Omo,,d01] = 2z[dr, hy] .

3.3.2. Perturbation of the leafwise complex. — Consider also the perturbed
leafwise complex, dr , = dr + zno/A on C®°(M;AF), or on C®°(M;AF @ ANF), as
well as its formal adjoint d7 , = §7 — Zno, and the induced perturbations, Dr . of
Dy and Ar , of Ar. They satisfy the obvious versions of (3.2.8) and (3.2.29). If ¢

is bundle-like, they also satisfy the obvious versions of (3.2.11)) and (|3.2.30)).

3.3.3. Perturbation with two parameters. — For 2,2’ € C, the operators
Dy, and Ay, . are defined like D, ,» and A, . (Section 7 by using d, 0,1
and 0,/ o,—; instead of d, and d.-. In other words, Dy . .- is the component of D, .,
that preserves the transverse degree, and A, ., = D?

z,2""

They are uniformly leafwise
elliptic, with a symmetric leading symbol.

The operators D , ,» and Ag , .+ on C°(M;AF), or on C®°(M; AF @ ANF), are
defined like D, ,» and A, ., by using dr , and dr ./ instead of d, and §,/. They are
also uniformly leafwise elliptic, with a symmetric leading symbol. If g is bundle-like,
they also agree with D, ., and A, ./ via .

3.3.4. Perturbation vs foliated maps. — With the notation of Sections [2.9.2
andfor a smooth foliated map ¢ : (M, F) — (M, F), let F and n; (j =1,2) be
the lifts of F and 7; to M. Thus Mo = do1 F' = drF and 71 = di oF. Any lift ¢ of ¢ to
M is a foliated diffeomorphism of (M, F). The endomorphism ¢%* of (C>(M;A),d.,)
decomposes into the sum of bihomogeneous components ¢7 ; _;, like in Section
whose lifts to C>(M;A) are ez(dz*F_F)(ij,_i. Then ¢}, is an endomorphism of
(COO(M, A), dz,O,l)-

Similarly, the endomorphism ¢* of (C*°(M; AF @ ANF),dr) given by has
a perturbation ¢%, which is an endomorphism of (C*(M;AF @ ANF),dr ). We
have ¢7 (o = ¢, like in . By restriction using , we get an endomor-
phism ¢% of (C*°(M;AF),dr, ), which is a perturbation of the endomorphism ¢* of

(C=(M;AF),dF) given by (3.2.23).

3.4. Analysis on Riemannian foliations of bounded geometry

In this section, F is a Riemannian foliation on a possibly open manifold M,
equipped with a bundle-like metric g. We adopt the notation of Section [24] for
the metric concepts of M.

3.4.1. Riemannian foliations of bounded geometry. — The vector subbun-
dle H := TF+ C TM is called horizontal, giving rise to the concepts of horizontal
vectors, vector fields and frames. Consider the corresponding splitting 7 ob-
taining orthogonal projections V : TM — TF and H : TM — H. The O’Neill
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tensors [O’IN66] of the local Riemannian submersions defining F can be combined to
produce (1,2)-tensors T and A on M, defined by

TgF =HVyg(VF)+VVyr(HF),

for E, F € X(M). By [O’N66, Theorem 4], if M is connected, given g and any p € M,
the foliation F is determined by T, A and T,,F.

The adapted Riemannian connection V on M is defined by

VeF = VVg(VF)+ HVg(HF),

for B, F € (M) |ALT91]. It satisfies the following properties [ALKL14} Section 3],
[ALKL20, Section 5]: for V € X(F) and X € C*°(M; H),
(3.4.1) Vv Vv =Ty, Vx-Vx=Ayx,
(3.4.2) V(X,V])=VxV -TyX .
Moreover, the leaves are %—totally geodesic, the %—geodesics in the leaves are the
V7 -geodesics, and V and V have the same geodesics orthogonal to the leaves.

Let ' : U — X be a distinguished submersion around any p € M. Consider the
Riemannian metric on ¥ such that 2’ is a Riemannian submersion, and let V and exp
denote the corresponding Levi-Civita connection and exponential map of 3. For all
horizontal X,Y € X(U, F|y), we have VxY € X(U, F|y) and VxY = VY [O°’N66|
Lemma 1 (3)].

Let exp denote the exponential map of the geodesic spray of V (see e.g. [Poo81],

pp. 96-99]). The maps exp and exp restrict to diffeomorphisms of some open neigh-
borhoods, V' of 0 in T,M and V of 0 in Ty ()%, to some open neighborhoods, O
of pin M and O of z/(p) in ¥. Moreover we can suppose O C U, z’.(V) C V and
2'(0) C O, and we have 2’ exp = expa’, on V NT,F*. Let k = x, be the smooth
map of some neighborhood W of 0 in T, M to M defined by

Kp(X) = exp, (PrxVX)

where ¢ = exp,(HX), and Pux : T,M — TyM denotes the V-parallel transport
along the @—geodesic t— e)?;pp(tHX), 0 <t <1, which is orthogonal to the leaves.
Assume W C V and k(W) C O, and therefore 2/, (W) C V and 2’'x(W) C O. For
X, Y € W, we have X — Y € T,F if and only if x(X) and (YY) belong to the
same plaque in U [ALKL14, Proposition 6.1]. Moreover z’k(X) = expz’.(X) for
all X ¢ WNT,F L and & defines a diffeomorphism of some neighborhood of 0 in
T,M to some neighborhood of p in M with k., = id : Ty(TM) = T,M — T,M
[ALKL14, Proposition 6.2 and Corollary 6.3]. Consider identities Tp]:L = R" and
T,F = R’ given by the choice of horizontal and vertical orthonormal frames at p.
Then, for some open balls centered at the origin, B in R" and B” in R"’, we can
assume £ is a diffeomorphism of B’ x B” to some open neighborhood of p, obtaining
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foliated coordinates z = (a/,2”) := k= : U = k(B' x B") — B’ x B”, which
are said to be normal. As usual, g;; denotes the corresponding metric coefficients
and (¢g) = (g;;)~'. It is said that F has positive injectivity bi-radius if there are
normal foliated coordinates x, : U, — B’ x B" at every p € M such that the balls
B’ and B” are independent of p. Then F is said to be of bounded geometry if it
has positive injectivity bi-radius, and the functions |V™R|, |V™T| and |V™A| are
uniformly bounded on M for every m € Ny [ALKL147 Definition 8.1].

Ezxzample 3.4.1. — Let H be a connected Lie group, L < H a normal connected
Lie subgroup and I' C H a discrete subgroup. Then the projection of the translates
of L to T'\H are the leaves of a Riemannian foliation of bounded geometry with the
bundle-like metric induced by any left invariant metric on H.

The following chart characterization of bounded geometry for Riemannian folia-
tions is connected with another definition given by Sanguiao [San08|, Definition 1.7].

Theorem 3.4.2 (JALKL14, Theorem 8.4]). — With the above notation, F is of
bounded geometry if and only if there is a normal foliated chart x, : U, — B’ x
B" at every p € M, such that the balls B’ and B” are independent of p, and the
corresponding coefficients gi; and g, as family of smooth functions on B’ x B"
parametrized by i, j and p, lie in a bounded subset of the Fréchet space C*° (B’ x B").

For the rest of Section let us assume that F is of bounded geometry. Then M
and the disjoint union of the leaves are of bounded geometry [ALKL14, Remark 8.2
and Proposition 8.6]. Consider the foliated charts y, : V, — B and foliated charts
zp : U, — B’ x B” given by Theorems and Let 7o, 7, and r{ denote the
radii of the balls B, B’ and B”. For 0 < r < 1o, 0 < ' < rjand 0 <" < r{,
let R,, B/, and B!, denote the balls in R” and R™" centered at the origin with
radii 7, 7" and 7", respectively. If r is small enough, then V,, := a:gl(B,.) cuy,
for all p |ALKL14, Proposition 8.6]. On the other hand, if r' + r” < rg, then
Uppr prr 1= x;l (Bl, x B/ C V, for all p by the triangle inequality. Then the following

subsets are bounded in the corresponding Fréchet spaces [ALKL20, Proposition 5.6
and 5.7]:

(3.43) {{xpypl|p€M}CC’°°(B,]R”/><R"”),

{ypa, ' |[pe M} C C™(B], x B\, R") .
Let E be the Hermitian vector bundle of bounded geometry associated to the
principal O(n)-bundle of orthonormal frames on M and a unitary representation of

O(n) (Example[2.4.6). Since V on T'M is of bounded geometry, it follows from ({3.4.1))
that V is also of bounded geometry. Thus we get induced connections V and V of

bounded geometry on E (Example|2.4.10). By (3.4.1)), we also get that V can be used
instead of V to define equivalent versions of ||-||cm and (-, -),, in the spaces C} (M; E)

and H™(M; E). Since the subsets (3.4.3]) are bounded, if B’ and B” are small enough,




3.4. ANALYSIS ON RIEMANNIAN FOLIATIONS OF BOUNDED GEOMETRY 107

then we can use the coordinates (Up,x,) instead of coordinates of (V},,y,) to define
equivalent versions of ||||’C;rle and (-,-)/ . Similarly, given another bundle F like E,
we can use the coordinates (U,,z,) instead of (V,,y,) to describe Diff(}, (M; E, F)
by requiring that the local coefficients form a bounded subset of the Fréchet space
C>°(B' x B";C" ® C*), where [ and I’ are the ranks of F and F.

The condition of being leafwise differential operators of bounded geometry is
preserved by compositions, and by taking transposes and formal adjoints. They
form a filtered CS2(M)-submodule Dift,,(F; E,F) C Diff(F;E,F). The nota-
tion Diffy,(F; E) is used if F = F; this is a filtered subalgebra of Diff(F; E).
The concepts of uniform leafwise ellipticity for operators in Diff™"(F; E, F) can
be defined like uniform ellipticity (Section , and can be extended to leaf-
wise differential complexes of order m like in Section The same applies
to uniform transverse ellipticity for operators in Diff™(M; E, F) and for differen-
tial complexes of order m. If P € Diffﬁb(]-" ; E) is uniformly leafwise elliptic and
Qe Diﬂab(M ; E) is uniformly transversely elliptic, and both P and @ are symmetric
and non-negative, then H*(M; E) (s € R) can be described with the scalar product
(u,0)s = ((1+ P)* + (14 Q))u,v).

Let Xup(F) and Xup(M,F) denote the intersections of X, (M) with X(F) and
X(M, F), respectively. Then Diff,,(F) can be also described like in Section [2.1.7
using Cop (M) and X, (F) instead of C°°(M) and X(M), and Dift,,(F; E, F) can be
also described as the Cg¥ (M )-tensor product of Diffy, (F) and CS2(M; E, F).

3.4.2. Operators of bounded geometry on differential forms. — Since V and
V are of bounded geometry on T'M, the induced connections V and V on AM are of
bounded geometry as well (Example[2.4.10)). Using Examples and [2.4.10] we get
that H and TF are also of bounded geometry, and the restrictions of V to H and
TF are of bounded geometry [ALKLZO, Section 6]. Thus every A™Y M is of bounded
geometry (Example7 and V is of bounded geometry on A%V M (Example.
So this also applies to AF = A%* M.

By using V instead of V in the definitions of [llcm and (,-)s (m € Ng and s € R),
it follows that the spaces C (M; A) and H*(M; A) inherit the bigrading of AM, and
therefore O (M; A) and H¥°°(M; A) have an induced bigrading.

The following properties hold [ALKO1, Section 3], |ALKL20, Section 6]: the
canonical projections AM — A“YM, the operators %, xz or x; (under appropriate
orientability assumptions), and the operators of (3.2.6)), (3.2.10) and (3.2.12) are of
bounded geometry; the differential complexes do1 and dp,—; are uniformly leafwise
elliptic; the differential operators Dy and A( are symmetric and uniformly leafwise
elliptic; the differential operator D is uniformly transversely elliptic; and there is an
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endomorphism of bounded geometry, K of AM, such tha
(344) DL§07_1 + 507_1Dl = K(SO,_l + 507_1K .

Let us recall the definition of K and the proof of (3.4.4) because an extension will
be needed, which is slightly more general than the extension considered in [ALKL2O7
Section 11]. Let © : X(F) — C°(M; H" ® TF) be the differential operator defined
by ©xV = V([X,V]) (the expression (3.4.2))), which induces a differential operator
O : C°(M;AF) - C*(M;H* @ AF). If X € X(M,F)nC>(M;H), then Ox
on C®(M;AF) agrees with ©x on C*°(M;A%*) via (3.2.3) (Section [3.2.12)). A
homomorphism = : AF — H* ® AF can be locally defined by

Sx = ()" [0, kxler
on C®(M;A"F), for any X € C>°(M; H), where xr is defined with any choice of
local orientation of F. Using (3.2.3)), its tensor product with the identity on AH is
a homomorphism = : AM — H* @ AM. Using the notation of Section [3.2.13| on any
normal foliated chart (U, ), the local expression

K = dx"A EHB;

defines an endomorphism of AM. A computation using (3.2.15)), (3.2.26)), (3.2.30)
and (3.2.32) gives
(3.4.5) d1,000,—1 + do,—1d1,0 = Kdog,—1 + 60,1/,

yielding (3.4.4) by the analog of (3.2.7)) for the operators d_;;_1.

3.4.3. Foliated maps of bounded geometry. — For a = 1,2, let F, be a Rie-
mannian foliation of bounded geometry on a manifold M, with a bundle-like met-

“w.

ric. To refer to each F,, the subscript “a” is added to the notation used in Sec-
tion Mgy Ny Yap * Vap = Bas Tap  Uap — By X By, 140, 740 and 7,
Va,pr and Ug p . Like in the case of uniform spaces and differential operators,
in the definition of bounded geometry for maps M; — Ms,, we can replace the
charts (Vip,v1,p) and (Vo 4(p), Y2,6(p))> and sets Bi(p,r) with the charts (Uyp, 71,)
and (Uszg(p), T2,4(p)), and sets Uy, . Let CFf(My, F1; Ma, F2) be the subset
of C°(My,F1; M, F3) consisting of foliated maps of bounded geometry. For any
m € Ny and ¢ € CS (M, Fr; Ma, F), using the versions of || - ”/CL'{, and (-, )/ defined
with the foliated charts (Up, ;) in the case where m < oo (Section @ , we get
the following versions of (2.4.6) and (2.4.7) |[ALKL20, Section 8]: (3-2:22) induces
continuous homomorphisms,

and, if ¢ is uniformly metrically proper,

(3.4.7) ¢* : H™(My; AFy @ ANFy) — H™ (My; AF, @ ANFy) .

(“1n [ALKL20, Eq. (55)], Do should be §o,—1, like in [ALKO1, Proposition 3.1].
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In particular, we get if ¢ is a foliated diffeomorphism with ¢*! of bounded
geometry. In this case, it can be continuously extended to Sobolev spaces of order
—m using the version of the second equality of for open manifolds,
and (3.2.16)), like in Section [2.4.6]

3.4.4. Leafwise functional calculus. — Consider the notation of Sections B.4.1]
and Like in (2.9.10) and (2.9.11]), the hyperbolic equation

(3.4.8) Oray = iDgay , g = a,

has a unique solution on any open subset of M and for ¢ in any interval containing
zero, which satisfies [Che73| Theorem 1.3], [Roe87, Proposition 1.2]

(3.4.9) supp oy C Penz(suppa, |t]) .

The operators Dy and Ag, with domain CS°(M;A), are essentially self-adjoint in
L?(M;A) [Che73| Theorem 2.2], and their self-adjoint extensions are also denoted
by Dg and Ag. The functional calculus of Dy, given by the spectral theorem, assigns
a (bounded) operator ¢(Dg) to every (bounded) measurable function ¢ on R; in
particular, we have a unitary operator e**”° and a bounded self-adjoint operator
e t%0 on L?(M;A). The notation IIy = e~>?0 is used for the orthogonal projection
of L2(M; A) to ker Dy = ker Ag in L?(M;A).

If o« € C°(M; A), the solution of is given by oy = e*Poq. For every m € Ny,
there is some C,, > 0 such that Section IV.2], [Roe87, Proposition 1.4],
Proposition 7.1]

(3.4.10) leP0 |, < e“m |||
for all v € C°(M; A).
On the other hand, like in (2.9.12), for ¥ € S, we get
1 [t

(3.4.11) (D) = — D(€)ePo de .

2r J_

Taking ¢ € A (Section [2.9.8)), it follows from (2.9.15)), (3.4.10) and (3.4.11]) that, for

every m € Z U {£o0}, the functional calculus ¢ — (Dy) restricts to a continuous
homomorphisms of C[z]-modules and algebras [Roe87, Proposition 4.1], [ALKL20
Proposition 7.2],

(3.4.12) A= End(H™(M;A)), A— End(H®(M;A)).

By taking coefficients in o(M) and transposition (see Section [3.2.9), ¥ — 1(Dy) also
induces continuous homomorphisms of C[z]-modules and algebras,

(3.4.13) A— End(H™™(M;A)), A— End(H™>(M;A)) .
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3.4.5. Leafwise Hodge decomposition. — According to 7 the operator
e~tA0 (t > 0) restricts to a continuous endomorphism of H>(M;A). As pointed out
in [San08|, using the bounded geometry and uniform leafwise/transverse ellipticity
of the operators considered in Section and applying (3.4.4) and (3.4.12)), the
arguments of [ALKOI} can be adapted to show the following, where A is considered
on H*(M;A) [San08], [ALKL20, Theorem 7.3 and Corollary 7.4]: there is a TVS-
direct-sum decomposition,

(3414) HOO(M,A) = keer @imdml EBim507_1 5
whose terms are orthogonal in L?(M;A); the map
(3.4.15) [0,00] x H®(M;A) — H®(M;A), (t,a)— e Doq,

is well-defined and continuous; and Iy : H*(M;A) — kerAy induces a TVS-
isomorphism

(3.4.16) H(H>®(M;A),do1) = ker Ag

whose inverse is induced by ker Ay «— H*°(M;A). The analogs of (3.4.14)—(3.4.16)
with H~=°°(M; A) are also true.

By and , we can consider (H*°(M; AF),dr) as a topological subcom-
plex of (H*(M;A),dp,1), and the notation H*H*(F) and H*H>(F) is used for its
cohomology and reduced cohomology. By , 0r on H>®(M;AF) is also given
by dop,—1. Thus we get the operators Dy = dr+6r and Ar = Di— =d0rdr+dFdr on
H>(M;AF), which are essentially self-adjoint in L2(M;AF). Let Iz = e~*°A* be
the orthogonal projection to ker D = ker Az in L?(M;AF). Then 7
have obvious versions with Dz, Ax, H*H*>(F) and I [San08§], [ALKL20, Sec-
tion 7].

3.4.6. A class of smoothing operators. — Suppose F is of codimension one for
the sake of simplicity. (The case of codimension > 1 can be treated like in [ALKO8].)
Assume also that M is endowed with a bundle-like metric g so that F is of bounded
geometry. Let ¢ : M xR — M be a foliated flow of R-local bounded geometry, whose
infinitesimal generator is Z € X,p(M,F) (Section . Assume infys [Z| > 0; in
particular, the orbits of ¢ are transverse to the leaves. Given f € C°(R), consider
the following operators on H~°°(M; AF). For every ¢ € A, the operator

(3.4.17) P= /R 6" F(1) dt (D)

is defined by the version of (3.4.13) for D and the version of ([3.4.7) for ¢** on
H=°(M;AF). The subscripts “¢” or “f” may be added to the notation of P if

needed, or the subscript “u” in the case of functions ¥, € A depending on a parameter

uwz

u. For example, we may take ), (z) = e~ and the corresponding operators P,
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(u>0) on H *°(M;AF). Let also
Py :/d)t*f(t) dtTx .
R

The following properties hold [ALKL2O Propositions 9.1, 9.4 and 9.6 and Corollar-
ies 9.2, 9.3 and 9.5]: every Py ¢, given by (3.4.17] m, is smoothing, obtaining continuous

bilinear mapl

AXCE(R) = LH™>(M; AF), H*(M; AF)) . (¢, f) = Py.g
(3.4.18) {A x CP(R) = CR(MBEAFR(AF* @ QM)), (¥, f)— Kp, , ;
P, is smoothing, with

lim P, =Py in L(H *(M;AF), H®(M;A\F)),

(3.4.19) e . )
lim Kp, =Kp_ in CX(M*AFX(AF* @ QM));
uU—r 00
and, for any compact I C R containing supp f and m,m’ € Ng m < m’ in Ny7, there are
some C,C’ > 0 and N € Ny, depending on m, m’ and I, such that
(3.4.20) 1Py pllmm < Cllellacn 1 fllen -

3.4.7. Description of some Schwartz kernels. — In Section Z defines
the structure of a transversely complete R—Lie foliation on F, and therefore we can
consider also the notation of Section Then the lift g of g to M is a bundle-like
metric of F = 7*F, and Z € %ub(M f) Assume D.Z =8, € X(R) and q[gt(x) = t+ux;
hence ¢! preserves every leaf of F if and only if ¢ € Hol F (Section [3.

For any v € Aand f € C*P(R), we have the smoothing operator P given
by (3.4.17), and a similar smoothing operator P is defined by using ¢ and F instead
of ¢ and }" We are going to describe their Schwartz kernels.

Let & = Hol(M, F) and & = Hol(M F), Whose source and range maps are denoted
by s,7:® — M and 5,7 : & — M (Section [3.1.4)). Since the leaves of F and F have
trivial holonomy groups, the smooth immersions (7’, s):® — M2and (7,3) : & — M>
are injective, with images Rr and Rz. Via these injections, the restriction m X 7 :
Rz — R corresponds to the Lie groupoid homomorphism me := Hol(r) : &= &
(Section 7 which is a covering map with Aut(rgs) = I'. In fact, since Fis
defined by the fiber bundle D, we get that R z is a regular submanifold of M 2 and
(7,3) : & — R 7 is a diffeomorphism. We may write & = R and 6= Rz.

Consider the C vector bundles, S = r*AF ©@ s*(AF ®@ QF) over & and S =
P AF @ 5*(AF @ QF) over &. Note that S = 7S, and any k € C*(8;9) lifts via

(®)In [ALKL20, Propositions 9.1 and Corollary 9.2], only the continuous dependence on ) € A is
indicated, but the additional continuous dependence on f € C2°(R) is given by |ALKL20} Propo-

sition 9.6], indicated in (3.4.20).
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Te to a section k € C‘X’(ES; §) Since 7 restricts to diffeomorphisms of the leaves of
F to the leaves of F, it follows that k € C’g"(@; S) if and only if k € Ce(&;9).

For any ¢ € R, the collection of Schwartz kernels kr := Ky p,), for all leaves L
of F, defines a section k = ky, of S. This also applies to the operators (D5 ) on the
leaves L of .7?, obtaining a section k = l;;w of S.

If ) € C°(R), then ky € C5e(®;5), and the global action of ky on C°(M;AF)
(Section agrees with the restriction of the operator ¥(Dz) on H>®(M;AF)
defined by the version of for Dy |[ALKL20, Proposition 10.1]. Precisely, if
supp) C [~ R, R] for some R > 0, then suppk, C Penr(6®) R) by ([2.9.13), and
therefore supp ¢)(Dx)a C Penx(supp a, R) for all « € H*®(M; AF) by R

Let A = D*dz = dx, which is an 1 invariant transverse volume form of F defining
the same transverse orientation as Z. Since A is I-invariant by the h-equivariance
of D, it defines a transverse volume form A of F, which defines the same transverse
orientation as Z. These A and A define invariant transverse densities |A| and |A| of
F and F.

Let p,G € M over p,q € M, and write t5 4 = D(§) — D(p). If ¢ € A, the

(34.21)  Kp(p,q) =Y Ts ¢'mi " K(T,¢'777 ") (5),G) f(tp.q — (7)) [Al(g) ,
yer

defining a convergent series in C;’E(M 2. §) |JALKL20, Proposition 10.3]. Here, the
identity S 4) = S(p,q) is used, and the leafwise part of the density of Kp(-,q) at ¢ is
given by the density of k(-,q) at q.

3.5. Witten’s operators on Riemannian foliations of bounded geometry

Consider the notation of Section with our assumption that F is Rieman-
nian of bounded geometry. Suppose also that n € CS(M;A'), and therefore 7y €
Cx(M;A%Y) = CX(M;AYVF) and n; € C2(M;AM?). Thus the operators d ;1—i,
024i-1, D20, D, 1 and A, ¢ are of bounded geometry. Arguing like in , we get

(di.0m00+1m0dro)(fryda"" A da'?)
= (K Mo~ + Mo K)(fIJ daz""T A d:L'/J)
+ (_1)(n”+1)|1\+n”(*}_ [@Hag’no/\] *r (fIJ dm”l)) Adz' A de"

(6)There is an error in the statement of [ALKL20, Proposition 10.3]: it is written f(tp,q) instead of
f(ts,g — h(7)). However, its proof shows the expression given in (3.4.21)).
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Using and , it follows that
(dr.omoa+moadio — Knoo—nos K)(fryda™ A dx'")
= (—1)(”//“)””””(*}- [dF, hi] %7 (froda"")) A da' A da"’
= — (=) (67 (h; frydz"")) A da' A dz"
+ (—=1)1l (67(frydz"")) A Ada"’

= —8o—1(m A froda"" nda") — i A o1 (frgdz"T Ada")
This shows that
(3.5.1) diomos+moadyo = Knos+mas K —dg,—1mA—mAd 1.
Combining and , and using that ngJ is an anti-derivation, we compute

d21,002,0,—1 + 02,0-1dz,1,0
= Kdg,—1+ 00,1 — Z(K noas + nmoa K — 6,1 mA —mAdop,—1)
+ 2(mASo,—1 + do,—1 mA) + |22 (M A D03+ nosmA)
=K0,0,-1+ 05015 + 2Rz (mAdo,—1 + do,—1mA)
— 2Rz 2(771/\ Mo + 1o 771/\)
=K.0,0,-1+ 001K,

where K, = K + 2Rz A is an endomorphism of AM of bounded geometry. Using
also the analog of (3.2.7) for the operators d ; 1—;, it follows tha

(3.5.2) D.10.0,-1+0.0-1D.1 =K. 0.0-1+0d,0-1K. .

Using this key equality, we get straightforward generalizations of all results in Sec-
tions and[3.4.5/for d. 0,1, 0.,0,-1, Dz,0 and A, o, which also have obvious versions
for dr ., 0., Dr . and Ar .. Let Iy . and IIr , denote the corresponding versions
of IIy and Il £.

Let ¢ : (M, F) — (M,F) be a smooth foliated map of bounded geometry. Since
n € Cx(M;A), we get versions of the continuity of and for ¢%, assuming
¢ is uniformly metrically proper for the second one (Section . In particular, this
applies to any foliated flow of R-local bounded geometry (Section [2.4.7), ¢ = {¢'}
on (M, F), using its unique lift ¢ = {¢'} to M. Then the definitions and results of
Sections and have obvious twisted extensions using ¢%*, Dr . and IIf ..
The subscript “z” may be added to the notation P, P,, P, k, k, k, and k, in this
setting.

(M) The equality
d_21,002,0—1+020-1d-21,0 =Ké,0,-1+02,0-1K
is also true, but this does not fit the analog of (3.2.7)).
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Recall that Dy, ., and Ay, . are uniformly leafwise elliptic with a symmetric
leading symbol (Section . Moreover, they are of bounded geometry. Then the
obvious version of with Dy . .- has a unique solution, which satisfies the obvious
analogs of (3.4.9) and (3.4.10). Thus ¢)(Dy. ;) (¥ € S) can be defined by the analog
of , obtaining corresponding analogs of (3.4.12)) and (3.4.13)). Then, using ¢'*
and Dr . ./, we get obvious extensions of the definitions and results of Sections
and except for the statements involving Il,, and P.,. The double subscript
“z,2"” may be added to the notation P, P,, k, l::, k. and k,, in this setting. However,
if 2 # 2 and n # 0, Dy, ,» and Ag , . are not symmetric, and therefore the results
of Section [3.4.5] cannot be generalized for these operators.




CHAPTER 4

FOLIATIONS WITH SIMPLE FOLIATED FLOWS

4.1. Simple foliated flows

4.1.1. Simple flows. — Let ¢ : Q@ — M be a smooth local flow, where {2 is an open
neighborhood of M x {0} in M x R. Let Z € X(M) be the infinitesimal generator.
For pe M and t € R, let

Q={teR[(pt)eQ}, Q'={qeM|(qt)ec},
and let ¢! = ¢(-,t) : O — M. The fixed point set is
Fix(¢) = {p € M | p € Fix(¢") Vt € Q, close enough to 0},

which equals the zero set of Z. Recall that a fixed point p of ¢ is called simple (or
transverse) if it is a simple fixed point of ¢' for all ¢ # 0 close enough to 0 in €,
(see Section . In this case, the associated number €,(¢"), defined in ,
is independent of ¢t > 0 close enough to 0 in €2, and is denoted by €, = €,(¢). If
the fixed points of ¢ are simple, then Fix(¢) is a discrete subset of M. For a fixed
point p, we can write ¢! = e!4 on T,,M for some endomorphism A of T,M. Then p
is simple just when A is an automorphism.

Now, assume Z is complete, and therefore we can take QO = M xR. On M \ Fix(¢),
let N¢ denote the normal bundle of the foliation defined by the orbits of ¢; i.e.,
Np¢ = T,M/RZ(p) for every p € M \ Fix(¢). Let C = C(¢) denote the set of closed
orbits of ¢ (without including fixed points). For any ¢ € C, let ¢(c) denote its minimum
positive period. For every subset I C R, let

Cr=Ci(¢)={ceC|lc)el}.
The nonzero periods of all closed orbits form the set
P=P(¢)={kl(c)|ceC, keZ"}.

Forall c € C, k € Z and p € ¢, let ¢" . Np¢ — Npé be the homomorphism
induced by d){fl(c) :TyM — T,M. Recall that c is called simple when the eigenvalues
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of (bff(c) : Npy¢ — Np¢ are different from 1 for some (and therefore for all) p € ¢ and
k € Z*; in this case, let
ec(k) = ec(k, ¢) = signdet (id =45 : Ny — N,¢) € {1} .

Every simple closed orbit ¢, there are neighborhoods, V' where ¢ in M and I of ¢(¢) in
R, such that c is the only closed orbit whose first positive period is in I, and moreover
that V N Fix(¢) = 0.

The flow ¢ is called simple if all of its fixed points and closed orbits are simple.
If moreover M is closed, then Fix(¢) is finite, and C;(¢) are finite for all compact
I C R. Therefore P(¢) is a discrete subset of R.

4.1.2. Transversely simple foliated flows. — Let F be a transversely oriented
smooth foliation of codimension one on a closed manifold M. We assume M is
closed for the sake of simplicity, but the concepts and properties recalled here also
have obvious versions when M is a manifold with boundary, where both F and ¢ are
tangent to M. Some generalizations to non-compact manifolds will be also indicated
and needed.

Let ¢ = {¢'} be a foliated flow on M and let Z € X(M,F) be its infinitesimal
generator (Section . Let M° be the union of leaves preserved by ¢, and let
M!' = M\ M°. The ¢-invariant set M is compact because it is the zero set of
Z € X(M,F) C C®(M;NF). Therefore the ¢-invariant set M is open in M.
Moreover ¢ is transverse to the leaves on M. So there is a canonical isomorphism
N¢ = TF on M', and F is transitive at every point of M?' (Section [3.1.9); in
particular, the leaves in M! have no holonomy. Consider the notation of Sections|3.1.2
and using the notation (xy,yx) instead of (z},,z)) because codim F = 1.
Let ¢ be the local flow on X generated by Z € X(X,H). Via the homeomorphism
M/F — ¥/H induced by the coordinates xj, : Up — X, the leaves preserved by ¢
correspond to the H-orbits preserved by ¢, which indeed form Fix(¢$) because the
H-orbits are totally disconnected. Z is H-invariant, and ¢ is H-equivariant in an
obvious sense.

Since dim ¥ = 1, for all simple p € Fix(¢), there is some s = s € R* such
that ¢! = e** on T;X = R. By the H-equivariance of ¢, we get »; = 3¢ for all
g € H(p) C Fix(¢). Thus we can use the notation s, = s if H(p) corresponds to a
leaf L.

The leaves preserved by ¢ that correspond to simple fixed points of ¢ are said to
be transversely simple. If all leaves preserved by ¢ are transversely simple, then ¢ (or
7) is called transversely simple; if moreover its closed orbits are simple, then ¢ (or
Z) is said to be weakly simple. If ¢ is weakly simple, every closed orbit is contained
either in M° or in M!, and its (possibly non-simple) fixed points belong to M?.

Suppose ¢ is transversely simple unless otherwise stated. Then M? is a finite
union of compact leaves because every fixed point of ¢ is isolated. For any point p in
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a preserved leaf L, there are foliated coordinates (z,y) : U — ¥ x B, where ¥ C R is
an open interval containing 0, so that [ALKL22, Lemma 3.2]

(4.1.1) x(p) =0, Z=sx520,, ¢'(z)=e""la.

Hence the following properties hold [ALKL227 Propositions 3.4 and 3.5]:

(C) F is almost without holonomy with finitely many leaves with holonomy.
(D) The holonomy groups of the compact leaves are groups of germs at 0 of homo-
theties on R, for some choice of {Uy, (zk, yx)}

According to and Remark we can consider Hector’s description with
this choice of M? and M*, even though there may be leaves without holonomy in M?.
With the notation of Section since 7 : (M;,F;) — (M, F) is a foliated local
embedding and 7 : 9M; — MY a local diffeomorphism, any A € X(M, M°) has a lift
A; € Xp(M;). Moreover A; € X(M;,Fy) if A € X(M,F). Thus any (foliated) flow
¢ ={¢'} on (M, F) preserving M° can be lifted via 7 to a (foliated) flow ¢; = {¢}}
on (M, Fy) preserving OM;. If a foliated flow ¢ on (M, F) is weakly simple, then (; is
also weakly simple (on the foliated manifold with boundary (M;, F;)). The restrictions
Al|Ml = A|M11 and CZ‘J\Z, = C|Ml1 are also denoted by A; and (;. In particular, this
notation applies to Z and ¢, obtaining Z; and ¢; = {¢}}, which induces the structure
of a complete R-Lie foliation on ]-'ll. According to Section we consider the
transverse orientation of every F; so that = : (M;, F;) — (M, F) is compatible with
the transverse orientations. However, we will consider the transverse orientation of
every F;' defined by Z;. Now Hector’s description has the following more specific
cases [ALKL22, Section 3]:

(c) F is given by a fiber bundle M — S* with connected fibers.

(d) F is an R-Lie foliation with dense leaves.

(e) M° # 0, HolL = Z for all leaves L C M°, and the foliations F;' are given by
fiber bundles M}' — S! with connected fibers.

(f) M° # 0, Hol L is a finitely generated abelian group of rank > 1 for all leaves
L c M°, and all foliations F}' are minimal R-Lie foliations.

The case can be considered as a model with empty boundary, avoiding the use
of models [(0)} or it can be cut into models [(0)] by adding a finite number of leaves
without holonomy to M°. Except in this case, M! is just the transitive point set of
F, and X(M, F) spans X(M, M") as C°°(M)-module by (£.1.1).

For every leaf L C MY, its holonomy homomorphism h = h;, is induced by a ho-
momorphism h = hy, : 1 L — Diffeo™ (R, 0) whose image consists of homotheties; i.e.,
writing ' = T'y, = m L/ ker h, h induces a monomorphism h = hy, : ' — Diffeo™ (R,0),
v + hoy, with h,(2z) = a,z for some monomorphism I' = R = (R*, x), v — a, =
ar,~. The restriction of F to some neighborhood of L can be described as the suspen-
sion of h (Section [3.1.2)); its definition for this case will be recalled in Section
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On the other hand, every }-11 has a Fedida’s description, which will be better analyzed
in Section .34

Remark 4.1.1. — The concepts recalled in this subsection do not need the com-
pactness of M. Only the completeness of Z and compactness of M° are needed to
extend the indicated notions and properties.

4.1.3. Existence of simple foliated flows. — For a transversely oriented folia-
tion F of codimension one on a closed foliated manifold M, the following conditions
are equivalent [ALKL22, Propositions 6.1 and 6.3 and Theorem 6.9]:

(g) It satisfies and [(D)]

(h) There is a transversely simple foliated flow.
(i) There is a weakly simple foliated flow.
(j) There is a simple foliated flow.

Moreover the families of foliated flows ¢ satisfying or induce the same
family of local flows ¢ on . In the case it can be also assumed that M° C Fix(¢)
and there are no closed orbits in some neighborhood of M?, obtaining the same family
of local flows ¢ on X.

A more precise description of the foliations satisfying these equivalent conditions
is given in [ALKL22, Theorem 6.9], but it will not be needed here.

4.2. Case of suspension foliations

4.2.1. Suspension foliations defined with homotheties. — For a pointed con-
nected closed manifold (L, p), let h : 71 L = m (L, p) — Diffeo™ (R, 0) be a homomor-
phism whose image consists of homotheties, like in Section Therefore, writing
I' = m L/ ker h, h induces a monomorphism h : I' — Diffeo™ (R, 0), v — h., where
h+(z) = ayx for some monomorphism I' — R, v + a,; in particular, I' is abelian,
torsion free and finitely generated. Let m = 7, : (Z p) — (L, p) be the pointed regular
covering map with 7L = (L, ) = ker h, and therefore Aut(r) = I'. Like in Sec-
tions and |2 the canonical left action of every v € T" on L is denoted by T’, or
Uy — 7.y, and write [y] 7(g) for g € L. For the dlagonal left D-action on M = R x L
v-(z,9) = (ayz,v-7), the orbit space M = F\M is called a suspension manifold. The
canonical projection s : M — M is a T-cover with deck transformations h, x T,
(y €T). Write [J: gl = map(z,g) for (z,7) € M.

Let @ : M — L denote the second-factor projection, and let F be the foliation on M
with leaves {z} x L (z € R). Since @ is [-equivariant, we get an induced fiber bundle
map @ : M — L, defined by @([z,§]) = 7(§). On the other hand, since F and its
canonical transverse orientation are I'-invariant, we also get an induced transversely
oriented foliation F on M, called a suspension foliation, which is transverse to the
fibers of . The typical fiber of w is R because the corresponding fibers of @ and w
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can be identified via 7). Since 0 is fixed by the I-action on R, the leaf {0} x L = L
of F is D-invariant, and ma ({0} X E) = L is a compact leaf of F. The other leaves
of F are diffeomorphic via s to the corresponding leaves of F because the elements
of T'\ {e} have no fixed points in R*. Given any p € L with 7(j) = p € L, the fiber
w p) = @ (p) = R x {p} = R is a global transversal of F through p = [0, 7.
Note that the holonomy homomorphism h : mL — HolL is induced by h, and
therefore LM = (Sectlon . The standard orientation of R induces a transverse
orientation of .7-" which is I'-invariant because the image of h consists of orientation
preserving homotheties, giving rise to a transverse orientation of . Let H C T M and
H C TM be the linear subbundles of vectors tangent to the fibers of w and w, Wthh
induce blgradlngs of AM and AM satisfying da, 1 =0 (Sectlons and [3 . For
D € M and p € M, we will use the identities A F = Aw(p)L and ApF = Aw(p)L
induced by @ and w.

4.2.2. Transversely simple flows on suspension foliations. — Let ¢ = {¢'}
be any transversely simple foliated flow on M and let Z € Xeom(M,F) be its in-
finitesimal generator Let us recall the notation of Section in this case (see also
Section . Without loss of generality, we can assume M o = ({0} x L) =L
for the descrlptlon around a compact leaf. By (4.1.1] -, we can suppose the lifts of ¢
and Z to M denoted by ¢ and Z are of the form

(42.1) (0. 9) = (2, 84(9) . Z = (s, Zs) .

for some s € R*, and smooth families, { ¢’ | #,¢t € R} C Diffeo(L) and { Z, | z €
R} C X( ), with ¢O id7. In particular, Zy and ¢} are the restrictions of Z and
¢' to L = {0} x L. Thus Zy is T-invariant and ¢o = {¢}} is M-equivariant, inducing
the restrictions of Z and ¢’ to L, denoted by Zy and ¢y = {¢}}; we may also use

the notation Z;, = Zy and ¢;, = {¢}} = {¢h}. The I-equivariance of ¢* and the
I-invariance of Z mean that, for all v € I and z,t € R,

(4.2.2) Tyl =, Ty, TyuZo=Za,w -

The only preserved leaf of QS, {0} x L= L is transversely simple. Now M MO = {0} x L
and M* = M\ M° = R* x L, which has two connected components, M! =R*xL. In

this case, Mi = (R*u{o0}) x L, with Mi = Mi and aMi = M° = L. The connected
components of M = M\ M° are ML = my (ML), and we have My = mp(Ms),
with Mi = M} and OMy = M° = L. The restriction M Mi — M4 will
be denoted by M- The foliations ]-"i = .Fi on Mi = Mi and fi on Mi are
restrictions of F, and the foliations Fi = Fi on Mi = Mi and F3 on My are
restrictions of F. We have M = M, LU M_ (resp., M = M, U M_), equipped with
the combination F (rebp F) of Fy and F_ (resp., F4 and F_ ) The restriction of
F to M is denoted by F. Now the map w : M — M (resp., . M — M) is the
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combination of the inclusion maps My < M (resp., ]T/.fi — M ). The combination
of the maps w7, is a covering projection mas : M — M. Moreover @ (resp., @)
restricts to global collar nelghborhoods of the boundaries, wy : My — OMy = L
(resp., @y : Mi — 8Mi = L) whose combination is a global collar nelghborhood
of the boundary, w: M — OM = LUL (resp., @ : M — oM =LU L). Like in
Sectlon 1} for p € Mi and p € M, we have canonical identities A; ]'—i = Awi(p)L
and A ]::I: = Awi(p)L.

Recall also that any A € X(M,F), with foliated flow ¢ = {¢'}, induces vector
fields Ay € X(My, Fy) C Xp(My), with foliated flows ¢+ = {¢%}, whose restrictions
to My = M31 are denoted in the same way. In particular, we get Z. with flow
¢+ = {#'. }. The same kind of notation is used for vector fields and flows induced by
elements of .’fcom(M F ). Then fi = —7:i on Mi = Mi is a transversely complete
R-Lie foliation with the structure defined by Z4 € Xcom (M1, FL) (see Remark-.
In its Fedida’s description (Section7 th is the holonomy covering of M1, whose
group of deck transformations is also I', the developing map Dy : ]T/fj[ — R is given
by Di(z,y) = » 'ln|z| =: t, the holonomy monomorphism Ay : I' — R is given
by hi(y) = > 'Ina,, and therefore Hol Fi = {3 'Ina, | v € I'}. Thus Zy €
%Com(Mi,fi) is Dy-projectable and (Di)*Zi = O;. Furthermore ¢!, preserves
every leaf of F if and only if t = hy(y) = 5 !Ina, for some v € I' (Section .

Let £ = {€'} be the weakly simple foliated flow on (M , .7?)7 with infinitesimal
generator is Y € Z{Com(]/\\/f, j-:), given by

(4.2.3) & (x,7) = (e*a,§), Y = (328,,0) .

We have Y = Z = 20y, Fix(é) = L, and the orbits of & on My are the fibers
of the restriction & : M + — L. Since é’f is I'-equivariant and Y is [-invariant, they
project to M obtaining a weakly simple foliated flow £ on (M, F) and its infinitesimal
generator Y € X(M,F). We have Y = Z = sx0,, Fix(¢!) = L, and the orbits of ¢!
on Mi are the fibers of the restriction o : ]\Zfi — L.

On the one hand, we consider the restriction of the transverse orientations of F
and F to ]'—i and F4, and, on the other hand, we consider the transverse orientations
of }'i and fi induced by Zi and Zi7 which corresponds to the standard orientation

of R by D+ (Sections [3.1.12 and |4 . They agree on M_}_ and M} (resp., M! and

M1) if and only if £ > 0 (resp., k < 0).

4.2.3. A defining form of 7. — For k = rank T, fix generators v1,...,y; of I'. Let
¢; be a piecewise smooth loop in L based at p such that [¢;] € m1(L, p) projects to ~;,
and let a; = a.,. By the universal coefficients and Hurewicz theorems, there are closed
1-forms B1,..., 0, on L such that §;; = ([B],[c fo ¢;Bi and ([By], ker h) = 0.
Every 7*(3; is exact on L. Let n=—In(a;)f1—-— ln(ak) By and 71 = 7*n = dF for
some F € C°°(L). Note that h(I') 2 T is the group of periods of 7. With some abuse
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of notation, write also F' = w*F € C*® (M), and
n=w'neC®M;A")=C®(M;A'F),
fi= @i =nln =dF € C°(M;A%') = C®°(M; A'F) ,

using (3.2.5). Thus 1 = ng in this case, with the notation of Section It is easy
to check that

(4.2.4) T'F=F —lna,

for all v € T, yielding Te" = a;'e”. It easily follows that the 1-form & = |5|~'e” dx
on M is T-invariant. (Recall that the T-action on M is given by v-(z, y) (ayz,v-9).)
Furthermore T'F = ker @ and & defines the transverse orientation of F. Therefore &
induces a 1-form w on M satisfying T'F = ker w and defining the transverse orientation
of F. On the other hand, it is easy to compute dw = 7 A @, yleldlng dw =nANw.
The vector field X = (|s|e F0,,0) = |se=F0, € C(M;H) is determined by
©(X) = 1. Thus X is I-invariant and induces the vector field X € C>(M; H)
satisfying w(X) = 1. So X and X also define the transverse orientations of F and F.
On the other hand, &(Z) = sign(s)e”z by [#21), yielding sign©(Z4) = +sign(),
and therefore
signw(Z4) = £ sign(s) .

So the transverse orientation of F} is also defined by the restrictions to M} of
+sign(s¢) X or +sign(s)w.

4.2.4. A defining function of M°. — Let p = ez, which is a defining function
of M° = L on the whole of M. Moreover j is I'-invariant by (4.2.4)), and therefore it
induces a defining function p of M° = L on the whole of M. It is easy to compute

dp = e" (a7] + dx) = pij + | 5|0,

yielding

(4.2.5) dp = pn + [x|w,
and therefore

(4.2.6) dpohw=pnhw.
Since £*5 = > by ([@:2:3), we also get

(4.2.7) " p=e"p.

The global tubular neighborhood % : M — L = MO can be trivialized with 0,
obtaining M= Rj x L= besides M= R, x L=. Thus the global tubular neighborhood
w:M— L= M0 can be trivialized with p, obtaining M = R, X L. According to
Section we have corresponding vector fields 9,,0; € %(M) and 0, € X¥(M), and
operators 0y, 0; € Diffl(Z\Aj; A) and 0, € Diffl(M; A). We compute

15|05 = |4]05(x) B = |52|05(e T p) By = |52le T 0, = X € X(M) .
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It easily follows that
|5|0; = |x|e~ T 8, € Diff*(M;A) .
But, with the notation of Section [3:2.12] it is easy to check that
8, = Oy, € Diff'(M; A) .
Since X € C’OO(M; ﬁ) and dy oF = 0, we can apply on C’°°(]\7; A) to get
O = |xle TO,, = |x]e T8, = ||, € Diff* (M; A) .

So, by derivation formula of © ¢, (3.2.26) and (3.2.27), and since 9, € %(ZTJ, F)n
C>®(M;H) and Lgn =0,

[do,1,© 5] = |5|[do,1, e ©a,] = ||[do,1, e ]O,
= —|xle FijnOy, = —NO5 = —O 5 A .
Hence |»#]0, = X € X(M), and
(4.2.8) |%]0, = ©x € Diff' (M; A),
(4.2.9) [Ox,do1] =nAOx = Ox nA € Diff (M;A) .

Note also that © 3@ = 0, and therefore © xw = 0. Moreover, ©xn = 0.

For any e > 0, the restriction @ : T, := {|j| < ¢} — L is a smaller tubular
neighborhood of L in M which induces a smaller tubular neighborhood @ : T¢
{lol <e} = Lof Lin M. Let T} =T.nM", TL, =T.n ML, T} = T. N M* and
T}, =T.nM}.

4.2.5. A boundary-defining function of M, . — Now consider the boundary-
defining function gy = ef'|x| = +p = || on M., which is T-invariant, and therefore
it induces a boundary-defining function p+ on ML satisfying

If there is no danger of confusion, with some abuse of notation, these boundary-
defining functions may be simply denoted by p and p. Furthermore, we have the
boundary-defining function 7 = 71 := |z| on M.

The global collar neighborhood @ : Mi — 8Mi = L can be trivialized with, either
T, or p, obtaining

(4.2.11) My =[0,00); X Lz
(4.2.12) =0,00)5 x Lz -

So the global collar neighborhood w : M1 — OM = L can be trivialized with p,
obtaining

(4.2.13) My =[0,00), X Ly .
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By (4.2.5), (4.2.8), (4.2.9) and (4.2.10),
(4.2.14) dp = pn £ |»|w
(4.2.15) [8p,d0’1] =N 8p S Diffl(Mi;A) R

using the operator d, € Diff'(M; A) introduced in Remarks and We
have d,w = 0, and therefore d,n = 0.

1

Observe that p~@ = |sx|~tdx is a basic form of F+, and therefore p~lw is a basic

form of .. The transverse orientation of Fy = FL is also defined by the basic form
(4.2.16) wp.+ = sign(s) p~lw = +sign(s) prlw = sign(w(Z4)) prlw ,

whose lift to Mi is Op+ = (sex)"lda; in fact, wb,i(Zi) = 1, and therefore
wp,+(Z+) =1. By (4.2.14)) and (4.2.16),

(4.2.17) prtdpyr =n+ xwp s .

Let v = vy be the unique smooth trivialization of { NOMy so that dp(v) = 1
(Section . By , v is represented by the restriction of +|»|71X to L =
oM.

The combination of py and p_ is a boundary-defining function p on M, and the
combination of v; and v_ is the unique smooth trivialization v of L NOM so that
dp(v) = 1. Similarly, we define p on M and & on OM.

For € > 0, the restriction wy = @ Ti e ={pr < €} — L is a smaller collar
neighborhood of the boundary in Mi, which induces a smaller collar neighborhood
wy =w: Ty :={ps < e} - L of the boundary in Mi By combination, we get
smaller collar neighborhoods of the boundaries, @ : T, = ={p<et— OM =LUL
and @ : T := {p < €} - OM = LUL. We have T, = Te ,T.=TL, T.=T! and
j)—’j:,e = Tj:’e.

4.2.6. The metric g;;. — Take a Riemannian metric g7 on L, and let 9L be its
lift to L. Consider leafwise metrics, gr = w*gy, for F and gz = @*g; for F; their
restrictions to Fi and }"i may be denoted by gz, and g= - Consider also the metric

gy = w? + g7 on M. The lift of gps to M is

957 = 0%+ g7 = |32 (dz)* + g5 .
With respect to gjs, the transverse volume form is w, X is unitary and orthogonal to
F,and TF-=H
4.2.7. The b-metrics g, +. — Define also the metric g, + = pL°w? +gr = W%,i +
gF on J\;Ii = Mi, where the last equality uses (4.2.16]). It is bundle-like for J{"i = .7-';
and its lift to M + is

(4.2.18) Gbt = Pr O° 497 =@ 4 + 957 = ()% (d)* + g5 -
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With respect to gy +, the transverse volume form is wy, 4+, Z4 is unitary and orthogonal
to .7-0}, and T}"i = H|1\Zi' The metrics gy, + and gy, + on Mi and Z\Qli are restrictions
of b-metrics on Mi and M4, also denoted by gy + and g, +. In the rest of this

subsection, M + and J\Zfi (resp., Mi and M) are assumed to be endowed with the

metrics (resp., b-metrics) g + and g, +. By ([£.2.17), if n # 0 or 3 # 1, then the
b-metrics gr + and g, + are not exact (Section [2.5)).

Proposition 4.2.1. — fi is of bounded geometry.

Proof. — M + is of bounded geometry because it is the Riemannian product of
(R*, (5e2)~2(dx)?) and (L, g7 ), which are of bounded geometry since L is compact and
the change of coordinate t = »~! In |z defines an isometry between (R*, (3cx)~2(dz)?)
and (R, (dt)?). Via this isometry, @, + = (sz)~! dz on R* is the pull-back of dt on
R. On the other hand, the leaves of Fi are the fibers {z} x L (z € R*), and the
O’Neill tensors of F. + with g + vanish. Hence, on ]\Zfi with ]i'i and gy, +, all covariant
derivatives of the curvature tensor are uniformly bounded, and the O’Neill tensors
vanish. i

Finally, the bi-injectivity radius of fi with gy + is positive because a normal
foliated chart centered at any p = (xo, ) is given by

Xpt = (teg, g) : Up+ = RE x Bz (G,r) = Rx B,

where t;, = 2 '(In|z| — In|zo|), » = inj, < injz, B is the open ball in R"~! of
radius 7 and center 0, and 73 : B7(g,r) — B is a normal chart of L. Let ¢ = 7(q),
p=mn(p) and Up + = 7rM(('_~]ﬁ,i). Then 7 : B;(G,r) — Br(q,r) is a diffeomorphism,
obtaining a normal chart y, : Br(q,7) — B of L that corresponds to gz via m. So
TM * fjﬁ7i — Up + is also a diffeomorphism, and ) + induces via ), a normal foliated
chart of j—} with gy, +, centered at p,

Xpt = (tog,Yq) : Upt =RE X Br(q,7) >R x B.

This shows that the injectivity bi-radius of ]i'i with gy, + is positive. O

By Proposition and according to Section Mi is of bounded geometry
(the property [(A)| of Section [2.5.20)).

Proposition 4.2.2. — M satisfies the pmperty of Section|2.5.20

Proof. — According to the proof of Proposition [4.2.1] it is easy to check that
(M;,gb,i) satisfies m on the whole of Mi with pd; and the extensions B’ =
(B,0) € %(Mi) of vector fields B € X(L). It follows that (M, gb,+) also satis-
fies on the whole of My with pd, and the extensions A’ € X(My.) of vector fields
A € X(L) defined as follows. For every A € X(L), let A denote its lift to L. Then
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A= (A,0) € Z{(Mi) is I'-invariant, and therefore it is 7z, -projectable to a vector
field A’ € X(My). O

Proposition 4.2.3. — We have d(In p) € C2(Mx; AY).

Proof. — On the one hand, by the compactness of L and the definition of gy +,
we have € C%(My; A%Y). On the other hand, p~'w € O (My; A) by Propo-
sition since wy,+ = sign(s)p~'w is the gy +-transverse volume form. Hence
d(Inp) =+ ||p~"w € O (M A') by [@E2.14). O

Let || : T' = Ng be the word length function given by a finite generating set. There
is some ¢y > 0 so that, for all v € T,

(4.2.19) [Inay| < colv] .

By (2.9.16), (#.2.3) and ([{.2.18), for all p € M4 and v € T,

ci'hl<ds (v €40F).0) <eahl,
using the holonomy homomorphism hy : ' — R of F1 = Fi (Section .

Lemma 4.2.4. — There are C > 0 and ¢ > 1 so that, for all §,3' € Landz e R*,

s o 23]
)= O )

Proof. — Let F C L be a fundamental domain. Without loss of generality, we can
assume § € F. Take some v € T" such that - ¢ € F. Then

pl,g) = "D, p(l2, 7)) = pllaye, v 7)) = "0 Paya .
There is some Cy > 1 such that, for all ¢1,792 € F,

CaleF(ﬂﬂ < el (@2) < CoeF(z?l) )

So, using (2.9.17)) with K = F? and ([£.2.19 ,

plz.gl) _ eV

- < -1 < oy < coc1(dz (§,9)+cz)
p([myg/]) eF(V'ﬂ’)av - COCL'Y > C()e > CO@ L . D

Corollary 4.2.5. — For R,e > 0, we have Peng (T, R) C T,or/c,.

Lemma 4.2.6. — For p € M. and t € R, if ®'(Ly) = Ly, then dr(¢'(p),p) >
injy.
Proof. — We have p = [0, ] for some 2o € R* and § € E, and let ¢ = 7(§) € L.

For r = inj, take normal charts g; : B;(¢,r) — B and y, : Br(q,r) — B like in the
proof of Proposition We have the foliated chart of F ,

)Zq:(m,gq)ZUQZRXBE(@T)—)RXB,
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which induces via 7); a foliated chart of F,

Xq=(2,yq) : Ug=7mm(Uz) =R x Br(q,r) >R x B.

On the one hand, if ¢'(p) € U,, then x,¢'(p) = (e*'xo, ~tac0 (q)) by ([@.2.1), with
e*'zg # o because t # 0. So p and ¢(p) lie in different plaques of (Uy, x4). On
the other hand, if ¢'(p) & Uy, then a fortiori ¢!(p) is not in the plaque of (U, x4)
through p. In any case, dr(¢*(p), p) > r because the plaque through p is By (p,r) =
Bz((j, ’I“). O
Proposition 4.2.7. — If Zy € Xy, (ML, FL), then, for any compact I C R, there
are ¢y, ¢z > 0 such that, for all p € My and v € T with hy(v) €1,

dr ("= (p),p) > ety —c2

Proof. — Since I is compact and ¢4 is of R-local bounded geometry on J\oii (Sec-
tion [2.4.7), there is some R > 0 such that d7 (¢%(7),9) < Rfor all z € R*, t € I and

7 € L. Given any fundamental domain F' C L, let K = PienZ(F7 R)x F. By (2.9.17),
there are ¢; > 1 and ¢y > 0 such that

(4.2.20) dz (v 0L(@).9) > e ']l — e

for all z € R*, t € I, §,4 € F and v € T, because (¢(7),7) € K.
Any p € My is of the form p = [z, §] for some x € R* and § € F. Let v € T with

t:=hy(y) =3 'lna, € I. Then ¢'(L,) = L, (Section , and, by ([4.2:20),
dr(¢'(p),p) = dr([ez, &%), [, 7)) = dr([aya, $L(), [z, §))
= dr(fe,y " S @) [, 9) =dp(v - 0L@).9) = el —er . O
Corollary 4.2.8. — If Zy € %ub(oMj[,}"jl[), then, for any compact I C R*, there is
some c3 > 0 such that, for allp € My and v € T with ho(v) € I,

dr(¢"= (p),p) > esh| .

Proof. — By Lemma [4.2.6] and Proposition the result follows taking cs > 0
such that, for all v € T,

inj, if |[v] < cre2
eshyl<q ) .
ey Iyl —c2 ity >ce. O

Proposition 4.2.9. — If Zy € Xu(ML, FL), then, for any compact I C R, there
exists some ¢ > 0 such that ¢*(T.) C Tp. for allt € I and € > 0.

Proof. — Take some R > 0 like in the proof of Proposition Let y € L and
x € R* such that p([z,§]) < e. If ¢:[0,1] — L is a minimizing geodesic segment
from g to ¢%(y), then

F(GL() — F(3) = / ¢*dF = / it < il ds (5, 845)) < Ilnll =R
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Take also some ¢} > 0 such that e** < ¢} for all t € I. Then
. bt (7)) = F ()4 ~ ES
6! (1 31)) = e CLOI=F @[y gy < el 0

Proposition 4.2.10. — Suppose T’ is nontrivial. For any € > 0, there is some
0 < € < € such that, for all leaf L' of F, if a connected component W of L' N'T, meets
T., then L C W.

Proof. — Let F C L be a fundamental domain. We can choose 0 < € < ¢ such that
F@-F@) ¢ < ¢ for all §,§ € F. Let W be a connected component of L' N T, that
meets To at some point [z,y]. We can assume § € F. For every §’ € F, we have
[z,7'] € L' and
([, 7)) = €| = FOED ([, )| < FFDE < e

So mpr ({2} x F') C W because F is connected. Since I is nontrivial and h is injective,
there is some v € I' such that v- FNF # () and a,, > 1. Then Wy :=J,_,7™ - F is
connected in L. Moreover, by (4.2.4)), for all m € Ng and §’' € F,

o[z, "GN = "0 D z| = a7 D x| = a7 |p([z, )] < a3,

which is < € and converges to 0 as m — oo. Since [z,7™¢'] € w~1([7']), it follows
that [z,7y™7'] — [0,4'] = [§'] as m — oco. Hence mp({z} x Wy) C W and L C
WM({Z'} X Wo) O

4.2.8. The b-metrics g.+. — Using (4.2.13)), we can also define the metric g, + =

(%p)~2 (dp)? + g1, on My and its lift go+ = (36)"2(dp)? + g7 on M. These are
restrictions to the interiors of b-metrics, also denoted by g, + and g +. The b-metrics
32ge+ and 2. 1 are exact and cylindrical around the boundary (Section ; in
particular, the level hypersurfaces of p and p are totally geodesic for g. + and g +.

Proposition 4.2.11. — The metrics gc+ and g, 4+ are quasi-isometric on ]\Zfi;
more precisely,

Mges < V20 +5720l) [lgne 5 lgns < V21 ges -

Proof. — Take any p € My and u € Tp]\;[i =T,M=H,®V,, and let v = Vu and
w = Hu. Then

ul , = pw)’ +[ol3, -
By and since w(X) = 1, it follows that w is the sum of the vectors
0 F e on(0) X, € kerldp)y w34 pn(v) X, € H, = ker .,
obtaining
[ul2, . = (5¢p)2( £ [selw(w) + p(v))” + |vf2,
= luly, , +#*n(v)* £ 2(|>lp) "w(w)n(v) .
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Then
ul?, . <lul}, . + 2 20(0)? + p~2w(w)? <201+ 5 2(|nllpeo)ul?, ,
|u|3hi < \u|§c¢ + p2w(w)? < 2|u\§mi . O

4.2.9. Vector fields. — Assume again that M + and Mi are endowed with gy +
and gy +. Recall that any A € X(M, F) induces a vector field Ay € X(M, F), whose

restriction to My is also denoted by Ay (Sections and |4.2.1)).
Proposition 4.2.12. — Y, € %ub(]\Zi,]i}).

Proof. — This follows from the proof of Proposition because d; corresponds to
220, by the change of coordinate t = s~ !1In |z|. O

Lemma 4.2.13. — IfV € X.(F), then Vy € %ub(}o—i)-

Proof. — Consider the normal foliated charts of Fs Xp,+ = (tzy,yq) = (t,y) on U, 4,

like in the proof of Proposition and the foliated charts of F, x4 = (z,y4) = (2,9)
on Uy, like in the proof of Lemma Then U, = w *(B(g, 7)), Up+ = Uy, N My

and z = e*'x. Let 0; = Oyi and Oy = 0;, - - - 0;,, for any multi-index I = (iy,...,ip).
Take a partition of unity subordinated to a finite open cover of the compact manifold
L by balls Br(q,7) (¢ € L). By using the w-lift of this partition of unity to M, it
easily follows that we can assume V' is supported in some U;. Thus we can write V' =
fi(z,y)0; on U, for functions f* € C2(R x B) = C>(U,), and write Vi = h'(t,y)0;
on U, + for functions h* € C°(Ry x B). We have

(4.2.21) Orh'(t,y) = 01 f' (e xo,vy) .
Claim 4.2.14. — For | <k in N, there are c;; € N such that, on Up +,
af = ch’l;vlai, = Z(il)lck,lple .
1 1

To simplify the notation, we define ci; for all k,I € Z by setting c; = 0 if
min{k,l} <0, coo =1, and cp; = s(leg—14 + cr—1,-1) if max{k,l} > 0. Note that
cry=0if1<0<korl>k.

The first equality of Claim [£:2.14] follows by induction on k. The case k = 1 is true
because 0y = »#x0,. If k > 1 and the first equality holds for & — 1, then

OF = »20, ch,lylxlai = Z%ck,u(x““lai“ + [0y, 2] L)
] 1

= Z %Ck_Ll(l’lJrlaiJrl + lIlai) = Z %(lck_l,l + Ck_l,l_l)l’lai .
l l

The second equality of Claim [4.2.14] holds because
PXE =P Wz (e FWa, ) = |z|'d = (£1)''d" .
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By (4.2.21) and Claim 4.2.14
k
OFTLarhi(t,y) :Z +1) epp! X0 fi (e a0, y) -
1=1

Thus every function |97 d;h?| is uniformly bounded on Ry x B because f* € C2°(R x
B)=C>(U,) and X € X(M). O

Proposition 4.2.15. — For any € > 0, there is some A € Xcom(M,F) such that
AL e X (Mg, Fy) and A=Z on T..

Proof. — Let V = (0,Z,) € X(F), which projects to a vector field V € X(F)
by [£.2.2). For any A € C°(M) such that 0 < A <1 and A =1 on T, we have V' :=
AV € Xc(F). Then VL € Xup(F+) by Lemma A=Y 4+ V' € Xeom(M,F),
A=ZonT.,, and Ay =Y, +V] € %ub(J\OIi7 ]:ﬁ:) by Proposition O

4.3. Global objects on foliations with simple foliated flows

Consider the notation of Sections [3.1.12] and 1.2}, where M is compact, F is
transversely oriented, and ¢ is transversely simple.

4.3.1. Tubular neighborhoods of M°. — In the following, for L € moM" (the
set of leaves in M?), we have corresponding objects hL, hy, 'y, 7, : L— L, >, and
ar (Section [1.1.2). Consider also the corresponding suspension foliated manifold,
(M}, F}), and all other associated objects (Sections [£.2.1]to [£.2.8)). A prime and the
subscrlpt “L” is added to their notation; for instance, we have &} = {&/'}, Y/, M}°,
Mt Fit, @), pls 17 TL’67 X1, Wi, ML, guy, and gz, . The corresponding disjoint
unions or combinations, with L running in 7o M?, are denoted by M’, F', ¢ = {¢'t},
Y/, MO M"Y FY o T TN, X W 0, g and g, removing the subscript
“L”.

By the Reeb’s local stability, if € > 0 is small enough, there is a tubular neigh-
borhood of every L in M, wy, : T, ¢ — L, such that T}, . is diffeomorphic to Ti,67
with @y and F|z, . corresponding to w}, and F|r; ; we simply write @y = @), and

F=F,onTL,. = Ti,e. We can assume the closures 717, . are disjoint one another.
Then the combination of the maps w;, . is a tubular neighborhood of M° in M,

w=  T.=TL.=T - M =M".

4.3.2. Collar neighborhoods of every 0M;. — Given any connected compo-
nent M} of M?, consider only leaves L € mo(M® N M}') = m(0M,;). The notation
(Myp,,, Fp,,) is used for (M7, F7 ) (vesp., (M _,F7 _)) if the transverse orienta-

tion of F; along L points 1nwards (resp., outwards), like the transverse orientation
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along L of .7-"L7+ (resp., }-/L,—)' This kind of change is applied to the rest of no-
tation concerning these foliated manifolds with boundary (Sections and
to . For instance, we obtain &7 ; = {&1"}, Y[ ;s @11 Py Vigs Thper Whonis
M1 9 p0 and gl ;. Similarly, we have (M}%, FpY) = (M} ;, F} ;), whose Molino’s
description involves Mﬁl, ]-:’L}l, h’LJ : ', — R and D’LJ : Milz — R. We have
fi,l,e =T N M/" = T7Y .. The corresponding disjoint unions or combinations,
with L running in m(9M;), are denoted by M|, F/, & = {&'}, Y/, @], pj, v 1]
Wi, 15 M 9hg and g.;, deleting the subscript “L”. In the same way, we have M; ', /!
and T)! =T/ N M]' = JD}”E.

Next, we delete “I” from this notation and use boldface for the corresponding
disjoint unions or combinations for all [, obtaining M', F', ', p’, v/, T%., wi, ', g,
and g..

On the other hand, wy, : T, . — L induces a collar neighborhood wy,; : T ;. — L
of the boundary component L of M;, and the identity 17, . = TLE induces an identity
Trie= Ti’l}e, and we have wy; = w’L}l and F; = ]:L,l onTp e = Ti’l’e. Moreover
Ti’ll@ = Tll/,l,e = TL7€ N Mll = TL,l,e and Tlg}l,e = Tll,e = T€ N Mll = TL,l,e'

The combination of the maps wy,;, with L running in moM;, is a collar neighbor-
hood w; =w) : T} . = Tl" — OM; = OM] of the boundary in M;, where F; = F/. In
turn, the combination of the maps w; is a collar neighborhood

wzw':Te::|_|TZ7EETL—>3MEMOLIMO
1

of the boundary in M, and we have F = F on T, = T..

4.3.3. Globalization. — For fixed 0 < € < ¢y small enough, we can construct the
following objects with standard arguments, using a partition of unity subordinated
to the open cover {T.,, M \ T.} of M:

(E) For any A’ € Xcom(M', F') with A’ =Y, there is some A € Xeom(M, F) with
A=Z, A=A onT. =T and A= Z on M\T.,. Moreover A induces a vector
field A; € X(M;, F;) (Section , whose restriction to M, = M} is denoted
in the same way. In particular, this applies to Y' € Xeom(M', F'), obtaining
Y € X(M,F) with flow £ = {¢'} and Y, € X(M;, F;) with flow & = {£/}. We
have Fix(¢) = M?, and the orbits of ¢ agree with the fibers of w on T, N M.
Thus ¢ has no closed orbit in 7, N M.

(F) Some Z' € Xeom(M', F'), with flow ¢/ = {¢'}, such that Z/ = Y’, Z' = Z
on T, =T[, and Z' = Y" on M"\ T/ . This Z' induces vector fields Z; ; €
X(Myp,y, Fr,;) with flow ¢}, = {QﬁlLt’l}, and Z] € X(M/,F]) with flow ¢| = {¢]*}.

(G) A bundle-like metric gy, ; of every F}' = Fon M} = M; such that gbi = gp,; on
Tl176 = Tl'l Thus gy is the restriction to ]\04; of a b-metric on M;, also denoted
by gn;. Let wy; be the gy ;-transverse volume form, defining the transverse
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orientation given by Zj; thus wp; = w{w on Tll6 = Tl’i Since w]’DJ(Yl’) =
wy, 1 (Z]) =1 (Section , we can assume wy, (Y;) = wp(Z)) = 1.

(H) A Riemannian metric g.; on every M} = M; such that el = gi, on Tll€ = Tl’i
Thus g.,; is the restriction to Ml of a b-metric on M, also denoted by g.,;, and
the b-metric »7 g.; is exact and cylindrical around every boundary component
L of Ml.

(I) A Riemannian metric gp; on M such that gy = gy on Te = T, gy = gy 00
every M} \ T.,, and gjs defines the same orthogonal complement of T'F as g
on every M}'. We consider the bigrading of AM defined by the gjs-orthogonal
complement of the leaves (Section .

(J) A leafwise Riemannian metric g» of F such that gr = gz on T, = T!. We can
assume it is induced by gnr on M, and by gy ; and g.; on every Mll. It induces
a leafwise metric gz, for every F;.

(K) Differential forms, w € C°°(M;AY?) and n € C°°(M;A%!), such that w is
the transverse volume form of F with respect to gy, and dw = n A w. Thus
kerw =TF, n=0on M\T,,, and they extend the forms w and n we had on T.
For every L € mgM°, we may use the notation np =L and f, = minL = d7 Fr,
for some Fy, € C*° (E) Moreover, n = 19 on T, with the notation of Section
because this is true for every F7.

(L) A defining function p = p’ of M® in T, =T, .

(M) A boundary-defining function p = p; on every M such that p; = pjonT; . = Tl’,67
and p; = 1 on M\ T}, . The level hypersurfaces of p; in T}, are totally geodesic
with respect to gc;. Let v = 1; be the unique smooth trivialization of  NOM,;
with dp; (1) = 1 (Section . Thus v, = v] via Tj . = Tl”e.

From Propositions [4.2.1| to [4.2.3] |4.2.12 and [4.2.15] it easily follows that F}' is of
bounded geometry, (M;,gy,;) satisfies the properties and of Section
d(lnp;) € Cl‘jf)(]\;[l;T*]\Zfl), and Y, € X (M}, F!) with respect to gy, and we can
assume 77 ; € %ub(M’L}l,fEl) with respect to 9{;,L,l~ So Z; € Xy (M}, F}) with
respect to gy ;. By Proposition and since M, ll \Tll6 is compact, we also get that
the metrics gp,; and gc; are quasi-isometric on Mll; this also follows because both

of these metrics are restrictions to M, of b-metrics on the compact manifold with
boundary M;.

By (4.2.16)), we have w = sign(w(Z;)) piwn, on MNT, = M} NT.. This equality
is also true on M11 \ T¢,, where gpr = g and p; = 1. Indeed, we can choose p; so
that this equality holds on the whole of M; = M. So

dw = sign(w(Z))) dpy Awpy = dpy A py'w = d(lnp) Aw
on J\Zfl = Mll, yielding

(4.3.1) no=do1(lnp) =dr(lnp) .
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Taking combinations of the above objects on the manifolds M;, we get a boundary-
defining function p on M, a trivialization v of ; NOM, real 1-forms wy, and n, and
b-metrics g;, and g,. They agree with p’, v/, wi, n’, g} and g, on T = T'..

4.3.4. The components of M'. — Recall that every F} = F on M} = M; is a
transversely complete R-Lie foliation, where this transverse structure is defined by
Z, € Xcom(Mll,}'ll). Of course, the transverse orientation of .7-'11 defined by Z; may
not agree with the original transverse orientation of F.

The Fedida’s description of F}! is given by a regular covering 7 : ]\Afl1 — M} with
group of deck transformations I';, a holonomy monomorphism h; : I — R and a
developing map D : Ml — R (Sections |3 1. 9| and |3 1. 11[) Note that I'; has finite
rank because Mz = Ml and M, is compact. Recall that the action of any v € I'; on

/Vl is denoted by p — ~ - p or by T-

Let Y; and & = {fl} denote the restrictions of Y and ¢ to every M. Let .7?1 , }71,
7, & = {fl} and ¢ = {¢l} be the lifts to Mz of ', Z; and ¢y, respectively. Recall
from Sectlonthat Zl is Fl invariant and D;-projectable, and (j)l is I';-equivariant.
Moreover we can assume Dl*Zl = 0,, where x denotes the canonical global coordinate
of R, and therefore ¢; corresponds via D; to the flow ¢; on R defined by q@f(x) =t+ux.
So D; restricts to diffeomorphisms between the orbits of (51 and R.

Proposition 4.3.1. — Given any leaf L; of F}, there is a left action of Ty on L
and there is an identity Ml1 =R x L; such that:

(i) Dl is the left factor projection;

(i) Vi = (0,,0) ond & (z,y) = (t +2,9);

(iii) the action of Ty on Ml is given by v - (z,y) = (h(y) + z,v - y); and

(iv) there is some compact K; C M} so that, if v-y =y for some v € T, and
y € L\ K;, then y =e.

Proof. — Since }N’l is projectable by D; to 0, because 375 = Zl, it follows that D; also
restricts to diffeomorphisms of the &-orbits to R. So, given any leaf L, of .7?11 over L,
we get ]\A/.I'Jl1 =R x L; = R x L; such that |(i){ and hold.

The action of every v € T'; on (x,y) € R x L; = ]\A/.I:l1 can be written as v - (z,y) =
(hi(y) +x, T (,y)) for some smooth map T, : R x L; — L;. Then, since the flow & is
I'j-equivariant, it easily follows that Ty (z,y) = T, (t+x,y). So T (z,y) is independent
of x, and therefore it can be written as ~ - y. It is easy to check that this defines a
left I';-action on Ll, and [(iii)| follows.

Let us prove [(iv)l If v -y = y for some v € T\ {e} and y € L;, then we easily
compute 7 - £ (x, y) = M+t (g ) for all z,t € R. Thus the '-orbit of (z,y) is
invariant by the action of v, and therefore the £'-orbit of [z,%] is closed because
v #e. Since Y =Y’ on T, = TV, it follows that y € L; \ T,, and M}' \ T, is compact
in Mll. O
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Remark 4.3.2. — In Proposition the projection L; — I';\L; may not be a
covering map, and therefore (Mll,]:ll) may not be given by a suspension. According
to its proof, a point y € L; is fixed by some v € I'; \ {e} just when R x {y} projects
to a closed orbit of £ in M;' whose group of periods contains hy (7).

According to Proposition we may use the notation [z,y] = m(z,y) € M} for
(z,y) € R x L; = M}, and the action of every v € I'; on L; may be also denoted by

T,. Like in (4.2.1) and (4.2.2)), we get
(4'3'2) &f(xvg) = (t +x,q§f71(z})) ) Zl = (8177 Zl,m) )
for some smooth families, {qgfx | z,t € R} C Diffeo(L;) and { Z;, | z € R} C X(Ly),
such that
T’Y(Zﬁ,r = ¢f,hl(7)+:cT'y v TysZa = Zny(y)+a -
Let ¢ be a closed orbit of ¢; with period tg, and let p = [z,y] € ¢ and p =
(r,y) € M} = R x L;. Then k = to/ﬁ( ) € Z and there is a unique vy € T}

such that (%0 (p) = 70 - p- Using (4 and Proposition um it easily follows

that to = hi() and qu( ) = 70 - y; ie., yis a fixed point of the diffeomorphism
T%lquoz of L;. Moreover y is simple if and only if ¢ is simple, and, in this case,
&y (T d)) = €c(k, #) = ec(k). B

We have @y = mjwyby = Djdx = dz because D Z; = 0, and wp(Z;) = 1

(Section [4.3.3)).

4.3.5. Metric properties of the components of M?'. — With the notation of
Sections to for leaves L C M% N M} and 0 < €' < ¢, the open subsets

1 1 /1 71 _ 1/l a7l
TL,l,e/ = 7TM/L l(TL,l,e’) MLl ’ TL,l,e/ =™ (TL,l,e’) c M,

are invariant by I'r and I', respectively. Let p; = m/p; and Mlle, = Ml1 \ Ter,
which is a connected compact smooth submanifold with boundary of M}'. Then
Tl,E, =7 (Tl,e') = {p; < €'} is a I'j-invariant open subspace of Ml ,and m : Ml o =
]\Ajll \fll , = Ml o is a regular I';-covering.

Let d; denote the length-metric on M1 defined by gi;. Let g, and g be the lifts
to Ml of gp,; and g.;. Both of them induce the same leafwise metric 9% of }"l, which
is the lift of gz,. Let d; and d;  denote the length-metrics on Ml and Ml’E, defined
by Gb,. Similarly, let d.; and de; o be the length-metrics on ]\,\4/11 and ]\,\4/1176, defined
by Gc,. Since gy and g.,; are quasi-isometric (Section, the metrics g and gc
are also quasi-isometric. Therefore there is some C7 > 1 such that, for all p,§ € J\Zl,

(433) Cfldl(ﬁa ) < dcl(pa ) < Cldl(pv ) .
On the other hand, d; < dl’el on Ml,e/'

Lemma 4.3.3. — We have cic’l = Jc’l’g on ]\Z{E,.
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Proof. — It is enough to show that any g, ;-geodesic segment with end-points in
Ml%e/ is contained in Ml%e/ (M} is gei-convex). This follows easily using that the
level hypersurfaces of p; are g ;-totally geodesic because the level hypersurfaces of p;

in TllE are g -totally geodesic ((M)|of Section [4.3.3]). O
Let || = ||; : Ty = Ng and || = ||z : T — Ny be the word length functions

induced by any choice of finite sets of generators of I'; and I',. By the compactness
of Ml{e,, there is some Cy = Cs(€’) > 1 such that, for all y € T'; and p € Mll’

(4.3.4) Cy 'l < die (B, - §) < Calyl -

Since g, and g.; are quasi-isometric on M}, it follows from (4.3.3), (4.3.4) and
Lemma that there is some C3 = C3(€’) > 1 such that, for all v € I'; and
ﬁ € Mll,e”

(4.3.5) Ci'| < di(,y - B) < Cslyl -

Remark 4.8.4. — For any leaf L C M° N M}, the given descriptions of F on T} .
and M;' have the following relation, whose proof is omitted because it will not be used.

€

There is a monomorphism Hy ; : I'y — I'; such that, for every connected component
Tll/,l7€’70 of Ti,he/’ the identity Ti,ll,e’ = Ti,l,e’ can be lifted to an Hf, j-equivariant
identity Tﬁl,e/ = Ti,l,s’,m which is locally equivariant with respect to the local flows

defined by €, on Ti!s . and & on Tll/,l76/707 and so that D; corresponds to D ;.



CHAPTER 5

CONORMAL LEAFWISE REDUCED COHOMOLOGY

5.1. Conormal sequence of leafwise currents

Let F be a transversely orientable smooth foliation of codimension one on a closed
manifold M satisfying the conditions and @ of Section m Then MO is
determined by F in the cases|(d)| of Section@ whereas M° must be also given
in the case The compactness condition on M is assumed for the sake of simplicity,
but all concepts, results and arguments of this section have straightforward extensions
to the case where M is not compact and M? is compact, using compactly supported

versions or versions without support restrictions of the spaces of leafwise currents that
will be considered. The compactly supported versions, in the non-compact case, will
be used in the arguments.

Since Diff' (F; AF) c Dift' (M, M°; AF), the graded LCHS

I(F) = IA*(F) := I(M, M°; AF)

becomes a topological complex with dx (Sections and . If we take coefhi-
cients in some leafwise flat vector bundle E, then the notation I(F; E) will be used,
and all other notations will be modified in the same way. We may even consider
I(F; E) for an arbitrary vector bundle F, missing the leafwise differential map dr.

The topological complex (I(F),dr) produces the conormal leafwise cohomology
and conormal leafwise reduced cohomology of F (or of (F, M°) when M? is not de-
termined by F), denoted by H*I(F) and H*I(F), which are LCSs (Section .
The image and kernel of dr in I(F) are denoted by BI(F) and ZI(F), and we write
BI(F) = BI(F).

The LCHSs

I(F) = I®A(F) :=1(M,M° AF) (s€R)

also become topological complexes with dr (Section [2.2.7). The notation H*I(*)(F),
HeI®)(F), BI®)(F), ZI®)(F) and BI®)(F) is used as before. We have continuous
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inclusion maps (Section [2.2.2)
(5.1.1) Jo : IO(F) S I(F) ) jew : IO(F) = ICN(F) (s <s).

The induced homomorphism in cohomology and reduced cohomology are denoted by
Jsxs Js,s'%, Jsx and Js s«. The homomorphism j, s+ and j,. form inductive spectra,
giving rise to inductive limits as s | —oo. The maps js« and Js. induce canonical
continuous linear isomorphisms (Section [5.2)),

Jo i=lim o+ HYI(F) = lim H*T®)(F) = HI(F),

(5.1.2) R ) o
Jo =l 7w - HUI(F) := limg H* I (F) = HI(F) .

The canonical maps of the steps to the inductive limits are denoted by
Jou t HTWNF) = HI(F),  jou: HYIO(F) = HI(F).
The graded LCHSs,
J(F) = JA*(F) :=J(M,M%AF), K(F)=KA(F):=K(M M*%A\F),

also become topological complexes with dr (Section [2.6.13). The above kind of no-
tation is also used for the induced spaces: BJ(F), ZJ(F), BJ(F) and H*J(F),
H*J(F), and the same for K(F).

Similarly, we have topological complexes J)(F), J™(F) and K (F) (s,m € R)
with dr (Section . The analogs of the inclusion maps for the spaces
J©)(F) and K©®)(F) are denoted in the same way. The induced homomorphisms in
cohomology and reduced cohomology form inductive spectra. Their inductive lim-
its, denoted by H*K (F), fI'K(}'), H*J(F) and ﬁ‘J(f), satisfy analogs of
(proved with the same arguments). In fact, in the case of K(F), we have canonical

TVS-identities (Corollary )

(5.13) H°K(F)= H*K(F), H*K®(F)=H'K“(F),

5.1.3 ~ . _
H*K®)(F)= H*K(F), H*K®(F)=H"K(F).

There are also continuous inclusion maps (Section [2.6.7))
Jin 2 JNF) S T(F) S e TF) = TF) (m! <m)
(5.1.4) Jom : JEO(F) = J(F) (m<s—nj2-1),
Jmes 2 JT(F) > JO(F) (s <m.0),

)

denoted like in with some abuse of notation. The homomorphisms induced by
the maps jy,,»/ in cohomology and reduced cohomology form inductive spectra whose
inductive limits as m | —oco agree with the previous ones for J(F), and the maps j,,
induce a continuous linear isomorphism analogous to .

There are similar constructions for the spaces of the symbol-order filtration of I(F)
and K(F), with similar properties, but they will not be used here.
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The leafwise conormal exact sequence of F is the bottom row of (2.6.41)) with AF,
(5.1.5) 0= KF) S I1(F) L 7F) —o.

Besides being exact in the category of continuous linear maps between LCSs, it is
compatible with dz. The exactness of the induced sequences,

(5.1.6) 0— HK(F) = HI(F) 25 H* J(F) = 0,
(5.1.7) 0 H'K(F) = A*I(F) 25 B J(F) = 0,

will be proved in Section [5.5} in particular, this shows Theorem
Concerning notation, the subscript “s” may be added to the notation of cochain
maps between the topological complexes K ) (F), I®)(F) or J)(F), like

(5.1.8) ts=0: KO (F) 5 IO(F), Ry=R:I1®(F) = JO(F).

The subscript “s” may be also added to the elements of their cohomologies or reduced
cohomologies: [a], € H*I®)(F) and [a], € H*I®)(F) for a € ZI®)(F).

5.2. Injective limits in cohomology and reduced cohomology

The purpose of this section is to prove that the maps (5.1.2]) are isomorphisms.
The details are given for the case of H*I(F). Some remarks indicate how to modify
the arguments to show the simpler case of H*I(F).

5.2.1. Injectivity of j,. — Take any element in ker J,, which is of the form jg. ([c],)
for some [a], € H*I*)(F). Then there is some net ¢; € I(F) such that a = lim; dry;
in I(F). We can assume ¢; € C°(M;AF) by the density of C°(M;AF) in I(F)
(Section [2.2.2). The set {c, dr¢;}; is compact in I(F). Then {c, dxB;}; is contained
and compact in some step I*)(F) (s’ < s) because I(F) is compactly retractive
(Section . Thus a = lim; dry; in I(S/)(]-'); otherwise, using that {«, drg;}; is
compact in I(S/)(}"), it is easy to find a subnet dr¢;, convergent to some § # «a in
16" (F), which contradicts the continuity of j : 1) (F) — I(F) and the convergence
drpr — a in I(F). (Indeed, we can assume dr¢; is a sequence because 1) (F) is a

=0 in H*I®)(F), and therefore js.([a],) = jo(a],) = 0.

s’ T

Fréchet space.) So [a]
Remark 5.2.1. — To prove injectivity of 7., take some js.([a],) in kerj,. Now
modify the above argument by using cohomology classes, and taking an element
¢ € I(F) with dre = a instead of a net ¢;. Then ¢ and « are in some step 1) (F)
(s' < s), yielding [a]y = 0 in H*I)(F), and therefore ju([0]s) = jux([o]s) = 0.
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5.2.2. Surjectivity of j.. — For any [a] € H®I(F), there is some s such that
a € I®)(F), and therefore o € ZI*)(F). Hence the element [a], € HI®(F) is
defined, and the element j..([a],) € H*I®)(F) is mapped to [a] by j,.

Remark 5.2.2. — To prove the surjectivity of 7., simply modify the argument by
using cohomology classes instead of reduced cohomology classes.

5.3. Description of H*K(F)

Consider also the notation of Section [1.3:3] For every z € C, we have the Witten’s
complex d, = d + znA on C®(M%; A), whose cohomology is denoted by H2(M?)
(Section [2.9.1). Consider also the trivialization of the flat line bundle Q*NM? =

QF N F|p0 defined by |w|?*. Then, by (2.9.5)) and since dw = nAw ((K)|of Section[4.3.3)),
CEX(MO%A® QP NM°) = C=°(M%A) @ Rjw|* = CF*(M";A)
d=d,®1=d,, H*(M°Q*NM")=H,(M°).

These identities will be applied without further comment. By Reeb’s local stability,
the following result follovvs from the case of a suspension foliation, which will be

proved in Section 1| (Corollary -

Proposition 5.3.1. — We have identities of topological complezes,

@cm (M%) = @000 (MA@ QFINMO)

df_@d - 1_@d

where k runs in Ng. Moreover the subcomplex K®)(F) C K(F) corresponds to the
finite direct sum with k < —s —1/2.

Corollary 5.3.2. — We have TVS-identities,
=@ HE (M) =P H M, QFNM) .
k k

Moreover H* K ®)(F) is the topological vector subspace of H* K (F) given by the finite
direct sum with k < —s — 1/2. In particular, (5.1.3)) is satisfied.

Remark 5.3.3. — The differential complexes on M° used in Proposition ob-
viously split into direct sums of the same complexes given by leaves L C MP°. The
same applies to their cohomologies in Corollary [5.3.2]

Remark 5.3.4. — Like in Propositionm the isomorphism (2.6.24)) gives
Cot (M AF) = @o @c (M%A®Q *INM).
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5.4. Description of H*J(F)

With the notation of Sections[3.1.12/and [4.1.2} by (2.6.30) and (2.6.31)), for m € R,
(5.4.1) J™F) = pmH (M; AF) = p"+ 2 H®(M; AF)
(5.4.2) J(F) 2| Jp"HE (M AF) = || p" H*(M; AF)

as topological complexes with dz, dx or dg, using the b-metric g to define
H(M;AF), and using g|, to define H>(M;AF).

On the other hand, since n = dxz(In p) on M by , we get isomorphisms of
topological complexes,

(5.4.3) P (p m+zH°°(M AF),dg) = (H®(M;AF),d

by the leafwise version of (2.9.4) (Section [3.5).
By (5.4.1] - and -7 and the analog of ([3.4.16]) for A_,;,_.m+% in H>*(M;AF)

.’i—',m+%) ’

(Section [3.5 , we get induced TVS-isomorphisms

(5.4.4) H*J™(F) = H* (p™* s H®(M; AF),dz)
(5.4.5) = H*(H*(M:AF),dg 1)
(5.4.6) Sker Ay mtd

By the analog of (5.1.2) for J(F) and (5.4.6)), the LCHS H*J(F) is an inductive
limit of Hilbertian spaces. The isomorphisms (5.4.4) and (5.4.5) are also true in
cohomology.

Theorem follows from the analog of (5.1.2)) for J(F) and (5.4.1)—(5.4.3).

5.5. Short exact sequence of conormal reduced cohomology

The goal of this section is to prove Theorem [1.3.3 i.e., the exactenss (5.1.7). Some
remarks will indicate how to modify the argument to get also the exactness of (5.1.6]).
To begin with, we choose appropriate partial extension maps.

5.5.1. Compatibility of the maps FE,, with dr. — For m € R, take s € R such
that s = 0if m > 0, and m > s € Z~ if m < 0. For fixed 0 < ¢ < 1, using the
tubular neighborhood T := T, of M° in M (Section , consider the continuous
inclusions of ICS)(]:|T) C I®)(F) and J™(F|r) C J™(F), using the extension by zero.
Let Epr : J7(Flr) — LES)(]:|T) be the continuous linear partial extension map
constructed in the proofs of the compactly supported versions of Proposition
and Corollary with AF|r (see Remarks and 2.5.4). By the Reeb’s local
stability, the following result follows from its case for suspension foliations, which will

be proved in Section 3| (Corollary -
Proposition 5.5.1. — E,, rdr =drE,, .
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Let {)\,u} be a smooth partition of unity of R subordinated to the open cover
{(—¢,€),R*}, which induces the smooth partition of unity {A(p), u(p)} of M subordi-
nated to the open cover {T, M'}, where A(p) (resp., u(p)) is extended by 0 (resp., 1)
to the whole of M. According to Remarks 2.5.2 and [2.5.3] take the continuous linear
partial extension map E,, : J™(F) — I*)(F) defined by
(5.5.1) Ena = Eq, r(Ap) o) + u(p) o
Corollary 5.5.2. — E,dr =drE,,.

Proof. — By the version of Corollary for E,, v (Section [2.6.12)), and since
dr\(p) = —dxu(p) is supported in M, we get, for a € J™(F),
Emdra = Epr(Mp) dra) + p(p) dra
= Epnrdr(Ap) @) — Enr(drA(p) A a)
+dr(up) @) — drplp >Aam
= drEmr(Ap) @) —drA(p) A
+dr(u(p) ) —dru(p) N
:d;EmT()\(p)a)—i-d;( ( ) ):d]:Ema. O]
5.5.2. The maps F,,. — For s € R and m < s —n/2 — 1, we can consider R :
IG)(F) — J™(F) by the analog of (2.5.37) for J(F) (Section [2.6.7). Taking s’ = 0
if m>0,and m > s €Z if m <0, let B, : J™(F) = I*)(F) be defined like in
Section [£.5.11We can also consider
(5.5.2) By = Enjsm : JO(F) = I(F) .
Then define the continuous linear map

Fopi=1—E,R: I®(F) = K& (F).

Note that
(5.5.3) EmRs + t5F = oo - IO(F) = I (F)
(554) Fts = js,s’ : K(S) (]:) - K(S,)(‘F) :

Moreover, by Corollary [5.5.2
(5.5.5) Fodr =drlFpy,

Take smaller numbers, s1 < s, m; < m and s} < &, satisfying the same inequalities
as s, m and s’. Then, with (5.5.2)), the version of Proposition with AF (see

Remark [2.5.8]) gives
(556) .].s 5 m — ’mljs,s1 .
Then, using the definition of F;,, we also get

(5.5.7) Js',st Fm = Finy Js,s, -



5.5. SHORT EXACT SEQUENCE OF CONORMAL REDUCED COHOMOLOGY 141

Remark 5.5.3. — According to Remark we can also define
Fp - IO (F; QM) — K& (F; QM)

satisfying similar properties, using d'%.

5.5.3. The equality ker R, = imz,. — We already know that ker R, Dimi,. To
prove that ker R, C imz,, take any class [a] € ker R, in H*I(F). Hence there is some
net ¢; € J(F) such that Ra = lim; dry; in J(F). We can assume ¢; € C°(M?1; AF)
by the density of C°(M?'; AF) in J(F) (Section .

Using that J(F) is compactly retractive (Section and arguing like in Sec-
tion we get that {Ra,dzf3}; is contained in some step J)(F), and Ra =
lim; dre; in J)(F). Moreover, we can assume dr¢; is a sequence because J(*) (F)
is a Fréchet space.

Consider the notation of Section We have Ra = lim; dry; in J™(F) by the
version of (2.5.36)) for J(F) (Section |2 ; We have 8 := F,a € ZJ)(F) c ZJ(F)
by (5.5.F)), obtaining a Class Al e H'J(]-').

Since the sequence ¢; is in C2°(M*; AF), it is also in J™(F) and in I¢)I(F),
and we have E,,; = ¢; by the version of Corollary with J™(F). Hence, by

Corollary
b=a—E,Ra=a— li{nEmd}-gol =a— lilm drE,p = o — lilm dry

in 1) (F), and therefore also in I(F). This shows that z,([3]) = [a] in H*I(F).

Remark 5.5.4. — Using cohomology instead of reduced cohomology and a single
element ¢ instead of a net ¢;, the analogous argument gives ker R, C im ¢,, obtaining
ker R, = im ¢..

5.5.4. Injectivity of 7,. — Take any [o] € H*K(F) with 7,([a]) = 0 in H*I(F).
Since I(F) is compactly retractive, O (M; AF) is dense in I(F) and every I¢*)(F) is
a Fréchet space (Section , we get as above that there is some s and a sequence
@1 in C®(M; AF) such that o € K (F) and a = lim; dry; in I¢)(F).

Consider again the notation of Section “ 5.5.2L By (5.5.4 -,

a=F,a= lilm Fodrp = 1i{n drFne

in K)(F), and therefore in K(F). So a € BK(F) = BK(F) by (5.1.3), and
therefore [a] = 0 in H*K(F).

Remark 5.5.5. — Like in Remark we also get the injectivity of ..
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5.5.5. Surjectivity of R.. — For any class [a] € H*J(F), the representative o
is in some step J(*)(F), and therefore it is also in ZJ()(F). With the notation

of Section B = Ena € ZI(SQ(]:) C ZI(F) by Corollary and we have
Rf = a. This shows that [a] = R([3]).

Remark 5.5.6. — Using cohomology instead of reduced cohomology, the analogous
argument gives the surjectivity of R,.

5.6. Computations in the case of a suspension foliation

Consider the notation of Sections to where the case of a suspension
foliation with a simple foliated flow was considered.

5.6.1. Description of (K(F),dr). — For every m € Ny and s < —1/2, consider
the injection defined by (2.6.38]|) for the vector bundle AF,

(5.6.1) C®(L;A@Q'NL) —» K™ (M,L;AF) , aw 9007 .

Proposition 5.6.1. — Via (5.6.1), the operator dr on K=" (M, L; AF) corre-
sponds to the operator dj, — mnA on C*°(L;A®@ Q7INL).

Proof. — Consider first the case m = 0. According to , for some degree
v, take @ € C®(L; A" @ Q7INL) and 8 € C®(M; A"~ 17%). We can write a =
o ® |w|™t and B = By Aw for some ag € C®(L;AV) and By € C°(M;AO"~17v).
By (2.9.9), (2.8.4), (2.9.8) (or (2.9.2) and the Stokes’ theorem), (3.2.20)) and (3.2.21)),
and since dw =1 A w,

(dFdZ, ) = —(=1)"(87, dB) = —(=1)"(6%, (dBo + (=1)" "' ""Bo A1) Aw)

= —(—1)U/La0 A ((d+nN)Bo)lL = —(—1)U/Lao A (d+nN)(Bolz)

= /(dL —nA\)ag A Bolr = / dra A Bl = (052, 8) .
L L

The general case follows from the previous case because dzd, = 0,(dr —nA\) on

C~%°(M; AF) by and ([A2.9), and n A 6% = 67" by ([23:2). O
Corollary 5.6.2. — Proposition [5.3.1] is true in this case.

Proof. — Apply , and Propositionm O
5.6.2. A partial extension map on M. — The notation of Sections [2.5.8

to [2.5.13] concerning conormal distributions at the boundary, is also used here. By
Proposition [2.5.1] there is a continuous linear partial extension map,

Em,j: Z.Am(Mi;A]:i) — A(s)(Mi;A]:i) s
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where s = 0if m > 0, and m > s € Z~ if m < 0. According to the proof of

Proposition and Remarks and in the case 0 > m > s € Z~, the
homomorphism E,, 4+ can be given by the composition
m TN 40 Eox. 4(0) %, i(s)

AN (Mg AFy) — A My AFy) —— AW (M AFy) —— AW (Mys AFL)
where N = —s € ZT, Ey 4 is a continuous inclusion map, and .J is the endomorphism
of C*°(My; AFL) given by

P
Ja(p,y) = / a(p1,y)dpy
1

using (2.5.32)), (4.2.13) and the identity A, F = A, L.
Consider also the endomorphism J of C°°(M; AFy) defined like J,

- P
J&(ﬁag):/ d(ﬁlay>d/§1 )
1
using (4.2.12)) and the identity A, 5 F+ = Agz. Clearly, jcorresponds to J via
Ty 2 OF (M AFL) — C®(My; AFs) .

Using (4.2.11)), we can also write
-

(5.6.2) Ta(rg) =" [ atn,gdn.

e—F(9)

with the change of variable g, = e @1, because p = +ef 7.

For fixed 0 < € < 1, consider the collar neighborhoods 7+ := T4 . and T} =
Ty e = w;ji (Ty) of the bouniaries 13 My and My. Using (3.2.3)), consider n €
COO(Mi;Al.Fi) and ne COO(Mi;Al.Fi).

Proposition 5.6.8. — Jdr, = (dr, —nA)J on C&P(Ty; AFL).

Proof. — Take open subsets B C L such that 7, : B — B := 7,(B) is a diffeomor-
phism. Since the open sets of the form w;'(B) = [0,00), x Bz cover My and J pre-
serves the spaces C2°(TyNwy ' (B); AFL), it is enough to prove the stated equality on
Ce(Ten wi? (B); AF+). Tn turn, this follows by checking that Jdz, = (dz, —iN)J
on C°(Ty; AFL) because

ma, =id x7p, @3 H(B) = [0,00)5 X Bz — wi'(B) = [0,00), X B

is a diffeomorphism. Let & € C2°(T4; AF+) and (7,§) € [0,00) x L with 7 < e F(@e,
which means that (7,7) corresponds to an element of Ty via (4.2.11)); in particular,
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ale=F@ )= 0. So, by (5.6.2) and since dz 7=0,

Jdz a(r,j) = "' / v dz, a(ry,§)dry = " Ddz, a(ri,9) dn

e~ F(9)

=dz, "V / a7, §) dry — " Dij(g) A / a(71,§) dm
e—F(9) e—F(9)

= (dz, — N Ta(x, 7). O
Proposition 5.6.4. — We have 0,dr, = (dr, +nA)0, on C~°(My;AFy).

Proof. — Apply (3.2.3), (3.2.8)) and (4.2.15]. O

Corollary 5.6.5. — For allm e R, E,, +dr, =dr, Em+ on A7 (Ty; AFL).
Proof. — 1t is enough to consider the case m < 0. Then apply Propositions [5.6.3

and using the given definition of E,, + and the density of Cg°(T4;AF+) in
AT (Ty; AFL) (see Section [2.5.10). O

5.6.3. A partial extension map on M. — Let us apply the notation of Sec-
tion to the suspension foliation (that notation is compatible with the notation of
Sections and [4.2)). Recall that M = M_ U M, F is the combination
of 74, and w : M — M is the combination of 7o : My — M. The version of the
commutative diagram (2.6.41)) for AF = m#*AF is

K(M;AF) —— A(M;AF) —2 A(M;AF)

(5.6.3) ml ml ﬂ*lg

KF) —— I1Fr) L5 JF.

Moreover dx € Diffy, (M; AF) is the lift of dx. Hence the operators defined by dx
on the spaces of the top row of (5.6.3) correspond to the operators defined by dx on
the spaces of its bottom row via the homomorphisms 7, (Section E According
to Section m d preserves the subspaces A®)(M; AF) and A™(M; AF).
The partial extension maps of Section [5.6.2
Bt o A™(Ms; AFs) = AP (My; AFy)
can be combined to define a continuous linear partial extension map
E,, : A" (M;AF) — A®) (M;AF) .

Then, according to Corollary and its proof, a continuous linear partial extension
map E,, : J™(F) — I(s)(]:) is given by the composition

JF) T A M AF) Ens A9 (M AF) T 16(F)
which is a continuous inclusion map if m > 0. Recall that 7' = (—¢,€), X Ly and

T=T_UT,=7"YT)=[0,€)p x OM
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Like in Section consider the restriction E,, r : JI'(T; AF) — Iés)(T; AF) of
FE,,. Suppose € < 1, like in Section [5.6.2

Corollary 5.6.6. — For all m € R, E,, v satisfies Ep, r7dr = drE,, 7.

Proof. — Apply Corollary O

5.7. Functoriality and leafwise homotopy invariance

5.7.1. Pull-back of conormal leafwise currents. — Let M’ be another closed
manifold, and let ¢ : M’ — M be a smooth map transverse to F. Then F' := ¢*F
is another transversely oriented foliation of codimension one satisfying the condi-

tions and [(D)]in Section with M'9 := ¢=1(MO?).

Remark 5.7.1. — The results of Sectionhave direct extensions to the case where
M or M’ may not be compact, with the condition that M° and M’? are compact.

According to Section the map has a continuous extension
(5.7.1) ¢*  I(F) = I(F).
defined as the composition
(5.7.2) I(F) 25 1M, M0 " AF) 25 I(F')

like (2.8.19), using with £ = AF. We can also describe (5.7.1)) as the re-
striction of to conormal currents of bidegree (0,e), like in (3.2.34). The
map is also a restriction of .

Similarly, the analogs of with £ = AF for and induce

continuous homomorphisms

7.3) ¢*: K(F) — K(F'),
(5.7.4) o*  J(F) = J(F) .
By passing to cohomology and reduced cohomology, we get continuous homomor-
phisms,

¢*: H*K(F) — H*K(F),
(5.7.5) ¢* H*I(F) — H*I(F'), ¢*:HI(F)— HI(F),
¢* H*J(F)— H*J(F'), ¢* :H*J(F)— H*J(F').

The assignment of the homomorphisms (5.7.1)—(5.7.5) is functorial.
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5.7.2. Description of ¢* : K(F) — K(F'). — For o' = ¢*w and o' = ¢*n, we
have TF' = kerw’ and dw’ = ' A w’ (the Frobenius integrability condition for F').
Thus

(5.7.6) ¢* 1 C®(MY;A) — C(M'%; A)

is a cochain map for dg, and ds, (s € R) (Section . In other words, ¢ induces
(5.7.7) " C®(MY% AR QBNMY) = C°(M' A2 QBNM'Y) ,

given by

(5.7.8) o (@@ wl) = 'a® ],

which is another cochain map for the de Rham differentials defined with the flat
bundle structures of Q* NM? and Q*NM'°.

If p is a defining function of M° in some open neighborhood T', then p’ := ¢*p is
a defining function of M'? in T’ = ¢=1(T), and satisfies

(5.7.9) o*(a ®dpl*) = *a @ |dp|" .

Note the compatibility of (5.7.8) and (5.7.9) with (£.2.5). Furthermore, the inverse
image of T := T, = (—¢,€), X MY | for € > 0 small enough, is a tubular neighborhood
T = (—€,€)y x MO of M'% in M’, where @’ : T' — M’ satisfies ¢’ = w¢ as maps
T' — M°. Thus

p=idx¢p:T' = (—€,6) x M'Y - T = (—€,¢) x MY,

which is proper because M’? is compact. We can use these tubular neighborhoods to
define the operators 9, and 9, on C°(T; AF) and C(T"; AF’) (Section , which
are used in the identities of Proposition for K(F) and K(F') (Section [5.6.1]).
Clearly,

(5.7.10) O™ = ¢"0, ,
as maps C°(T; AF) — CX(T'; AF),

Proposition 5.7.2. — According to Proposition the map (5.7.3) is given by
o =P =P,
k k

where the terms of the first direct sum are given by (5.7.6)), and the terms of the
second direct sum are given by (5.7.7)), taking s = —k — 1.

Proof. — The second identity follows from the first one and . To prove the
first identity, by , it is enough to consider the term with k = 0.

For a € C®(M%A), let u = a® |dp|~t € C®(M% A ® Q 1NMY). Using the
first identity of Proposition for k = 0, we have u = 64,0 = @w*a - p*dy in
K (F), using Dirac sections (Section. Here, p*dg € K (T, M°) is defined because
p: T — (—¢€) is transverse to 0. Moreover u' := ¢*u = ¢*a - |dp’|~! by (5.7.9).
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As before, v’ = 5}\‘},0 = w*¢*a - p*dy in K(F'). Take a sequence f; € C°(—¢,e€)
converging to do in C7°(—¢,€). Then
BB = 6" (@ a - p"00) = lim " (@0~ p* i) = lim *w" - 67"
:limw/*¢*a~pl*f¢:w/*gb*a'p/*(so:(s}f/}/o. 0
Remark 5.7.3. — The equality 0,,¢* = ¢*9, has a continuous extension as maps
Co=®(T;AF) — C;°°(T"; AF"), and the computations of the above proof also work

also with o« € C=°°(M"; A). So we get similar expressions of ¢* : C}5°(M; AF) —
Cy o (M'; AF') according to Remark

5.7.3. Push-forward of conormal leafwise currents. — With the notation and
conditions of Section [5.7.1} suppose that moreover ¢ is a submersion such that the
vertical bundle V is oriented (Section . Thus ¢ : M'? — MY is also a submer-
sion whose vertical bundle is V|0 C TM'?; also oriented. Then the case of
on smooth leafwise forms has a continuous extension

(5.7.11) Gu  Lojer(F') = Iy (F) .

This map can be described as the restriction of the map (2.8.24]) to conormal currents
of bidegree (0, e), like (3.2.33)) in Section [3.2.15] We can also describe (5.7.11)) as the

composition
Tejee (M, L's AF) 205 T, ) (M, I; 9" AF @ Qpiver) - o). (M, L; AF)

like in (3.2.35)), where ¢, is given by (2.2.23|) for £ = AF. The map ((5.7.11]) is also a
restriction of the case of (3.2.33)) for leafwise currents.

According to Section the map induces homomorphisms
(5.7.12) be: K(F') = K(F),
(5.713) b JejerF) = Jop.(F).
Like in Section we get induced continuous homomorphisms,

¢y H*K(F') - H*K(F) ,
(5.7.14) b HUI(F') = H*I.(F), ¢ :HI.(F')— H*I.(F),
G HJ(F') = HYJe(F) 6w tH*Jo(F') = H*Jo(F) .

The assignments of homomorphisms 7 are clearly functorial.
5.7.4. Description of ¢. : K(F') — K(F). — For ¢ as above, consider the nota-
tion of Section [E.7.2l Then
(5.7.15) by O (MO A) — C= (M A)
is a cochain map for dy,; and dg,y (s € R) (Section[2.9.3). That is, ¢ induces
(5.7.16) by CO(M' AR Q NM'?) — C°(M°; A @ Q*NMP) |



148 CHAPTER 5. CONORMAL LEAFWISE REDUCED COHOMOLOGY

given by
(5.7.17) Pi(a® |']*) = pua @ |w|”

which is another cochain map for the de Rham differentials defined with the flat bundle
structures of Q*NM? and Q°*NM'? induced by the Bott flat T F-partial connection

(Section [3.1.3)). Like in (5.7.9)) and (5.7.10]), we have
(5.7.18) Pu(a® |dp'[*) = pua ® |dp]*
(5.7.19) Opds = 040,y ,

where (5.7.19) holds as maps C°(T"; AF') — C(T; AF).

Proposition 5.7.4. — According to Proposition the map (5.7.12)) is given by

¢*E@¢*E®¢*,
k k

where the terms of the first direct sum are given by (5.7.15), and the terms of the
second direct sum are given by (5.7.16)), taking s = —k — 1.

Proof. — The second identity follows from the first one and . To prove the
first identity, by , it is enough to consider the term with k = 0.

For B € C®(M'%A), let v/ = B®@|dp'|7 € C°(M'°; A ® Q"I NM'?). Like in
the proof of Proposition we have v/ = 5%,0 =w'* B p*d in K(F'). Moreover
vi= ¢ = ¢, |dp|~ by (5.7.18), with v = 63,0 = @*¢.3" - p*dy in K(F). Take a
sequence f; € C°(—¢, €) converging to dg in C;°(—e, e). We get

GuB3pr0 = (@5 - p*60) = lim pu (@B - 9" fi) = lim .0 B - p" f;
=limw ¢.p-p*fi = ¢ B - p*dp = 30 - O
The analog of Remark for ¢, : K(F') = K(F) is true.

5.7.5. Leafwise homotopy invariance. — With the notation of Section [3.2.16
let H: (M'xI,F xI)— (M,F) (I =][0,1]) be a smooth leafwise homotopy such
that Hy is transverse to M® and Hy '(M°) = M’°. Then, for every p’ € M’, the
map Hy. : Ny F' — Ny, ) F is the composition of Ho. : Ny F' — N, ) F with the
parallel transport along the leafwise path s € [0,¢] — H4(p'). It follows that every
H, is transverse to M° and H; '(M°) = M'?. Hence H is transverse to M° and
H=Y(M° = M'° x I. Then, by and according to Sections and
the corresponding leafwise homotopy operator h : C°(M;AF) — C(M'; AF') has
continuous linear extensions,

h: K(F)— K(F'), h:I(F)—=I(F), h:JF) —=JF).

By continuity and according to Section [3.2.16] we have Hf — Hj = hdr + drh with
H§ and Hy given by (5.7.1), (5.7.3) and (5.7.4). Hence we get the following.
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Proposition 5.7.5. — Let ¢,vp: (M', F') = (M, F) be smooth foliated maps trans-
verse to M with ¢~ (M°) = =1 (M°) = M'°. If ¢ is leafwise homotopic to 1, then
¢ and Y induce the same homomorphisms (5.7.5)).

5.8. Action of foliated flows on the conormal sequence

Let ¢ = {¢'} be a foliated flow with transversely simple preserved leaves on a
compact foliated manifold (M, F). The homomorphisms induced by the maps
¢t define actions of R on H*K(F), H*I(F) and H®*J(F), denoted by ¢* = {¢*},
and actions on H*I(F) and H®J(F), denoted by ¢* = {¢**}. By Proposition m
they only depend on the flow-leafwise-homotopy class of ¢ (Section .

With the notation of Section the foliated flow ¢ = {£'} has transversely
simple preserved leaves and satisfies £ = ¢ and ¢! = id on M. By Proposition
there is a flow-leafwise homotopy between ¢ and &, and therefore ¢* = £* on H* K (F).
Consider the tubular neighborhood with defining function, T, = (—e,€), X MQ | like
in Section

Proposition 5.8.1. — According to Corollary[5.3.9 and Remark[5.3.3,
¢t* = @e—(k-i-l)mt = @e—(k+1)%Lt
k,L k,L

on H*K(F), where k runs in Ng and L in moMP°.

Proof. — Since {*p = e*tp on every Tp. N &4 (TL.) by [@E2.7), it follows
from and Propositionthat
ft* = @ef(kJrl)th = @ef(lwl);@t
k,L k,L

on K(F), according to Proposition and Remark Hence ¢'* = £'* has the
stated expression on H® K (F). O

Propositions and Corollary [5.3.2] and Remark show Theo-
rem 3711






CHAPTER 6

DUAL-CONORMAL LEAFWISE REDUCED
COHOMOLOGY

6.1. Dual-conormal sequence of leafwise differential forms

Assume the conditions of Section on (M, F). According to Section the
LCHS
I'(F)=IA(F) :=I'(M,M°; AF)
is a topological complex with dx. It induces the dual-conormal leafwise cohomology
and dual-conormal leafwise reduced cohomology of F (or of (F, M")). The notation
BI'(F), ZI'(F), BI'(F), H*I'(F) and H*I'(F) is used like in Section
For a leafwise flat vector bundle E, we can also consider the topological complex

I'(F;E)=I'A*(F;E)=1'(M,M*; A\F @ E)

with dz. The LCHS I’(F; E) is also defined for an arbitrary vector bundle F, missing
the leafwise differential map dr.
Moreover, the LCHSs

I'O(F) =T OA(F)=I'(M, M AF) (seR).

also become topological complexes with dr. The notation BI'(®)(F), ZI'(®)(F),
BI'®)(F), H*I'®)(F) and H*I' *)(F) is used like in Section

Remark 6.1.1. — Although QM has no leafwise flat structure in general, we can
assume F is oriented by working locally or passing to the double cover of orientations

of F. Then we can apply 7 and the leafwise flat structure of QNF
to define dr and d% on every I®)(F; QM) = I®)(F; QNF). Since the condition of
being in 1) (F; QM) is local for elements of C~°(M; AF @ Q), this procedure gives
the definition of dr = d%.

For s’ < s in R, we have the continuous linear restriction maps (Section [2.3.1)

(6.1.1) T F) S TOF), o IOF) 5 TOF),
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where j; = j'; and j; , = j', _ for the version of with QM. The induced
homomorphisms in cohomology and reduced cohomology are denoted by j.,, jg,s’aﬁ
Js« and J_ .. The homomorphisms j ., and 7, .., form projective spectra, giving
rise to projective limits as s 1 4oco. Like in (5.1.2), the maps j., and 7,, induce
canonical continuous linear maps,

3= limgl, : H*I'(F) — HI'(F) = lim H*I'9)(F)

(6.1.2) _ o o _
Jo=limgl, : HT'(F) = HI'(F) = lim H*I'®)(F)

where the second one is a linear isomorphism (Section [6.2]). The canonical maps of
the inductive limits to the steps are denoted by

jS* : g.I/(F) - H.I/(S)(]:) ’ js* Iﬁ.I/(-F) %H.I/(S)(f) .

Using the above type of notation, the LCHSs J'(F) and K'(F) are also topolog-
ical complexes with dr (Section , with corresponding spaces BJ'(F), ZJ'(F),
BJ'(F), H*J'(F) and H*J'(F), and the same for K'(F).

Similarly, we have topological complexes J'()(F), J'™(F) and K'(*)(F) (s,m €
R) (Sections [2.6.13| and [2.7.4), with corresponding spaces BJ'(®)(F), Z.J'(9)(F),
BJ'O)N(F), H*J' ) (F) and H*J' )(F), and the same for J'™(F) and K')(F).
There are obvious versions for J'(®)(F) and K'(*)(F) of the maps (Sec-
tion , also denoted by ji and j{ ., giving rise to projective spectra in coho-
mology and reduced cohomology, and the corresponding projective limits. In the case
of .J'(F), the maps j’ ,, and j, are continuous inclusions (Section [2.7.1)).

There are also continuous inclusion maps (Section [2.7.1))

I 2 (F) > I NEF) e ITF) = IF) (! <m)
(6.1.3) s 2 JF) = JNF) (m>s+n/2+1),
Jem t JOF) = TMF) (s 2m,0),
denoted like in (5.1.1) with some abuse of notation. The homomorphisms induced
by the maps j,’n,m, in cohomology and reduced cohomology form projective spectra
whose inductive limits as m 1 +oo agree with the previous ones for J(F), and the

maps j;, induce a continuous linear isomorphism analogous to (6.1.2)).
It will be shown (Corollary [6.3.2) that the canonical projections are TVS-identities,
(6.1.4) { H*K'(F) = H'K'(F), H'K'")(F)=HK')(F),
6.1. _ _
H'K'(F) = lm HK'®)(F), H*K'(F)=lim H*K'®)(F) .

The version of the bottom row of (2.7.8) with AF is a short exact sequence of
continuous homomorphisms of topological complexes,

(6.1.5) 0 K'(F) &5 1'(F) & J'(F) 0,
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using the notation R’ = (* and / = R'. The exactness of the induced sequences,

(6.1.6) 0« H*K'(F) <= H*T'(F) <= H*J'(F) « 0,
(6.1.7) 0« H'K'(F) <= H*T'(F) < H*J'(F) 0,

will be proved in Section [6.5} in particular, this shows Theorem [1.3.6
Taking the transpose of the analog of ([5.1.8]) with QM , we get continuous linear
maps

(6.1.8) R K'O(F) = I'O(F), o TOF) = I O(F).

Like in Section the subscript “s” may be also added to the elements of the
cohomologies or reduced cohomologies of K’ ) (F), I'®)(F) or J' ) (F).

6.2. Projective limits in reduced cohomology

The goal of this section is to prove the linear isomorphism (6.1.2)), and its version
for J'(F). The case of K'(F) is given by (6.1.4).

To simplify the notation, we write
H*I'(F) =lmH*I'®(F), H'I'(F)=limH*I')(F),
and the canonical maps of the projective limits to the steps are denoted by
F. HI'(F) — HT'®)(F), j.:HI'(F)— HT'®)(F).
The same type of notation is used in the cases of J'(F) and K'(F).
Lemma 6.2.1. — BI'(F) is dense in every BI'*)(F) is dense.

Proof. — Use that the image of J'(F) is dense in J' *)(F) (Section [2.3.1)) and dr is
continuous on J'(F) and J'*)(F) (Section . O

Recall that BJ/(F) (resp., BJ')(F)) denotes the closure of BJ'(F) (resp.,
BJ'G)(F)) in J(F) (resp., J' ) (F)).

Corollary 6.2.2. — As vector spaces,
BJ'(F)=(\BJ “(F).

Proof. — By the definition of the projective topology of ), J'*)(F) [Sch71l, Sec-
tion IL.5] and using Lemma we get that BJ'(F) is dense in (), BJ' (*)(F).
Moreover, this intersection is closed in J'(F). Then the stated equality is true. O

Lemma 6.2.3. — As vector spaces,

ZJ'(F)=(2J“(F).
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Proof. — Consider the commutative diagram

0 —— N, ZJ O(F) —— N, JOF) =2 N, BJ(F)

I H I

0 —— ZJ(F) —— J(F) 2“5 BIF) ——0.
Here, the central vertical equality is the analog , the arrows that are not
given by dr and do not go to 0 denote inclusion maps, and the bottom row is exact.
Since the surjective maps dx : J'(®)(F) — BJ'()(F) form a homomorphism between
projective spectra whose kernel is the projective spectrum consisting of the spaces
ZJ'®)(F), the top row is also exact [Wen03], Proposition 3.1.8]. Thus the left-hand-
side vertical arrow is an equality of vector spaces. O

Proposition 6.2.4. — The canonical map H*.J'(F) — H*J'(F) is a linear isomor-
phism.

Proof. — Consider the commutative diagram

0 —— N, BJO(F) —— N, 2] O(F) —— H*J'(F) —— 0

| | I

0 —— BJ(F) —— ZJ(F) —— H*J(F) ——0.
Here, Corollary[6.2.2]and Lemmal6.2.3] give the vertical equalities of vector spaces, the
vertical arrow is canonical, and the other maps are canonical; in particular, the bottom
row is exact. Lemma also shows that every BJ®)(F) is dense in BJ®)(F)
for s’ < s. Hence the right derived functor yill satisfies 1&11 BJG)(F) = 0 as
s T 400 [Wen03| Theorem 3.2.1], obtaining that the top row is also exact by [Wen03|,
Corollary 3.1.5]. Then the result follows. O

On the other hand, the kind of arguments that will be given in Section [6.5] can be
adapted to show the exactness of the sequence

(6.2.1) 0 H*K'(F) &= HT'(F) &= H*J'(F) « 0,
where R, = @R;* and 7, = @1[’5*, using the homomorphisms induced by (6.1.8)).

This fits into a commutative diagram

0 +—— H°K'(F) +—— H°*I'(F) «—— H*J'(F) +—— 0

H ! [

0 +—— H°K'(F) «—— H°*I'(F) +—— H*J'(F) +— 0,
where the top row is the exact sequence ([6.1.7), and the vertical arrows are canonical.

The last vertical arrow is a linear isomorphism by Proposition [6.2.4 Then the central
vertical arrow is also a linear isomorphism by the five lemma.
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6.3. Description of H*K'(F)

As explained in Section [6.1] there is no loss of generality in assuming F is oriented,
and then we can apply (3.2.19)—(3:2:21)) to get K®)(F; QM) = K©&)(F; QNF), where
we can consider dr or d% using the leafwise flat structure of QNF.

Consider the notation of Section Since dw = n A w and dr satisfies the
derivation rule on products of smooth leafwise currents and smooth leafwise forms
(Section [3.2.§), it follows that the version of Proposition with coeflicients in
QN F states that

K(F;QNF) = @cw (MO A) = @000 (MY A@Q*NM),

d;_@d k_@d

where k runs in Ng. Moreover the subcomplex K ) (F;QNF) c K(F;QNF) corre-
sponds to the finite direct sum with k < —s—1/2. Taking dual spaces and transposing

maps, using (2.8.4) and ([2.9.8)), we get the following consequence.

(6.3.1)

Corollary 6.3.1. — We have identities of topological complezes,
(Fy=]]C %A = HC’ (M A®Q*NMO) ,

d]:EHdkEHd,
k k

where k runs in Nog. Moreover the quotient complex K'(*) (F) corresponds to the finite
direct sum with k < s —1/2.

Corollary 6.3.2. — We have TVS-identities,
= [[Hr %) =] EH(M°, Q"N MO)
k

where k runs in Ng. Moreover H*K'(*)(F) is the quotient space of H*K'(F) given
by the finite product with k < s —1/2. In particular, (6.1.4]) is satisfied.

Remark 6.3.3. — The differential complexes on M used in Corollary split
into direct sums of the same complexes given by leaves L C M. The same applies to
their cohomologies, used in Corollary

Corollary 6.3.4. — There is a canonical TVS-isomorphism,

H*K'(F)=H*(M°) & H" ~*K(F)' ,

Proof. — Apply Corollaries [5.3.2/ and [6.3.2 and ([2.9.6). O
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6.4. Description of H*J'(F)

Like in Section by ([2.7.4) and ([2.7.5)), for m € R,
(6.4.1) J'F) = p"H (M AF) = p" =2 H(M; AF)
(6.4.2) J(F) 2 (\p"Hy, *(M;AF) = (| p"H > (M;AF)

as topological complexes with dz, dz and dz, using the b-metric g to define
H7>°(M;AF), and using g|y, to define H™*°(M;AF). The leafwise version
of (2.9.4]) (Section also gives isomorphisms of topological complexes,

(6.4.3) p I (pTEH® (MG AF), dy) = (HOO(M;Aj"-'),dﬁW%) .

By (6.4.1) and (6.4.3]), and the analog of (3.4.16|) for Aj:,m—% in H=°°(M;AF)

(Section , we get induced TVS-isomorphisms

(6.4.4) H*J'™(F) = H*(p™ T H > (M; AF),d;)
(6.4.5) =~ H*(H >*(M;AF), dﬁm_%)
(6.4.6) = ker A_,;,_.,m_% .

By the analog of (6.1.2) for J/(F) and (6.4.6), the LCHS H*®J(F) is a projective
limit of a sequence of Hilbertian spaces, and therefore a Fréchet space. The isomor-

phisms (6.4.4)) and (6.4.5)) are also true in cohomology.
Theorem follows from the analog of (6.1.2)) for J'(F) and (6.4.1)—(6.4.3).

6.5. Short exact sequence of dual-conormal reduced cohomology
The goal of this section is to prove the exactness of . Some remarks will
indicate how to adapt the proof to show also the exactness of and (6.2.1).
6.5.1. The maps F), . — For every m € R, let
Fl,=E'  I'®(F) = J™F),
where s = 0 if m <0, and m < s € Z" if m > 0, where
E_p : J™F;QM) — 59 (F; QM)
is given by the version of Corollary with QM (see Remark ; thus
(6.5.1) Fl.dr =dxF}, .
Since s > m, 0, the map j;’m is defined, and we have

(652) F7InL\ls = EimRis = (R*SE*m)t = jtfm,*s = ];,m .
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6.5.2. The maps E/,. — For s ¢ Rand m > s+n/2+1, let
B, =F, K'C)F) = I'OF),

where s’ =0 if m <0, and m < s’ € ZT if m > 0. Here, we use the map

Fp : IT9(F QM) — K&(F; QM)
given be the version of Section[5.5.2] with coefficients in QM (Remark[5.5.3). Consider
(6.5.3) Fl, = gl ol - 'V (F) = T O(F)
which is the transpose of the version of with coefficients in QM

E_p : JOONF QM) — 1) (F;QM) .

Then becomes

(6.5.4) Fli =gl

Transposing the versions of f with coefficients in QM , we get
(6.5.5) UL+ ELR, =gl I'E(F) = I'O(F),

(6.5.6) RLE, =jl  : K'C)(F) = K'&(F),

(6.5.7) El dr = drE!, .

Take greater numbers, s > s, m; > m and s} > §', satisfying the same inequalities

as s, m and s'. Using (6.5.3]), the transposition of the versions of (5.5.6) and (5.5.7)

with coefficients in QM give

(6.5.8) Frodv s = Jey.sFm, s
(6.5.9) By s = I sEm, -

6.5.3. The equality ker R, = im7,. — We already know that ker R, D im .. To
prove ker R, C im7,, take any class [u] € ker R, in H*I'(F). Thus there is some
net v; in K'(F) such that R'u = lim; dzv; in K'(F). Write us = j'u € I'®)(F) and
Vs = Jiup € K'®)(F). Take s, m and s’ satisfying the the conditions of Sectionm
obtaining E!, : K'G)(F) = I')(F) and F!, : ')V (F) = J O (F). Let as =

Flug € J'O(F) and b, = El v € I'®)(F). By (6.5.1),

d]:aS = FT'nd}-usz =0.

Moreover, by (6.5.5) and (6.5.7)),

-/ / / / /
Us = Jo sUst = L P usy + By Roug

=1as+ li}n El dru, s = tias + li}n drb s .
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Now consider the above notation for greater real numbers s1, m; and s}, satisfying

the same properties as s, m and s’. By (6.5.8]) and (6.5.9)),

./ o / o o _
Jsq,50s1 = ]sl,sleus’l = ijs’l,s’us’l = qus’ =Aag .

. o / o _ _
]Sl,Sbl’Sl - ‘75175Em1vl15/1 - Emjs’l,s'vl,s’l - Emvlﬁs’ = bl,S :

Therefore, taking s T +oo, m T +0o0 and s’ T +oo, satisfying the above relations, the
elements a, € J')(F) and by, € I'®)(F) define elements a = (as)s € ZJ'(F) and
by = (brs)s € I'(F), and we have u = t/a + lim; dzb;. Hence [u] = 7..([a]).

Remark 6.5.1. — A similar argument, taking an element v € K’(F) instead of a
net v;, shows the inclusion ker R, = im ¢} in H*I'(F).

Remark 6.5.2. — As before, to prove ker ]?Z; = im?, in (6.2.1), we only have to
prove “C”. For any 4 := ([us],)s € ker R, there is some v € K'(F) such that
Rlus = drvs, where v, = jiv. Moreover, j;,,susz = ug + lim; drg; s+ for some net

Grs,s in I (5)(f). Take as and bs; as above. The given argument shows that
dras =0 y Us + hlrnd]:gl,s’,s = [/;as + hlrnd]:bl,s ;

. . / ./
Jsy,54sy = Qs + h{nd]:Fmgl,s’l,s’ ) jsl,sbl,sl =bys -

)

Hence G := ([as],)s € H*J'(F) is defined and 7,(a) = .

6.5.4. Injectivity of .. — Let [u] € H".J'(F) such that 7 ([u]) = 0. This means
that there is a net v; in I'(F) such that J/u = lim;dzv; in I'(F). Write us =
jlu € ZK'®)(F) and vy = j'v € I'®)(F). With the notation of Section let
bis = F\ue €J G (F). By (6.5.1) and (6.5.4),

Us = ]é/ sUs’ = F;,LL;/US/ = lim Frlnd]:’l)l s/ = lim d]:bl s -
s’ 1 ) 1 )

Like in Section [6.5.3] it can be shown that, taking s T 400, m 1 +00 and s’ 1 +oo
as above, the elements b, , € J'(*)(F) define elements b, := (b, ,)s € J'(F), and we
have u = lim; dzb;. Thus [u] =0 in H"J'(F).

Remark 6.5.3. — Like in Remark we also get the injectivity of ¢/.

Remark 6.5.4. — To prove the injectivity of 7, take any 4 = ([us],)s € ker?
in . Then there is some net v; s in every I’ ()(F) such that t\u, = lim, druys
in I'(*)(F). Moreover, Jur sust = us + lim;dxg s s for some net g, s 5 in J' ) (F).
Take b; s as before. The above argument shows that

Us + h}n dfgl,s’,s = 11}'I1 d]:bl,s .

So @ =0 in H*.J'(F).
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6.5.5. Surjectivity of R,. — Take any [u] € H*K(F), and write u, = jiu €
ZK©)(F). With the notation of Section we have vy = E! vy € ZIG)(F)
by (§5), and Rlu, =, suy = u, by (050).

Now consider the above notation for greater real numbers s1, m; and s}, satisfying
the same properties as s, m and s’. By (6.5.9)),

. Y / o o .
]sl,svsl - jsl,sEmlvsll - Em]s’lyslvs’l = Emvs/ = Vs .

So v := (vs)s € ZI'(F) satisfies R'v = u, and therefore R’ ([v]) = [u].

Remark 6.5.5. — Using cohomology instead of reduced cohomology, the analogous
argument gives the surjectivity of R..

Remark 6.5.6. — To prove the surjectivity of R, in , for any [u] € H*K(F),
define us and v, as above. We also have Rivs, = us and j§, (v,

(Tvsl.)s € HoI'(F) and R.o = [u].

, = Vs. Thus 0 :=

6.6. Functoriality and leafwise homotopy invariance

6.6.1. Pull-back of dual-conormal leafwise currents. — Consider the notation
and conditions of Section (including the conditions of Section [5.7.1f). According

to Section the map has a continuous extension
(6.6.1) " I'(F) = I'(F'),
defined as the composition

I'(F) S ron, M0 ¢t AF) S 1 (F)

like (5.7.2)), using (2.3.11)) with £ = AF. We can also describe (6.6.1) as the re-
striction of (2.8.24) to dual-conormal currents of bidegree (0, ), like in (3.2.33)). The

map (6.6.1]) is also a restriction of ([3.2.33).
@2.3.11) with E = AF

Similarly, the analogs of (2.2.20) with £ = AF for (2.7.9) and (2.7.10) induce

continuous homomorphisms
(6.6.2) " K'(F) = K'(F),
(6.6.3) ¢ J(F) = J(F).
By passing to cohomology and reduced cohomology, we get continuous homomor-
phisms,
¢*  H°K'(F) — H*K'(F') ,

(6.6.4) ¢* H*I'(F) — H*I'(F"), ¢*:H*I'(F)— H*I'(F'),

¢* H*J(F)— H*J'(F), ¢*:H*J(F)— H*J(F).
The assignment of the homomorphisms f is functorial.
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6.6.2. Description of ¢* : K'(F) — K'(F'). — Consider the notation and condi-
tions of Section [5.7.2] and assume also that ¢ is a submersion. By the density of the
space of smooth forms in the space of currents, we get from (5.7.6)) that

(6.6.5) ¢* : C™®(M%A) = C>°(M'%A)
is a cochain map for dg,; and ds,y (s € R), and we get from (5.7.7) that
(6.6.6) ¢* O ®(M%A@RQNMO) — C~°(M'% A2 Q*NM'?)

is another cochain map for the de Rham differentials defined with the flat bundle
structures of Q*NMY and QN M'°.

Proposition 6.6.1. — According to Corollary the map (6.6.2)) is given by
o =][¢ =]]¢".
k k
where the terms of the first direct sum are given by (6.6.5)), and the terms of the
second direct sum are given by , taking s = k.

Proof. — Apply Propositions 2.8.1] 2.8.2] and [5.7.4} O

6.6.3. Push-forward of dual-conormal leafwise currents. — Consider the no-
tation and conditions of Section [5.7.3] (containing those of Section [5.7.1)). Then the
case of (3.2.33) on smooth leafwise forms has a continuous extension

(6.6.7) Gut Iy (F) = 1L, (F) .

c/ev
This map can be described as the restriction of the map (2.8.33]) to dual-conormal
currents of bidegree (0, o), like (3.2.33]) in Section 3.2.15] We can also describe

as the composition

Lo M L AF) T2 1L (MY, L5 ¢*AF © Quver) 25 1L, (M, L; AF)

c/ev c/cv
like in (3.2.35)), where ¢, is given by (2.3.10) with £ = AF. The map (6.6.7)) is also
a restriction of the case of (3.2.33) for leafwise currents.
According to Section the map (6.6.7) induces homomorphisms

(6.6.8) 6. K'(F') = K'(F) ,
(6.6.9) et Sy (F') = I, (F) -

Like in Section we get induced continuous homomorphisms,
¢« H*K'(F') - H*K'(F) ,
(6.6.10) b HLU(F) = HUIUF), 6. HI(F) — B*I(F),
¢u HJ(F') — H*J(F), ¢ :HJ(F')— H*J.(F).
The assignments of homomorphisms f are clearly functorial.
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6.6.4. Leafwise homotopy invariance. — Consider the notation and conditions
of Section [5.7.5} and assume that every H; is a submersion. Like in Section [5.7.5
according to Sections and the corresponding leafwise homotopy operator
h: C®(M;AF) — C*(M'; AF") has continuous linear extensions,

h:K'(F)— K'(F), h:I'(F)=I'(F), h:J(F)—=JF).
By continuity and according to Section [3.2.16] we have Hy — H§ = hdr + dzh with
H§ and Hy given by (6.6.1), (6.6.2) and (6.6.3). Hence we get the following.

Proposition 6.6.2. — Let ¢,¢ : (M',F') — (M, F) be smooth foliated maps trans-
verse to M with ¢~ (M°) = =1 (M°) = M'°. If ¢ is leafwise homotopic to 1, then
¢ and i induce the same homomorphisms (6.6.4)).

6.7. Action of foliated flows on the dual-conormal sequence
Consider the notation and conditions of Section .8

Proposition 6.7.1. — According to Corollary[6.3.9 and Remark[6.3.3,
d)t* = Hek;«q,t = Hek%Lt
k,L k,L

on H*K(F), where k runs in Ng and L in moM?°.

Proof. — Argue like in the proof of Proposition and its previous observations,
using Corollary [6.3.1] Remark and Proposition [6.6.2 O

Corollaries [6.3.1] and [6.3.2] Remark [6.3.3 and Proposition [6.7.1] show Theo-
rem [[3.41






CHAPTER 7

CONTRIBUTION FROM M!

7.1. Operators on a suspension foliation

Consider again the notation of Section {.2] where the case of a weakly simple
foliated flow ¢ = {¢'} on a suspension fohated mamfold (M, F) was descrlbed Equip

Mi with g4, obtaining that ]—'i is of bounded geometry (Propo . We can

assume ¢ is of R-local bounded geometry on Mi by Proposition |4.2.15 and according
to Section Thus, on M L = (M +,G4), F+ is of bounded geometry and ¢ is of
R-local bounded geometry. Consider the leafwise perturbed operators for (M, Fy)

and (]Tj +, F +) defined by the leafwise-closed form 79 and the leafwise-exact form 7jg
(Section ). For any ¢ € A, f € C*(R) and z € C, the operator

+oo
(7.1.1) Py = / ¢ P(Dg, ) f(t)dt
— 0o
on H—°°(My; AFy) is a version of ([3.4.17) for ¢'* and Dy, . and therefore it is
smoothing by the corresponding analog of (3.4.18]). Let lo(i = Kfpi.
By (4.2.1) and ([#.2.2)), for v € T and ¢ € R, the equality gZS’;*T;* = Tj;ngi* means
that, for all z € R,

(7.1.2) B T = T gl

T,z Ty a1,z

on C* (Z, A) (Section 2. 2.9.4). Consider also the notation of Sectlon“for the regular
covering m = 7wy, : L — L used in the suspension construction; in particular, recall
the notation k.. Recall that hy(y) = % !lna, for y € T, and Dy (z,7) = 5 In|z|
for (z,7) € My (Section . Thus, by the version of m for the leafwise

perturbed differential complex (Section , and by (4.2.1] , and -,
¢ € C°(R), then

(7.1.3) Ky([z, ], = Ky (2,4, [, 7))
vyer
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for all (x,7), (/,7) € M 4, where

(714) ]’P{iﬁ([l’,g],[(ﬂl,g/])

1 22w ~Lm
= b5 T Tk (v 62

||
According to Section [2.5.26] for the boundary-defining function p on My (Sec-
tion , let p and p’ denote its lifts to (My)? from the left and right factors, and
let s = p/p’ : (M+)? — [0,00]. We have corresponding smooth functions p, p’ and s
on (M4)?. Similarly, let  and 7’ denote the lifts of i from the left and right factors.

Using (4.2.13), we get
(M1)? = [0,00), x [0,00) X L?, (M) = (0,00)% x L?.

@)1 (L) 2

» a~T

fE/

Then
(M)} = [0,00), x [0,00]s x L?,

with boundary components b = {s = 0}, rb = {s = oo} and ff = {p = 0}. Moreover

Ay ={(p,L,y,y) [p>0,ycL}.

With the above identities, the restriction of B, : (My)2 — (Mx)? to the interior
corresponds to the diffeomorphism

(0,00)2 x L* = (0,00)® x L*,  (p,8,5,9") = (p.ps~ Ly, ) -

Similar observations apply to Mi, using L instead of L, and using the lifts g, p' and
5 instead of p, p’ and s. The subscript “£” will be added to the notation A} and
Ap o = Ap NfE if needed.

Let 4 be the C* section of B;(AFy K (AF} ® QM.)) on the interior of (My)Z
that corresponds to K via By. If ¢ € C°(R), then, using the changes of variables

r=1eFOp5, o = :I:e_F(ﬂ/)pN/ ,
with
/ / ~/ 3 ~/
L PG -F@) -s, Loy @ B_
z x

S
=0 =05=0, =t =05=0,

it follows from (|7.1.3]) and (|7.1.4]) that

(7.1.5) Kip, [ [7]) = > Ky (o, 0 [, [0])
~el’
(716) ’%i (pv S, [g]’ [g/]) = Z "%iﬂ)’(pa S, [5]7 [gl]) )

yel’
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where
(T.17) Kiq(p, 0, i), [5])
1 -2 (F@)-F(@)+n L) - L(F(@)—F(#)+In £- )~ ~
| |¢:|:e F(9)p,z T’)’k <’Y ¢:|:e F@)p (y)vyl>
. _ P\ 4P’
x fl=(F(@g) —F@)+1n ‘—
(@) - F@) +w )|
and

(718) ’%i,v(p’ S, [g]v [Z:l/])

1 ~1p P —F(F)=Inays)* s T L(F F(§)—Ina~ys) -
= fn i T e (v 02T @)

1 - N ds
% H(Z(F@) = F(@) ~ nays) )|
Let us look for more general conditions on % to get (7.1.6) by using the Fréchet

algebra and C[z]-module A (Section [2.9.8). Notice that every i+ ,(p, s, [7],[7']) has
a C'* extension to p = 0.

Lemma 7.1.1. — Ify € A, then, given any fundamental domain F C E, the series
mn converges with all covariant derivatives, uniformly on p > 0, 0 < s < 00
and 7,y € F. Moreover its sum is k+(p, s, [§],[9']) for p > 0.

Proof. — Since ¢ is of R-local bounded geometry on M + with g4+ and supp f is
compact, we can take R > 0 and K C L? like in the proof of Proposition with
supp f C I for any compact I C R. Using (2.9.19) with this K, for any W > 0, we
get

k. (v 3@, 9| < Cre™ = M [ lLaswy
fory € I, x € R*, t € supp f and 7,7 € F. Using again the R-local bounded

geometry of ¢ on M + with g+ and compactness of I, it follows that there is some
Coy = Co(z, W) > 0 such that

(7.1.9) e (s 5, [, [0'])] < Coe™ o8 M bl awin (1 £2.c0

foryeT, p>0,s>0and g,9 € F. By (2.9.20) and (7.1.9), if W > ¢; Wy, then the
series in (7.1.6]) converges uniformly on p >0, s > 0 and ¢,¢’ € F, and the norm of
its sum is < C||¥|| a4,w,n for some C = C(z, W, N) > 0.

With more generality, by the R-local bounded geometry of ¢ on M + and the
compactness of I, the higher order derivatives of ¢, (§) with respect to z, t and 7 (in
normal coordinates) are also uniformly bounded for z € R*, t € I and § € L. Hence,
for every m € Ny, it follows from ) that

VIV (v L(5), 7| < Cre” S ) aw v
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foryel, ze€ RE t e, 7,7 € F and m1 + mgy < m. Moreover, since I and F are
compact, there is some c3 € R such that, for all 3,3’ € F,

Inays >cs =3 (F(§) — F(§) —lnays) ¢ 1.

Thus we can assume s~ < e"“a.,, yielding s7! < ecohl=es by ([@.2.19). Hence there
is some C3 = C5(z, W, m) > 0 such that

(7.1.10) |aar= Vi Vitiie o (p, s, (4], 1)

W
< O3l w v ||

|I,Cm )

foryel, p>0,s>0,79,9 € Fand m; +---+my <m. By (2.9.20) and (7.1.10), if
W > ¢1(mco + W), then the series defined by the covariant derivatives of order < m
of the terms in is also convergent, uniformly on p > 0, s > 0 and ¢, 7’ € F, and
the norm of its sum is < C’||¢|| 4, w,n+m || fll1,cm for some C’ = C'(z, W, N, m) > 0.
We already know that the sum of the series in is kx(p, s, (9], [§']) for p >0
if 1& € C°(R). Then this also holds when ¢ € A, as follows by taking a convergent
sequence ¥, — v in A with z/b\k € C*(R), and using the above estimates of the
sum. O

Remark 7.1.2. — Like in Remark 2.9.3] Lemma is true for any ¢ € S since
I' is abelian. But ¢ € A is needed for the estimates (7.1.9) and (7.1.10)), which will
be used later.

Proposition 7.1.8. — If ¢ € A, then iy has a C*™ extension ry to (My)?,
also given by (7.1.6) and (7.1.8) using C™ extensions k+ .~ of the sections ki .
to (Mi)Qb, which vanishes to all orders at lbUrb. Therefore k+ = Kkp, for some
Py € W (My; AFy) induced by Py.

Proof. — By Lemma K+ extends smoothly to fr (p=0and 0 < s < 0).

Take any compact I C R containing supp f. According to ([7.1.8)), the sum in (|7.1.6)
can be taken for v € I" with

w N F(§) — F(§') —Ina,s) € 1.
Then, since , 3’ € F, there exists R > 0 such that
Ins—R<Inay <lns+ R.

Combining this with (4.2.19)), we get

(7.1.11) cgt(£Ins—R) < |y|.
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By (2.9.20)), (7.1.9) and (7.1.11)), for any W > ¢; Wy, there is some C} = C%(z, W) > 0

such that, for p >0, s >0 and y,y’ € L,
° _.—1
fslpys,y )| <Co Y e VIl qwn (| F 1 e0

\’Y\>cgl(i Ins—R)

1 —1
< Coe(er W=Woleg (EIns=I) N = o= Woll ||| 4 v || £117,c0
yel’

—1 -1
(7.1.12) < CysTe WWoleo™ gl g o (I £l 7,0 -

Using (7.1.10]) and (7.1.11]), we similarly get that, for m € Ng, if W > ¢1(mco + Wo),
then there is some C§ = C4(z, W, m) > 0 such that

(7.1.13) |9 am=VIsV iy (p,s,y,y)]
—1 -1
< CysTler WemeomWoleo ™ |l || 4w e | 1l 1.0

for p>0,s>0,y,y € L and my +mg+ mg+mg < m. Since W is arbitrarily large,
it follows that 4 also extends smoothly to lbUrb (s = 0,00), where it vanishes to
all orders. O

Notation 7.1.4. — The subscripts “p”, “f” or “z” may be added to the notation
Pi, Ki, Ki),y, I%i, K4+ and Pi if needed.

Proposition 7.1.5. — The bilinear map
Ax CE(R) — COO((Mi)%; By (AFL K (AFL ® QMi))) s (W f) = ke f s

15 continuous.

Proof. — This is an additional consequence of (7.1.12)) and (7.1.13]). O

Recall the notation ¢, = {¢}} = {¢h} on M® = L and ¢; = {¢L} = {¢}} on
M°=1 (Section , and the trivialization v of { NOM. (Section |4.2.5). Recall
also that the indicial family is defined in Section

Proposition 7.1.6. — We have

+oo )
I, (Pi.,\) = Forin W (Drzyin) €M f() dt

Proof. — By ([2.5.63)), it is enough to show that the Schwartz kernel of the smoothing

operator
—+o0

T orin V(DL ztin) eMFf(t) dt

on C~°°(L; A) is given by
ds

]
S

© .
/ S_ZAK'i,Z(Oasayay/)
0
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at every (y,y’) € L?. By Lemma and Proposition for all 4, € L,
ds

| P50
0 S
—3 —F In a 8)* %

- Z/ 2 g (F@=F@)-tnavsyes

(7 fbo (F(§)— (y)flnaws)@%g,)

ds

< (- (F(ﬂ) — F(7) - ays) )
,Z INE(G)—F(§) lnav)/J:OQ%*ZT;k~ (7 - ¢0( ), )N F(t) dt

~el

where we have used the change of variable

t=3xY(F@@) - F@)—Ins+na,),

with
s = eF(ﬂ)fF(g}')Jrln a~y—sct , dt = _E ,
Pz
s=0«&t=sign(»)oo, s=o00<t=—sign(x)oo.

By Proposition [2.9.2]
keran (01 [7') = D Tokayir(v- 5, 9) -
yel
Moreover, by (2.9.4),
barin(@.9) = e

So, by (TZ3) and (T29),
Zei)\(F(gj')fF(g)flna,y)(bt* T k (7 ¢0( ) )

yel’

NEG)-F@) ] (7,7 .

_ Z eiA(F(il')*F(’Y'ﬂ))J%’sz; k(- 06(9),7)

ver
= Z ei)‘(%*F*F)(V‘g)(;Bgfze”‘(F@/)*F(V‘%(@)))T; k. (- &4(5), )
~yel
Grarin 2 Tokarin (v - 66(0)7') = Obraran karan ($6(1), [7]) . O

yer

Notation 7.1.7. — In Notation [7.1.4] we may also add the subscript “u” if we use
a family of functions ¢, € A dependlng on a parameter u. This also applies to k.
and k.

The identity element of I is denoted by e.
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Proposition 7.1.8. — If ,(x) = e~ | then (Kt —Kteu)la,y = 0asul0in
the C*° topology.

Proof. — For v €' and p = [z,7] = [ayz,7 - §] € My, by (4.2.1)) and (4.2.2)),

¢~ "D (p) = [,6, "= (v )] = [2,7- 6, "+ ()] .

Thus, using that 75, defines an isometric diffeomorphism of {z} x L=Lto Ly, it
follows from Corollary that there is some c3 > 0, independent of p and +, such
that, if h4(y) € supp f, then

dz (v-¢:"(@),5) = dr (¢~ (p),p) > csly| -
Therefore, by (2.9.14)) and since ¢~is of R-local bounded geometry, for my, ms € Ny,
O<u<wug,vel,p>0and ye L, we get

m mo 7, —h o~ o~ —(n—14m1+m —Coc2lv 2
|0 VT2 h = (7 655 (@), )| < Crum(nmiEmima) 2 =CacihlP/u

e~ F(@)p

A

where JEW is the Schwartz kernel of 9, (D; ) = e”““Z.=. Using again the R-local

bounded geometry of ¢ and the compactness of supp f, it follows that there is some
C3 > 0 such that

072 by (9, 1,y y)| < Cau™ (7 iFmaEma) 2= Cacilyl e
for my,me € Ng, 0 <u <ug,y€I',p>0and y € L. So

OV (Rt — ot ) (0, 1,y y)| < G (P 1bmadma)/2 §™ =l
~vET\{e}

which converges to zero as u | 0. O

Corollary 7.1.9. — If ¢y (z) = "= and f(0) = 0, then Ktula,y —0asul0
in the C*° topology.

Recall the notation e(Fy, gr, ) if n — 1 is even (Sections and , and also
the notation C%%°(M.;PQ) (Section [3.1.8).

Corollary 7.1.10. — If i, (x) = e~ then

fO)e(Fx,gr.) lwse] ifn—1 is even

lulfol str(Rsulans) = {0 if n—1 is odd

mn C’%f(Mi; bQ), using the identity Ay, + = M.
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Proof. — By Propositions [7.1.3| and [7.1.8] and (7.1.5)), (7.1.7) and (4.2.17)), for all
p>0andy=[g] € LwithgelL,

limstr &4 4 (p, 1,9, y)
ul0

=limstrfx ¢ o(p, 1,9, y) = limstr Io(i’e,u(p, 05Y,Y)
ul.0 ul.0
(0) |dp

E] ’?
But, by Theorem [2.9.4]

lui%str Fezu(5.9) = £(0) lwi|(y) 17}%8‘61‘ ko (9, 9) -

lui?()lStr ]%z,u(ga g) = e(ivgi)(g) = e(LagL)(y) = e(]:iag}})(pv y)

if n — 1 is even, and

limstr &, . (7,7) = 0
li str (U, )

if n —1 1is odd. O

7.2. Operators on the components Ml1

Consider the notation of Sections and in particular, consider the
boundary-defining function p = p; on every M; and the trivialization v = v; of
+NOM;. According to Section consider also the lifts of p to M} from the left
and right factors, p and p/, and the function s = s; = p/p’ : M? — [0, 00|, as well
as the corresponding functions p, p’ and s on (M;)Z. Equip M, with the Rieman-
nian metric gy, so that F, becomes a Riemannian foliation of bounded geometry
(Section . Consider the leafwise perturbed operators for (Ml,fl) defined by
the leafwise-closed form 7y, which agrees with 1 on the collar neighborhood of the
boundaty we have fixed. For any ¢ € A, f € C*(R), z € C and every index [, the
operator

o +OO
= [ ety Dfdr
on H*OO(J\ZTZ; A}'l) is a twisted version of , which is smoothing by the appro-
priate analog of (Section . Let
K = Kp € C®(MY AR K (AF; @ QM) .

Lemma 7.2.1. — For any compact I C R containing supp f, and for all k,m € Ny
and a € R, there are some C',C"” > 0 and N € Ny, depending only on I, k, m and
a, such that

1B o gz < € I acrs Il

Proof. — By (2.9.4) and {.3.1), Dy, ., = p*Dg .., . . “ (see Section [3.3.3). So
the result follows from the analog of (3.4.20) for Dﬁl,z+a72_a (Section . O
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Proposition 7.2.2. — The kernel K; has a C* extension to M2\ (OM;)? that
vanishes to all orders on (OM; x M;) U (M x OM;).

Proof. — We will use the arguments from the proof of [H6r83l Theorem 5.2.6].

For any ¢ € M; and « € Aq]i"l ® Qq_lj\;[l, we have 05 € H*(M;; AF) for any k <
—n/2, and [|0¢|[x < Ck |a|, where Cy > 0 is independent of ¢ and a (Section .
Therefore, by the definition of weighted Sobolev spaces and the properties of Dirac
sections at submanifolds (Sections [2.1.12| and 2.2.6), for all a € R, we have 0 €
p®H*(My; AF}) and

110G | pa zre < Crpla) "ol .
Moreover, for any a € C'OO(J\;IZ; AR ® 971]\041), the map
M, = p"HF(Mi; AR, g 059

is continuous by the continuity of (2.2.13)).
Fix any compact I C R containing supp f. By Lemma , we have Pog €

p“Hm(Ml;Aj'l) for any m € Ny, and
Bt

poim < Crnp(@)” [Wllac w1 fllren lel

for q € Ml and a € Aqﬁl ® Qq_ll\cil, where C/ > 0 is independent of a, ¢ and a.
Moreover, for any a € C’OO(J\;[Z; AF ® 9711\041), the map

My = p"H™(Mi; AFi) g Bog@
is continuous. On the other hand, by , for all ¢ € M; and o € Aq}"Dl ® Qq*lMl,
K-, q)(a) = Bi§2 € O (M AF) .
It follows that the map
M, — pH™(Mj; AF; @ QM) , g+ Ki(-q) ,
is continuous for any a € R and m € Ny, with

1K)

porm < Crp(@)”* [Wllac v 1fl10n

for all g € ]\Zl. Using the Sobolev embedding theorem, we conclude that K, ; is contin-
uous on MIQ, and

Ki(p.q)| < C (%) lllacros [ Fllr o

=Cs(p.a)" [Yllac .~ Ifley

for all @ € R and p,q € Z\QL7 where C,C" > 0 and N € Ny are independent of a, p
and ¢. So K extends to a continuous section on M7 \ (9M;)?, which vanishes on
(8Ml X Ml) U (Ml X 6Ml)
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For any Dy, D, € Diff{f,’ (M;; AF;), applying the above arguments to the operator
D, P, D5 and using (2.1.28)), it follows that, for all a € R and p,q € M;,

(721) |D1,P D%,qf(l(pv Q)| < OS(p7 Q)a ||1/’HA,C’,N ||f||I,CN )

where C,C’ > 0 and N € Ny are independent of a, p and g. O

Let ; be the C™ section of B (AF; K (AF] ® QM;)) on the interior of (M)}
that corresponds to K, via By, using the notation of Section Fix 0 < € < ¢
like in Section [4.3.3] and consider the notation of Sections [4.3.2] u and 3.3 Let L
be a boundary component of M;, which can be identified with a leaf of F in M?.
For 0 < o < ¢, via the identity IQ“LJ,U = oiylya, the sections in Cg"(]\;[l;Aﬁl) and
C°(My; AF; ® Q) supported in 77, can be identified with sections in C2°(M/; AF))
and C (Ml', A]i'l’ ® Q) supported in 101}471,0. Similarly, according to Section

ﬁb ( Lla) Bb ( Lla) - {(pasayay/) S (OaOO)Q X L2 | paps_l < O'} .
The operator (7.1.1), studied in Section is now expressed as

o +oo
Pri= [ ol vDsy )r@d.

Let K}J = KP£ , with lift /7 ; to the interior of (M7 l)b, and let kf ; = tip; , denote
the extension of 7 K7, to (M7 ;)7 given by Proposition

The subscripts of Notations and may be also used with 1031, Io(l, K, }Bi’l,
IO{"LJ, A7, and K ;.

Proposition 7.2.3. — Given ¢y € A and u > 0, take 1, € A defined by 1/)u( ) =
Y(ux), and consider the restrictions of ki, and kY, ,, to ﬁgl(f’g,l7e) By (T T 2 ).
There is some 0 < € < € such that, for any R > 0, m, N € Ny and a € R, there
exist G,W > 0 and N’ € Ny so that, for mi +ma +m3z+my <m, 0<u <1 and
(p,5,5.9) € By (T2,.0).

o o ~N —RB
|0y 02V (R — R 00) (08,9, y')] < Ce™ w0 pNs® ([l awon [ fllen -

Proof. — Take C' > 0 and ¢ > 1 like in Lemma [£:2.4 and Corollary [£:2.5 and take
¢ > 0 like in Proposition for the suspension foliation F7 , on Mj ; and any
compact I C R containing supp f.

Claim 7.2.4. — For o, 8 € CZ(Mp;;AFLy), o, f' € C2(M] ;AF; ) and € € R,
let

O‘(f) = eigD}LL’l,za ) 6(5) = eigD}LL’bzﬁ )

€Dz . €D 2/

o) =e Trtal, B =e TETp

The following properties hold for 0 < 0,7 < €:
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(i) If o and o are supported in T ;5 = fi,l,a and agree there, then «(¢) and o/ (&)
are supported in f’L,l’E = flé,l,e and agree there for [£] < C'ln 5.

(ii) If 8 and B’ agree on Ty, = 1011767 then B(€) = B'(€) on Ty, = fﬁ,m for
€l < Cln <.

This is a consequence of Corollary H 4.2.5| and the leafwise twisted version of (3.4.9)
applied to the equation J¢u(§) = zDE zu(f) on Tr . =17, ., where u(§) = a(§) =

o/ (&) n[[@)] and p(&) = B(€) = '(€) in D)

Claim 7.2.5. — Let «, o/, a(§) and o/(§) be defined like in Claim [7.2.4] m and let
0 <o <eand 0 < 7 < ¢€/c/. If @ and o are supported in TLZU = TL
and agree there, then ¢*a(£) = ¢'*a/(€) on TLJ,T = TL, 1. for any t € I and
€]l < C(ln 5 +1n 5).

By Claim |7 -. 1f§ < Cln %, then a(§) and o/(€) are supported in fL Le =
TL 1.e and agree there. Thus, by Clalm -n 1f I¢] < C'ln -5, then a(§ + C) =

o/ (E+C) on Tpyer —Tle Hence ¢™*a(€ +¢) = ¢'*a/(§+¢) on Ty —TLlT
for all ¢ € I since ¢° (TLJ,T) - TL,LC + by Proposition m This shows Claim |7

Take any u € C*(R) such that 0 < g < 1, supppu C (—00,0], and p = 1 on
(—o0 —1112] For 0 <o <€ let xo = p(lnp —Ino) € C’Sﬁ(]\o@) We have y, > 0,
supp xXo C TLZU, and x, = 1 on Tng/Q Moreover x, € C’Sg(Ml) and ||Xg||cm is
independent of o for m € Ny because d(Inp) € C’gﬁ(Ml, T*M;) (Section . Let
also 0 < 7 < €,¢/c" and define x, as above. Then the operator x. (qu — i,l,u)XU is
well defined on H~°°(M;; AF;) via the identity 77 = Ic’iyl’&.

Let a € C2°(M;; AF;) and 8 € C2°(My; AFf @ Q). By Claim and the version
of for éuDy, . and &LD}"L,M instead of tDy (Section ,

. 1 oo
<XT(Pl,u PL l, w)Xo O >6> b / R ¢(€)Al,z,u(ta §)f(t)dEdt,
TJlg>Sm 55— J-o0o
where
« ifuD+ % zSuD
Al,z,u(tvg) = <<¢;,z e : Prs QS/Lt,l,z € )Xaa XTB>

Then, by the version of (3.4.10) for {uDyx, . and §uDx; | . instead of tDy (Section7
since ¢ and ¢7 ; are of R-local bounded geometry, and using that Ixollcr, and
[x|lcx, ~are finite and independent of o and 7 for all k € No, we get that, for all
m € R,
* 1 D 7 * Z§UD F/ 2
At O] < || (e €07 = it 00 ) xal| xeBll-m

< e xgallmlxBll-m < C"e“E |l Bll-m ,
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for some C,,,C’",C"” > 0 independent of a, 3, o, 7, and u € (0, 1]. So, for all W > 0,

|<XT(‘ZODl,U - ﬁi,l,u)xaavﬁﬂ

1 oo
<5 |10 Al Ol 50 de e
T JIgl>S (In S+n —5-) /oo
< Callml8l-mlfler [ eI [i(6)] ¢
1€]>< (In & +1In —5-)

o0
< C ol Bl flpre S ) [ vacne
— 00

B(&)|de

for some C,,,C’,C"” > 0 independent of «, 3, o, 7, and u € (0, 1]. Now, assume

€ €
7.2.2 < —, < .
( ) 7S e TS e

Thus In 5, In —5- > 1, obtaining

cc'T

W (In S+In —5) efc,lfv(lJr%(lni«Hn =) < efc,lfvech(lniJrlnﬁ)

e cclrt/ < <
= o T FrW it ) (57) D < = (07) S
Hence
|<XT(]°DZ,U - ﬁi,l,u)xvaaﬂﬂ
_cw ow
<0 (0m) 2 |[Wllawcno flInco llallm |8]-m

for some C""” > 0 independent of «, 8, o, 7, and u € (0, 1], but involving the length
of I. Thus, for any R > 0, N € Ny and m € R, there are some C, W > 0, such that,
for all o and 7 as in (7.2.2)), and every u € (0, 1],

° o ~ _ R
X+ (Piw = Ppyu)Xoll,, < Ce v om0l awo |1 fll,co -

Using the arguments of the proof of (7.2.1)), we similarly get that, for any R > 0,
N € Ng and m,m’ € R, there are C,WW > 0 and N’ € Ny such that, for all o and 7

as in ([7.2.2)), and every u € (0, 1],
o o o~ 73
X (Prow = PLia)Xo ||y < Ce™ w90l Lawon [fllr,on -

Moreover, for any a € R, replacing o with p~%« and 8 with p®f in the above argument,

we also get

<XT(IODZ,u - pﬁ,l,u)xapiaa, PQB>

“+o0 .
! | / D(E)Bua (€, 0) [ (1) dE dt

27 [¢]u>C(In 5 +1n —5 —o0

ce! T
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where
B _ tx i€uD g | /tx 1§“DF£ 1z —a a
l’Z(t’£7a) - 1,2 € bE—=0ri1,2€ ’ XoP G, Xrp B
a tx €uDz . _q arte WEuDgr g
= <(p Giae TTrpTt = piop e LEE ™Y )Xot X7 B
tx i€uDy /it WuDgr .4 .t
= <( 1,z—a® FpEmaste — Ll,z—a® Lot Xo O Xr0) -

Then, proceeding as above, we obtain
o o -~ _R
e (Prac = B Xo Lo gy < Ce 2™ TN bl 1] o

for some 6, W > 0 and N’ € Ny, depending only on R, N, m, m’ and a. Using the
Sobolev embedding theorem as in Proposition [7.2.2] it follows that, for any a € R,
R >0 and N € Ny, there are some C,W > 0 and N’ € Ny such that

X (0) (K (p, 9) = K710 (9, 9))Xo (0))]
< 56_%<7p(p))a0NTN Y|l aw,n || f n
o) lollaw,n 1 f Il on
for all p,q € TLJ7€ and u € (0,1], and every ¢ and 7 as in (7.2.2)). Put

= min ( ¢ ¢ )
€ = — .
4ce’ dec'e
Forp,q € TL,l,e', we set 7 = 3p(p) and o = 3p(q). It is clear that o and 7 satisfy (7.2.2))
and x-(p) = xo(q) = 1 (since p(p) < 7/2,p(q) < 0/2). Therefore, by the above
estimate, we get
. . ~ n
|(Kiw — K7,1.)(p, )| <9V Ce % s(p,q)p(p)™ p(@)™ 0]l 1£]l 7 one
A —E a— a
=9NCews(p, @) Vo) N Wl awn [ flron s
for all p,q € 70’,;71,6/ and v € (0, 1].

For any k € Ny, taking arbitrary operators Dy, Dy € Diffﬁ(Ml; AF;) and Di, D} €
Diff’g(M’LJ;A]-"L’l) with D; = Dj on Ty, =T}, . (i = 1,2), and applying the above
arguments to the operators Dl.fDlA’uDQ and D’llfjl”uD’Q, we obtain that, for all a € R
and N € Ny, there are some a,W > 0 and N’ € Ny such that, for all p,q € fL’LE/
and u € (0, 1],

(723) |D1p DS (K = K1), 0)] < Cems(0,0) 0@V [ awv 11l on -
Consider the vector bundle S = AF, K (AF @ QM,;) over M?. Recall that
Difff ((M;)?; 5;S) is C>((M;)?)-spanned by the lift of Difff (M?; S), and Difff (M?; S)
is C°(Mp)-spanned by the lift of Difff(M;; AF;) from the left-factor projection and
the lift of Difff(M;; AF; ® Q) from right-factor projection (Section . Then it
follows from that, for all A € Difff((M;)?;5:S), a € R and N € Ny, there are
some 5,W > 0 and N’ € Ny such that, on ﬁgl(fil,e,),

. . A _R
| Al = & p0)] < Cem s oM [llawn [l .o -
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Since a and N are arbitrary, this indeed holds with A € Diff*((M;)}; 5;S), after
possibly increasing C', obtaining the stated inequality. O

Proposition means that &y, — n’Llu has a C™ extension on the open subset
(Tp1e)2 C (M)i over T =TV,

Recall that ¢r, = {¢% } denotes the restriction of ¢, or of ¢, to any boundary leaf
L of F.

Corollary 7.2.6. — The section k; has a C*° extension Kk; to (Ml)zb, which vanishes
to all orders at IbUrb, and therefore P, defines an operator P, € W, (M;; AF).
Moreover

+oo
L, (P, A @/ O yin V(Drzrin) €E f(8) dt

®(OM;; A EB e

where L runs in mo(OM;).

Proof. — This follows from Propositions [7.1.3] [7.1.6] [7.2.2] and [7.2.3] O

The subscripts of Notations and may be also used with P, and &;. If
needed, the subscript “I” is also added to the notation of the b-diagonal Ay, of (Ml)12)7
and to Ay o = Ap N

Corollary 7.2.7. — The bilinear map
Ax CZ(R) = C=((M)p; By (AR R (AF] @ QM) o (4, f) += Fugs

18 continuous.

Proof. — Apply (7.2.1)) and Propositions and O

Corollary 7.2.8. — If {,(x) = e—uz’ (u > 0) and f(0) = 0, then there is some
0 < € < € such that k1, — 0 on Ay N ﬁgl(Tfe,) = T, in the C* topology, as
u | 0.

Proof. — This is a consequence of Corollary and Proposition O
Corollary 7.2.9. — If i, (x) = e~ then there is some 0 < € < € such that

f(0)e(Fi.97,)
0 ifn—1 s odd

n CIOD’;’O(TZ’E/; bQ), using the identity Ay, ;N ﬁgl(ﬂ?e,) =Te-

if n—1 1is even

Ll?& StI‘(Hl,u|Ab,1) = {

Proof. — This is a consequence of Corollary and Proposition O
Proposition 7.2.10. — We have
dr, . € Diffy (Mi; AF) , L, (dF, 2, A) = dong, 2 ix -
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Proof — By (3.2.28), dr,. € Diff'(F;AF,) C Diffy(M;AF,). By (2.5.62)
and (E31),

Il’l (d}-z,zv >‘) = (pii)\d]:z,zpi)\)a = (d]:z,z + Z‘)\Pfldﬂp/\)a = d3M112+i>\ .
Alternatively, we can use (2.5.64) and (3.2.28) to describe I, (dz, -, ). O

Recall that M = | |, M; and v is the combination of the sections v; (Section |4.3.3).
This boldface notation of Sections [{.2.2] [.3.2] and [£.3.3] allows to simplify the notation
of direct sums of section spaces, cohomologies and operators defined on the manifolds

M. For instance, we get the operators

P= @Pleqf MAT)_@\II (Mi;AF)

dF. = @dm € UL(M;AF) = P UL (Mi;AFR),
1 1
whose indicial operators are
;@L,l(Pl,)\) > (OM;A) = @xp
L(dE ., \) @L,l dr, ., \) € UHOM;A) = @\p (L; )

where L runs in mo(OM) = 7r0M0 UM, On the other hand, according to Proposi-
tion I,(dx ., A\) = don,»+ixn- Let also k = kp on M} = LI, (M;)?, which is the
combination of the sections ;. In M%, we have Ay = ||, Ay, and Ap g = |, Abo,-
The subscripts of Notations [7.1.4] and [7.1.7] may be also used with P and k.

When z = p € R and ¢(z) = ¢, (z) = e’ (u > 0), the above P = P,
is the operator P, s of Section [[.3.4 Thus Theorem is a consequence of
Corollaries 2.5.10, [7.2.6] and [7.2.7]

7.3. The limit of PStr(P,) as u ] 0

With the notation of Section let C = C(¢), P = P(d), C C(¢;) and
P, = P(¢1). For any leafwise density o € C°(M;; QF;), we can cons1der alwn,| €
C>(M;;P€). In particular, if n — 1 is even, the leafwise Euler density e(F;, g7,) €
C>°(My; QF) (Section gives rise to the b-density e(F, g7, ) lwb,i| € C°(My; bQ),
whose b-integral,

v
ool (F2) = / e(Firg) b |
M,

can be called the b-Connes |wy|-Fuler characteristic of F;. This is a b-normalized
version of the Connes |wy |-Euler characteristic, where |wy | is considered as an in-
variant transverse measure of '. The usual Connes |wy, ;|-Euler characteristic is not
defined because M} is not compact. If n — 1 is odd, let bX|wb,l|(-7:l) =0.

Recall the operator P defined in Section
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Theorem 7.3.1. — If i (x) = e~ue’ (u > 0), then
lim "Str(P Z Nt | (F1) - FO) + D L(e) > eelk) - f(ke(c)) -

ul0
ceC keZx*

To prove this theorem, we consider every P, ,, separately. Recall that &;, . cor-
responds to lz:l,z,u via the restriction of 8, : (M;)? — M7 to the interiors. Thus
we are going to study the asymptotic behaviour of i%l%u as u J 0. The identities
M, = M}, F = F} and f})ef = Tﬁe/ (0 < € <€) will be used without further com-
ment. With the notation of Sections and and adapting the notation of
Section let &; = Hol 7} and ®, = Hol ]T"ll7 with source and target projections,
s,r:6; — Ml1 and s, 7 : Q~5l — ]\Zl. The pairs (r, s) define identities ; = R; := Rfll
and (’Nﬁl = 75,1 = Rj_:ll. Let A; C R; denote the diagonal. Consider also the vector
bundles

S)=s"AFL@r*(AF* @ QF), S =s"AF @r (AF* @ QF,
over &; and (’~5l, and the leafwise Schwartz kernel l;:l%u defined by the Schwartz kernels

of the operators e ““Z’.= on the leaves L of j-:ll, for z € C (Section [3.4.7). By (3.4.21])
and since w,; = D} dx (Section 4.3.4), for p € M} and p = [p] € M},

(7.3.1) kl zZu p p Z ¢_hl(7)* T* kl z u( »Y(ZS_ l(’Y)( ) ) f( hl( )) |wb,l|(p) ’

vED

using that S (v5.5) = S(p,p)- This defines a convergent series in C3}(As; Si).
Any leaf of ]-"l is of the form L' = {2} x L; = L, for some z € R. Then the
restriction of gy ; to L' is identified with a metric grz on Ly, Az, is identified with

the twisted Laplacian A; , . on (L, §i.) defined by the restriction of 7, and l;l,zm on
L'? is identified with the Schwartz kernel k; 4, . of e “At== defined on L?.
Theorem follows from the following result.

Proposition 7.3.2. — Let I C R be a compact interval with supp f C I. Then the
following properties hold:

(i) If I CR* and INP, =0, then
. b o
Ll?(} Str(P,) =0.
(ii) If I cR* and INP, = {to}, then
. b
lim "Str(Pru) = £(to) > ) eclto/t(e))

c€Cyt
where Cp 1, consists of the orbits c € C; with period .
(iii) If0 €I and INP, =0, then

IJJIBbStI‘(ID[,u) = f(O) bXIwb,z\ (]:l) :
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Proof. — Choose some 0 < ¢ < ¢ satisfying the statements of Corollaries [7.2.8
and and take some 0 < €’ < €. Take some C3 > 1 satisfying (£.3.]). Since
&y is of R-local bounded geometry (Section , there is some R > 0 such that
di(¢t(p), p) < R for all j € ]\Afll and t € I. So, by and the triangle inequality,
for all p € J\Zl’e,, and v € I'; with —h;(y) € I, we get

(7:3.2) Cs'hl = R<di(y-6,""().5) < Csh| + R,

using also that -~ - qgl_hl (7)(13) = QNSl_hl (7)(7 -p) with y-p € ]/\\4/1176//.
By the R-local bounded geometry of ¢~7l and the compactness of I, there are Cy, Cs5 >
0 such that, for all £ € I,

(7.3.3) |6 < Cuy |f(B)<Cs.
Assume I C R* and I NP, = B to prove Thus

{(P.0i(0) |p€ M, tel}
is a compact subset of (M})?\ A;. By Lemma there is some Cg > 0 such
that dz (¢t(p),p) > Cé for all p € Mll)e,, and t € I. So, for all p € Mll’e,, and vy € T
with —hy(y) € I,
(7.3.4) dzy (v- 6" (). 9) = Cs
Take some C7 > 0 such that, for all v € T'; with —h;(y) € I,

B 06 if |’y| < CgR .

Since d; < dfll (Section [3.1.6)), it follows from ((7.3.2]) and (7.3.4)) that, for all p € ]\f/\[/ll’eu
and v € T, with —hy(y) € I,
(7.3.5) dz (18" ).5) = Gl

By (2.9.14) and (7.3.5), and since the leaves of fll are of equi-bounded geometry,
there are C1,Cy,ug > 0 such that, for all 0 < u < ug, p € Mll,eu and v € I'; with
_hl(’}/) € Ia

(7.3.6) |t (v - & " (5),5) | < Cruln=D/2e=CoCThl/u

Hence, by (7.3.1) and (7.3.3), for all 0 < u < ug and p € M} ..,

(7.3.7) ‘];l,z,u(p,p)‘ < C4CsCyu(m—1/2 Z o—C202171? /u 7
RSY

which converges to zero as u | 0 because I'; is of polynomial growth. Since Mﬁe,, is
compact, we get

lim str kl,z,u(pap) =0 ’
ul0 pEMll 1"

and therefore |(i)| follows by Corollaries and [2.5.10,
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Now assume I C R* and I NP = {¢o} to prove|(ii)l and let C;py = {c1,...,cm}-
Then the following properties hold (Section |4.3.4)):

(N) There is a unique 7o € I'; such that ¢ty = —hi(70).

(O) We have kj :=to/l(c;) €Z (j=1,...,m).

(P) There is some y; € L; such that m; : R x {y;} — ¢; is a C'*° covering map with
fundamental domain [0, £(c;)] x {y]}

(Q) For all p € R x {y;}, we have 7 - gbl (p) = p.
(R) For all € R, every y; is a simple fixed point of the diffeomorphism T’ l . of

Ly with e, (T, l,z) = €c; (kj, 0) = ec; (kj)-

In particular, there are no other fixed points of T- ngl 2 in some open neighborhood
W; of y; in L;. Then m([0,€(c;)] x W;) is a ne1ghb0rhood of ¢;, whose interior is
denoted by V;, which does not intersect other closed orbits with period in /. Note that
71 (0,€(c;)) xW; — Vjis a C embedding and V;\m;((0,€(c;)) x W;) = m ({0} x W;)
is of measure zero. For every p € Vj}, let p be the unique point in [0,¢(c;)) x W; with
m(p) = p. We have

[ st (B0 T o (T 305):9)) £00) | 0)

J

:/ str tDZ*T* kl,z,u( 0¢l ( ), )) to |wbl|
K(CJ - ~
F(to) / / str (107 T2 e (2, Too 00, ()), () |
é(c]
=f(to)/ / str ¢§0;Z o K.y, (T ff;( ),y) |da| .
0 W

But, by Proposition [2.9.6

lim str (&f?m*,z T;:o I;l,a:,u,z (T'YO ~§,Oaz (y)’ y)) = €y, (T'YO ng,oa:) = € (kj) .
w0 Jw;

So

(7.3.8) E%/‘/jstr(~f?z*Tj{"o Fre Ty 30 (5), 7)) £(t0) loona ()
= f(to)l(cj)ec, (kj) -

By., we can assume the length of I is as small as desired. By the R-local bounded
geometry of ¢y, if the length of I is small enough, there is some 0 < r < 03 2 such

that d;(¢!(p), ¢;(p)) < r for all p € M} and t,s € I. So, by - .and (Q)| for
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all p € ¢j and v € I\ {10} with —hy(v) € I,

di(v- 6" (), p)
>di(y- ¢, " B), 70 - 6" ()
—di(v0- &, " (B), 70 - 6 B)) — di(vo - ;O (5), B)

—d, (¢ 1(7)( ) N ’YO ¢ l(’Y)(ﬁ)) *dl(ébl lm)(ﬁ),ébl hl('YU)(ﬁ))
> C3 1|’Y 1’}/[)l —-7r.

Thus, by continuity, the neighborhood W; of every y; can be chosen so small that,
forall pe V; and v € '\ {70} with —hy(y) € I,

di(y- 67" B),5) > Oy el —2r > Gyt —2r > 0.

Hence, by (2.9.14)) and since the leaves of ]-'11 are of equi-bounded geometry, there are
C4,Cs, up > 0 such that, for all 0 < u < wg, p € V; and v € I\ {o} with —hy(y) € I,

|I~€l,z,u (7 . é;hz(v)(ﬁ),ﬁ)‘ < Clu(n—l)/2e—()2(0§1|’Y’Wo\—2r)2/u )

Then, by (7.3.3), for all 0 < u < ug and p € V},

T—h * h
Y. O F e (Tyd ™ (5), 5) F(—ha(7)) |Wb,l|(p)‘
veT I\ {0}
< C4CsCrum=/2 Z o= C2(C5 v Mol —2r)% /u ,
YEL\{o}

which converges to zero as u | 0 because I'; is of polynomial growth. So, by (7.3.1))

and (T35,

(7.3.9) lim str ki (p,p) = f(to)(ci)ec, (k;) -
’U“LO pGVj

On the other hand, since ¢ has no closed orbits in Tll6 (Section 7 we can
assume V; C M} . Let 17 = '(V;) C J\ZE,, Ifpe M, \(ViU---UV,) and
t € I, then ¢t(p ) # p. Hence, like in the proof of., there are C7,C1,Cz,uo >0
such that (7.3.5) and (7.3.6) hold for all 0 < uw < wg, p € Ml’e,, \(VAU---UV,,)
and v € Iy with —hy(y) € I. Thus holds for all p in the compact space
Ml o \(V1U---UV,,), yielding

lim str ]:fl,z,u(pap) =0.
ul0 peMl{e,,\(Vlunuvm)

So is true by (7.3.9)) and Corollaries [2.5.10{ and

Finally, assume 0 € I and I NP, = () to prove By we can suppose again
that the length of I is as small as desired. By (7.3.2)), there are finitely many elements
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v € Ty such that —hy(y) € I and, for all p € J\Zl,
(7.3.10) dz: (v- 6" (5),5) > 1.

Thus, if I is small enough, we can assume is true for all p € ]\,le and v € I'/\{e}
with —hy(vy) € I. Then, like in the proof of there are C;,C1,Cs,ug > 0 such
that (7-3.5) and (7.3.6) hold for all 0 < u < wuo, § € M}, and v € T\ {e} with
—hy(7y) € 1. Hence, by (7.3.3)), for all 0 < u < ug and p € M} .,

S e O T k(T8 (), B) F(—hi()) lwnal ()
~vel\{e}

< 040501,“(71—1)/2 Z 6—0203‘7‘2/71 ’
vely

which converges to zero as u | 0 because I'; is of polynomial growth. On the other
hand, by (2.9.22) and Theorem
st (5. ) — | (P 97)) = eFiogr)(Bl) i —1is even
ul0 0 ifn—11is odd,
uniformly on p € ]\’ZI{EH. So, by (7.3.1),

limstr k., = £(0) e(Fi, 97,) |wbi
ul.0

uniformly on Abwlﬁﬂgl(Mﬁeu) =M. Thereforefollows using Corollaries|2.5.10
and [7.2.9 and Remark 2.5.111 O

Remark 7.3.3. — The simpler argument given in ALKO02, ALKOS] for the case of
Theorem with no preserved leaves cannot be applied here because now PStr(P,,)
depends on u.

Theorem is a restatement of Theorem [T.3.1]

7.4. The limit of PStr(P,,) as u T +oc and p — +oo

7.4.1. An expression of "Tr([dx ,, P,w]). — From now on, we will only consider
P, for z = p € R; written P,. We keep the notation z = p + ¢A for any other A € R
(i = /—1). In the following, L runs in moM°. Recall that gy = n around M°. For
YeA peRand feCPR), let

1 Foo R
Spu = —%[ neAY(Dr 2) f(—3pA) dX

+oo _
(7.4.1) - / nAY(Dr,2) fL(A) dA

27| |
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where fr,(A) = f(—=\/5r). Again, we may also add the subscript “¢” or “f” to the
notation St if needed. Recall also that w denotes the degree involution. Observe

that wdr . = —dx .w and I, (P,w,\) = I, (P,, A\)w by (2.5.63).
Lemma 7.4.1. — We have
PTr((dr 0, Ppw]) = 2> Str(SL,.) -
L

Proof. — By the version of (2.5.65) with a b-differential operator and a b-
pseudodifferential operator of order —oo, Corollary and Proposition [7.2.10

1 [t
PTr([de 0, Puw]) = 5 Tr(Oz 1y (d s A) I (P, )W) dA

T )
1 +oo  ptoo 4
= Z/ Tr(nAv(Dy,.)w) e £(t) dt dA
™
L J—oo J=o0

=2 Str(SL,) - O
L

7.4.2. Variation of "Str(P,,,) with respect to u. — For any ¢ € A and u > 0,
let 1, € A be defined by 1, (x) = ¥(y/ux), and consider the corresponding operator
P, . Recall that P, , is the operator P, ., s of Section if (z) = e .

Proposition 7.4.2. — If ¢ € A is even, then

d 1
%bStr(PM) =7 EL: Str(SL,(p)um) -

Proof. — This result follows like in the heat equation proof of the usual Lefschetz
trace formula [AB67, [Gil95, Roe98|, but the stated derivative does not vanish
because the b-trace of commutators may not be zero. To simplify the arguments,
consider the change of variables v = \/u, and let ¢’ (x) = ¢, (z) = ¢(vr) and P}, =
Pyv . ¢. By Lemma and since 9’ is odd,

“+oo
PStr (/ ¢y dx u ' (vDx ) (1) dt)

— 00

“+o0
=bTy (/ Gdr V' (vDE ) w f(t) dt)

— 00

+oo
— by (/ ¢Z*¢,(®D:F’H) de:’#f(t) dt) +2 Z StI‘(SL’(d,/)v“u)
° L

— 00

+oo
= _bTI‘ </ QSZ*(SfW ¢I(UD7'-7H) Wf(t) dt) + 2 Z Str(SL,(d)’)“,u)
L

— 00

+oo
= —PStr (/ (;5?5}'7# Qﬁ/(’UD}',#) f) dt) +2 Z Str(SL7(’¢'/)v7ll,) .
L



184 CHAPTER 7. CONTRIBUTION FROM M1

So
d bm.s pv b oo tk /
o Tr P Str (;5# Dx ¢ (vDy:,M)f(t) dt
“+oo
= "Str (/ ¢ dr ' (vDx ) (1) dt)
—+oo
+ PStr ( / Ol o7 .0 (vDF L) f (1) dt)
= 2 Z Str(SL,(w’)“,p,) .
L
Now apply the chain rule. O

7.4.3. The limit of PStr(P, ,) as u T +oo and p — +oo. — Now take 9(z) =
e~ Hence 1y (z) = e~ and (¢)y(z) = —2/uze "= . Thus, by (7.4.1)),

1 +oo —
4.2 ’ = — — _UAL,Z
(7.4.2) SUr(SL1.) =~ /7 St (g2 ) F() A

Theorem 7.4.3. — For all 7 >> 0, we can choose every ny, and g, (L € moM°) so
that

i (1' Pu—l'Pu): 0).
HTlinoo ulg}rloo pou ugﬁ) Houo Tf()

If n — 1 is even, this is true for all T € R and as p — £o0.

Proof. — By Theorem if 7> 0, we can choose every 71z, and g, so that (2.9.25|)
defines a tempered distribution Zy, ,, := Z(L, gr,nz) € S’ for |u| > 0, and Z, ,, — 7
in S as p — oco. If n —1 = dimL is even, then this is true for all 7 € R and as

i — too. Then the result follows because, by (2.9.25)), (7.4.2) and Proposition

. 1 >
ull%l—{-loo P“ w1y ilo% P/L,uo = 7% ; /0 StI‘(SL7(¢/)u,H) du

1 1
=== —(ZrufL) - O
™ ||

Corollary gives Theorem by taking 7 = 0 when n — 1 is even.

Corollary 7.4.4. — For all 7 > 0, we can choose every n, and gr, (L € m7oMP°) so
that

lim lim Str( w) = (X|wh|( )+ Ze Z k) f(ke(c)) .

pToo uttoo cec kezZx

If n is even, this is true for all T € R and as p — £oo.

Proof. — Apply Theorem and Corollary [7.4.4] O
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Theorem [1.3.9] follows taking 7 = 0 in Corollary [7.4.4
Like in[ALK02, [ALKL20|, by (5.4.6) and (6.4.6), the distributions

fr ulTlJrrnoo *Str (Pm+%,u,f) I ulrlinoo "Str (meé’“*f)

can be considered as a distributional supertraces of the action ¢* of R on H®J™(F)
and H*J'™(F). So, by the analogs of (5.1.2) and (6.1.2)) for J(F) and J'(F), and
using (5.4.6)) and (6.4.6]), the distributions

fr lim lim PStr(Pg1,), [ lim lim St (P,_1, )

ml—oo ut4oo mJloo uT+oo

can be considered as a distributional supertraces of the action ¢* of R on H®J(F)
and H*J'(F), as indicated in Section m






[AB67]
[AdaT5]
[AL8Y]

[ALG21]

[ALKO1]

[ALK02]

[ALKOS]

[ALKL14]

[ALKL20]

[ALKL21]

BIBLIOGRAPHY

M.F. Atiyah and R. Bott, A Lefschetz fized point formula for elliptic com-
plezes. I, Ann. of Math. (2) 86 (1967), 374-407. MR 0212836

R.A. Adams, Sobolev spaces, Pure and Applied Mathematics, vol. 65, Aca-
demic Press, Inc., New York-San Francisco-London, 1975. MR 0450957

J.A. Alvarez Lépez, A finiteness theorem for the spectral sequence of a
Riemannian foliation, Ilinois J. Math. 33 (1989), no. 1, 79-92. MR 974012

J.A. Alvarez Lépez and P. Gilkey, The local index density of the perturbed
de Rham complex, Czechoslovak Math. J. 71 (2021), no. 3, 901-932. MR
4295254

J.A. Alvarez Lépez and Y.A. Kordyukov, Long time behavior of leafwise
heat flow for Riemannian foliations, Compos. Math. 125 (2001), no. 2,
129-153. MR 1815391

, Distributional Betti numbers of transitive foliations of codimen-
sion one, Foliations: geometry and dynamics. Proceedings of the Eu-
roworkshop, Warsaw, Poland, May 29-June 9, 2000 (Singapore), World
Sci. Publ., 2002, pp. 159-183. MR 1882768

, Lefschetz distribution of Lie foliations, C*-algebras and elliptic
theory II (Basel), Trends Math., Birkhauser, 2008, pp. 1-40. MR, 2408134

J.A. Alvarez Lépez, Y.A. Kordyukov, and E. Leichtnam, Riemannian fo-
liations of bounded geometry, Math. Nachr. 287 (2014), no. 14-15, 1589—
1608. MR 3266125

, Analysis on Riemannian foliations of bounded geometry, Miinster

J. Math. 13 (2020), 221-265, arXiv:1905.12912.

, Zeta invariants of Morse forms, arXiv:2112.03191, 2021.




188

[ALKL22]
[ALKL23]

[ALT91]

[Bar81]

[BE91]

[BF97]

[BGVO04]

[Boul4]

[BT82

[BZ92]

[CCo0]

[CCO03]

[CGT82]

[CheT3]

BIBLIOGRAPHY

, Simple foliated flows, Tohoku Math. J. (2) 74 (2022), no. 1, 53-81.
MR 4374665

,  The topology of the space of conormal distributions,
arXiv:2304.00798, 2023.

J.A. Alvarez Lépez and P. Tondeur, Hodge decomposition along the leaves
of a Riemannian foliation, J. Funct. Anal. 99 (1991), no. 2, 443-458. MR
1121621

K. Barner, On A. Weil’s explicit formula, J. Reine Angew. Math. 323
(1981), 139-152. MR 611448

I. Buttig and J. Eichhorn, The heat kernel for p-forms on manifolds of
bounded geometry, Acta Sci. Math. (Szeged) 55 (1991), no. 1-2, 33-51.
MR 1124942

M. Braverman and M. Farber, Novikov type inequalities for differential
forms with non-isolated zeros, Math. Proc. Cambridge Philos. Soc. 122
(1997), 357-375. MR 1458239

N. Berline, E. Getzler, and M. Vergne, Heat kernels and Dirac opera-
tors, Grundlehren Text Editions, Springer-Verlag, Berlin, 2004, Corrected
reprint of the 1992 original. MR 2273508

H. Bourles, On the closed graph theorem and the open mapping theorem,
arXiv:1411.5500 [math.FA], 2014.

R. Bott and L.W. Tu, Differential forms in algebraic topology, Gradu-
ate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Heidelberg-
Berlin, 1982. MR 658304

J.-M. Bismut and W. Zhang, An extension of a theorem by Cheeger and
Miiller, Astérisque 205 (1992), 235 pp., with an appendix by F. Lauden-
bach. MR 1185803

A. Candel and L. Conlon, Foliations. I, Graduate Studies in Mathemat-
ics, vol. 23, American Mathematical Society, Providence, RI, 2000. MR
1732868

, Foliations. II, Graduate Studies in Mathematics, vol. 60, Ameri-
can Mathematical Society, Providence, RI, 2003. MR 1994394

J. Cheeger, M. Gromov, and M. Taylor, Finite propagation speed, kernel
estimates for functions of the Laplace operator, and the geometry of com-
plete Riemannian manifolds, J. Differential Geom. 17 (1982), no. 1, 15-53.
MR 658471

P.R. Chernoff, Essential self-adjointness of powers of generators of hyper-
bolic equations, J. Funct. Anal. 12 (1973), 401-414. MR 0369890



[CLNS5]

[ConT9]

[Con82]

[Den9s]

[Den01]

[Den02]

[Den05]

[Den08]

[Den22]

[Den23]
[dR84]

[DS01]

[DS02]

BIBLIOGRAPHY 189

C. Camacho and A. Lins Neto, Geometric theory of foliations, Birkhauser,
Boston-Basel-Stuttgart, 1985, Translated from the Portuguese by Sue
E. Goodman, http://dx.doi.org/10.1007/978-1-4612-5292-4. MR
824240

A. Connes, Sur la théorie non commutative de l’intégration, Algebres
d’opérateurs (Sém., Les Plans-sur-Bex, 1978) (Berlin), Lecture Notes in
Math., vol. 725, Springer, 1979, pp. 19-143. MR 548112

, A survey of foliations and operator algebras, Operator Algebras
and Applications, Kingston, 1980, Proc. Sympos. Pure Math., vol. 38-1,
1982, pp. 521-628.

C. Deninger, Some analogies between number theory and dynamical sys-
tems on foliated spaces, Doc. Math. Extra Vol. I (1998), 163-186, Pro-
ceedings of the International Congress of Mathematicians, Vol. I (Berlin,
1998). MR 1648030

, Number theory and dynamical systems on foliated spaces, Jahres-
ber. Deutsch. Math.-Verein. 103 (2001), no. 3, 79-100. MR 1873325

, On the nature of the “explicit formulas” in analytic number
theory—a simple ezample, Number theoretic methods (Iizuka, 2001), Dev.
Math., vol. 8, Kluwer Acad. Publ., Dordrecht, 2002, pp. 97-118. MR
1974137

,  Arithmetic geometry and analysis on foliated spaces,
arXiv:math/0505354, 2005.

, Analogies between analysis on foliated spaces and arithmetic ge-
ometry, Groups and analysis, London Math. Soc. Lecture Note Ser., vol.
354, Cambridge Univ. Press, Cambridge, 2008, pp. 174-190. MR 2528467

, Dynamical systems for arithmetic schemes, arXiv:1807.06400,

2022.

, Primes, knots and periodic orbits, arXiv:2301.11643, 2023.

G. de Rham, Differentiable manifolds, Grundlehren der mathematischen
Wissenschaften, vol. 266, Springer-Verlag, Berlin, 1984, Forms, currents,
harmonic forms, Translated from the French by F. R. Smith, With an
introduction by S. S. Chern. MR, 760450

C. Deninger and W. Singhof, A counterexample to smooth leafwise Hodge
decomposition for general foliations and to a type of dynamical trace formu-
las, Ann. Inst. Fourier (Grenoble) 51 (2001), no. 1, 209-219. MR 1821074

, Real polarizable Hodge structures arising from foliations, Ann.
Global Anal. Geom. 21 (2002), no. 4, 377-399. MR 1910458


http://dx.doi.org/10.1007/978-1-4612-5292-4

190

[Edw65]

[Eic91]

[EMT77]

[Far95)

[Far04]

[Fed71]

[Fed73]

[Gil95]

[God91]

[GST7)

[Gui77]

[Hae62]

[Hae80]

[Hec72]

[Hec77]

BIBLIOGRAPHY

R.E. Edwards, Functional analysis. Theory and applications, Holt, Rine-
hart and Winston, New York-Toronto-London, 1965. MR 0221256

J. Eichhorn, The boundedness of connection coefficients and their deriva-
tives, Math. Nachr. 152 (1991), 145-158. MR 1121230

D.B.A. Epstein, K.C. Millett, and D. Tischler, Leaves without holonomy,
J. London Math. Soc. (2) 16 (1977), no. 3, 548-552. MR 0464259

M. Farber, Singularities of the analytic torsion, J. Differential Geom. 41
(1995), no. 3, 528-572. MR 1338482

, Topology of closed one-forms, Mathematical Surveys and Mono-
graphs, vol. 108, Amer. Math. Soc., Providence, RI, 2004. MR 2034601

E. Fedida, Sur les feuilletages de Lie, C. R. Acad. Sci. Paris Sér. A 272
(1971), 999-1001. MR 0285025

, Feuilletages de Lie, feuilletages du plan, Lecture Notes in Math.,
vol. 352, Springer, 1973, pp. 183-195.

P.B. Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer
index theorem, second ed., Studies in Advanced Mathematics, CRC Press,
Boca Raton, FL, 1995. MR 1396308

C. Godbillon, Feuilletages: études géométriques, Progress in Math.,
vol. 98, Birkh&user Verlag, Boston-Basel-Stuttgart, 1991. MR 1120547

V. Guillemin and S. Sternberg, Geometric asymptotics, Math. Surveys,
vol. 14, American Mathematical Society, Providence, R.I., 1977. MR
0516965

V. Guillemin, Lectures on spectral theory of elliptic operators, Duke Math.
J. 44 (1977), no. 3, 485-517. MR, 0448452

A. Haefliger, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa (3) 16
(1962), 367-397. MR 0189060

, Some remarks on foliations with minimal leaves, J. Differential
Geom. 15 (1980), no. 2, 269-384. MR 614370

G. Hector, Sur les feuilletages presque sans holonomie, C. R. Acad. Sci.
Paris Sér. A 274 (1972), 1703-1706. MR 0303550

, Feuilletages en cylindres, Geometry and topology (Proc. III Latin
Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro,
1976), Lecture Notes in Math., vol. 597, Springer, Berlin, 1977, pp. 252—
270. MR 0451260




[Hec78]

[HHS1]

[HHS83]
[Hor65]

[Hor66]

[Hor71]

[Hor83]

[Hor85]

[Kim17]

[KNG65]

[Kom67]

[Kop06]

[Kopl11]

[K6t69]

BIBLIOGRAPHY 191

, Croissance des feuilletages presque sans holonomie, Differential
topology, foliations and Gelfand-Fuks cohomology (Proc. Sympos., Pon-
tificia Univ. Catdlica, Rio de Janeiro, 1976) (Berlin), Lecture Notes in
Math., vol. 652, Springer, 1978, pp. 141-182. MR, 505659

G. Hector and U. Hirsch, Introduction to the geometry of foliations. Part A:
Foliations on compact surfaces, fundamentals for arbitrary codimension,
and holonomy, Aspects of Mathematics, vol. E1, Friedr. Vieweg & Sohn,
Braunschweig, 1981. MR 639738

, Introduction to the geometry of foliations. Part B, Aspects of
Mathematics, vol. E3, Friedr. Vieweg & Sohn, Braunschweig, 1983.

L. Hoérmander, Pseudo-differential operators, Commun. Pure Appl. Math.
18 (1965), 501-517. MR 0180740

J. Horvath, Topological vector spaces and distributions, vol. 1, Addison-
Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966.
MR 0205028

L. Hormander, Fourier integral operators. I, Acta Math. 127 (1971), no. 1-
2, 79-183. MR 388463

, The analysis of linear partial differential operators. I. Distribu-
tion theory and Fourier analysis, Grundlehren der Mathematischen Wis-
senschaften, vol. 256, Springer-Verlag, Berlin, 1983. MR 717035

, The analysis of linear partial differential operators. III. Pseudodif-
ferential operators, Grundlehren der Mathematischen Wissenschaften, vol.
274, Springer-Verlag, Berlin, 1985.

J. Kim, On the leafwise cohomology and dynamical zeta functions for fiber
bundles over the circle, arXiv:1712.04181, 2017.

J.J. Kohn and L. Nirenberg, An algebra of pseudo-differential operators,
Commun. Pure Appl. Math. 18 (1965), 269-305. MR 0176362

H. Komatsu, Projective and injective limits of weakly compact sequences of
locally convex spaces, J. Math. Soc. Japan 19 (1967), 366-383. MR 217557

F. Kopei, A remark on a relation between foliations and number theory,
Foliations 2005. Proceedings of the international conference, University
of LodZ, LodZ, Poland, June 13-24, 2005 (Hackensack, NJ) (Pawet et al.
Walczak, ed.), World Sci. Publ., 2006, pp. 245-249. MR 2284785

, A foliated analogue of one- and two-dimensional Arakelov theory,
Abh. Math. Semin. Univ. Hambg. 81 (2011), 141-189. MR 2836630

G. Kothe, Topological vector spaces. I, Die Grundlehren der mathema-
tischen Wissenschaften, vol. 159, Springer-Verlag, Berlin-Heidelberg-New
York, 1969, translated from the German by D.J.H. Garling. MR 0248498



192

[KP15]

[Lei08]

[Leil4]

[Mel81]

[Mel93]

[Mel96]

[Mol8g)]

[MS88]

[MUOS]

[Miim06]

[NB11]

[Nov81]

[Nov82]

[Nov02]

BIBLIOGRAPHY

Y.A. Kordyukov and V.A. Pavlenko, On Lefschetz formulas for flows on
foliated manifolds, Ufa Math. J. 7 (2015), no. 2, 71-101. MR 3430750

E. Leichtnam, On the analogy between arithmetic geometry and foliated
spaces, Rend. Mat. Appl. (7) 28 (2008), no. 2, 163-188. MR 2463936

, On the analogy between L-functions and Atiyah-Bott-Lefschetz
trace formulas for foliated spaces, Rend. Mat. Appl. (7) 35 (2014), no. 1-2,
1-34. MR 3241361

R.B. Melrose, Transformation of boundary problems, Acta Math. 147
(1981), no. 3-4, 149-236. MR, 639039

, The Atiyah-Patodi-Singer index theorem, Research Notes in Math-
ematics, vol. 4, A.K. Peters, Ltd., Wellesley, MA, 1993. MR 1348401

, Differential analysis on manifolds with corners, http://
www-math.mit.edu/~rbm/book.html, 1996.

P. Molino, Riemannian foliations, Progress in Mathematics, vol. 73,
Birkhauser Boston, Inc., Boston, MA, 1988, Translated from the French
by G. Cairns, With appendices by Cairns, Y. Carriere, E. Ghys, E. Salem
and V. Sergiescu. MR 932463

C.C. Moore and C. Schochet, Global analysis on foliated spaces, Mathe-
matical Sciences Research Institute Publications, vol. 9, Springer-Verlag,
New York, 1988, With appendices by S. Hurder, Moore, Schochet and
Robert J. Zimmer. MR 0918974 (89h:58184)

R.B. Melrose and G. Uhlmann, An introduction to microlocal analysis,
Department of Mathematics, Massachusetts Institute of Technology, Cam-
bridge, MA, 2008, https://books.google.es/books?id=0s2jswEACAAJ,
http://www-math.mit.edu/~rbm/book.html.

B. Miimken, On tangential cohomology of Riemannian foliations, Amer.

J. Math. 128 (2006), no. 6, 1391-1408. MR 2275025

L. Narici and E. Beckenstein, Topological vector spaces, second ed., Pure
and Applied Mathematics (Boca Raton), vol. 296, CRC Press, Boca Raton,
FL, 2011. MR 2723563

S.P. Novikov, Multivalued functions and functionals. An analog of the
Morse theory, Soviet. Math., Dokl. 24 (1981), 222-226. MR 630459

, The Hamiltonian formalism and a multivalued analogue of Morse
theory, Russian Math. Surveys 37 (1982), 1-56. MR 676612

, On the exotic De-Rham cohomology. Perturbation theory as a
spectral sequence, arXiv:math-ph/0201019, 2002.


http://www-math.mit.edu/~rbm/book.html
http://www-math.mit.edu/~rbm/book.html
https://books.google.es/books?id=Os2jswEACAAJ
http://www-math.mit.edu/~rbm/book.html

[O’N66]

[Paj87]

[Pet98]

[Poo81]

[Roe87]

[Roe88]

[Roe9s]

[San08]

[Sch71]

[Sch96)

[Sch01]

[See64]

[Shu92]

[Sim90]

[Tay81]

BIBLIOGRAPHY 193

B. O'Neill, The fundamental equations of a submersion, Michigan Math.
J. 13 (1966), 459-469. MR 0200865

A.V. Pajitnov, An analytic proof of the real part of Novikov’s inequalities,
Soviet Math., Dokl. 35 (1987), 456-457. MR 891557

P. Petersen, Riemannian geometry, Graduate Texts in Mathematics, vol.
171, Springer-Verlag, New York, Berlin, Heidelberg, 1998. MR 1480173

W.A. Poor, Differential geometric structures, McGraw-Hill Book Co., New
York, 1981. MR 647949

J. Roe, Finite propagation speed and Connes’ foliation algebra, Math. Proc.
Cambridge Philos. Soc. 102 (1987), no. 3, 459-466. MR 906620

, An index theorem on open manifolds. I, J. Differential Geom. 27
(1988), no. 1, 87-113. MR 918459

, BElliptic operators, topology and asymptotic methods, second ed.,
Pitman Research Notes in Mathematics, vol. 395, Longman, Harlow, 1998.
MR 1670907

L. Sanguiao, L2-invariants of Riemannian foliations, Ann. Global Anal.

Geom. 33 (2008), no. 3, 271-292. MR 2390835

H.H. Schaefer, Topological vector spaces, Graduate Texts in Mathematics,
vol. 3, Springer-Verlag, New York, Heidelberg, Berlin, 1971.

T. Schick, Analysis on 0-manifolds of bounded geometry, Hodge-De Rham
isomorphism and L?-index theorem, Ph.D. thesis, Johannes Gutenberg
Universitat Mainz, Mainz, 1996.

, Manifolds with boundary and of bounded geometry, Math. Nachr.
223 (2001), no. 1, 103-120. MR, 1817852

R.T. Seeley, Extension of C*° functions defined in a half space, Proc. Amer.
Math. Soc. 15 (1964), 625-626. MR 0165392

M.A. Shubin, Spectral theory of elliptic operators on moncompact man-
ifolds, Astérisque 207 (1992), 35-108, Méthodes semi-classiques, Vol. 1
(Nantes, 1991). MR 1205177

S.R. Simanca, Pseudo-differential operators, Pitman Research Notes in
Mathematics Series, vol. 236, Longman Scientific & Technical, Harlow;
copublished in the United States with John Wiley & Sons, Inc., New York,
1990. MR 1075017

M.E. Taylor, Pseudodifferential operators, Princeton Mathematical Series,
vol. 34, Princeton University Press, Princeton, N.J., 1981. MR 618463



194 BIBLIOGRAPHY

[Val89] M. Valdivia, A characterization of totally reflexive Fréchet spaces, Math.
Z. 200 (1989), no. 3, 327-346. MR 978594

[Wen03]  J. Wengenroth, Derived functors in functional analysis, Lecture Notes in
Mathematics, vol. 1810, Springer-Verlag, Berlin, 2003. MR, 1977923

[Wit82]  E. Witten, Supersymmetry and Morse theory, J. Differ. Geom. 17 (1982),
661-692. MR 683171



BIG)(F),
C>(M,L),[5
Ck(M, L), [50

Em,T»@
F!, 135

Fm, [12]]
HeI'(F), -
HeI(F),[17]
HI®)(F),
H*I'(9)(F),
H*J'(F),
H*J(F),
H*K'(F),
H’K(f%
H*(F),B
H™ (M, L)
H*(M; E),[L7]

INDEX

H; (M), []]
H'*(M,L),[50]
I'(M, L),
N

I(M, L), ]21]

I(F),

I™m(M, L), 22

1(0) (M, L) 1 2|

I(A,N),[46]
I./C(M, L),
J'(M, L),
J(M, L),[52
J(F),[1§
J™(M, L),[5

JE) (M, L)
J (M, L
J'™(M, L)
K'(M, L), [56]
K(M, L),
K(F),[L
K™(M, L) 54
K®) (M, L),[5
K’“)(M,L),
K'™(M, L),

Ka, [
L(X,Y),
L2(M; E




196 INDEX

R',[139

R, [132

R., 13

S5mI(U x RY), [15]
Z(M,g,m),
Z1C) (F),
[o]s, [TT§]

A, [68]
A'(M),

Diff (M, L),
Diff(F),
Diff™(M; E, F),
Diffy, (M),
Diff, (M; E),
Diffub(f; E)7
End(X),

Fix(¢),
F

Om, 5z,

#, [ oF, 84
Hm(M bQ%) ’

b A ) 6—i,i—1,[83
K (M)’ 5.7:,za
K(M), Oziyi—1,
v o= (),
K (M), Cm>(M),
K<) (M), Co0 (M)
), ey
Lx,i,—i,[80 C1 =R (M)
AE,@ oM ’
AM,[I0] H* (M),
ANF,[74 Hjp (M),
A]:’ A,(M)v
AtPE, A(M),

A% M, B3] Am(M),



INDEX 197

2
€(c), P9
ec(k), @
ep(8),[7
&, 7]
X(M, L),
X(M, F),
x(F), hH?, (M;E),[19
X(=,H), [ hL‘X{(M E),
X (M), 36] o(E), 0]
Xcom (M, F), o(M),
%ub(M,]'—), :EO‘H]S"(M;bQI/Q),
%ub(}—)v acyclic,@'
@ almost without holonomy foliation,

b-Connes-Euler characteristic,
b-diagonal, [44]

b-differential operator, @
b-elliptic, [45]

b-integral, [16]

b-metric,
b-pseudodifferential operator,
b-Sobolev space,

b-stretched product,
b-supertrace, @

b-trace, @

b-vector field, [36]

basic complex, [83]
boundary-defining function, [32]
bounded geometry,
bundle-like metric,
compactly retractive, El
conormal distribution,
conormal sequence,

= conormal sequence at the boundary,
X(M. F), defining function, =
%’ 118 developing map,
Penz (S, r), dual-conormal distribution, 25]

z(,fi’ W dual-conormal sequence,

dual-conormal sequence at the boundary,
extendible conormal distribution,
extendible distribution, @

extendible dual-conormal distributions, @
extendible function, @

extendible Sobolev space, [35]

flow leafwise homotopy, [78]

foliated flow,

foliated map,

foliation,

front face,

Js*, ‘ germinal holonomy, @

Her (.7'-) Hilbertian space, [I0]

R; , holonomy cover, [74]




198

holonomy groupoid,
holonomy homomorphism,
holonomy pseudogroup, @
horizontal subbundle,
indicial family, [46]

infinitesimal holonomy, @
LCHS, g

LCS,

leafwise cohomology,
leafwise complex, [82]

leafwise currents,

leafwise differential complex, [79]
leafwise differential operator,
leafwise distance, [76]

leafwise Euler form,
leafwise form, [82]

leafwise homotopy,

leafwise homotopy operator, [§7]
leafwise metric, @

leafwise penumbra, [76]

leafwise principal symbol,
leafwise-closed form, [82]
leafwise-exact form,

left boundary, @

Lie foliation,

limit subspace, @

Novikov Betti number,
oriented foliation, @

INDEX

partial extension map,

positive injectivity bi-radius,

principal b-symbol,

regular, [9]

Riemannian foliation, [T9]

Riemannian foliation of bounded geometry,
O 1]

right boundary, [44]

Schwartz kernel, [2]

simple flow,

supported conormal distributions,

supported distribution,

supported dual-conormal distributions,

supported function, [34]

supported Sobolev space, @

TC foliation,

TP foliation, @l

transitive foliation,

transverse structure, m

transversely elliptic, [T9]

transversely oriented foliation, [79]

transversely simple foliated flow, @

TVS, [

uniformly elliptic,

uniformly leafwise elliptic,

weakly simple foliated flow, [T00]

Witten’s operators, @



	Chapter 1. Introduction
	1.1. Deninger's program
	1.2. Case with no preserved leaves
	1.3. General case
	1.4. Short guide

	Chapter 2. Analytic tools
	2.1. Section spaces and operators on manifolds
	2.2. Conormal distributions
	2.3. Dual-conormal distributions
	2.4. Bounded geometry
	2.5. Small b-calculus
	2.6. Conormal sequence
	2.7. Dual-conormal sequence
	2.8. Currents
	2.9. Witten's perturbation of the de Rham complex

	Chapter 3. Foliation tools
	3.1. Foliations
	3.2. Differential forms on foliated manifolds
	3.3. Witten's perturbation on foliated manifolds
	3.4. Analysis on Riemannian foliations of bounded geometry
	3.5. Witten's operators on Riemannian foliations of bounded geometry

	Chapter 4. Foliations with simple foliated flows
	4.1. Simple foliated flows
	4.2. Case of suspension foliations
	4.3. Global objects on foliations with simple foliated flows

	Chapter 5. Conormal leafwise reduced cohomology
	5.1. Conormal sequence of leafwise currents
	5.2. Injective limits in cohomology and reduced cohomology
	5.3. Description of HK(F)
	5.4. Description of J(F)
	5.5. Short exact sequence of conormal reduced cohomology
	5.6. Computations in the case of a suspension foliation
	5.7. Functoriality and leafwise homotopy invariance
	5.8. Action of foliated flows on the conormal sequence

	Chapter 6. Dual-conormal leafwise reduced cohomology
	6.1. Dual-conormal sequence of leafwise differential forms
	6.2. Projective limits in reduced cohomology
	6.3. Description of HK'(F)
	6.4. Description of J'(F)
	6.5. Short exact sequence of dual-conormal reduced cohomology
	6.6. Functoriality and leafwise homotopy invariance
	6.7. Action of foliated flows on the dual-conormal sequence

	Chapter 7. Contribution from M1
	7.1. Operators on a suspension foliation
	7.2. Operators on the components M1l
	7.3. The limit of bStr(bold0mu mumu PPPPPPu) as u"3223379 0
	7.4. The limit of bStr(bold0mu mumu PPPPPP,u) as u"3222378 + and 

	Bibliography
	Index

