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J.A. Álvarez López
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A TRACE FORMULA FOR FOLIATED FLOWS

Jesús A. Álvarez López , Yuri A. Kordyukov ,
Eric Leichtnam

Abstract. — Let F be a transversely oriented foliation of codimension one on a
closed manifold M , and let ϕ = {ϕt} be a foliated flow on (M,F). Assume the closed
orbits of ϕ are simple and its preserved leaves are transversely simple. In this case,
there are finitely many preserved leaves, which are compact. Let M0 denote their
union, and let M1 = M \M0 and F1 = F|M1 . We consider two topological vector
spaces, I(F) and I ′(F), consisting of the leafwise currents on M that are conormal
and dual-conormal to M0, respectively. They become topological complexes with the
differential operator dF induced by the de Rham derivative on the leaves, and they
have an R-action ϕ∗ = {ϕt ∗} induced by ϕ. Let H̄•I(F) and H̄•I ′(F) denote the
corresponding leafwise reduced cohomologies, with the induced R-action ϕ∗ = {ϕt ∗}.
H̄•I(F) and H̄•I ′(F) are shown to be the central terms of short exact sequences
in the category of continuous linear maps between locally convex spaces, where the
other terms are described using Witten’s perturbations of the de Rham complex on
M0 and leafwise Witten’s perturbations for F1. This is used to define some kind of
Lefschetz distribution Ldis(ϕ) of the actions ϕ∗ on both H̄•I(F) and H̄•I ′(F), whose
value is a distribution on R. Its definition involves several renormalization procedures,
the main one is the b-trace of some smoothing b-pseudodifferential operator on the
compact manifold with boundary obtained by cutting M along M0. We also prove a
trace formula describing Ldis(ϕ) in terms of infinitesimal data from the closed orbits
and preserved leaves. This solves a conjecture of C. Deninger involving two leafwise
reduced cohomologies instead of a single one. This memoir is the conclusion of a
program started about ten years ago by the three authors.
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Résumé. — Soit F un feuilletage orienté transversalement de codimension un sur
une variété fermée M , et soit ϕ = {ϕt} un flot feuilleté sur (M,F). Supposons que les
orbites fermées de ϕ soient simples et que ses feuilles préservées soient transversale-
ment simples. Dans ce cas, il existe un nombre fini de feuilles conservées, compactes.
Soit M0 désignant leur union, et soit M1 = M \ M0 et F1 = F|M1 . Nous con-
sidérons deux espaces vectoriels topologiques, I(F) et I ′(F), constitués des courants
dans le sens des feuilles sur M qui sont conormaux et dual-conormaux à M0, re-
spectivement. Ils deviennent des complexes topologiques avec l’opérateur différentiel
dF induit par la dérivée de Rham sur les feuilles, et ils sont munis d’une R-action
ϕ∗ = {ϕt ∗} induit par ϕ. Désignons par H̄•I(F) et H̄•I ′(F) les cohomologies co-
homologies réduites dans le sens des feuilles correspondantes, munie de le R-action
ϕ∗ = {ϕt ∗}. H̄•I(F) et H̄•I ′(F) se révèlent être les termes centraux des suites
exactes courtes dans la catégorie des applications linéaires continues entre espaces lo-
calement convexes, où les autres termes sont décrits en utilisant les perturbations de
Witten du complexe de Rham sur M0 et les perturbations de Witten dans le sens des
feuilles pour F1. Ceci est utilisé pour définir une distribution (sur la droite réelle R)
de type Lefschetz Ldis(ϕ) associée à l’action de ϕ∗ sur les deux cohomologies H̄•I(F)
et H̄•I ′(F) simultanément. Sa définition implique plusieurs procédures de renormali-
sation, la principale est la b-trace d’un opérateur b-pseudodifférentiel de lissage sur la
variété compacte avec frontière obtenue en coupant M le long de M0. Nous prouvons
également une formule de trace décrivant Ldis(ϕ) en termes de données infinitésimales
provenant des orbites fermées et des feuilles préservées. Ceci résout une conjecture
de C. Deninger impliquant deux cohomologies réduites au niveau des feuilles au lieu
d’une seule. Ce mémoire est la conclusion d’un programme entamé il y a une dizaine
d’années par les trois auteurs.
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CHAPTER 1

INTRODUCTION

1.1. Deninger’s program

Let (M,F) be a smooth foliated manifold. The leafwise cohomology, H•(F), is

defined with the complex of differential forms on the leaves that are smooth on M ,

C∞(M ; ΛF) (ΛF =
∧
T ∗F ⊗C), equipped with de Rham differential operator along

the leaves, dF . This differential complex is not elliptic, it is only leafwise elliptic.

Therefore H•(F) may be of infinite dimension and non-Hausdorff with the topology

induced by the C∞ topology. Thus it makes sense to consider the reduced leafwise

cohomology, H̄•(F) = H•(F)/0. (The reduced cohomology is defined and denoted

in a similar way for any complex with a compatible topology, called a topological

complex.)

A flow ϕ = {ϕt} on M is said to be foliated if it maps leaves to leaves; equiva-

lently, its infinitesimal generator Z is an infinitesimal transformation of (M,F), or

the induced section Z of the normal bundle NF = TM/TF is parallel with respect

to the Bott partial connection. In this case, there is an induced R-action ϕ∗ = {ϕt ∗}
on (C∞(M ; ΛF), dF ), which induces an R-action ϕ∗ = {ϕt ∗} on H̄•(F). Moreover, ϕ

induces a local flow ϕ̄ on local transversals of F . Some leaves may be preserved by ϕ,

which correspond to the fixed points of ϕ̄. If these fixed points of ϕ̄ are simple, then

the leaves preserved by ϕ are called transversely simple (Section 4.1.2).

Assume M is closed, codimF = 1, the closed orbits are simple, the preserved

leaves are transversely simple, and ϕ is transverse to the non-preserved leaves. With

these conditions, C. Deninger has conjectured that the supertrace of ϕ∗ on H̄•(F)

makes sense as a distribution Ldis(ϕ) on R (its Lefschetz distribution), and it has an

expression involving infinitesimal data from the preserved leaves and closed orbits (a

dynamical Lefschetz trace formula).

This problem is a part of a program proposed by Deninger, whose goal is the study

of arithmetic zeta functions by finding an interpretation of the explicit formulae as a

dynamical Lefschetz trace formula for some (M,F , ϕ) of this type [Den98, Den01,
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Den02, Den05, Den08]. The precise expression of the trace formula was previously

suggested by Guillemin [Gui77]. Further developments of these ideas were made in

[DS02, Müm06, Kop06, Lei08, Kop11, Lei14, KP15, Kim17, Den22, Den23].

It became clear that more generality is needed to draw arithmetic consequences

(perhaps foliated flows on possibly singular foliated spaces of arithmetic nature). But,

even for (M,F , ϕ) as above, this problem is difficult and interesting; for instance,

H̄•(F) is not appropriate in general [DS01]. Besides its own interest, a solution

might provide techniques to deal with more general settings. Moreover, we believe

that the techniques developed in this paper will be useful in arithmetic once the

appropriate framework allowing to interpret the Weil’s explicit formulae for arithmetic

zeta functions as Lefschetz trace formulae will have been discovered.

1.2. Case with no preserved leaves

The first two authors proved such a trace formula when ϕ has no preserved leaves

[ÁLK02], and extended it for transverse actions of Lie groups [ÁLK08]. In this

case, F is Riemannian; i.e., it is locally described by Riemannian submersions for

some Riemannian metric g on M (a bundle-like metric). Using g, we get the leafwise

coderivative δF and the leafwise Laplacian ∆F . Then the leafwise heat operator

defines a continuous map [ÁLK01]

(1.2.1) C∞(M ; ΛF)× [0,∞]→ C∞(M ; ΛF) , (α, u) 7→ e−u∆Fα .

It follows that there is a leafwise Hodge decomposition

(1.2.2) C∞(M ; ΛF) = ker ∆F ⊕ im dF ⊕ im δF ,

and therefore the orthogonal projection ΠF = e−∞∆F to ker ∆F induces a leafwise

Hodge isomorphism

(1.2.3) H̄•(F) ∼= ker ∆F .

This is surprising because ∆F is only leafwise elliptic; somehow, the transverse rigid-

ity of Riemannian foliations makes up for the lack of transverse ellipticity. These

properties may fail for non-Riemannian foliations [DS01].

Furthermore, for all f ∈ C∞
c (R) and 0 < u ≤ ∞, the operator

(1.2.4) Pu,f =

ˆ
R
ϕt∗e−u∆F f(t) dt

is smoothing, and therefore of trace class, its supertrace StrPu,f depends continuously

on f and is independent of u, and the limit of StrPu,f as u ↓ 0 gives the expected

contribution of the closed orbits [ÁLK02, ÁLK08]. By (1.2.3) and (1.2.4), the

mapping f 7→ StrP∞,f can be considered as the Lefschetz distribution Ldis(ϕ), solving

the problem in this case.
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1.3. General case

This publication is a continuation of the works [ÁLK01, ÁLK02, ÁLK08], re-

called in Section 1.2. Our main goal is to propose an extension of the trace formula

to the case where there are (compact) leaves preserved by ϕ, which are very relevant

in Deninger’s program. Examples of foliations with such foliated flows can be easily

constructed by using foliation surgeries.

1.3.1. Ingredients of the trace formula. — Assume F is transversely oriented

for the sake of simplicity. Thus, by Frobenius theorem, F is defined by a 1-form

ω with dω = η ∧ ω (TF = kerω). Except in trivial cases, the existence of leaves

preserved by ϕ prevents F from being Riemannian (it is impossible to choose η = 0),

yet F has a precise description [ÁLKL22]. For instance, there is a finite number of

preserved leaves, which are compact. Let M0 denote the union of the leaves preserved

by ϕ, M1 = M \M0 and F1 = F|M1 .

All versions of leafwise reduced cohomologies we will consider have an action ϕ∗ =

{ϕt ∗} induced by ϕ, which is invariant by leafwise homotopy equivalences. Thus, up

to leafwise homotopies, we can assume ϕt = id on M0. Then, for every leaf L ⊂M0,

there is some κL ∈ R× such that, on the normal bundle NL = TLM/TL, the normal

tangent map is ϕt∗ = eκLt. The numbers κL will be ingredients of the trace formula.

Moreover F1 becomes a transversely complete R-Lie foliation with the restriction of

Z. So F is a particular case of foliation almost without holonomy [Hec72, Hec78].

Take a Riemannian metric g on M so that ω is the transverse volume form. The

corresponding leafwise metric is denoted by gF . We can suppose η vanishes on TF⊥,

and therefore it can be considered as a leafwise form, and we have dFη = 0. Further-

more, on some tubular neighborhood T ≡ (−ϵ, ϵ) ×M0 (ϵ > 0) of M0 in M , we can

suppose η and gF are lifts of their restrictions to M0, and the fibers of the projection

ϖ : T →M0 are orthogonal to the leaves and agree with the orbits of ϕ. Thus there

are no closed orbits of ϕ in T . The projection ρ : T → (−ϵ, ϵ) is a defining function of

M0 on T (dρ ̸= 0 on M0 = ρ−1(0)), which can be assumed to satisfy dFρ = ρη on T

and ϕt∗ρ = eκLtρ around every leaf L ⊂M0. We can choose any η|M0 in some fixed

real cohomology class ξ ∈ H1(M0) determined by F , and there is no restriction on

the choice of g|M0 .

For every closed orbit c of ϕ, let ℓ(c) denote its smallest positive period. The

condition on c to be simple means that id−ϕkℓ(c)∗ : TpF → TpF is an isomorphism for

any p ∈ c and k ∈ Z×, whose determinant is independent of p, and its sign denoted

by ϵc(k). The integers ℓ(c) and ϵc(k) will be also ingredients of the trace formula.

Let g1 be the bundle-like metric of F1 such that it defines the same orthogonal

complement (TF1)⊥ as g, its restriction to TF1 is gF , and Z|M1 is of norm one with

the induced Euclidean structure on NF1. Then F1 has bounded geometry with g1

in the sense of [San08, ÁLKL14]. Let ω1 denote the transverse volume form of F1
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defined by g1 and the transverse orientation given by Z|M1 . The transverse density

|ω1| can be considered as an invariant transverse measure of F1.

By cutting M along M0, we get a compact manifold with boundary M with a

foliation F tangent to ∂M . This allows us to apply tools from b-calculus [Mel93,

Mel96]. For instance, g1 and ω1 are restrictions to M1 ≡ M̊ of a b-metric gb and a

b-form ωb on M , and therefore |ω1| is the restriction of the b-density |ωb|.
We can suppose there is some boundary-defining function ρ on M (ρ ≥ 0 and

dρ ̸= 0 on ∂M = ρ−1(0)) such that the lift η of η to M satisfies dFρ = ρη on M̊ ,

and ρ is the lift of |ρ| on a collar neighborhood T ≡ [0, ϵ)× ∂M of ∂M . The lift of

ϕ to M is a foliated flow ϕ = {ϕt} of (M ,F).

We will use the b-integral
ν́

M
, depending on the choice of a trivialization ν of

N∂M satisfying dρ(ν) = 1. We can apply
ν́

M
to b-densities on M ; the usual

integral of their restrictions to M̊ may not be defined. Assume dimF is even, which

is the relevant case in Deninger’s program. Then the product of the leafwise Euler

density e(F) and |ωb| is the restriction of a b-density on M , obtaining a b-calculus

version of the Connes’ |ωb|-Euler characteristic of F ,

bχ|ωb|(F) =
ν̂

M

e(F) |ωb| ,

which will be called the b-Connes-Euler characteristic of F defined by |ωb| (or of

F1 defined by |ω1|). This number will be another ingredient of the trace formula,

also denoted by bχ|ω1|(F1). The b-integral can be used to define the b-trace bTr of

smoothing b-pseudodifferential operators on M ; these operators may not be of trace

class. The corresponding concept of b-supertrace will be used, denoted by bStr.

With this generality, (1.2.1)–(1.2.3) are not true for C∞(M ; ΛF). Using the space

C−∞(M ; ΛF) of leafwise currents does not work either. Instead, we will use the

topological complex of leafwise currents that are conormal and dual-conormal at M0

[KN65, Hör71], [Hör85, Section 18.2], [Mel96, Chapters 4 and 6], [ÁLKL23].

1.3.2. Conormal and dual-conormal leafwise currents. — We first recall the

definitions and some properties of conormal and dual-conormal distributions at M0.

Let Diff(M,M0) be the filtered algebra of differential operators on C∞(M) generated

by C∞(M) and the vector fields on M tangent to M0, and let Hs(M) be the Sobolev

space of order s ∈ R. A distribution u ∈ C−∞(M) is said to be conormal at M0

of Sobolev order s if Diff(M,M0)u ⊂ Hs(M). These distributions form a Fréchet

space I(s) = I(s)(M,M0) endowed with the projective topology given by the maps

P : I(s) → Hs(M) (P ∈ Diff(M,M0)). The spaces I(s) form an inductive spectrum

defining an LF-space I = I(M,M0) =
⋃
s I

(s), with continuous inclusions C∞(M) ⊂
I ⊂ C−∞(M). (All inclusions considered here are continuous.) See [ÁLKL23] for

the properties of I and of other related spaces.
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All spaces of distributions considered here, and their properties, have straightfor-

ward extensions for distributional sections of vector bundles. In particular, for the

density bundle Ω = ΩM , we get the strong dual I ′(M,L) = I(M,L; Ω)′, simply

denoted by I ′. The elements of I ′ are called dual-conormal distributions; in fact,

C∞(M) ⊂ I ′ ⊂ C−∞(M) with I ∩ I ′ = C∞(M)

Let also K = K(M,M0) ⊂ I be the closed subspace consisting of elements

supported in M0. On the other hand, via the lift to M , we get another space,

J = J(M,M0), which is isomorphic to the space of extendable distributions on

M conormal at the boundary [Mel96, Chapter 4]. There are canonical injections

C∞(M) ⊂ J ⊂ C∞(M1). Let K ′ = K ′(M,L) and J ′ = J ′(M,L) be defined like I ′.

We get J ′ ⊂ C−∞(M). Moreover there are short exact sequences in the category of

continuous linear maps between locally convex spaces [Wen03, Chapter 2],

0→ K
ι−→ I

R−→ J → 0 ,(1.3.1)

0← K ′ R′

←− I ′ ι′←− J ′ ← 0 ,(1.3.2)

where ι is the inclusion map and R is defined by restriction to M1, and (1.3.2) is the

transpose of the version of (1.3.1) with Ω (R′ = ιt and ι′ = Rt). These sequences are

relevant because K, J , K ′ and J ′ have better descriptions than I and I ′. So (1.3.1)

and (1.3.2) will play an important role.

Using the vector bundle ΛF , we get the spaces of conormal and dual-conormal

leafwise currents at M0, I(F) = I(M,M0; ΛF) and I ′(F) = I ′(M,M0; ΛF), as well

as the spaces K(F), J(F), K ′(F) and J ′(F), with a similar notation. All of them

are topological complexes with dF , and have R-actions ϕ∗ = {ϕt ∗} induced by ϕ,

compatible with dF . They give rise to the conormal and dual-conormal leafwise

reduced cohomologies, H̄•I(F) and H̄•I ′(F), as well as the reduced cohomologies

H̄•K(F), H̄•J(F), H̄•K ′(F) and H̄•J ′(F). All of them with induced R-actions

ϕ∗ = {ϕt ∗}. The bars are omitted from the notation if the cohomologies are not

reduced. There are versions of (1.3.1) and (1.3.2) for the spaces K(F), I(F), J(F),

K ′(F), I ′(F) and J ′(F), where ι, R, ι′ and R′ are cochain maps. The induced maps

in cohomology (resp., reduced cohomology) are denoted by ι∗, R∗, ι′∗ and R′
∗ (resp.,

ῑ∗, R̄∗, ῑ′∗ and R̄′
∗).

1.3.3. Witten’s perturbed complexes. — To describe the reduced cohomologies

of Section 1.3.2 with the R-actions ϕ∗, we will use the Witten’s perturbation dµ =

d + µη∧ on C±∞(L; Λ) (Λ = ΛL =
∧
T ∗L ⊗ C), for µ ∈ R and every leaf L ⊂ M0.

Its cohomology is denoted by H•
µ(L). The corresponding perturbed codifferential and

Laplace operators are denoted by δµ and ∆µ.

1.3.4. Leafwise Witten’s perturbed complexes. — Recall that dFρ = ρη on

M̊ and ∂M = ρ−1(0). We will also use the leafwise Witten’s perturbation

dF ,µ = dF + µη∧ = ρ−µdFρµ
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on the Sobolev spaces H±∞(M̊ ; ΛF) ≡ H±∞(M1; ΛF1) defined with gb ≡ g1. Their

reduced cohomologies are denoted by H̄•
µH

±∞(F̊) (F̊ = F |M̊ ≡ F1). They satisfy

obvious versions of (1.2.1)–(1.2.3). We have the isomorphisms

(1.3.3) ρµ : (H±∞(M̊ ; ΛF), dF ,µ)
∼=−→ (ρµH±∞(M̊ ; ΛF), dF ) .

Let also ϕt ∗µ = ρ−µϕt ∗ρµ on H±∞(M̊ ; ΛF), which induces an endomorphism ϕt ∗µ of

H̄•
µH

±∞(F̊). For µ < µ′, the inclusions

ρµ
′
H±∞(M̊ ; ΛF) ⊂ ρµH±∞(M̊ ; ΛF)

correspond via (1.3.3) to the maps

(1.3.4) ρµ
′−µ : H±∞(M̊ ; ΛF)→ H±∞(M̊ ; ΛF) .

The corresponding perturbed leafwise codifferential and Laplace operators are de-

noted by δF ,µ and ∆F ,µ. Finally, for f ∈ C∞
c (R), µ ∈ R and 0 < u ≤ ∞, we will use

the operator

P µ,u,f =

ˆ
R
ϕt∗µ e

−u∆F ,µ f(t) dt

on H±∞(M̊ ; ΛF), which is a version of (1.2.4).

1.3.5. Main results leading to the trace formula. — Concerning the above

reduced cohomologies, the following are our main achievements.

Theorem 1.3.1. — We have(1)

K(F) ≡
⊕
L,k

C∞(L; Λ) , dF ≡
⊕
L,k

d−k−1 , ϕt ∗ ≡
⊕
L,k

e−(k+1)κLt ,

H•K(F) ≡ H̄•K(F) ≡
⊕
L,k

H•
−k−1(L) , ϕt ∗ ≡

⊕
L,k

e−(k+1)κLt ,

where L runs over the set of leaves contained in M0 and k runs over N0.

The first identity of Theorem 1.3.1 follows by considering the partial derivatives ∂kρ
(k ∈ N0) of leafwise currents of (M,F) that are of Dirac type at the leaves L ⊂M0.

It is a consequence of the properties of ρ, η and ϕ∗ on T .

Now consider ρ, η and ϕ on (M ,F).

Theorem 1.3.2. — Using (1.3.3) with H∞(M̊ ; ΛF), we get

J(F) =
⋃
µ

ρµH∞(M̊ ; ΛF) ≡ lim−→H∞(M̊ ; ΛF) ,

dF ≡ lim−→ dF ,µ , ϕt ∗ ≡ lim−→ϕt ∗µ ,

(1)With some abuse of notation, we write
⊕

m A =
⊕

m Am and
∏

m A =
∏

m Am if Am = A for

all m.
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where the inductive limits are defined with the maps (1.3.4) as µ ↓ −∞. Moreover,

there are linear identities,

H̄•J(F) ≡ lim−→ H̄•
µH

∞(F̊) , ϕt ∗ ≡ lim−→ϕt ∗µ .

Theorem 1.3.3. — We have a short exact sequence

0→ H•K(F)
ῑ∗−→ H̄•I(F)

R̄∗−−→ H̄•J(F)→ 0 .

Theorem 1.3.4. — Using L and k like in Theorem 1.3.1, we have

K ′(F) ≡
∏
L,k

C−∞(L; Λ) , dF ≡
∏
L,k

dk , ϕt ∗ ≡
∏
L,k

ekκLt ,

H•K ′(F) ≡ H̄•K ′(F) ≡
∏
L,k

H•
k(L) , ϕt ∗ ≡

∏
k

ekκLt .

The identity of Theorem 1.3.4 is a consequence of the version of Theorem 1.3.1 for

K(F ; ΩM). The shift in the role played by k is due to the introduction of ΩM .

Theorem 1.3.5. — Using (1.3.3) with H−∞(M̊ ; ΛF), we get

J ′(F) =
⋂
µ

ρµH−∞(M̊ ; ΛF) ≡ lim←−H
−∞(M̊ ; ΛF) ,

dF ≡ lim←− dF ,µ , ϕt ∗ ≡ lim←−ϕt ∗µ .

where the projective limits are defined with the maps (1.3.4) as µ ↑ +∞. Moreover,

there are linear identities,

H̄•J ′(F) ≡ lim←− H̄
•
µH

−∞(F̊) , ϕt ∗ ≡ lim←−ϕt ∗µ .

There is no essential difference between J(F) and J(F ; ΩM) because F̊ has the

invariant transverse density |ωb|. Thus Theorem 1.3.5 follows from Theorem 1.3.2.

Theorem 1.3.6. — We have a short exact sequence

0← H•K ′(F)
R̄′

∗←−− H̄•I ′(F)
ῑ′∗←− H̄•J ′(F)← 0 .

Recall the definition of P µ,u,f given in Section 1.3.3.

Theorem 1.3.7. — P µ,u,f is a smoothing b-pseudodifferential operator, and the

map f 7→ bStrP µ,u,f defines a distribution on R.

Now we will use the integers ℓ(c) and ϵc(k) associated to every closed orbit c, and

the b-Connes-Euler characteristic bχ|ωb|(F) = bχ|ω1|(F1).

Theorem 1.3.8. — We have

lim
u↓0

bStrP µ,u,f = bχ|ω1|(F1) f(0) +
∑
c

ℓ(c)
∑
k∈Z×

ϵc(k) f(kℓ(c)) ,

where c runs in the set of closed orbits of ϕ.
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Recall that the definition of η was given in Section 1.3.1.

Theorem 1.3.9. — If dimF is even, then we can choose η and g on M0 so that

f 7→ lim
u1↑+∞, u0↓0

(
bStrP µ,u1,f − bStrP µ,u0,f

)
defines a tempered distribution Zµ on R, and Zµ → 0 as µ→ ±∞.

In Theorem 1.3.9, for more general choices of η and g on M0, the limits of Zµ as

µ → ±∞ are multiples of the Dirac mass δ0. These limits may not be zero because

the b-trace does not vanish on commutators (it is not a trace). This additional

contribution of the b-trace shows up like the eta-invariant of manifolds with boundary

[Mel93]. When dimF is even, we can prescribe any limit of Zµ as µ → ±∞ with

appropriate choices of η and g on M0 [ÁLKL21] (see Theorem 2.9.7); in particular,

we can prescribe the zero limit. This makes bStrP µ,u,f behave like a supertrace as

µ→ ±∞.

1.3.6. The Lefschetz distribution. — It seems there is no reasonable definition

of Ldis(ϕ) with a single leafwise reduced cohomology. However, H̄•I(F) and H̄•I ′(F)

together will do the job. Though this may look strange, we hope this idea will be

valid in further developments of Deninger’s program.

To begin with, by Theorem 1.3.3 and Theorem 1.3.6, it is enough to consider the

actions ϕ∗ on H•K(F), H̄•J(F), H•K ′(F) and H̄•J ′(F).

Let us try to define Lefschetz distributions Ldis,K(ϕ) and Ldis,K′(ϕ) of ϕ on

H̄•K(F) and H̄•K ′(F). By Theorem 1.3.1 and Theorem 1.3.4, and since all twisted

cohomologies H•
µ(L) have the same Euler characteristic χ(L), it makes some sense to

define, on R×,

Ldis,K(ϕ) =
∑

κLt>0

χ(L)

∞∑
k=0

e−(k+1)κLt =
∑

κLt>0

χ(L)

eκLt − 1
,

Ldis,K′(ϕ) =
∑

κLt<0

χ(L)

∞∑
k=0

ekκLt =
∑

κLt<0

χ(L)

1− eκLt
.

In each of these distributions, the conditions on the leaves L ⊂ M0 guarantee that

their contribution to the trace is defined; the other leaves in M0 are omitted as a

way of renormalization. Every L has a contribution to just one of these distributions

on R±. Taking into account all contributions from leaves L ⊂ M0 in Ldis,K(ϕ) and

Ldis,K′(ϕ), we get a combined Lefschetz distribution on R×,

Ldis,K,K′(ϕ) =
∑
L

χ(L)

|eκLt − 1|
.
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By changing variables and using L’Hôspital’s rule, it follows that every function |eκLt−
1|−1 on R× can be extended to a distribution WL on R given by [Bar81]

⟨WL, f⟩ =

ˆ ∞

0

(
f(t) + f(−t)
|eκLt − 1|

− 2f(0)

|κL| t

)
dt .

Thus Ldis,K,K′(ϕ) can be extended to R as the distribution

Ldis,K,K′(ϕ) =
∑
L

χ(L)WL .

Next, by Theorem 1.3.7, like in the case of (1.2.4), we can consider the mapping

f 7→ lim
u↑+∞

bStrP µ,u,f

as the distributional supertrace of the action ϕ∗µ on H̄•
µH

±∞(F̊). Since P µ,u,f is

not of trace class, its b-supertrace is used here instead of the supertrace as a way

of renormalization. By Theorem 1.3.2 and Theorem 1.3.5, it makes sense to define

the Lefschetz distributions of ϕ on H̄•J(F) and H̄•J ′(F), denoted by Ldis,J(ϕ) and

Ldis,J′(ϕ), by

⟨Ldis,J(ϕ), f⟩ = lim
µ↓−∞

lim
u↑+∞

bStrP µ,u,f ,

⟨Ldis,J′(ϕ), f⟩ = lim
µ↑+∞

lim
u↑+∞

bStrP µ,u,f .

From now on, assume dimF is even (the relevant case in Deninger’s program is

dimF = 2). By Theorems 1.3.8 and 1.3.9, we can choose η and g on M0 so that

Ldis,J(ϕ) = Ldis,J′(ϕ) = bχ|ω1|(F1) δ0 +
∑
c

ℓ(c)
∑
k∈Z×

ϵc(k) δkℓ(c) .

The notation Ldis,J,J ′(ϕ) may be used for this distribution, which is considered as a

common feature of the actions ϕ∗ on H̄•I(F) and H̄•I ′(F).

Finally, by Theorems 1.3.3 and 1.3.6, it makes sense to define the combined Lef-

schetz distribution

Ldis(ϕ) = Ldis,I,I′(ϕ) = Ldis,K,K′(ϕ) + Ldis,J,J ′(ϕ) .

By Theorems 1.3.8 and 1.3.9, the trace formula conjectured by Deninger is satisfied:

Theorem 1.3.10. — Using the preserved leaves L and the closed orbits c, we have

Ldis(ϕ) =
∑
L

χ(L)WL + bχ|ω1|(F1) δ0 +
∑
c

ℓ(c)
∑
k∈Z×

ϵc(k) δkℓ(c) .

1.4. Short guide

Our arguments involve tools from two different sources: Analysis and Foliations.

Concerning Analysis, we mainly use conormal and dual-conormal distributions, anal-

ysis on manifolds of bounded geometry and small b-calculus. Concerning Foliations,

we mainly use local Reeb’s stability, suspension foliations, Riemannian foliations, and
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differential forms and currents on foliated manifolds. For the readers’ convenience,

the needed basic concepts and results from those areas are recalled in Chapters 2

and 3. The specialists on any of them may skip the corresponding chapter, except

perhaps the notation. A few short proofs are also recalled in Chapter 2 because their

arguments will be used.

Chapter 4 contains a more specific description of foliations with simple foliated

flows, explaining all topological and geometric objects that will be used in our analysis.

We specially focus on the case of suspension foliations, which describe F on a tubular

neighborhood T of M0.

Chapter 5 is devoted to the study of the action ϕ∗ on H̄•I(F) and H̄•I ′(F),

showing Theorems 1.3.1 to 1.3.6.

Finally, Chapter 7 is devoted to the study of bStrP µ,u,f , showing Theorems 1.3.7

to 1.3.9.



CHAPTER 2

ANALYTIC TOOLS

2.1. Section spaces and operators on manifolds

The field of coefficients is K, equal to R or C. We typically consider K = C, and

the few cases where K = R will be indicated without changing the notation.

2.1.1. Topological vector spaces. — Let us recall some concepts and fix some

conventions concerning topological vector spaces (TVSs); see [Edw65, Hor66,

Köt69, Sch71, NB11, Wen03] for other concepts we use. We always consider

(possibly non-Hausdorff) locally convex spaces (LCSs); the abbreviation LCHS is

used in the Hausdorff case. Local convexity is preserved by all operations we use.

For instance, we will use the (locally convex) inductive/projective limit of any

inductive/projective spectrum (or system) of continuous linear maps between LCSs.

If the inductive/projective spectrum is a sequence of continuous inclusions, then

the inductive/projective limit is the union/intersection, always endowed with the

inductive/projective limit topology. This applies to the locally convex direct sum

and the topological product of LCSs. LF-spaces are not assumed to be strict. The

(continuous) dual X ′ of any LCS X is always endowed with the strong topology.

Now fix an inductive spectrum of LCSs of the form (Xk) = (X0 ⊂ X1 ⊂ · · · ), and

let X =
⋃
kXk. The condition on (Xk) to be acyclic means that, for all k, there is

some k′ ≥ k such that, for all k′′ ≥ k′, the topologies of Xk′ and Xk′′ coincide on some

0-neighborhood of Xk [Wen03, Theorem 6.1]. In this case, X is Hausdorff if and only

if all Xk are Hausdorff [Wen03, Proposition 6.3]. It is said that (Xk) is regular if

any bounded B ⊂ X is contained and bounded in some step Xk. If moreover the

topologies of X and Xk coincide on B, then (Xk) is said to be boundedly retractive.

The conditions of being compactly retractive or sequentially retractive are similarly

defined, using compact sets or convergent sequences.
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If the steps Xk are Fréchet spaces, the above properties of (Xk) only depend

on the LF-space X [Wen03, Chapter 6, p. 111], and therefore they are consid-

ered as properties of X. In this case, X is acyclic if and only if it is bound-

edly/compactly/sequentially retractive [Wen03, Proposition 6.4]. As a consequence,

acyclic LF-spaces are complete and regular [Wen03, Corollary 6.5]. A topological

vector subspace Y ⊂ X is called a limit subspace if Y ≡
⋃
k(X ∩ Yk) as TVSs.

Assume the steps Xk are LCHSs. It is said that (Xk) is compact if the inclusion

maps are compact operators. Then (Xk) is acyclic, and so X is Hausdorff. Moreover

X is a complete bornological DF Montel space [Kom67, Theorem 6’].

The above concepts and properties also apply to an inductive/projective spectrum

of LCSs consisting of continuous inclusions Xr ⊂ Xr′ for r < r′ in R because
⋂
rXr =⋂

kXrk and
⋃
rXr =

⋃
kXsk for sequences rk ↓ −∞ and sk ↑ +∞.

In the category of continuous linear maps between LCSs, the exactness of a se-

quence 0 → X → Y → Z → 0 means that it is exact as a sequence of linear maps

and consists of topological homomorphisms [Wen03, Sections 2.1 and 2.2].

Given LCSs X and Y , let L(X,Y ) denote the LCS of continuous linear maps

X → Y with the topology of uniform convergence over bounded subsets. If X and Y

are Banach spaces, then L(X,Y ) is also a Banach space whose norm may be denoted

by ∥·∥X,Y , with possible simplifications to avoid redundant notation. If X = Y , then

the notation End(X) is used, as well as ∥·∥X if X is a Banach space.

The following construction will be often used. Given a linear subspace A of closed

operators, densely defined in X and with values in Y , we get the LCS

(2.1.1) Z =
{
u ∈

⋂
A∈A

domA | A · u ⊂ Y
}

with the projective topology given by the maps A : Z → Y (A ∈ A). If Y is a Fréchet

space, L(X,Y ) ⊂ A and A/L(X,Y ) is countably generated, then Z is easily seen to

be a Fréchet space. If moreover Y is a Hilbertian space, then Z is easily seen to be a

totally reflexive Fréchet space using [Val89, Theorem 4].

A Hilbertian space is a TVS X endowed with a family of Hilbert-space scalar

products, all of them with equivalent norms defining the topology of X, but none of

them is distinguished.

2.1.2. Smooth functions on open subsets of Rn. — For any open U ⊂ Rn

(n ∈ N0 = N∪{0}), we use the Fréchet space C∞(U) of smooth (K-valued) functions

on U , whose topology is described by the semi-norms

(2.1.2) ∥u∥K,Ck = sup
x∈K, |I|≤k

|∂Iu(x)| ,

for any compact K ⊂ U , k ∈ N0 and I ∈ Nn0 , with standard multi-index notation.

For any S ⊂ U , let C∞
S (U) ⊂ C∞(U) be the topological vector subspace of smooth
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functions supported in S. The strict LF-space of compactly supported functions is

(2.1.3) C∞
c (U) =

⋃
K

C∞
K (U) ,

for compact subsets K ⊂ U .

Straightforward generalizations to the case of functions with values in Kl (l ∈ N)

can be given by

(2.1.4) C∞
·/c(U,K

l) ≡ C∞
·/c(U)⊗Kl .

(The notation C∞
·/c or C∞

c/· refers to both C∞ and C∞
c .)

2.1.3. Vector bundles. — We fix a smooth n-manifoldM and a (K-) vector bundle

E of rank l over M . Let Ex ⊂ E (x ∈M) denote the fibers of E, 0x the zero element

of Ex, and 0M the zero section of E. Let ΩaE (a ∈ R) be the line bundle of a-

densities of E, and o(E) the flat line bundle of its orientations; as usual, we write

ΩE = Ω1E. Recall that ΩaE ⊗ ΩbE ≡ Ωa+bE. We use the notation ΛE =
∧
E∗ for

the exterior bundle of the dual bundle. We may denote ΛtopE = ΛlE, and use similar

notation with other gradings and bigradings. For any submanifold L ⊂ M , we also

write EL = E|L. As particular cases, we have the tangent and cotangent R-vector

bundles, TM and T ∗M , and the associated K-vector bundles o(M) = o(TM) ⊗ K,

ΛM = ΛTM ⊗K, ΩaM = ΩaTM ⊗K and ΩM = ΩTM ≡ ΛnM ⊗ o(M).

2.1.4. Smooth and distributional sections. — Concerning spaces of distribu-

tional sections, we follow the notation of [Mel96, Hör83, Hör85], with some minor

changes to fit our notation for foliations. The precise references of the properties

recalled here are given in [ÁLKL23, Section 2.4].

Consider the Fréchet space C∞(M ;E) of smooth sections of E, whose topology is

described by semi-norms ∥·∥K,Ck defined like in (2.1.2), using charts (U, x) of M and

diffeomorphisms of triviality EU ≡ U ×Kl with K ⊂ U . Redundant notation is sim-

plified as usual. For instance, in the case of the trivial vector bundle of rank 1 (resp.,

l), we write C∞(M) (resp., C∞(M,Kl)). We also write C∞(L,E) = C∞(L,EL) and

C∞(M ; Ωa) = C∞(M ; ΩaM). If M is fixed, the notation C∞(E) = C∞(M ;E) can

be used, but it may be confusing because the space of smooth functions on E is also

used. In particular, X(M) = C∞(M ;TM) is the Lie algebra of vector fields. The sub-

space C∞
S (M ;E) is defined like in Section 2.1.2, and the strict LF-space C∞

c (M ;E) is

defined like in (2.1.3), using compact subsets K ⊂M . There is a continuous inclusion

C∞
c (M ;E) ⊂ C∞(M ;E).

The notation C∞(M ;E), or C∞(E), is also used with any smooth fiber bundle E,

obtaining a completely metrizable topological space with the weak C∞ topology.

The space of distributional sections with arbitrary/compact support is

(2.1.5) C−∞
·/c (M ;E) = C∞

c/·(M ;E∗ ⊗ Ω)′ .
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The canonical pairing of any u ∈ C−∞
·/c (M ;E) and v ∈ C∞

c/·(M ;E∗ ⊗ Ω) is denoted

by ⟨u, v⟩ (or (u, v) if the notation ⟨·, ·⟩ is used for other purposes). Integration of

smooth densities on M and the canonical pairing of E and E∗ define a continuous

dense inclusion C∞
·/c(M ;E) ⊂ C−∞

·/c (M ;E). If U ⊂ M is open, the extension by zero

defines a TVS-embedding C±∞
c (U ;E) ⊂ C±∞

c (M ;E).

The above spaces of distributional sections can be also described in terms of the

corresponding spaces of distributions as the algebraic tensor product as C∞(M)-

modules [ÁLKL23, Eq. (2.5)]

(2.1.6) C−∞
·/c (M ;E) ≡ C−∞

·/c (M)⊗C∞(M) C
∞(M ;E) .

This tensor product has an induced topology so that this is a TVS-identity. Expres-

sions like (2.1.6) hold for most of the LCSs of distributional sections we will consider,

which are also C∞(M)-modules. Thus, from now on, we will often define and study

those spaces for the trivial line bundle or density bundles, and then the notation for

arbitrary vector bundles will be used without further comment, and the properties

have straightforward extensions.

Given a smooth submersion ϕ : M →M ′, a smooth/distributional section of E has

compact support in the vertical direction if its support has compact intersections with

the fibers of ϕ. They form the LCHSs C±∞
cv (M ;E). Here, C∞

cv (M ;E) has the inductive

topology defined like in the case of C∞
c (M ;E), using (2.1.2) and (2.1.3) with closed

subsets K ⊂ M whose intersection with the fibers is compact. C−∞
cv (M ;E) has the

projective topology defined by the (product) maps f : C−∞
cv (M ;E) → C−∞

c (M ;E),

for f ∈ C∞
c (M). A version of (2.1.6) is also true for C−∞

cv (M ;E) in this case.

Consider also the Fréchet space Ck(M) (k ∈ N0) of Ck functions, with the semi-

norms ∥·∥K,Ck given like in (2.1.2), the LF-space Ckc (M) of Ck functions with compact

support, defined like in (2.1.3), and the space C ′ −k
·/c (M) of distributions of order k

with arbitrary/compact support, defined like in (2.1.5). There are continuous dense

inclusions

(2.1.7) Ck
′

·/c(M) ⊂ Ck·/c(M) , C ′ −k′
c/· (M) ⊃ C ′ −k

c/· (M) (k < k′) ,

with

(2.1.8)
⋂
k

Ck·/c(M) = C∞
·/c(M) ,

⋃
k

C ′ −k
c (M) = C−∞

c (M) .

The space
⋃
k C

′ −k(M) consists of the distributions with some order. If M is compact,

then every Ck(M) is a Banach space and
⋃
k C

′ −k(M) = C−∞(M).

C∞
c (M) and Ckc (M) are complete and Hausdorff. C∞

·/c(M) and Ck·/c(M) are ultra-

bornological and barreled. C±∞
·/c (M) is a Montel space (in particular, barreled) and

reflexive. C∞
·/c(M) is a Schwartz space, and therefore C−∞

·/c (M) is ultrabornological.

C∞(M) is distinguished. C±∞
·/c (M) is webbed.
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The type of notation introduced in this section will be used with any LCHS and

C∞(M)-module continuously included in C±∞(M ;E).

2.1.5. Linear operators on section spaces. — Let E and F be vector bundles

over M , and let A : C∞
c (M ;E) → C∞(M ;F ) be a continuous linear map. The

transpose of A is the continuous linear map

At : C−∞
c (M ;F ∗ ⊗ Ω)→ C−∞(M ;E∗ ⊗ Ω) ,

⟨Atv, u⟩ = ⟨v,Au⟩ , u ∈ C∞
c (M ;E) , v ∈ C−∞

c (M ;F ∗ ⊗ Ω) .

For instance, the transpose of C∞
c (M ;E∗ ⊗ Ω) ⊂ C∞(M ;E∗ ⊗ Ω) is a continuous

dense injection C−∞
c (M ;E) ⊂ C−∞(M ;E). If At restricts to a continuous linear

map C∞
c (M ;F ∗ ⊗ Ω) → C∞(M ;E∗ ⊗ Ω), then Att : C−∞

c (M ;E) → C−∞(M ;F )

is a continuous extension of A, also denoted by A. The Schwartz kernel, KA ∈
C−∞(M2;F ⊠ (E∗ ⊗ Ω)), is determined by the condition ⟨KA, v ⊗ u⟩ = ⟨v,Au⟩ for

u ∈ C∞
c (M ;E) and v ∈ C∞

c (M ;F ∗ ⊗ Ω). The Schwartz kernel theorem [Hör71,

Theorem 5.2.1] states that we have a linear isomorphism

(2.1.9) L(C∞
c (M ;E), C−∞(M ;F ))

∼=−→ C−∞(M2;F ⊠ (E∗ ⊗ ΩM)) , A 7→ KA .

Using that (F ∗ ⊗ Ω)∗ ⊗ Ω ≡ F , we get

KAt = R∗KA ∈ C−∞(M2; (E∗ ⊗ Ω) ⊠ F ) ,

where R : M2 →M2 is given by R(x, y) = (y, x). If KA is C∞, we can write

(2.1.10) Au(x) =

ˆ
M

KA(x, y)u(y) , Atv(x) =

ˆ
M

KA(y, x)v(y) ,

for u ∈ C∞
c (M ;E) and v ∈ C∞

c (M ;F ∗ ⊗ Ω).

There are versions of the construction of At and Att when both the domain and

codomain of A have compact support, or no support restriction. For example, for any

open U ⊂M , the transpose of the extension by zero C∞
c (U ;E∗⊗Ω) ⊂ C∞

c (M ;E∗⊗Ω)

is the restriction map

(2.1.11) C−∞(M ;E)→ C−∞(U,E) , u 7→ u|U ,

and the transpose of the restriction map C∞(M ;E∗ ⊗ Ω) → C∞(U,E∗ ⊗ Ω) is the

extension by zero

(2.1.12) C−∞
c (U ;E) ⊂ C−∞

c (M ;E) .

Inclusion maps may be denoted by ι and restriction maps by R, without further com-

ment. The singular support of any u ∈ C−∞(M ;E), sing suppu, is the complement

of the maximal open subset U ⊂M with u|U ∈ C∞(U ;E).
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2.1.6. Pull-back and push-forward of distributional sections. — Any

smooth map ϕ : M ′ →M induces the continuous linear pull-back map

(2.1.13) ϕ∗ : C∞(M ;E)→ C∞(M ′;ϕ∗E) .

If ϕ is a submersion, then it also induces the continuous linear push-forward map

(2.1.14) ϕ∗ : C∞
c (M ′;ϕ∗E ⊗ Ωfiber)→ C∞

c (M ;E) ,

where Ωfiber = ΩfiberM
′ = ΩV for the vertical subbundle V = kerϕ∗ ⊂ TM ′. More-

over, the map (2.1.14) has a continuous extension

(2.1.15) ϕ∗ : C∞
cv (M ′;ϕ∗E ⊗ Ωfiber)→ C∞(M ;E) ,

also called push-forward map. Using (2.1.14) and any partition of unity {λj} of M

consisting of compactly supported smooth functions, the map (2.1.15) is given by

(2.1.16) ϕ∗u =
∑
j

ϕ∗(ϕ∗λj · u) .

Since ϕ∗ΩM ≡ Ω(TM/V) ≡ Ω−1
fiber ⊗ ΩM ′, transposing the versions of (2.1.13)

and (2.1.14) with E∗ ⊗ ΩM and using (2.1.5), we obtain continuous extensions

of (2.1.14) and (2.1.13) [Hör71, Theorem 6.1.2],

ϕ∗ : C−∞
c (M ′;ϕ∗E ⊗ Ωfiber)→ C−∞

c (M ;E) ,(2.1.17)

ϕ∗ : C−∞(M ;E)→ C−∞(M ′;ϕ∗E) ,(2.1.18)

also called push-forward and pull-back maps. Again, (2.1.17) has a continuous exten-

sion,

(2.1.19) ϕ∗ : C−∞
cv (M ′;ϕ∗E ⊗ Ωfiber)→ C−∞(M ;E) ,

also called push-forward map, defined like (2.1.15) with (2.1.17).

If ϕ : M ′ → M is a local diffeomorphism, we can omit Ωfiber in the push-forward

maps. If moreover ϕ is proper, the compositions ϕ∗ϕ
∗ and ϕ∗ϕ∗ are defined on smooth

or distributional sections with compact support or no support condition.

The spaces C∞(M ′;ϕ∗E) and C∞(M ′;ϕ∗E⊗Ωfiber) become C∞(M)-modules via

the homomorphism of algebras, ϕ∗ : C∞(M)→ C∞(M ′), and we have

C±∞
·/c (M ′;ϕ∗E) = C±∞

·/c (M ′)⊗C∞(M) C
∞(M ;E) ,(2.1.20)

C±∞
·/c (M ′;ϕ∗E ⊗ Ωfiber) = C±∞

·/c (M ′; Ωfiber)⊗C∞(M) C
∞(M ;E) .(2.1.21)

Using (2.1.6), (2.1.20) and (2.1.21), we can describe (2.1.13)–(2.1.19) as the C∞(M)-

tensor products of their trivial-line-bundle versions with the identity map on the

space C∞(M ;E). This kind of description is valid with other spaces of distributional

sections with the obvious extensions of (2.1.20) and (2.1.21). Thus, in this chapter, we

will mainly consider the pull-back and push-forward between spaces of distributions.

Only the special case of the pull-back and push-forward between spaces of currents

will be briefly indicated a few times.
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2.1.7. Differential operators. — Let Diff(M) ⊂ End(C∞
·/c(M)) be the subalge-

bra and C∞(M)-submodule of differential operators, filtered by the order. Every

Diffm(M) (m ∈ N0) is spanned as C∞(M)-module by all compositions of up to m

elements of X(M), considered as the Lie algebra of derivations of C∞
·/c(M). In partic-

ular, Diff0(M) ≡ C∞(M).

On the other hand, let

P (T ∗M) =

∞⊕
m=0

P (m)(T ∗M) ⊂ C∞(T ∗M)

be the subalgebra and C∞(M)-submodule of functions whose restriction to the fibers

are polynomials, equipped with the grading given by the degree; in particular,

P (0)(T ∗M) ≡ C∞(M) , P (1)(T ∗M) ≡ X(M)⊗ C .

For every order m, the principal symbol exact sequence

(2.1.22) 0→ Diffm−1(M) ↪→ Diffm(M)
σm−−→ P (m)(T ∗M)→ 0

is defined so that the principal symbol of any X ∈ X(M) ⊂ Diff1(M) is σ1(X) = iX ∈
P (1)(T ∗M), and

⊕
m σm induces an isomorphism of graded algebras and C∞(M)-

modules,
∞⊕
m=0

Diffm(M)/Diffm−1(M)
∼=−→ P (T ∗M) .

For vector bundles E and F over M , the above concepts can be extended by taking

the C∞(M)-tensor product with C∞(M ;F ⊗ E∗), obtaining

Diffm(M ;E,F ) ⊂ L(C∞
·/c(M ;E), C∞

·/c(M ;F )) ,

P (m)(T ∗M ;F ⊗ E∗) ⊂ C∞(T ∗M ;π∗(F ⊗ E∗)) ,

where π : T ∗M → M is the projection. So Diff0(M ;E,F ) ≡ C∞(M ;F ⊗ E∗). If

E = F , we write Diff(M ;E), which is a filtered algebra. The principal symbol σm on

Diffm(M ;E,F ) is given by the C∞(M)-tensor product of (2.1.22) with the identity

map on C∞(M ;F⊗E∗). Redundant notation is simplified like in Section 2.1.4. Recall

that A ∈ Diffm(M ;E,F ) is elliptic if σm(A)(p, ξ) is an isomorphism for all p ∈ M
and 0 ̸= ξ ∈ T ∗

pM . If E is a line bundle, then [ÁLKL23, Eq. (2.13)]

(2.1.23) Diffm(M ;E) ≡ Diffm(M) .

For m = 0, we get C∞(M ;E ⊗ E∗) ≡ C∞(M).

For all A ∈ Diffm(M ;E), we have At ∈ Diffm(M ;E∗⊗Ω), and therefore A has con-

tinuous extensions to an endomorphism A of C−∞
·/c (M ;E) (Section 2.1.5). A similar

map is defined when A ∈ Diffm(M ;E,F ).

The canonical coordinates of Rn×Rn ≡ Rn×Rn∗ ≡ T ∗Rn are denoted by (x, ξ) =

(x1, . . . , xn, ξ1, . . . , ξn). Let dx = dx1 ∧ · · · ∧ dxn, dξ = dξ1 ∧ · · · ∧ dξn, DI = DI
x =

(−i)|I|∂I = (−i)|I|∂x,I (i =
√
−1) and ξI = ξi1 · · · ξin (I = (i1, . . . , in) ∈ Nn0 ). For
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any open U ⊂ Rn and A =
∑

|I|≤m aI(x)DI ∈ Diffm(U), write A = a(x,D) for

a(x, ξ) =
∑

|I|≤m aI(x) ξI , and then σm(A) =
∑

|I|=m aI(x) ξI . We have

(2.1.24) Au(x) = (2π)−n
ˆ
Rn
ei⟨x,ξ⟩a(x, ξ)û(ξ) dξ ,

for all u ∈ C∞
c (U), where û is the Fourier transform of u. The local extension of this

expression to the case where A ∈ Diffm(M ;E,F ) is straightforward, using charts of

M and local trivializations of E and F , and taking local coefficients aI with values

in Cl′ ⊗ Cl∗ ≡ Cl×l′ (l and l′ are the ranks of E and F ).

2.1.8. Symbols. — For any open U ⊂ Rn and l ∈ N0, a symbol of order at most

m ∈ R on U × Rl, or simply on U , is a function a ∈ C∞(U × Rl) such that, for any

compact K ⊂ U , I ∈ Nn0 and J ∈ Nl0,

(2.1.25) ∥a∥K,I,J,m := sup
x∈K, ξ∈Rl

|DI
xD

J
ξ a(x, ξ)|

(1 + |ξ|)m−|J| <∞ .

They form a Fréchet space Sm(U × Rl) with the semi-norms (2.1.25). There are

continuous inclusions

(2.1.26) Sm(U × Rl) ⊂ Sm
′
(U × Rl) (m < m′) ,

giving rise to the LCSs

S∞(U × Rl) =
⋃
m

Sm(U × Rl) , S−∞(U × Rl) =
⋂
m

Sm(U × Rl) .

S∞(U × Rl) is an LF-space, and therefore barreled, ultrabornological and webbed

[ÁLKL23, Proposition 3.1]. It is also a filtered algebra and C∞(U)-module with the

pointwise multiplication. The homogeneous components of the corresponding graded

algebra are denoted by S(m)(U × Rl). The Fréchet space S−∞(U × Rl) is a filtered

ideal and C∞(U)-submodule of S∞(U × Rl). The notation Sm(Rl), S±∞(Rl) and

S(m)(Rl) is used when U = R0 = {0}.
Consider the first-factor projection U × Rl → U to define C∞

cv (U × Rl). There are

continuous inclusions

(2.1.27) C∞
cv (U × Rl) ⊂ S−∞(U × Rl) , S∞(U × Rl) ⊂ C∞(U × Rl) ;

in particular, S∞(U × Rl) is Hausdorff. The following properties hold [ÁLKL23,

Corollaries 3.4–3.6 and Remark 3.8]: The topologies of S∞(U ×Rl) and C∞(U ×Rl)
coincide on Sm(U × Rl), however the second inclusion of (2.1.27) is not a TVS-

embedding; C∞
c (U × Rl) is dense in S∞(U × Rl); and S∞(U × Rl) is an acyclic

Montel space, and therefore complete, boundedly/compactly/sequentially retractive

and reflexive.

With more generality, a symbol of order m on a vector bundle E over M is a

smooth function on E satisfying (2.1.25) via charts of M and local trivializations of

E, with K contained in the domains of charts where E is trivial. As above, they
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form a Fréchet space Sm(E) with the topology described by the semi-norms given

by this version of (2.1.25). The version of (2.1.26) in this setting is true, obtaining

the corresponding spaces S±∞(E) and S(m)(E). The above properties have obvious

extensions to this setting.

Given another vector bundle F over M , the C∞(M)-tensor product of the above

spaces with C∞(M ;F ) gives spaces Sm(E;F ), S±∞(E;F ) and S(m)(E;F ), satis-

fying analogous properties. Now (2.1.27) becomes C∞
cv (E;π∗F ) ⊂ S−∞(E;F ) and

S∞(E;F ) ⊂ C∞(E;π∗F ), where π : E →M is the projection.

2.1.9. Pseudodifferential operators. — The notation of Section 2.1.8 is used

here. For any a ∈ Sm(U × Rn), the expression (2.1.24) defines a continuous linear

map A = a(x,D) : C∞
c (U)→ C∞(U), with Schwartz kernel

KA(x, y) = (2π)−n
(ˆ

Rn
ei⟨x−y,ξ⟩a(x, ξ) dξ

)
|dy| ,

using an oscillatory integral, which is defined as a tempered distribution [Mel81,

Eq. (4.2)], [Hör83, Section 7.8].

Take an atlas {Uk, xk} of M and an associated C∞ partition of unity {fk}. Via

every chart (Uk, xk), for all a ∈ Sm(T ∗Uk), the above procedure defines a continuous

linear map a(xk, Dxk) : C∞
c (Uk)→ C∞(Uk).

Let ∆ ⊂M2 be the diagonal. A pseudodifferential operator of order at most m on

M is a continuous linear map A : C∞
c (M)→ C∞(M) such that KA is C∞ on M2 \∆,

and, for all k, the operator fkA : C∞
c (Uk) → C∞

c (Uk) is of the form ak(xk, Dxk) for

some ak ∈ Sm(T ∗Uk), which is supported in π−1(supp fk), where π : T ∗M →M is the

projection. They form a C∞(M2)-module Ψm(M) with the pointwise multiplication

of their Schwartz kernels by smooth functions on M2. Moreover
∑
k ak ∈ Sm(T ∗M)

defines a class σm(A) ∈ S(m)(T ∗M), called the principal symbol, which is independent

of the choices involved, obtaining an exact sequence of C∞(M2)-modules,

0→ Ψm−1(M) ↪→ Ψm(M)
σm−−→ S(m)(T ∗M)→ 0 ,

where S(m)(T ∗M) is a C∞(M2)-module via the restriction linear map C∞(M2) →
C∞(∆) ≡ C∞(M). Then Ψ(M) :=

⋃
m Ψm(M) is a filtered C∞(M2)-module, and

Ψ−∞(M) :=
⋂
m Ψm(M) is the submodule of the operators with C∞ Schwartz ker-

nel (the smoothing operators). All of these concepts are independent of the choices

involved. If m ∈ N0, then

Diffm(M) = {A ∈ Ψm(M) | suppKA ⊂ ∆ } .

These concepts and properties can be extended to vector bundles by taking the

C∞(M2)-tensor product with C∞(M2;F ⊠ E∗), like in the case of differential oper-

ators (Section 2.1.7). In this case, we use the notation Ψm(M ;E,F ) (or Ψm(M ;E)

if E = F ), S(m)(T ∗M ;F ⊗ E∗), etc. Recall that an operator A ∈ Ψm(M ;E,F ) is

called elliptic if σm(A) has an inverse in S(−m)(T ∗M ;F,E); i.e., any representative
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of σm(A) is an isomorphism at (p, ξ) ∈ T ∗M if ξ is far enough from 0p in T ∗
pM . The

space Ψm(M ;E,F ) is preserved by taking transposes. Thus any A ∈ Ψm(M ;E,F )

has a continuous extension (Section 2.1.5)

A : C−∞
c (M ;E)→ C−∞(M ;F ) ,

and sing suppAu ⊂ sing suppu for all u ∈ C−∞
c (M ;E) (pseudolocality). Moreover

A ∈ Ψ−∞(M ;E,F ) just when it defines a continuous map

A : C−∞
c (M ;E)→ C∞(M ;F ) .

It is said that A is properly supported if both factor projections M2 →M have proper

restrictions to suppKA. In this case, A defines continuous linear maps (Section 2.1.5)

A : C∞
c (M ;E)→ C∞

c (M ;F ) , A : C−∞(M ;E)→ C−∞(M ;F ) ,

which gives sense to the composition of properly supported pseudodifferential op-

erators. Any pseudodifferential operator is properly supported modulo smoothing

operators, and the symbol map is multiplicative.

If A ∈ Ψ−∞(M ;E) and P,Q ∈ Diff(M ;E), then

(2.1.28) KPAQ(x, y) = PxQ
t
yKA(x, y) .

2.1.10. L2 and L∞ sections. — The Hilbert space L2(M ; Ω1/2) of square-

integrable half-densities is the completion of C∞
c (M ; Ω1/2) with the scalar product

⟨u, v⟩ =
´
M
uv̄. The induced norm is denoted by ∥·∥.

If M is compact, L2(M ;E) can be described as the C∞(M)-tensor product of

L2(M ; Ω1/2) and C∞(M ; Ω−1/2⊗E). It is a Hilbertian space with the scalar products

⟨u, v⟩ =
´
M

(u, v)ω, determined by the choice of a Euclidean/Hermitian structure (·, ·)
on E and a non-vanishing ω ∈ C∞(M ; Ω).

When M is not assumed to be compact, any choice of (·, ·) and ω can be used to

define L2(M ;E) and ⟨·, ·⟩. Now L2(M ;E) and the equivalence class of ∥·∥ depends

on the choices involved. The independence still holds for sections supported in any

compact K ⊂ M , obtaining the Hilbertian space L2
K(M ;E). These spaces give rise

to the strict LF-space L2
c(M ;E) like in (2.1.3). We also get the Fréchet space

L2
loc(M ;E) = {u ∈ C−∞(M ;E) | C∞

c (M)u ⊂ L2
c(M ;E) } ,

defining the topology like in (2.1.1). If M is compact, then L2
loc/c(M ;E) ≡ L2(M ;E)

as TVSs. The spaces L2
loc/c(M ;E) satisfy the obvious version of (2.1.5).

Any A ∈ Diffm(M ;E) can be considered as a densely defined operator in L2(M ;E).

Its adjoint A∗ is the closure of the formal adjoint A∗ ∈ Diffm(M ;E), determined by

the condition ⟨u,A∗v⟩ = ⟨Au, v⟩ for all u, v ∈ C∞
c (M ;E).

We can also use (·, ·) to define the Banach space L∞(M ;E) of essentially bounded

sections, with the norm ∥u∥L∞ = ess supx∈M |u(x)|. There is a continuous injec-

tion L∞(M ;E) ⊂ L2
loc(M ;E). If M is compact, the equivalence class of ∥·∥L∞ is

independent of (·, ·).
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2.1.11. Sobolev spaces. — Suppose first that M is compact. The Sobolev space

of order s ∈ R is the Hilbertian space

(2.1.29) Hs(M ;E) = {u ∈ C−∞(M ;E) | Ψs(M ;E)u ⊂ L2(M ;E) } ,

with the topology like in (2.1.1). It can be equipped with any scalar product ⟨u, v⟩s =

⟨(1+P )su, v⟩, for any nonnegative symmetric elliptic P ∈ Diff2(M ;E) (by the elliptic

estimate), where ⟨·, ·⟩ is defined like in Section 2.1.10 and (1 + P )s is given by the

spectral theorem. Let ∥·∥s denote the corresponding norm. We have

(2.1.30) Ψs(M ;E)L2(M ;E) = H−s(M ;E) = Hs(M ;E∗ ⊗ Ω)′ .

If s ∈ N, we can use Diffs(M ;E) instead of Ψs(M ;E) in (2.1.29) and the first equality

of (2.1.30). There are dense compact inclusions (Rellich theorem)

(2.1.31) Hs(M ;E) ⊂ Hs′(M ;E) (s′ < s) .

So the spaces Hs(M,E) form a compact spectrum. Moreover, there are continuous

dense inclusions, for s > k + n/2,

Hs(M ;E) ⊂ Ck(M ;E) ⊂ Hk(M ;E) ,(2.1.32)

H−s(M ;E) ⊃ C ′ −k(M ;E) ⊃ H−k(M ;E) .(2.1.33)

The first inclusion of (2.1.32) is the Sobolev embedding theorem, and (2.1.33) is the

transpose of the version of (2.1.32) with E∗ ⊗ ΩM . So

(2.1.34) C∞(M ;E) =
⋂
s

Hs(M ;E) C−∞(M ;E) =
⋃
s

Hs(M ;E) .

Any A ∈ Ψm(M ;E) defines a bounded operator A : Hs+m(M ;E) → Hs(M ;E).

This can be considered as a densely defined operator in Hs(M ;E), which is closable

because, after fixing a scalar product in Hs(M ;E), the adjoint of A in Hs(M ;E) is

densely defined since it is induced by Āt ∈ Ψm(M ; Ē∗ ⊗ Ω) via the identity of real

Hilbert spaces, Hs(M ;E) ≡ Hs(M ; Ē)′ = H−s(M ; Ē∗⊗Ω), where the bar stands for

the complex conjugate. In the case s = 0, the adjoint of A is induced by the formal

adjoint A∗ ∈ Ψm(M ;E); if A ∈ Diffm(M ;E), then A∗ ∈ Diffm(M ;E).

If M is not assumed to be compact, then Hs(M ;E) can be defined as the com-

pletion of C∞
c (M ;E) with respect to the scalar product ⟨·, ·⟩s defined by the above

choices of (·, ·), ω and P ; in this case, Hs(M ;E) and the equivalence class of ∥·∥s
depend on the choices involved. With this generality, (2.1.29) and the first equality

of (2.1.30) are wrong, but the second equality of (2.1.30) is true.

Like L2
loc/c(M ;E) (Section 2.1.10), we can define the Fréchet space Hs

loc(M ;E)

and the strict LF-space Hs
c (M ;E), which satisfy the versions of the second equal-

ity of (2.1.30) (switching the support condition like in (2.1.5)) and (2.1.31)–(2.1.33).

These spaces agree with Hs(M ;E) if M is compact. For any open U ⊂ M , the

restriction map (2.1.11) defines a continuous linear map Hs
loc(M ;E) → Hs

loc(U ;E),

and the extension by zero (2.1.12) defines a TVS-embedding Hs
c (U ;E) ⊂ Hs

c (M ;E).
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In this case, any A ∈ Ψm(M ;E) defines continuous linear maps A : Hs
c (M ;E) →

Hs−m
loc (M ;E). If A ∈ Diffm(M ;E), then it defines continuous linear maps A :

Hs
c/loc(M ;E)→ Hs−m

c/loc(M ;F ).

For example, Hs(Rn) can be defined with ⟨u, v⟩s = ⟨(1 + ∆)su, v⟩, involving the

Laplacian ∆ = −
∑
k ∂

2
k and the standard scalar product on L2(Rn). Recall that the

Fourier transform, f 7→ f̂ , defines an automorphism of the Schwartz space S(Rn),

which extends to an automorphism of the space S(Rn)′ of tempered distributions

[Hör83, Section 7.1], which in turn restricts to a TVS-isomorphism

(2.1.35) Hs(Rn)
∼=−→ L2(Rn, (1 + |ξ|2)s dξ) , f 7→ f̂ .

We can use (2.1.35) to give an alternative description of Hs
c/loc(M ;E) for arbitrary M

and E. First, Hs
K(Rn) ⊂ Hs(Rn) has the subspace topology for any compact K ⊂ Rn.

Next, for any open U ⊂ Rn, we can describe Hs
c (U) by using Hs

K(U) ≡ Hs
K(Rn) for all

compact K ⊂ U , and we can describe Hs
loc(U) by using Hs

c (U), as explained before.

Then a locally finite atlas and a subordinated C∞ partition of unity can be used in

a standard way to describe Hm
c/loc(M). Finally, Hs

c/loc(M ;E) can be described as the

C∞(M)-tensor product of Hs
c/loc(M) with C∞(M ;E), or, equivalently, using local

diffeomorphisms of triviality of E.

The norm on L(Hm(M ;E), Hm′
(M ;F )) (resp., End(Hm(M ;E))) will be simply

denoted by ∥·∥m,m′ (resp., ∥·∥m).

2.1.12. Weighted spaces. — Assume first that M is compact. Take any

h ∈ C∞(M) which is positive almost everywhere. Then the weighted Sobolev

space hHs(M ;E) is a Hilbertian space; a scalar product ⟨·, ·⟩hHs is given by

⟨u, v⟩hHs = ⟨h−1u, h−1v⟩s, depending on the choice of a scalar product ⟨·, ·⟩s on

Hs(M ;E) (Section 2.1.11). The corresponding norm is denoted by ∥·∥hHs . In

particular, we get the weighted L2 space hL2(M ;E). We have h > 0 just when

hHm(M ;E) = Hm(M ;E); in this case, ⟨·, ·⟩hHs can be described like ⟨·, ·⟩s using

h−2ω instead of ω. Thus the notation hHm(M ;E) for h > 0 is used when changing

the density; e.g., if it is different from a distinguished choice, say a Riemannian

volume.

If M is not compact, hHs(M ;E) and ⟨u, v⟩hHs depend on h and the chosen

definitions of Hs(M ;E) and ⟨u, v⟩s (Section 2.1.11). We also get the weighted

spaces hHs
c/loc(M ;E), and the weighted Banach space hL∞(M ;E) with the norm

∥u∥hL∞ = ∥h−1u∥L∞ . There is a continuous injection hL∞(M ;E) ⊂ hL2
loc(M ;E).

2.1.13. Topological complexes. — Recall that a complex (C, d) (over C) consists

of a (Z-) graded vector space C = C• and a linear map d : C → C which is homoge-

neous of degree 1 and satisfies d2 = 0. If moreover C is a TVS and d is continuous,

then (C, d) is called a topological complex. Then ker d and im d are topological graded

subspaces, and the cohomology H•(C, d) = ker d/ im d becomes a graded TVS. Its
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maximal Hausdorff quotient, H̄•(C, d) := H•(C, d)/0 ≡ ker d/im d, is called the re-

duced cohomology. Let [u] ∈ H•(C, d) and [u] ∈ H̄•(C, d) denote the elements defined

by any u ∈ ker d. If C is a LCS, then H•(C, d) and H̄•(C, d) are also LCSs because

this property is inherited by subspaces and quotients [Sch71, Section II.4]. We may

use the notation Z = ZC = ker d, B = BC = im d and B̄ = B̄C = im d.

We always assume C has finitely many nonzero homogeneous components, say

C = C0 ⊕ · · · ⊕ CN . So d is given by a finite sequence of length N ,

C0 d0−→ C1 d1−→ · · · dN−1−−−→ CN .

Negative or decreasing degrees may be also considered without any essential change.

Continuous homomorphisms between topological complexes induce continuous lin-

ear maps between the corresponding cohomologies and reduced cohomologies. (Usu-

ally, the term chain/cochain complex is used for decreasing/increasing degrees, and

chain/cochain maps for the corresponding homomorphisms, but we will ignore that

difference.)

The transpose of (C, d) is the topological complex (C ′, dt), graded by (C ′)r = (Cr)′

(r = 0, . . . , N). For any [f ] ∈ H•(C ′, dt), we have fd = dt(f) = 0, and therefore f

induces an element of H•(C, d)′. This defines a canonical continuous linear map

H•(C ′, dt)→ H•(C, d)′.

Proposition 2.1.1. — The canonical map H•(C ′, dt)→ H•(C, d)′ is:

(i) surjective if C is a LCHS; and

(ii) injective if C is a Fréchet space and im d is closed.

Proof. — Property (i) is an easy consequence of the Hahn-Banach theorem [Sch71,

Theorem II.4.2].

Property (ii) follows easily from the open mapping theorem [Sch71, Theo-

rem III.2.1] and the Hahn-Banach theorem.

Remark 2.1.2. — Extensions of (ii) can be given by more general versions of the

open mapping theorem (see e.g. [Bou14]).

2.1.14. Differential complexes. — Recall that a differential complex of order at

most m is a topological complex of the form (C∞(M ;E), d), where E is a (Z-) graded

vector bundle and d ∈ Diffm(M ;E); it will be simply denoted by (E, d). Necessarily,

it is of finite length, say E = E0 ⊕ · · · ⊕ EN and d is given by the sequence

C∞(M ;E0)
d0−→ C∞(M ;E1)

d1−→ · · · dN−1−−−→ C∞(M ;EN ) .

The compactly supported version (C∞
c (M ;E), d) may be also considered, as well as

the distributional versions (C−∞
·/c (M ;E), d). Recall that (E, d) is called an elliptic

complex of order m if moreover the symbol sequence,

(2.1.36) 0→ E0
p

σm(d0)(p,ξ)−−−−−−−→ E1
p

σm(d1)(p,ξ)−−−−−−−→ · · · σm(dN−1)(p,ξ)−−−−−−−−−→ ENp → 0 ,
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is exact for all p ∈ M and 0 ̸= ξ ∈ T ∗
pM . If N = 1, this agrees with the ellipticity of

d0 ∈ Diffm(M ;E0, E1).

Equip E with a Hermitian structure so that its homogeneous components are

orthogonal, and equip M with a Riemannian metric g, inducing a volume density

on M . Consider the corresponding scalar product on L2(M ;E). Then the formal

adjoint δ = d∗ also defines a differential complex, giving rise to symmetric differential

operators D = d+δ and ∆ = D2 = dδ+δd. The ellipticity of the differential complex

d is equivalent to the ellipticity of the differential complex δ, and it is also equivalent

to the ellipticity of the differential operator D (or ∆).

In the rest of Section 2.1.14, suppose M is closed and d is elliptic. Then D and ∆

have a discrete spectrum. Moreover, we have the following Hodge-type decomposition,

and associated equalities and isomorphism:

(2.1.37)


C∞(M ;E) = ker ∆⊕ im δ ⊕ im d ,

im δ ⊕ im d = imD = im ∆ ,

ker d ∩ ker δ = kerD = ker ∆ ∼= H•(C∞(M ;E), d) .

Writing C = C∞(M ;E), it follows from (2.1.37) that d : im δ → im d and δ : im d→
im δ are TVS-isomorphisms.

Consider also the operators d, δ, D and ∆ on C−∞(M ;E) (Section 2.1.7). Then

(C−∞(M ;E), d) is another topological complex, and the analogue of (2.1.37) is

satisfied with C−∞(M ;E). By ellipticity and since M is compact, ∆ has the

same kernel in C∞(M ;E) and in C−∞(M ;E), obtaining a canonical isomorphism

H•(C∞(M ;E), d) ∼= H•(C−∞(M ;E), d).

2.2. Conormal distributions

The space of conormal distributions plays a very important role in our work.

We mainly follow [KN65, Hör71], [Hör85, Section 18.2], [Sim90, Chapters 3–5],

[Mel96, Chapters 4 and 6], [MU08, Chapters 3 and 9], which are oriented to the role

they play in pseudodifferential operators and generalizations of those operators. The

study of its natural topology was begun in [Mel96, Chapters 4 and 6] and continued

in [ÁLKL23].

For the sake of simplicity, we consider the case of the trivial line bundle first. But

all definitions, properties and notation have obvious extensions for arbitrary vector

bundles, like in Sections 2.1.7 and 2.1.9, either by using local trivializations, or by

taking C∞(M)-tensor products with spaces of smooth sections. When needed, the

case of arbitrary vector bundles will be used without further comment.

2.2.1. Differential operators tangent to a submanifold. — Let L be a regular

submanifold of M of codimension n′ and dimension n′′, which is a closed subset.

Let X(M,L) ⊂ X(M) be the Lie subalgebra and C∞(M)-submodule of vector fields
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tangent to L. Using X(M,L) instead of X(M), we can define the filtered subalgebra

and C∞(M)-submodule Diff(M,L) ⊂ Diff(M) like in Section 2.1.7. We have

(2.2.1) A ∈ Diff(M,L)⇒ At ∈ Diff(M,L; Ω) .

By the conditions on L, every Diffm(M,L) (m ∈ N0) is locally finitely C∞(M)-

generated, and therefore Diff(M,L) is countably C∞(M)-generated. The surjective

restriction map X(M,L) → X(L), X 7→ X|L, induces a surjective linear restriction

map of filtered algebras and C∞(M)-modules,

(2.2.2) Diff(M,L)→ Diff(L) , A 7→ A|L .

Let (U, x) be a chart of M adapted to L; i.e., it is a diffeomorphism

x = (x1, . . . , xn) ≡ (x′, x′′) : U → U ′ × U ′′ ,

x′ = (x′1, . . . , x′n
′
) , x′′ = (x′′1, . . . , x′′n

′′
) , L0 := L ∩ U = {x′ = 0} ,

for some open U ′ ⊂ Rn′
and U ′′ ⊂ Rn′′

. If L is of codimension one, then we will

use the notation (x, y) instead of (x′, x′′). For every m ∈ N0, Diffm(U,L0) is C∞(U)-

spanned by the operators x′I∂Jx′∂Kx′′ with |J |+ |K| ≤ m and |I| = |J |; we may use the

generators ∂Jx′∂Kx′′x′I as well, with the same conditions on the multi-indices.

2.2.2. Conormal distributions whenM is compact. — Suppose M is compact.

Then the space of conormal distributions at L of Sobolev order at most s ∈ R is the

LCS and C∞(M)-module

(2.2.3) I(s)(M,L) = {u ∈ C−∞(M) | Diff(M,L)u ⊂ Hs(M) } ,

with the topology like in (2.1.1). This is a totally reflexive Fréchet space [ÁLKL23,

Proposition 4.1]. We have continuous inclusions

(2.2.4) I(s)(M,L) ⊂ I(s
′)(M,L) (s′ < s) ,

and consider the LCSs and C∞(M)-modules

I(M,L) =
⋃
s

I(s)(M,L) , I(∞)(M,L) =
⋂
s

I(s)(M,L) .

Thus I(M,L) is a Hausdorff LF-space (Section 2.1.1), and I(∞)(M,L) is a Fréchet

space and submodule of I(M,L). The elements of I(M,L) are called conormal dis-

tributions of M at L (or of (M,L)). The spaces I(s)(M,L) form what is called the

Sobolev-order filtration of I(M,L), or the Sobolev-order inductive spectrum defining

I(M,L). From (2.2.3), it follows that there are canonical continuous inclusions,

(2.2.5) C∞(M) ⊂ I(∞)(M,L) , I(M,L) ⊂ C−∞(M) .

Indeed, C∞(M) is dense in I(M,L) [Mel96, Eq. (6.2.12)], [ÁLKL23, Corollary 4.6].

I(M,L) is barreled, ultrabornological, webbed, acyclic and a Montel space,

and therefore complete, boundedly/compactly/sequently retractive and reflexive

[ÁLKL23, Corollaries 4.2 and 4.7] (Section 2.1.1).
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2.2.3. Filtration of I(M,L) by the symbol order when M is compact. —

Take a chart of M adapted to L, (U, x = (x′, x′′)), like in Section 2.2.1. We use

the identity U ′′ × Rn′ ≡ N∗U ′′, and the symbol spaces Sm(U ′′ × Rn′
) ≡ Sm(N∗U ′′)

(Section 2.1.8). The following holds true for s, m̄ ∈ R [Hör85, Theorem 18.2.8],

[Mel96, Proposition 6.1.1], [MU08, Lemma 9.33], [ÁLKL23, Remark 4.4]:

– If s < −m̄− n′/2, then the map C∞
cv (N∗U ′′)→ C∞(U), a 7→ u, given by

u(x) = (2π)−n
′
ˆ
Rn′

ei⟨x
′,ξ⟩a(x′′, ξ) dξ ,

has a continuous extension Sm̄(N∗U ′′)→ I(s)(U,L0).

– If m̄ > −s− n′/2, then the map C∞
c (U)→ C∞(N∗U ′′), u 7→ a, given by

a(x′′, ξ) =

ˆ
Rn′

e−i⟨x
′,ξ⟩u(x′, x′′) dx′ ,

induces a continuous linear map I
(s)
c (U,L0)→ Sm̄(N∗U ′′).

In what follows, it is convenient to use

a |dξ| ∈ Sm̄(N∗U ′′; ΩN∗U ′′) ≡ Sm̄(N∗L0; ΩN∗L0) .

Assume M is compact. Take a finite cover of L by relatively compact charts (Uj , xj)

of M adapted to L, and write Lj = L ∩ Uj . Let {h, fj} be a C∞ partition of unity

of M subordinated to the open covering {M \ L,Uj}. Then I(M,L) consists of the

distributions u ∈ C−∞(M) such that hu ∈ C∞(M \L) and fju ∈ Ic(Uj , Lj) for all j.

Every fju is given by some aj ∈ S∞(N∗Lj ; ΩN∗Lj) as above. For

(2.2.6) m̄ = m+ n/4− n′/2 ,

the condition aj ∈ Sm̄(N∗Lj ; ΩN∗Lj) describes the elements u of a C∞(M)-

submodule Im(M,L) ⊂ I(M,L), which is independent of the choices involved

[MU08, Proposition 9.33] (see also [Mel96, Definition 6.2.19] and [Sim90, Defini-

tion 4.3.9]). Moreover, applying the versions of semi-norms (2.1.2) on C∞(M \ L) to

hu and the versions of semi-norms (2.1.25) on Sm̄(N∗Lj ; ΩN∗Lj) to every aj , we get

semi-norms on Im(M,L), which becomes a Fréchet space [Mel96, Sections 6.2 and

6.10].

The version of (2.1.26) for the spaces Sm̄(N∗Lj ; ΩN∗Lj) gives continuous inclu-

sions

(2.2.7) Im(M,L) ⊂ Im
′
(M,L) (m < m′) .

The element σm(u) ∈ S(m̄)(N∗L; ΩN∗L) represented by
∑
j aj ∈ Sm̄(N∗L; ΩN∗L) is

called the principal symbol of u. This defines the exact sequence

0→ Im−1(M,L) ↪→ Im(M,L)
σm−−→ S(m̄)(N∗L; ΩN∗L)→ 0 .

We also get continuous inclusions

(2.2.8) I(−m−n/4+ϵ)(M,L) ⊂ Im(M,L) ⊂ I(−m−n/4−ϵ)(M,L) ,
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for all m ∈ R and ϵ > 0 (cf. [Mel96, Eq. (6.2.5)], [MU08, Eq. (9.35)]). So

I(M,L) =
⋃
m

Im(M,L) , I(∞)(M,L) = I−∞(M,L) :=
⋂
m

Im(M,L) .

The spaces Im(M,L) form what is called the symbol-order filtration of I(M,L), or

the symbol-order inductive spectrum defining I(M,L).

2.2.4. I(M,L) for non-compact M . — If M is not assumed to be compact, the

spaces and properties of Sections 2.2.2 and 2.2.3 can be extended as follows [ÁLKL23,

Sections 4.2.2 and 4.3.3].

We can similarly define the LCHS I
(s)
·/c (M,L) by using C−∞

·/c (M) and Hs
loc/c(M).

Every I(s)(M,L) is a Fréchet space. We can describe I
(s)
c (M,L) =

⋃
K I

(s)
K (M,L) like

in (2.1.3), which is a strict LF-space, and therefore Ic(M,L) =
⋃
s I

(s)
c (M,L) is an

LF-space; moreover Ic(M,L) =
⋃
K IK(M,L). We also have the LCHS I

(∞)
c (M,L) =⋂

s I
(s)
c (M,L). All of these spaces are modules over C∞(M); Ic(M,L) is a filtered

module and I
(∞)
c (M,L) a submodule. The extension by zero defines a continuous

inclusion Ic(U,L ∩ U) ⊂ Ic(M,L) for any open U ⊂ M . We also define the space

I(∞)(M,L) like in the compact case, as well as the space
⋃
s I

(s)(M,L), which con-

sists of the conormal distributions with a Sobolev order. But now let (cf. [Hör85,

Definition 18.2.6])

(2.2.9) I(M,L) = {u ∈ C−∞(M) | C∞
c (M)u ⊂ Ic(M,L) } ,

which is a LCS with the topology like in (2.1.1). We have I(M,L) =
⋃
s I

(s)(M,L)

if and only if L is compact; thus the spaces I(s)(M,L) form a filtration of I(M,L)

just when L is compact. There is an extension of (2.2.5) for non-compact M , taking

arbitrary/compact support; in particular, I·/c(M,L) is Hausdorff. The density of the

smooth functions with arbitrary/compact support is also true.

The definition of Im(M,L) can be immediately extended assuming {Uj} is lo-

cally finite. We can similarly define ImK (M,L) for all compact K ⊂ M , and then

define Imc (M,L) like in (2.1.3). The space of conormal distributions with a symbol

order is
⋃
m I

m(M,L), and let I−∞
·/c (M,L) =

⋂
m I

m
·/c(M,L). There are extensions

of (2.2.7) and (2.2.8). So
⋃
m I

m(M,L) =
⋃
s I

(s)(M,L), Ic(M,L) =
⋃
m I

m
c (M,L)

and I
(∞)
·/c (M,L) = I−∞

·/c (M,L).
⋃
m I

m(M,L) and I·/c(M,L) are acyclic Montel

spaces, and I(M,L) is a Montel space.

If M is the domain of a given smooth submersion, the LCHS Icv(M ;E) can be

defined like C−∞
cv (M ;E), using Ic(M ;E) instead of C−∞

c (M ;E).

2.2.5. Pseudodifferential operators vs conormal distributions. — Using the

diagonal ∆ ⊂M2, the Schwartz kernel isomorphism (2.1.9) restricts to linear isomor-

phisms

Ψm(M ;E,F )
∼=−→ Im(M2,∆;F ⊠ (E∗ ⊗ ΩM)) , A 7→ KA ,
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and a similar one for the whole of Ψ(M ;E,F ). Via them, Ψm(M ;E,F ) and

Ψ(M ;E,F ) become LCHSs satisfying the properties of the corresponding spaces

of conormal distributional sections. In this case, we have m̄ = m in (2.2.6) and

σm(A) ≡ σm(KA) for any A ∈ Ψm(M ;E,F ) [Hör65, KN65], [Hör85, Chap-

ter XVIII], [Sim90, Chapter 6].

2.2.6. Dirac sections at submanifolds. — We have ΩNL ⊗ ΩL ≡ ΩLM . The

transpose of the restriction map C∞
c/·(M ;E⊗ΩM)→ C∞

c/·(L;E⊗ΩLM) is a continuous

inclusion

C−∞
·/c (L;E ⊗ Ω−1NL) ⊂ C−∞

·/c (M ;E) ,(2.2.10)

u 7→ δuL , ⟨δuL, v⟩ = ⟨u, v|L⟩ , v ∈ C∞
c/·(M ;E∗ ⊗ Ω) .

By restriction of (2.2.10), we get a continuous inclusion [GS77, p. 310],

(2.2.11) C∞
·/c(L;E ⊗ Ω−1NL) ⊂ C−∞

·/c (M ;E) ;

in this case, we can write ⟨δuL, v⟩ =
´
L
u v|L. This is the subspace of δ-sections or

Dirac sections at L. Actually, the inclusion (2.2.11) induces a continuous injection

[ÁLKL23, Corollary 4.9]

(2.2.12) C∞
·/c(L;E ⊗ Ω−1NL) ⊂ Hs

loc/c(M ;E) (s < −n′/2) ,

with

C∞
·/c(L;E ⊗ Ω−1NL) ∩H−n′/2

loc/c (M ;E) = 0 .

For instance, for any p ∈ M and u ∈ Ep ⊗ Ω−1
p M , we get δup ∈ Hs

c (M ;E) if

s < −n/2, with ⟨δup , v⟩ = u ·v(p) for v ∈ C∞(M ;E∗⊗Ω), obtaining a continuous map

(2.2.13) M × C∞(M ;E ⊗ Ω−1)→ Hs
c (M ;E) , (p, u) 7→ δu(p)p .

As a particular case, the Dirac mass at any p ∈ Rn is δp = δ
1⊗|dx|−1

p ∈ Hs
c (Rn).

The Schwartz kernel of any A ∈ L(C−∞(M ;E), C∞(M ;F )) has the following

description: for all q ∈M and u ∈ Eq ⊗ Ω−1
q ,

(2.2.14) KA(·, q)(u) = Aδuq .

2.2.7. Differential operators on conormal distributional sections. — Any

A ∈ Diffk(M ;E) induces continuous linear maps [Mel96, Lemma 6.1.1]

(2.2.15) A : I
(s)
·/c (M,L;E)→ I

(s−k)
·/c (M,L;E) ,

which induce a continuous endomorphism A of I·/c(M,L;E). If A ∈ Diff(M,L;E),

then it clearly induces a continuous endomorphism A of every I
(s)
·/c (M,L;E).

By (2.2.10), for A ∈ Diff(M,L;E) and u ∈ C∞
·/c(L;E ⊗ Ω−1NL), we have

[ÁLKL23, Eq. (4.17)]

(2.2.16) AδuL = δA
′u

L , A′ = ((At)|L)t ∈ Diff(L;E ⊗ Ω−1NL) ,
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where At ∈ Diff(M,L;E∗⊗Ω) and (At)|L ∈ Diff(L,E∗⊗ΩLM) using the vector bun-

dle versions of (2.2.1) and (2.2.2). By (2.2.16), Diff(M,L;E) preserves the subspace

of Dirac sections given by (2.2.11). Thus (2.2.12) induces a continuous inclusion

(2.2.17) C∞
·/c(L;E ⊗ Ω−1NL) ⊂ I(s)·/c (M,L;E) (s < −n′/2) .

2.2.8. Pull-back of conormal distributions. — If a smooth map ϕ : M ′ → M

is transverse to a regular submanifold L ⊂ M , which is a closed subset, then L′ :=

ϕ−1(L) ⊂ M ′ is a regular submanifold, which is a closed subset. The trivial-line-

bundle version of (2.1.13) has continuous extensions

(2.2.18) ϕ∗ : Im(M,L)→ Im+k/4(M ′, L′) (m ∈ R) ,

where k = dimM − dimM ′ [Sim90, Theorem 5.3.8], [Mel96, Proposition 6.6.1].

Taking inductive limits and using (2.2.8), we get a continuous linear map

(2.2.19) ϕ∗ : I(M,L)→ I(M ′, L′) .

If ϕ is a submersion, this is a restriction of (2.1.18). In the case of a vector bundle E

over M , we get

(2.2.20) ϕ∗ : I(M,L;E)→ I(M ′, L′;ϕ∗E) ,

given by the C∞(M)-tensor product of the map (2.2.19) and the identity map on

C∞(M ;E), using the versions of (2.1.6) and (2.1.20) for spaces of conormal distribu-

tions (see Section 2.1.6).

2.2.9. Push-forward of conormal distributions. — Let ϕ : M ′ → M be a

smooth submersion, and let L ⊂M and L′ ⊂M ′ be regular submanifolds, which are

closed subsets, such that ϕ(L′) ⊂ L and the restriction ϕ : L′ → L is also a smooth

submersion. Then (2.1.14) and (2.1.15) have continuous extensions

(2.2.21) ϕ∗ : Imc/cv(M ′, L′; Ωfiber)→ I
m+l/2−k/4
c/· (M,L) (m ∈ R) ,

where k = dimM ′−dimM and l = dimL′−dimL [Sim90, Theorem 5.3.6], [Mel96,

Proposition 6.7.2]. Taking inductive limits, we get a continuous linear map

(2.2.22) ϕ∗ : Ic/cv(M ′, L′; Ωfiber)→ Ic/·(M,L) ,

which is a restriction of (2.1.17). In the case of a vector bundle E over M , we get

(2.2.23) ϕ∗ : Ic/cv(M ′, L′;ϕ∗E ⊗ Ωfiber)→ Ic/·(M,L;E) ,

is given by the C∞(M)-tensor product of (2.2.22) and the identity map on C∞(M ;E),

using the obvious versions of (2.1.6) and (2.1.21) for spaces of conormal distributions

(see Section 2.1.6). The map (2.8.24) is also a restriction of (2.8.13).
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2.3. Dual-conormal distributions

The dual space I(M,L;E)′ [Mel96, Chapter 6] also plays an important role in

our work. Again, the case of I(M,L)′ is considered first; its extension for any vector

bundle E can be made like in Section 2.2, and will be considered without further

comment.

2.3.1. Dual-conormal distributions when M is compact. — Consider the no-

tation of Sections 2.2.2 and 2.2.3, where M is assumed to be compact. The space of

dual-conormal distributions of M at L (or of (M,L)) is [Mel96, Chapter 6]

(2.3.1) I ′(M,L) = I(M,L; Ω)′ .

Let also

(2.3.2) I ′ (s)(M,L) = I(−s)(M,L; Ω)′ , I ′m(M,L) = I−m(M,L; Ω)′ .

I ′(M,L) is a complete Montel space, and every I ′ (s)(M,L) is bornological and bar-

reled [ÁLKL23, Corollaries 5.1 and 5.2].

Transposing the versions of (2.2.4) and (2.2.7) with ΩM , we get continuous linear

restriction maps, for s′ < s and m < m′,

(2.3.3) I ′ (s
′)(M,L)← I ′ (s)(M,L) , I ′m

′
(M,L)← I ′m(M,L) .

These maps form projective spectra (the Sobolev-order and symbol-order spectra),

giving rise to lim←− I
′ (s)(M,L) as s ↑ +∞ and lim←− I

′m(M,L) as m ↓ −∞. Similarly,

from (2.2.5), we get continuous inclusions,

(2.3.4) C−∞(M) ⊃ I ′(M,L) ⊃ C∞(M) ,

and (2.2.8) gives rise to continuous linear restriction maps

(2.3.5) I ′ (−m+n/4−ϵ)(M,L)← I ′m(M,L)← I ′ (−m+n/4+ϵ)(M,L) ,

for all m ∈ R and ϵ > 0. We also have [ÁLKL23, Corollary 5.3]

(2.3.6) I ′(M,L) ≡ lim←− I
′ (s)(M,L) ≡ lim←− I

′m(M,L) ,

as s ↑ +∞ and m ↓ −∞, where the last equality follows from (2.3.5).

The left-hand-side maps of (2.3.3) have dense images, which follows from conse-

quences of the Hahn-Banach theorem [NB11, Theorems 7.7.5 and 7.7.7 (c)], using

that their transposes are the analogs of the inclusions (2.2.4) with ΩM by the reflex-

ivity of the spaces I(s)(M,L; Ω) (Section 2.2.2). Similarly, the inclusions (2.3.4) are

dense.
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2.3.2. Dual-conormal distributions when M is non-compact. — If M is not

supposed to be compact, the above concepts and properties can be extended as follows.

We can similarly define the space I ′K(M,L) of dual-conormal distributions supported

in any compact K ⊂ M . Then define the LCHSs, I ′c(M,L) =
⋃
K I

′
K(M,L) like

in (2.1.3), and I ′(M,L) like in (2.2.9) using I ′c(M,L) instead of Ic(M,L). These spaces

satisfy a version of (2.3.1), interchanging arbitrary/compact support like in (2.1.5).

I ′(M,L) is a complete Montel space, and (2.3.4) is also true. Similarly, we can define

the spaces I
′ (s)
·/c (M,L) and I ′m·/c (M,L), which satisfy a version of (2.3.2) interchanging

the support condition. Moreover (2.3.5) and (2.3.6) have obvious extensions.

If M is the domain of a given smooth submersion, the LCHS I ′cv(M ;E) can be

defined like C−∞
cv (M ;E), using I ′c(M ;E) instead of C−∞

c (M ;E).

2.3.3. Conormal distributions vs dual-conormal distributions. — Assume

M is compact. Then [ÁLKL23, Theorem 8.11]

I(M,L) ∩ I ′(M,L) = C∞(M) .

2.3.4. Differential operators on dual-conormal distributional sections. —

For any A ∈ Diff(M ;E), the transpose of At on Ic/·(M,L;E∗ ⊗ Ω) (Section 2.2.7) is

a continuous endomorphism A of I ′·/c(M,L;E), which is a continuous extension of A

on C∞(M ;E), and a restriction of A on C−∞(M ;E) (Section 2.1.7). By (2.2.15), if

A ∈ Diffm(M ;E), we get induced continuous linear maps

(2.3.7) A : I
′ (s)
·/c (M,L;E)→ I

′ (s−m)
·/c (M,L;E) ,

If A ∈ Diff(M,L;E), the transpose of At of I
(−s)
c/· (M,L;E∗ ⊗ Ω) is a continuous

endomorphism A of I
′ (s)
·/c (M,L;E).

2.3.5. Pull-back of dual-conormal distributions. — With the notation and

conditions of Section 2.2.9, transposing the compactly supported cases of (2.2.21)

and (2.2.22) with ΩM , we get continuous linear maps

ϕ∗ : I ′m(M,L)→ I ′m+l/2−k/4(M ′, L′) (m ∈ R) ,

ϕ∗ : I ′(M,L)→ I ′(M ′, L′) .(2.3.8)

In the case of a vector bundle E over M , like in (2.2.20), we get

(2.3.9) ϕ∗ : I ′(M,L;E)→ I ′(M ′, L′;ϕ∗E) .

The map (2.3.9) is an extension of (2.1.13) and a restriction of (2.1.18).
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2.3.6. Push-forward of dual-conormal distributions. — With the notation

and conditions of Section 2.2.8, suppose ϕ is a submersion. Transposing the versions

of (2.2.18) and (2.2.19) with ΩM , and using an analog of (2.1.16), we get continuous

linear maps,

ϕ∗ : I ′mc/cv(M ′, L′ ⊗ Ωfiber)→ I
′m−k/4
c/· (M,L) (m ∈ R) ,

ϕ∗ : I ′c/cv(M ′, L′; Ωfiber)→ I ′c/·(M,L) .(2.3.10)

In the case of a vector bundle E over M , like in (2.2.23), we get

(2.3.11) ϕ∗ : I ′c/cv(M ′, L′;ϕ∗E ⊗ Ωfiber)→ I ′c/·(M,L;E) .

The map (2.3.10) is an extension of (2.1.14) and a restriction of (2.1.17).

2.4. Bounded geometry

2.4.1. Basic notation. — The concepts recalled here become relevant when M is

not compact. Equip M with a Riemannian metric g, and let ∇ denote its Levi-Civita

connection, R its curvature tensor, and injM ≥ 0 its injectivity radius (the infimum of

the injectivity radius at all points). If M is connected, we have an induced distance

function d. If M is not connected, we can also define d taking d(p, q) =∞ if p and q

belong to different connected components. Observe that M is complete if injM > 0.

For r > 0, p ∈ M and S ⊂ M , let B(p, r) and B(p, r) denote the open and closed

r-balls centered at p, and Pen(S, r) and Pen(S, r) denote the open and closed r-

penumbras of S (defined by the conditions d(·, S) < r and d(·, S) ≤ r, respectively).

We may add the subscript “M” to this notation if needed, or a subscript “a” if we

are referring to a family of Riemannian manifolds Ma.

2.4.2. Manifolds and vector bundles of bounded geometry. — Recall that

M is said to be of bounded geometry if injM > 0 and sup |∇mR| < ∞ for every

m ∈ N0. This concept has the following chart description.

Theorem 2.4.1 (Eichhorn [Eic91]; see also [Roe88, Sch96, Sch01])

M is of bounded geometry if and only if, for some open ball B ⊂ Rn centered

at 0, there are normal coordinates yp : Vp → B at every p ∈ M such that the corre-

sponding Christoffel symbols Γijk, as a family of functions on B parametrized by i, j,

k and p, lie in a bounded set of the Fréchet space C∞(B). This equivalence holds as

well replacing the Cristoffel symbols with the metric coefficients gij.

Remark 2.4.2. — Any non-connected Riemannian manifold of bounded geometry

can be considered as a family of Riemannian manifolds (the connected components),

which are of equi-bounded geometry in the sense that they satisfy the condition of

bounded geometry with the same bounds.



2.4. BOUNDED GEOMETRY 33

Example 2.4.3. — Typical examples of manifolds of bounded geometry are Lie

groups with left invariant metrics, covering spaces of closed Riemannian manifolds

and leaves of foliations on closed manifolds.

From now on in this section, assume M is of bounded geometry and consider the

charts yp : Vp → B given by Theorem 2.4.1. The radius of B will be denoted by r0.

Proposition 2.4.4 (Schick [Sch96, Theorem A.22], [Sch01, Proposition 3.3])

For every multi-index α, the function |∂I(yqy−1
p )| is bounded on yp(Vp ∩ Vq),

uniformly on p, q ∈M .

Proposition 2.4.5 (Shubin [Shu92, Appendix A1.1, Lemma 1.2])

For any 0 < 2r ≤ r0, there is a subset {pk} ⊂ M and some N ∈ N such that

the balls B(pk, r) cover M , and every intersection of N + 1 sets B(pk, 2r) is empty.

A vector bundle E of rank l over M is said to be of bounded geometry when it is

equipped with a family of local trivializations over the charts (Vp, yp), for small enough

r0, with corresponding defining cocycle apq : Vp ∩ Vq → GL(C, l) ⊂ Cl×l, such that,

for all multi-index α, the function |∂I(apqy−1
p )| is bounded on yp(Vp ∩ Vq), uniformly

on p, q ∈ M . When referring to local trivializations of a vector bundle of bounded

geometry, we always mean that they satisfy this condition. If the corresponding

defining cocycle is valued in U(l), then E is said to be of bounded geometry as a

Hermitian vector bundle. Euclidean vector bundles of bounded geometry are similarly

defined.

Example 2.4.6. — The vector bundle E associated to the principal O(n)-bundle

P of orthonormal frames of M and any unitary representation of O(n) is of bounded

geometry in a canonical way. In particular, this applies to TCM and ΛM . If the

representation is unitary, then bounded geometry holds as a Hermitian vector bundle.

The same is true if we use any reduction Q of P with structural group H ⊂ O(n) and

any unitary representation of H.

Example 2.4.7. — Bounded geometry is preserved by operations of vector bundles

induced by operations of vector spaces, like dual vector bundles, direct sums, tensor

products, exterior products, densities, etc.

Example 2.4.8. — Let E be a vector bundle E over a closed Riemannian manifold

M , and let M̃ be a covering of M . Then the lift Ẽ of E to M̃ is of bounded geometry

in a canonical way.

2.4.3. Uniform spaces. — For every m ∈ N0, a function u ∈ Cm(M) is said to

be Cm-uniformy bounded if there is some Cm ≥ 0 with |∇m′
u| ≤ Cm on M for all

m′ ≤ m. These functions form the uniform Cm space Cmub(M), which is a Banach

space with the norm ∥·∥Cmub
defined by the best constant Cm. As usual, we write

Cub(M) = C0
ub(M) = C(M) ∩ L∞(M). Equivalently, we may take the norm ∥·∥′Cmub
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defined by the best constant C ′
m ≥ 0 such that |∂I(uy−1

p )| ≤ C ′
m on B for all p ∈ M

and |I| ≤ m; in fact, it is enough to consider any subset of points p so that {Vp}
covers M [Sch96, Theorem A.22], [Sch01, Proposition 3.3]. The uniform C∞ space

is the Fréchet space C∞
ub(M) =

⋂
m C

m
ub(M), with the semi-norms ∥·∥Cmub or ∥·∥′Cmub .

It consists of the functions u ∈ C∞(M) such that all functions uy−1
p lie in a bounded

set of C∞(B).

The same definitions apply to functions with values in Cl. Moreover the definition

of uniform spaces with covariant derivative can be also considered for non-complete

Riemannian manifolds.

Proposition 2.4.9 (Shubin [Shu92, Appendix A1.1, Lemma 1.3]; see also [Sch01,

Proposition 3.2])

Given r, {pk} and N like in Proposition 2.4.5 there is a partition of unity {fk}
subordinated to the open covering {B(pk, r)}, which is bounded in the Fréchet space

C∞
ub(M).

For a Hermitian vector bundle E of bounded geometry over M , the uniform Cm

space Cmub(M ;E) can be defined by introducing ∥·∥′Cmub like the case of functions, using

local trivializations of E to consider every uy−1
p in Cm(B,Cl) for all u ∈ Cm(M ;E).

Then, as above, we get the uniform C∞ space C∞
ub(M ;E), which consists of the sec-

tions u ∈ C∞(M ;E) such that all functions uy−1
p define a bounded set of C∞

ub(B;Cl).
In particular, Xub(M) := C∞

ub(M ;TM) is a C∞
ub(M)-submodule and Lie subalgebra

of X(M).

The subset Xcom(M) ⊂ X(M) of complete vector fields satisfies Xub(M) ⊂
Xcom(M) [ÁLKL20, Proposition 3.8].

2.4.4. Differential operators of bounded geometry. — Like in Section 2.1.7,

by using Xub(M) and C∞
ub(M) instead of X(M) and C∞(M), we get the filtered

subalgebra and C∞
ub(M)-submodule Diffub(M) ⊂ Diff(M) of differential operators of

bounded geometry. Observe that

(2.4.1) Cmub(M) = {u ∈ Cm(M) | Diffmub(M)u ⊂ L∞(M) } .

The concept of Diffub(M) can be extended to vector bundles of bounded geometry E

and F over M by taking the C∞
ub(M)-tensor product with C∞

ub(M ;F ⊗E∗), obtaining

the filtered C∞
ub(M)-submodule Diffub(M ;E,F ) ⊂ Diff(M ;E,F ) (or Diffub(M ;E) if

E = F ). Bounded geometry of differential operators is preserved by compositions and

by taking transposes, and by taking formal adjoints in the case of Hermitian vector

bundles of bounded geometry; in particular, Diffub(M ;E) is a filtered subalgebra of

Diff(M ;E). Using local trivializations of E and F over the charts (Vp, yp), we get a

local description of any operator in Diffmub(M ;E,F ) by requiring its local coefficients

to define a bounded subset of the Fréchet space C∞(B,Cl′ ⊗Cl∗), where l and l′ are
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the ranks of E and F (Section 2.1.7). If E is a line bundle of bounded geometry, then

[ÁLKL23, Eq. (2.24)]

(2.4.2) Diffmub(M ;E) ≡ Diffmub(M) .

Let Pub(T ∗M) ⊂ P (T ∗M) be the graded subalgebra generated by P
(0)
ub (T ∗M) ≡

C∞
ub(M) and P

(1)
ub (T ∗M) ≡ Xub(M), which is also a C∞

ub(M)-submodule. Restrict-

ing (2.1.22), we get a short exact sequence with σm : Diffmub(M) → P
(m)
ub (T ∗M). By

taking the C∞
ub(M)-tensor product with C∞

ub(M ;F ⊗E∗), we get P
(m)
ub (T ∗M ;F ⊗E∗)

and a short exact sequence with σm : Diffmub(M ;E,F )→ P
(m)
ub (T ∗M ;F ⊗ E∗).

Using the norms ∥·∥′Cmub
, it easily follows that every A ∈ Diffmub(M ;E,F ) defines

bounded operators A : Cm+s
ub (M ;E)→ Csub(M ;F ) (s ∈ N0), which induce a continu-

ous linear map A : C∞
ub(M ;E)→ C∞

ub(M ;F ).

Example 2.4.10. — In Example 2.4.6, the Levi-Civita connection ∇ induces a

connection of bounded geometry on E, also denoted by ∇. In particular, ∇ itself is

of bounded geometry on TM , and induces a connection ∇ of bounded geometry on

ΛM . This holds as well for the connection on E induced by any other Riemannian

connection of bounded geometry on TM .

Example 2.4.11. — Bounded geometry of connections is preserved by taking the

induced connections in the operations with vector bundles of bounded geometry in-

dicated in Example 2.4.7.

Suppose E and F are Hermitian vector bundles of bounded geometry. Then any

unitary connection ∇ of bounded geometry on E can be used to define an equivalent

norm ∥·∥Cmub
on every Banach space Cmub(M ;E), like in the case of Cmub(M).

It is said that A ∈ Diffm(M ;E,F ) is uniformly elliptic if, given Hermitian metrics

of bounded geometry on E and F , there is some C ≥ 1 such that, for all p ∈M and

ξ ∈ T ∗
pM ,

(2.4.3) C−1|ξ|m ≤ |σm(A)(p, ξ)| ≤ C|ξ|m .

This condition is independent of the choice of the Hermitian metrics of bounded

geometry on E and F . Any A ∈ Diffmub(M ;E,F ) satisfies the second inequality.

Example 2.4.12. — In Example 2.4.8, for any A ∈ Diffm(M ;E), its lift Ã ∈
Diffm(M̃ ; Ẽ) is of bounded geometry in a canonical way. Moreover Ã is uniformly

elliptic if A is elliptic.

2.4.5. Sobolev spaces of manifolds of bounded geometry. — For any Hermi-

tian vector bundle E of bounded geometry over M , any nonnegative symmetric uni-

formly elliptic P ∈ Diff2
ub(M ;E) can be used to define the Sobolev space Hs(M ;E)

(s ∈ R) with a scalar product ⟨·, ·⟩s (Section 2.1.11). Any choice of P defines the same

Hilbertian space Hs(M ;E), which is a C∞
ub(M)-module. In particular, L2(M ;E) is
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the C∞
ub(M)-tensor product of L2(M ; Ω1/2) and C∞

ub(M ;E ⊗ Ω−1/2), and Hs(M ;E)

is the C∞
ub(M)-tensor product of Hs(M) and C∞

ub(M ;E). For instance, we may take

P = ∇∗∇ for any unitary connection ∇ of bounded geometry on E.

Example 2.4.13. — In Example 2.4.8 and according to Example 2.4.12, Hs(M̃ ; Ẽ)

can be defined with the lift P̃ of any nonnegative symmetric uniformly elliptic P ∈
Diff2(M ;E).

For s ∈ N0, the Sobolev space Hs(M) can be also described with the scalar product

⟨u, v⟩′s =
∑
k

∑
|I|≤s

ˆ
B

f2k (x) · ∂I(uy−1
pk

)(x) · ∂I(vy−1
pk )(x) dx ,

using the partition of unity {fk} given by Proposition 2.4.5 [Sch96, Theorem A.22],

[Sch01, Propositions 3.2 and 3.3], [Shu92, Appendices A1.2 and A1.3]. A similar

scalar product ⟨·, ·⟩′s can be defined for Hs(M ;E) with the help of local trivializations

defining the bounded geometry of E. Every A ∈ Diffmub(M ;E,F ) defines bounded

operators A : Hm+s(M ;E) → Hs(M ;F ) (s ∈ R), which induce continuous maps

A : H±∞(M ;E) → H±∞(M ;F ). For any almost everywhere positive h ∈ C∞(M),

we have hHm(M ;E) = Hm(M ;E) if and only if h > 0 and h±1 ∈ C∞
ub(M).

If m′ > m + n/2, then Hm′
(M ;E) ⊂ Cmub(M ;E), continuously, and therefore

H∞(M ;E) ⊂ C∞
ub(M ;E), continuously [Roe88, Proposition 2.8]. The Schwartz

kernel mapping, A 7→ KA, defines a continuous linear map [Roe88, Proposition 2.9]

(2.4.4) L(H−∞(M ;E), H∞(M ;F ))→ C∞
ub(M ;F ⊠ (E∗ ⊗ Ω)) .

Remark 2.4.14. — By (2.2.14), for any A ∈ L(H−∞(M ;E), H∞(M ;F )) and r > 0,

suppKA ⊂ { (p, q) ∈M2 | d(p, q) ≤ r }

if and only if suppAu ⊂ Pen(suppu, r) for all u ∈ H−∞(M ;E).

Let R be the Fréchet space of rapidly decreasing functions on the real line. If

P ∈ Diffmub(M ;E) is uniformly elliptic and essentially self-adjoint, then the spectral

theorem defines a continuous functional calculus

R → L(H−∞(M ;E), H∞(M ;E)) , ψ 7→ ψ(P ) .

Thus, by (2.4.4), the linear map

(2.4.5) R → C∞
ub(M ;E ⊠ (E∗ ⊗ Ω)) , ψ 7→ Kψ(P ) ,

is continuous [Roe88, Proposition 2.10].
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2.4.6. Maps of bounded geometry. — For a ∈ {1, 2}, let Ma be a Riemannian

manifold of bounded geometry, of dimension na. Consider a normal chart ya,p :

Va,p → Ba at every p ∈Ma satisfying the statement of Theorem 2.4.1. Let ra denote

the radius of Ba. For 0 < r ≤ ra, let Ba,r ⊂ Rna denote the ball centered at the

origin with radius r. We have Ba(p, r) = y−1
a,p(Ba,r).

A smooth map ϕ : M1 → M2 is said to be of bounded geometry if, for some

0 < r < r1 and all p ∈ M1, we have ϕ(B1(p, r)) ⊂ V2,ϕ(p), and the compositions

y2,ϕ(p)ϕy
−1
1,p define a bounded set in the Fréchet space C∞(B1,r,Rn2). This condition

is preserved by the composition of maps. The set of smooth maps M1 → M2 of

bounded geometry is denoted by C∞
ub(M1,M2).

Let ϕ ∈ C∞
ub(M1,M2). For every m ∈ N0 ∪ {∞}, using ∥·∥′Cmub in the case where

m <∞ (Section 2.4.3) it follows that ϕ∗ induces a continuous linear map [ÁLKL20,

Eq. (19)]

(2.4.6) ϕ∗ : Cmub(M2; Λ)→ Cmub(M1; Λ) .

Recall that ϕ is called uniformly metrically proper if, for any s ≥ 0, there is some

ts ≥ 0 so that, for all p, q ∈M1,

d2(ϕ(p), ϕ(q)) ≤ s⇒ d1(p, q) ≤ ts .

For all m ∈ N0 ∪ {∞}, if ϕ ∈ C∞
ub(M1,M2) is uniformly metrically proper, then ϕ∗

induces a continuous linear map [ÁLKL20, Eq. (21)]

(2.4.7) ϕ∗ : Hm(M2; Λ)→ Hm(M1; Λ) .

If ϕ ∈ Diffeo(M1,M2), and both ϕ and ϕ−1 are of bounded geometry, then ϕ is

uniformly metrically proper. In this case, (2.4.7) can be continuously extended to

Sobolev spaces of order −m.

The pull-back of a vector bundle of bounded geometry by a map of bounded ge-

ometry is of bounded geometry.

Homomorphisms of bounded geometry between vector bundles of bounded geom-

etry have an obvious definition, but we will not use them.

2.4.7. Smooth families of bounded geometry. — Let T be a manifold, and let

pr1 : M ×T →M denote the first factor projection. A section u ∈ C∞(M ×T ; pr∗1 E)

is called a smooth family of smooth sections of E (parametrized by T ), and we may

use the notation u = {ut | t ∈ T }, where ut = u(·, t) ∈ C∞(M ;E). Its T -support

is { t ∈ T | ut ̸= 0 }. If the T -support is compact, then u is said to be T -compactly

supported. It is said that u is T -locally C∞-uniformly bounded if any t ∈ T is in

some chart (O, z) of T such that the maps u(yp × z)−1 define a bounded subset of

the Fréchet space C∞(B × z(O),Cl), using local trivializations of E over the normal

charts (Vp, yp).

A smooth family of differential operators, A = {At | t ∈ T } ⊂ Diff(M ;E,F ), can

be defined by using smooth families of C-valued functions, tangent vector fields and
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sections of C∞(M ;F ⊗ E∗), like in Section 2.1.7. For this A, the T -support and the

property of being T -compactly supported is defined like in the case of smooth families

of sections. If the smooth families of functions, tangent vector fields and sections used

to describe A are T -locally C∞-uniformly bounded, then it is said that A is of T -local

bounded geometry (cf. Section 2.4.4).

A smooth map ϕ : M1 × T → M2 is called a smooth family of smooth maps

M1 → M2 (with parameters in T ). It may be denoted by ϕ = {ϕt | t ∈ T },
where ϕt = ϕ(·, t) : M1 → M2. It is said that ϕ is of T -local bounded geometry if

every t ∈ T is in some chart (O, z) of T such that, for some 0 < r < r1, we have

ϕ(B1(p, r) × O) ⊂ V2,ϕ(p) for all p ∈ M1, and the compositions y2,ϕ(p)ϕ(y1,p × z)−1,

for p ∈M1, define a bounded subset of the Fréchet space C∞(B1,r × z(O),Rn2). The

composition of smooth families of maps parametrized by T has the obvious sense and

preserves the T -local bounded geometry condition. In particular, the R-local bounded

geometry condition makes sense for a flow ϕ = {ϕt} on M . Given X ∈ Xcom(M)

with flow ϕ, we have X ∈ Xub(M) if and only if ϕ is of R-local bounded geometry

[ÁLKL20, Proposition 3.18].

2.4.8. Differential complexes of bounded geometry. — With the nota-

tion of Section 2.1.14, assume that M , E and d are of bounded geometry (Sec-

tion 2.4.2). Then we may also consider the topological complexes (C∞
ub(M ;E), d) and

(H±∞(M ;E), d) (Sections 2.4.3 and 2.4.5).

(E, d) is said to be uniformly elliptic if D (or ∆) is uniformly elliptic (Section 2.4.4);

this is equivalent to the obvious extension of (2.4.3) for (2.1.36). In this case, a version

of (2.1.37) is true for (H±∞(M ;E), d), where the reduced cohomology is used instead

of the cohomology, and the closures of the images of d, δ, D and ∆ are used instead

of their images.

2.5. Small b-calculus

R. Melrose introduced b-calculus, a way to extend calculus to manifolds with

boundary [Mel93, Mel96]. We will only use a part of it, called small b-calculus.

For the sake of simplicity, we consider only compact manifolds with boundary, and

the concepts and notation given here can be extended to the non-compact case like in

Section 2.1, using compactly supported versions or local versions; some non-compact

manifolds with boundary will be used in the paper. For the same reason, several

kinds of section spaces and operators will be only defined in the case of functions

or half-b-densities. Their extension to arbitrary vector bundles can be defined with

tensor product expressions, like in Section 2.1. Most of these extensions will be used

without further comments.
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2.5.1. Some notions of b-geometry. — Let M be a compact (smooth) n-

manifold with boundary, whose interior is denoted by M̊ . There exists a function

x ∈ C∞(M) so that x ≥ 0, ∂M = {x = 0} and dx ̸= 0 on ∂M , which is

called a boundary-defining function. Let +N∂M ⊂ N∂M be the inward-pointing

subbundle of the normal bundle to the boundary. There is a unique trivializa-

tion ν ∈ C∞(∂M ; +N∂M) of +N∂M so that dx(ν) = 1. Take a collar neigh-

borhood T ≡ [0, ϵ0)x × ∂Mϖ of ∂M . (In a product expression, every factor

projection may be indicated as subscript of the corresponding factor.) Given co-

ordinates y = (y1, . . . , yn−1) on some open V ⊂ ∂M , we get via ϖ coordinates

(x, y) = (x, y1, . . . , yn−1), adapted (to ∂M), on the open subset U ≡ [0, ϵ0)×V ⊂M .

There are vector bundles over M , bTM and bT ∗M , called b-tangent and b-cotangent

bundles, which have the same restrictions to M̊ as TM and T ∗M , and such that

x∂x, ∂y1 , . . . , ∂yn−1 and x−1dx, dy1, . . . , dyn−1 extend to local frames around boundary

points. This gives rise to versions of induced vector bundles, like bΩsM := Ωs(bTM)

(s ∈ R) and bΩM := bΩ1M . We have

(2.5.1) C∞(M ; Ωs) ≡ xsC∞(M ; bΩs) .

Thus the integration operator
´
M

is defined on xC∞(M ; bΩ), and induces a pairing

between C∞(M) and xC∞(M ; bΩ).

At the points of ∂M , the local section x∂x is independent of the choice of

adapted local coordinates, spanning a trivial line subbundle bN∂M ⊂ bT∂MM with

T∂M = bT∂MM/bN∂M . So bΩs∂MM ≡ Ωs∂M ⊗ Ωs(bN∂M), and a restriction map

C∞(M ; bΩs)→ C∞(∂M ; Ωs) is locally given by

u = a(x, y)
∣∣∣dx
x
dy

∣∣∣s 7→ u|∂M = a(0, y) |dy|s .

A Riemannian structure g on bTM is called a b-metric. Locally,

g = a0

(dx
x

)2

+ 2

n−1∑
j=1

a0j
dx

x
dyj +

n−1∑
j,k=1

ajk dy
j dyk ,

where a0, a0j and ajk are C∞ functions, provided that g is positive definite. If

moreover a0 = 1 +O(x2) and a0j = O(x) as x ↓ 0, then g is called exact. In this case,

the restriction of g to T̊ ≡ (0, ϵ0)×∂M is asymptotically cylindrical, and therefore the

restriction of g to M̊ is a complete Riemannian metric. This restriction is of bounded

geometry if it is cylindrical around the boundary; i.e., taking ϵ0 small enough, we have

g = (dxx )2 + h on T̊ for some Riemannian metric h on ∂M (considering h ≡ ϖ∗h).

2.5.2. Supported and extendible smooth functions. — Let M̆ be any closed

manifold containing M as submanifold of dimension n (for instance, M̆ can be the

double of M). Let M ′ = M̆\M̊ , which is another compact submanifold with boundary

of M̆ , of dimension n and with ∂M ′ = M ∩M ′ = ∂M .
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The concepts, notation and conventions of Section 2.1.4 have straightforward ex-

tensions to manifolds with boundary, like the Fréchet space C∞(M). Its elements are

called extendible functions because the continuous linear restriction map

(2.5.2) R : C∞(M̆)→ C∞(M)

is surjective; in fact, there is a continuous linear extension map E : C∞(M) →
C∞(M̆) [See64]. Since C∞(M̆) and C∞(M) are Fréchet spaces, the map (2.5.2)

is open by the open mapping theorem, and therefore it is a surjective topological

homomorphism. Its null space is C∞
M ′(M̆).

The Fréchet space of supported functions is the closed subspace of the smooth

functions on M that vanish to all orders at the points of ∂M ,

(2.5.3) Ċ∞(M) =
⋂
m≥0

xmC∞(M) ⊂ C∞(M) .

The extension by zero realizes Ċ∞(M) as the closed subspace of functions on M̆

supported in M ,

(2.5.4) Ċ∞(M) ≡ C∞
M (M̆) ⊂ C∞(M̆) .

By (2.5.3),

(2.5.5) xmĊ∞(M) = Ċ∞(M) (m ∈ R) ,

and therefore, by (2.5.1),

(2.5.6) Ċ∞(M ; bΩs) ≡ Ċ∞(M ; Ωs) (s ∈ R) .

We can similarly define Banach spaces Ck(M) and Ċk(M) (k ∈ N0) satisfying the

analogs of (2.5.2)–(2.5.4), which in turn yield analogs of the first inclusions of (2.1.7),

obtaining C∞(M) =
⋂
k C

k(M) and Ċ∞(M) =
⋂
k Ċ

k(M).

2.5.3. Supported and extendible distributions. — The spaces of supported

and extendible distributions on M are

Ċ−∞(M) = C∞(M ; Ω)′ , C−∞(M) = Ċ∞(M ; Ω)′ .

These are barreled, ultrabornological, webbed, acyclic DF Montel spaces, and there-

fore complete, boundedly/compactly/sequentially retractive and reflexive [ÁLKL23,

Proposition 6.1]. Transposing the version of (2.5.2) with ΩM , we get [Mel96, Propo-

sition 3.2.1]

(2.5.7) Ċ−∞(M) ≡ C−∞
M (M̆) ⊂ C−∞(M̆) .

Similarly, (2.5.4) and (2.5.3) give rise to continuous linear restriction maps

R : C−∞(M̆)→ C−∞(M) ,(2.5.8)

R : Ċ−∞(M)→ C−∞(M) ,(2.5.9)
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which are surjective topological homomorphisms [ÁLKL23, Proposition 6.2]. Ac-

cording to (2.5.7), the map (2.5.9) is a restriction of (2.5.8). There are continuous

dense inclusions [Mel96, Lemma 3.2.1]

(2.5.10) C∞
c (M̊) ⊂ Ċ∞(M) ⊂ C∞(M) ⊂ Ċ−∞(M) ,

the last one given by the integration pairing between C∞(M) and C∞(M ; Ω). The

restriction of this pairing to Ċ∞(M ; Ω) induces a continuous dense inclusion

(2.5.11) C∞(M) ⊂ C−∞(M) .

Moreover (2.5.9) is the identity map on C∞(M).

As before, from (2.5.5) and (2.5.6), we get

xmC−∞(M) = C−∞(M) (m ∈ R) ,(2.5.12)

C−∞(M ; bΩs) ≡ C−∞(M ; Ωs) (s ∈ R) .(2.5.13)

The Banach spaces C ′−k(M) and Ċ ′−k(M) (k ∈ N0) are similarly defined. They

satisfy the analogs of (2.5.7)–(2.5.13), and the analogs of the second inclusions

of (2.1.7), obtaining
⋃
k C

′−k(M) = C−∞(M) and
⋃
k Ċ

′−k(M) = Ċ−∞(M).

2.5.4. Supported and extendible Sobolev spaces. — The supported Sobolev

space of order s ∈ R is the closed subspace of the elements supported in M ,

(2.5.14) Ḣs(M) = Hs
M (M̆) ⊂ Hs(M̆) .

On the other hand, using the map (2.5.9), the extendible Sobolev space of order s is

Hs(M) = R(Hs(M̆)) with the inductive topology given by the linear map

(2.5.15) R : Hs(M̆)→ Hs(M) .

The null space of (2.5.15) is Hs
M ′(M̆). The analogs of (2.1.31)–(2.1.34) hold true

in this setting using Ċ±∞(M) and C±∞(M). Furthermore the spaces Ḣs(M) and

Hs(M) form compact spectra of Hilbertian spaces.

The following properties are satisfied [Mel96, Proposition 3.5.1]. C∞(M) is dense

in Hs(M), we have

(2.5.16) Ḣs(M) ≡ H−s(M ; Ω)′ , Hs(M) ≡ Ḣ−s(M ; Ω)′ ,

and the map (2.5.9) has a continuous restriction

(2.5.17) R : Ḣs(M)→ Hs(M) ,

which is surjective if s ≤ 1/2, and injective if s ≥ −1/2. In particular, Ḣ0(M) ≡
H0(M) ≡ L2(M). The null space of (2.5.17) is Ḣs

∂M (M).
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2.5.5. The space Ċ−∞
∂M (M). — The indicated properties of (2.5.8) and (2.5.9)

mean that we have short exact sequences in the category of continuous linear maps

between LCSs (see also [Mel96, Proposition 3.3.1]),

0→ Ċ−∞(M ′)
ι−→ C−∞(M̆)

R−→ C−∞(M)→ 0 ,

0→ Ċ−∞
∂M (M)

ι−→ Ċ−∞(M)
R−→ C−∞(M)→ 0 .(2.5.18)

From (2.5.7), we get

(2.5.19) Ċ−∞
∂M (M) ≡ C−∞

∂M (M̆) ⊂ C−∞(M̆) .

The analogs of the second inclusion of (2.1.7), (2.1.31) and (2.1.33) hold true for

the spaces Ċ ′ −k
∂M (M) and Ḣs

∂M (M). Thus the spaces Ċ ′ −k
∂M (M) and Ḣs

∂M (M) form

spectra with the same union; the spectrum of spaces Ḣs
∂M (M) is compact.

The following properties hold for Ċ−∞
∂M (M) [ÁLKL23, Corollary 6.4 and 6.5]:

it is a limit subspace of the LF-space Ċ−∞(M); and it is barreled, ultrabornologi-

cal, webbed acyclic DF Montel space, and therefore complete, reflexive and bound-

edly/compactly/sequentially retractive. A description of Ċ−∞
∂M (M) will be indicated

in Remark 2.6.1.

2.5.6. Differential operators acting on C−∞(M) and Ċ−∞(M). — The no-

tions of Section 2.1.7 also have straightforward extensions to manifolds with bound-

ary. The action of any A ∈ Diff(M) on C∞(M) preserves Ċ∞(M), giving rise to

extended continuous actions of A on C−∞(M) and Ċ−∞(M). They fit into commu-

tative diagrams

(2.5.20)

Ċ−∞(M)
A−−−−→ Ċ−∞(M)

R

y yR
C−∞(M)

A−−−−→ C−∞(M)

C−∞(M)
A−−−−→ C−∞(M)

ι

x xι
C∞(M)

A−−−−→ C∞(M) .

However the analogous diagram

(2.5.21)

Ċ−∞(M)
A−−−−→ Ċ−∞(M)

ι

x xι
C∞(M)

A−−−−→ C∞(M)

may not be commutative. Using the notation u 7→ uc for the injection C∞(M) ⊂
Ċ−∞(M) of (2.5.10), we have A(uc)− (Au)c ∈ C−∞

∂M (M) for all u ∈ C∞(M) [Mel96,

Eq. (3.4.8)].

From (2.5.2) and its version for vector fields, we get a surjective restriction map

(2.5.22) Diff(M̆)→ Diff(M) , Ă 7→ Ă|M .
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For any Ă ∈ Diff(M̆) with Ă|M = A, we have the commutative diagrams

(2.5.23)

C−∞(M̆)
Ă−−−−→ C−∞(M̆)

R

y yR
C−∞(M)

A−−−−→ C−∞(M) ,

C−∞(M̆)
Ă−−−−→ C−∞(M̆)

ι

x xι
Ċ−∞(M)

A−−−−→ Ċ−∞(M) ,

where the left-hand side square extends the left-hand side square of (2.5.20).

IfA ∈ Diffm(M) (m ∈ N0), its actions on Ċ−∞(M) and C−∞(M) define continuous

linear maps,

(2.5.24) A : Ḣs(M)→ Ḣs−m(M) , A : Hs(M)→ Hs−m(M) .

The maps (2.5.17) and (2.5.24) fit into a commutative diagram given by the left-hand

side square of (2.5.20).

2.5.7. Differential operators tangent to the boundary. — The concepts of

Section 2.2 can be generalized to the case with boundary when L = ∂M [Mel96,

Chapter 6] (see also [Mel93, Section 4.9]), giving rise to the Lie subalgebra and

C∞(M)-submodule Xb(M) ⊂ X(M) of vector fields tangent to ∂M , called b-vector

fields. We have Xb(M) ≡ C∞(M ; bTM). Using Xb(M) like in Section 2.1.7, we

get the filtered C∞(M)-submodule and filtered subalgebra Diffb(M) ⊂ Diff(M) of

b-differential operators; they are the operators A ∈ Diff(M) such that (2.5.21) is

commutative [Mel96, Exercise 3.4.20]. The definition of Diffb(M) can be extended

to arbitrary vector bundles like in Section 2.1.7. The condition of being tangent to

the boundary is closed by taking transposes and formal adjoints. The restriction

map (2.5.22) satisfies

(2.5.25) Diff(M̆, ∂M)|M = Diffb(M) .

For all a ∈ R and k ∈ N0, we have [Mel96, Eqs. (4.2.7) and (4.2.8)]

(2.5.26) Diffkb(M)xa = xa Diffkb(M) .

Diff(M) is spanned by ∂x and Diffb(M) as algebra, and therefore

(2.5.27) Diffk(M)xa ⊂ xa−k Diffk(M) .

2.5.8. Conormal distributions at the boundary. — The spaces of supported

and extendible conormal distributions at the boundary of Sobolev order s ∈ R are

the C∞(M)-modules and LCSs,

Ȧ(s)(M) = {u ∈ Ċ−∞(M) | Diffb(M)u ⊂ Ḣs(M) } ,

A(s)(M) = {u ∈ C−∞(M) | Diffb(M)u ⊂ Hs(M) } ,

with the topologies defined like in (2.1.1), which are totally reflexive Fréchet spaces

[ÁLKL23, Proposition 6.6]. They satisfy the analogs of the continuous inclu-

sions (2.2.4), giving rise to the filtered C∞(M)-modules and LCSs of supported and
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extendible conormal distributions at the boundary,

(2.5.28) Ȧ(M) =
⋃
s

Ȧ(s)(M) , A(M) =
⋃
s

A(s)(M) ,

which are barreled, ultrabornological and webbed [ÁLKL23, Corollary 6.7]. By

definition, there are continuous inclusions

(2.5.29) Ȧ(M) ⊂ Ċ−∞(M) , A(M) ⊂ C−∞(M) .

Thus Ȧ(M) and A(M) are Hausdorff. We have

(2.5.30)
⋂
s

Ȧ(s)(M) = Ċ∞(M) ,
⋂
s

A(s)(M) = C∞(M) ,

obtaining continuous dense inclusions [Mel96, Proposition 4.1.1 and Lemma 4.6.1]

(2.5.31) Ċ∞(M) ⊂ Ȧ(M) , C∞(M) ⊂ A(M), Ȧ(M) .

By (2.5.31) and the density of the inclusions (2.5.10) and (2.5.11), it follows that the

inclusions (2.5.29) are also dense. On the other hand, by elliptic regularity, we get

continuous inclusions [Mel96, Eq. (4.1.4)]

(2.5.32) Ȧ(M)|M̊ ,A(M) ⊂ C∞(M̊) .

The maps (2.5.17) restrict to continuous linear maps

(2.5.33) R : Ȧ(s)(M)→ A(s)(M) ,

which are surjective for s ≤ 1/2 and injective for s ≥ −1/2. If s = 0, then (2.5.33) is a

TVS-isomorphism because Ḣ0(M) ≡ H0(M). The maps (2.5.33) induce a surjective

topological homomorphism [Mel96, Proposition 4.1.1], [ÁLKL23, Proposition 6.8]

(2.5.34) R : Ȧ(M)→ A(M) ,

which is the identity on C∞(M).

2.5.9. The spaces xmL∞(M). — For m ∈ R, consider the weighted space

xmL∞(M) (Section 2.1.12). There is a continuous inclusion

xmL∞(M) ⊂ C−∞(M) .

For m′ < m, we also have a continuous inclusion

(2.5.35) xmL∞(M) ⊂ xm
′
L∞(M) ,

and C∞
c (M̊) is dense in xmL∞(M) with the topology of xm

′
L∞(M) [ÁLKL23,

Proposition 6.10].
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2.5.10. Filtration of A(M) by bounds. — For every m ∈ R, let

Am(M) = {u ∈ C−∞(M) | Diffb(M)u ⊂ xmL∞(M) } .

This is another C∞(M)-module and Fréchet space with the topology like in (2.1.1).

By (2.5.35), there is a continuous inclusion

(2.5.36) Am(M) ⊂ Am
′
(M) (m′ < m) .

Moreover there are continuous inclusions [Mel96, Proof of Proposition 4.2.1]

(2.5.37) A(s)(M) ⊂ Am(M) ⊂ A(min{m,0})(M) (m < s− n/2− 1) .

Hence

(2.5.38) A(M) =
⋃
m

Am(M) .

Despite of defining the same LF-space, the filtrations of A(M) given by the spaces

A(s)(M) and Am(M) are not equivalent because, in contrast with (2.5.30),

Ċ∞(M) =
⋂
m

Am(M) .

The following is true [ÁLKL23, Corollaries 6.14–6.16 and 6.39 and Remark 6.41]:

the topologies of A(M) and C∞(M̊) coincide on every Am(M) (however the second

inclusion of (2.5.32) is not a TVS-embedding); C∞
c (M̊) is dense in every Am(M),

and therefore in every A(s)(M) and A(M); and A(M) is an acyclic Montel space, and

therefore complete, boundedly/compactly/sequentially retractive and reflexive.

2.5.11. Ȧ(M) and A(M) vs I(M̆, ∂M). — The restriction maps (2.5.15) define

continuous linear maps

R : I(s)(M̆, ∂M)→ A(s)(M) ,

which induce a surjective topological homomorphism [ÁLKL23, Proposition 6.18]

(2.5.39) R : I(M̆, ∂M)→ A(M) .

The null space of (2.5.39) is IM ′(M̆, ∂M). There are TVS-identities

(2.5.40) Ȧ(s)(M) ≡ I(s)M (M̆, ∂M) ,

inducing a TVS-isomorphism [ÁLKL23, Corollary 6.20]

(2.5.41) Ȧ(M)
∼=−→ IM (M̆, ∂M) .

Moreover IM (M̆, ∂M) is a limit subspace of the LF-space I(M̆, ∂M) [ÁLKL23,

Proposition 6.19].
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2.5.12. Filtration of Ȧ(M) by the symbol order. — Like in (2.5.40), let

(2.5.42) Ȧm(M) = ImM (M̆, ∂M) ⊂ Im(M̆, ∂M) (m ∈ R) ,

which are closed subspaces satisfying the analogs of (2.2.7) and (2.2.8). Thus

Ȧ(M) =
⋃
m

Ȧm(M) , Ċ∞(M) =
⋂
m

Ȧm(M) ,

and the TVS-isomorphism (2.5.41) is also compatible with the symbol filtration.

Ȧ(M) is an acyclic Montel space, and therefore complete, boundedly/compactly/sequentially

retractive and reflexive [ÁLKL23, Corollary 6.22].

2.5.13. The space K(M). — The condition of being supported in ∂M defines the

LCHSs and C∞(M)-modules

K(s)(M) = Ȧ(s)
∂M (M) , Km(M) = Ȧm∂M (M) , K(M) = Ȧ∂M (M) .

These are the null spaces of the corresponding restrictions of the map (2.5.34) to

Ȧ(s)(M), Ȧm(M) and Ȧ(M). They satisfy the analogs of (2.2.4), (2.2.7) and (2.2.8),

obtaining
⋃
sK(s)(M) =

⋃
mKm(M).

The properties of (2.5.34) mean that the following sequence is exact in the category

of continuous linear maps between LCSs:

(2.5.43) 0→ K(M)
ι−→ Ȧ(M)

R−→ A(M)→ 0 .

It is called the conormal sequence at the boundary. We have

K(s)(M) = {u ∈ Ċ−∞
∂M (M) | Diffb(M)u ⊂ Ḣs

∂M (M) } ,

with the topology defined like in (2.1.1). The following properties hold [ÁLKL23,

Propositions 6.24 and 6.25 and Corollaries 6.26–6.28]: every K(s)(M) is a totally

reflexive Fréchet space; K(M) is a limit subspace of the LF-space Ȧ(M); and K(M)

is barreled, ultrabornological, webbed and an acyclic Montel space, and therefore

complete, boundedly/compactly/sequentially retractive and reflexive.

The TVS-isomorphism (2.5.41) restricts to a TVS-identity

(2.5.44) K(M) ≡ I∂M (M̆, ∂M) ,

which in turn restricts to identities between the LCHSs defining the Sobolev-order

and symbol-order filtrations, according to (2.5.40) and (2.5.42).

A description of K(s)(M) and K(M) will be indicated in Remark 2.6.3.

2.5.14. Action of Diff(M) on Ȧ(M), A(M) and K(M). — Any A ∈ Diff(M)

defines continuous endomorphisms A of Ȧ(M), A(M) and K(M). If A ∈ Diffk(M),

these maps also satisfy the analogs of (2.2.15). If A ∈ Diffb(M), then it defines

continuous endomorphisms of Ȧ(s)(M), A(s)(M), Am(M) and K(s)(M). All of these

maps are restrictions of the endomorphisms A of Ċ−∞(M), C−∞(M) and C∞(M̊),

and extensions of the endomorphisms A of Ċ∞(M) and C∞(M).



2.5. SMALL B-CALCULUS 47

2.5.15. Partial extension maps. — Given linear subspaces, X ⊂ A(M) and Y ⊂
Ȧ(M), a map E : X → Y is called a partial extension map if R(Y ) ⊂ X and RE = 1

on X. The surjectivity of (2.5.34) is given by the following result. Its proof is recalled

here because it will play an important role in our work.

Proposition 2.5.1 (Cf. [Mel96, Section 4.4]). — For all m ∈ R, there is a con-

tinuous linear partial extension map Em : Am(M)→ Ȧ(s)(M), where s = 0 if m ≥ 0,

and m > s ∈ Z− if m < 0. For m ≥ 0, Em : Am(M) → Ȧ(0)(M) is a continuous

inclusion map.

Proof. — First, let us consider the non-compact n-manifold with boundary Rn1 :=

[0,∞)× Rn−1, whose double is Rn. Consider the canonical coordinates on Rn1 given

by the factor projections, x : Rn1 → [0,∞) and y : Rn1 → Rn−1. We use the obvious

generalization to the non-compact case of the spaces of extendible and supported

conormal distributions at the boundary, of Sobolev order s, whose definitions involve

Hs
loc(Rn1 ) and Ḣs

loc(Rn1 ) like in Section 2.2.4.

Form ≥ 0, since xmL∞(Rn1 ) ⊂ L2
loc(Rn1 ), continuously, we getAm(Rn1 ) ⊂ Ȧ(0)(Rn1 ),

continuously. This also follows from (2.5.37) using that Ȧ(0)(Rn1 ) ≡ A(0)(Rn1 ). Thus

Em must be the inclusion map in this case.

Now fix m < 0. For 0 < δ ≤ 1 such that m + δ ≤ 0 if m ̸= −1, and m + δ < 0 if

m = −1, we have a continuous linear map J : Am(Rn1 )→ Am+δ(Rn1 ) defined by

(2.5.45) Ju(x, y) =

ˆ x

1

u(ξ, y) dξ .

So, for −m < −s =: N ∈ N, we get the continuous linear maps (see Section 2.5.14)

Am(Rn1 )
JN−−→ A0(Rn1 )

E0−−→ Ȧ(0)(Rn1 )
∂Nx−−→ Ȧ(s)(Rn1 ) ,

whose composition is the desired extension Em. For all u ∈ Am(Rn1 ), we have

(2.5.46) ∂Rn1 ∩ suppEmu ⊂ {0} × y(suppu) .

Consider now a compact manifold with boundary M . Cover ∂M with a finite

collection of adapted charts (Uj , (xj , yj)), and let {λj , µ} be a partition of unity

subordinated to the open covering {Uj , M̊} of M . By the case of Rn1 , we directly get

Am(Uj) ⊂ Ȧ(0)(Uj), continuously, if m ≥ 0. By (2.5.46), if m < 0 and −m < N ∈ N,

we get a continuous linear partial extension map Em,j : Am(Uj)→ Ȧ(−N)(Uj), which

preserves the condition of being compactly supported. Then the result follows with

Em : Am(M)→ Ȧ(s)(M) defined by Emu = µu+
∑
j Em,j(λju).

Remark 2.5.2. — Consider the case where m < 0 in the proof of Proposition 2.5.1.

Taking a collar neighborhood of the boundary, T ≡ [0, ϵ)x×∂Mϖ, we can use adapted

charts (Uj ≡ [0, ϵ)×Vj , (x, yj)) defined by charts (Vj , yj) of ∂M , like in Section 2.5.1.

Then the operators ∂x ∈ Diff(Uj) can be combined to define an operator ∂x ∈ Diff(T ),

which indeed is the derivative operator on C∞(T ) ≡ C∞([0, ϵ), C∞(∂M)). On the
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other hand, by integrating from ϵ to x, like in (2.5.45), we get a continuous linear

map J : Am(T ) → Am+δ(T ); in fact, this defines a continuous endomorphism J of

C∞(T̊ ). In this way, a continuous linear extension map Em,T : Am(T ) → Ȧ(s)(T )

can be defined like in the case of Rn1 . Then Em : Am(M)→ Ȧ(s)(M) can be given by

Emu = µu+Em,T (λu), where {λ, µ} is a partition of unity subordinated to the open

covering {T, M̊} of M .

Remark 2.5.3. — A version of Proposition 2.5.1 with a vector bundle E over M

can be achieved by taking the C∞(M)-tensor product with the identity map on

C∞(M ;E ⊗ E∗). We can also adapt the proof as follows. With the notation of Re-

mark 2.5.2, there is an identity ET ≡ ϖ∗E∂M ≡ [0, ϵ) × E∂M over T , which induces

trivializations EUj ≡ [0, ϵ)×EVj ≡ [0, ϵ)×Vj×Cl over domains Uj ≡ [0, ϵ)×Vj . Like in

Remark 2.5.2, these local trivializations can be used to define ∂x ∈ Diff1(T ;E), which

is considered as the derivative operator on C∞([0, ϵ), C∞(∂M ;E)) ≡ C∞(T ;E). As

usual, integration by parts shows that

(2.5.47) ∂tx = −∂x ∈ Diff1(T ;E∗ ⊗ Ω) .

If E = ΛM , then ∂x ∈ Diff1(T ; Λ) is the Lie derivative with respect to ∂x ∈ X(T ).

Remark 2.5.4. — By (2.5.46), all steps of the proof of Proposition 2.5.1 have

obvious compactly supported versions. This also applies to Remarks 2.5.2 and 2.5.3.

Given m and s satisfying the conditions of Proposition 2.5.1, let us denote by Em,s
the partial extension map constructed in the proof of Proposition 2.5.1. This notation

will make it easier to analyze its dependence on m and s in the following result.

Proposition 2.5.5. — Let s′ ≤ s and m′ ≤ m such that the maps Em,s, Em,s′ and

Em′,s′ are defined. Then Em,su = Em′,s′u for all u ∈ Am(M).

Proof. — According to the proof of Proposition 2.5.1, it is enough to consider the

case of Rn1 .

If m′ ≥ 0, there is nothing to prove.

In the case m < 0, we have s, s′ ∈ Z− with m′ > s > s′. Let N = −s, N ′ = −s′
and k = s− s′ = N ′ −N in Z+. Since A0(Rn1 ) ⊂ L∞(Rn1 ), the composition

A0(Rn1 )
Jk−−→ A0(Rn1 ) ↪→ Ȧ(0)(Rn1 )

∂kx−→ Ȧ(−k)(Rn1 )

is equal to the inclusion map A0(Rn1 ) ↪→ Ȧ(−k)(Rn1 ). So, for all u ∈ Am(Rn1 ), since

JNu ∈ A0(Rn1 ), we have

Em′,s′u = Em,s′u = ∂N
′

x JN
′
u = ∂Nx ∂

k
xJ

kJNu = ∂Nx J
Nu = Em,su .

In the case m′ < 0 ≤ m, we have s = 0 and m′ > s′ ∈ Z−. Then the result follows

with a similar argument using k = −s′ ∈ Z+.
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Corollary 2.5.6. — For all s and m such that the map Em,s is defined, we have

Em,su = u for all u ∈ C∞
c (M̊).

Proof. — Use that C∞
c (M̊) ⊂ Am(M) and apply Proposition 2.5.5.

Remark 2.5.7. — The proof of Proposition 2.5.5 can be also applied to maps Em,s
with m ≥ 0 and s ∈ Z−, defined Em like in the case m < 0. Including these maps,

the map Em,s′ of the statement is always defined under the other assumptions.

Remark 2.5.8. — Proposition 2.5.5 and Corollary 2.5.6 are also true with the def-

initions of Em given in Remarks 2.5.2 and 2.5.3, with similar proofs.

2.5.16. L2 and L∞ half-b-densities. — We have

L2(M ; bΩ
1
2 ) ≡ x− 1

2L2(M ; Ω
1
2 ) ,(2.5.48)

L∞(M ; bΩ
1
2 ) ≡ x− 1

2L∞(M ; Ω
1
2 ) ,(2.5.49)

where (2.5.48) holds as Hilbert spaces, and (2.5.49) holds as LCHSs endowed with a

family of equivalent Banach space norms [ÁLKL23, Eqs. (6.51) and (6.52)].

Equip M with a b-metric g (Section 2.5.1), and endow M̊ with the restriction of

g, also denoted by g. With the corresponding Euclidean/Hermitean structures on

Ω1/2M̊ and bΩ1/2M , we get L∞(M̊ ; Ω
1
2 ) ≡ L∞(M ; bΩ

1
2 ) as Banach spaces.

2.5.17. b-Sobolev spaces. — For m ∈ N0, the b-Sobolev spaces of order ±m are

the C∞(M)-modules and Hilbertian spaces defined by the following analogs of (2.1.29)

and (2.1.30):

Hm
b (M ; bΩ

1
2 ) = {u ∈ L2(M ; bΩ

1
2 ) | Diffmb (M ; bΩ

1
2 )u ⊂ L2(M ; bΩ

1
2 ) } ,

Diffmb (M ; bΩ
1
2 )L2(M ; bΩ

1
2 ) = H−m

b (M ; bΩ
1
2 ) = Hm

b (M ; bΩ
1
2 )′ .

Any finite set of C∞(M)-generators of Diffmb (M ; bΩ1/2) defines a scalar product on

H±m
b (M ; bΩ1/2). The intersections/unions of the spaces Hm

b (M ; bΩ1/2) (m ∈ Z) are

denoted by H±∞
b (M ; bΩ1/2). In particular, H∞

b (M ; bΩ1/2) = A(0)(M ; bΩ1/2).

2.5.18. Weighted b-Sobolev spaces. — We will also use the weighted b-Sobolev

space xaHm
b (M ; bΩ1/2) (a ∈ R), another Hilbertian space defined like in Sec-

tion 2.1.12. We have [ÁLKL23, Section 6.19]⋂
a,m

xaHm
b (M ; bΩ

1
2 ) = Ċ∞(M ; bΩ

1
2 ) .
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2.5.19. Action of Diffmb (M) on weighted b-Sobolev spaces. — We have

(2.5.50) Diffmb (M ; bΩ
1
2 ) ≡ Diffmb (M) ≡ Diffmb (M ; Ω

1
2 ) ,

like in (2.1.23). Moreover any A ∈ Diffkb(M ; bΩ1/2) defines continuous linear maps

[Mel93, Lemma 5.14]

A : xaHm
b (M ; bΩ

1
2 )→ xaHm−k

b (M ; bΩ
1
2 ) ,

which induce a continuous endomorphism A of xaH±∞
b (M ; bΩ1/2).

2.5.20. A description of A(M). — In this subsection, unless the contrary is in-

dicated, assume the following properties:

(A) M̊ is of bounded geometry with g.

(B) The collar neighborhood T of ∂M can be chosen so that:

(a) every A ∈ X(∂M) has an extension A′ ∈ Xb(T ) such that A′ is ϖ-

projectable to A, and A′|T̊ is orthogonal to the ϖ-fibers; and

(b) Xub(M̊)|T̊ is C∞
ub(M̊)|T̊ -generated by x∂x and the restrictions A′|T̊ of the

vector fields A′ of (a), for A ∈ X(∂M).

For instance, (A) and (B) are true if T̊ is cylindrical with g (Section 2.5.1). The

following properties hold [ÁLKL23, Corollaries 6.32, 6.34, 6.35, 6.37, 6.38 and 6.40

and Propositions 6.33 and 6.36]: the restriction to M̊ defines a continuous injection

C∞(M) ⊂ C∞
ub(M̊) (thus C∞

ub(M̊) becomes a C∞(M)-module); as C∞
ub(M̊)-modules,

Diffmub(M̊) ≡ Diffmb (M)⊗C∞(M) C
∞
ub(M̊) ,

Diffmub(M̊ ; Ω
1
2 ) ≡ Diffmb (M ; bΩ

1
2 )⊗C∞(M) C

∞
ub(M̊) ;

as C∞(M)-modules and Hilbertian spaces, for m ∈ Z,

Hm(M̊ ; Ω1/2) ≡ Hm
b (M ; bΩ1/2) , Hm(M̊) = x−1/2Hm

b (M) ,

H±∞(M̊ ; Ω1/2) ≡ H±∞
b (M ; bΩ1/2) , H±∞(M̊) = x−1/2H±∞

b (M) ;

as C∞(M)-modules and LCHSs, for m ∈ R,

Am(M ; Ω1/2) ≡ xm+1/2H∞
b (M ; bΩ1/2) ,

Am(M) ≡ xmH∞
b (M) ≡ xm+1/2H∞(M̊) ,(2.5.51)

A(M) ≡
⋃
m

xmH∞
b (M) =

⋃
m

xmH∞(M̊) .(2.5.52)

Actually, the first identities of (2.5.51) and (2.5.52) are independent of g, and therefore

they hold true without the assumptions (A) and (B) [ÁLKL23, Remark 6.41].
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2.5.21. Dual-conormal distributions at the boundary. — Consider the

LCHSs [Hör85, Section 18.3], [Mel96, Chapter 4],

K′(M) = K(M ; Ω)′ , A′(M) = Ȧ(M ; Ω)′ , Ȧ′(M) = A(M ; Ω)′ ,

which are complete Montel spaces [ÁLKL23, Proposition 6.42]. The elements of

A′(M) (resp., Ȧ′(M)) will be called extendible (resp., supported) dual-conormal dis-

tributions at the boundary. Consider also the LCHSs

K′ (s)(M) = K(−s)(M ; Ω)′ , K′m(M) = K−m(M ; Ω)′ ,

and, similarly, define A′ (s)(M), A′m(M), Ȧ′ (s)(M) and Ȧ′m(M). The spaces

K′ (s)(M), A′ (s)(M) and Ȧ′ (s)(M) are bornological and barreled [ÁLKL23, Corol-

lary 6.43]. The transpositions of the analogs of (2.2.4) and (2.2.7) for the spaces

K(s)(M ; Ω), Km(M ; Ω), Ȧ(s)(M ; Ω) and Ȧm(M ; Ω) are continuous linear restriction

maps

K′ (s′)(M)→ K′ (s)(M) , K′m(M)→ K′m′
(M) ,

A′ (s′)(M)→ A′ (s)(M) , A′m(M)→ A′m′
(M) ,

for s < s′ and m < m′. These maps form projective spectra, giving rise to projective

limits. The spaces K′ (s)(M), K′m(M), A′ (s)(M) and A′m(M) satisfy the analogs

of (2.3.5) and (2.3.6) [ÁLKL23, Corollary 6.44].

Similarly, transposing the analogs of (2.2.4) and (2.5.36) for the spaces A(M,ΩM),

we get continuous inclusions

Ȧ′ (s)(M) ⊃ Ȧ′ (s′)(M) , Ȧ′m(M) ⊃ Ȧ′m′
(M) ,

for s < s′ and m < m′. The version of (2.5.37) with ΩM yields continuous inclusions

(2.5.53) Ȧ′ (s)(M) ⊃ Ȧ′m(M) ⊃ Ȧ′ (max{m,0})(M) (m > s+ n/2 + 1) .

We also have [ÁLKL23, Corollary 6.44]

(2.5.54) Ȧ′(M) =
⋂
s

Ȧ′ (s)(M) =
⋂
m

Ȧ′m(M) ,

where the last equality is a consequence of (2.5.53).

Transposing the versions of (2.5.3), (2.5.29) and (2.5.31) with ΩM , we get contin-

uous inclusions [Mel96, Section 4.6]

C∞(M) ⊂ A′(M) ⊂ C−∞(M), Ċ−∞(M) ,(2.5.55)

Ċ∞(M) ⊂ Ȧ′(M) ⊂ Ċ−∞(M), C−∞(M) ,(2.5.56)

and R : Ċ−∞(M) → C−∞(M) restricts to the identity map on A′(M) and Ȧ′(M).

The first inclusion of (2.5.56) is dense; in fact, C∞
c (M̊) is dense in every Ȧ′m(M),

and therefore in Ȧ′(M) [ÁLKL23, Corollary 6.50 and Remark 6.51].
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2.5.22. Dual-conormal sequence at the boundary. — Transposing maps in

the version of (2.5.43) with ΩM , we get the sequence

(2.5.57) 0← K′(M)
R′

←− A′(M)
ι′←− Ȧ′(M)← 0 ,

where R′ = ιt and ι′ = Rt. It is called the dual-conormal sequence at the boundary of

M , which is exact in the category of continuous linear maps between LCSs [ÁLKL23,

Proposition 6.45].

2.5.23. Ȧ(M) and A(M) vs A′(M). — Using (2.5.29), (2.5.31) and (2.5.55), we

have [Hör85, Proposition 18.3.24], [Mel96, Theorem 4.6.1]

(2.5.58) Ȧ(M) ∩ A′(M) = C∞(M) .

2.5.24. A description of Ȧ′(M). — If (A) and (B) are true, then, for m ∈ R
[ÁLKL23, Corollaries 6.48 and 6.49],

Ȧ′m(M) ≡ xmH−∞
b (M) = xm− 1

2H−∞(M̊) ,(2.5.59)

Ȧ′(M) ≡
⋂
m

xmH−∞
b (M) =

⋂
m

xmH−∞(M̊) .(2.5.60)

The first identities of (2.5.59) and (2.5.60) are independent of g, and hold without

the assumptions (A) and (B).

2.5.25. Action of Diff(M) on A′(M), Ȧ′(M) and K′(M). — Any A ∈ Diff(M)

induces continuous linear endomorphisms A of A′(M), Ȧ′(M) and K′(M) [Mel96,

Proposition 4.6.1], which are the transposes of At on Ȧ(M ; Ω), A(M ; Ω) and

K(M ; Ω) (Sections 2.1.5 and 2.5.14). If A ∈ Diffk(M), these maps satisfy the analogs

of (2.3.7). If A ∈ Diffb(M), it induces continuous endomorphisms of A′ (s)(M),

A′m(M), Ȧ′ (s)(M) and K′ (s)(M).

2.5.26. The b-stretched product. — Let Y1, . . . , Yr be the connected compo-

nents of ∂M . Consider the submanifold B :=
⋃r
j=1 Y

2
j of the C∞ manifold with

corners M2. Its inward-pointing spherical normal bundle is S+NB = +NB/R+,

where R+ acts on +NB by multiplication. The b-stretched product M2
b is the com-

pact smooth manifold with corners obtained from M2 by blowing-up B [Mel93,

Sections 4.1 and 4.2], [Mel96, Chapter 4], with corresponding surjective smooth

blow-down map βb : M2
b → M2; namely, M2

b = S+NB ⊔ (M2 \ B), and βb is the

combination of the projection S+NB → B and the identity map on M2 \ B. The

topology and C∞ structure of M2
b can be described as follows.

For any C1 curve χ : [0, 1] → M2 with χ(0) ∈ B and χ((0, 1]) ⊂ M2 \ B, let

χ̃ : [0, 1] → M2
b be the lift of χ so that χ̃(0) is defined by χ′(0). Then a subset

U ⊂ M2
b is open if it has open intersections with S+NB and M2 \ B, and, for any

such curve χ with χ̃([0, 1]) ⊂ U , we have η̃([0, 1]) ⊂ U for all C1 curve η : [0, 1]→M2

of the same type as χ and C1-close enough to χ.
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Let x and x′ denote the lifts to M2 of the boundary-defining function x from the

left and right factors. The C∞ function

τ :=
x− x′

x+ x′
: M2 \ (∂M)2 → [−1, 1]

has a continuous extension τ to the open neighborhood S+NB ⊔ (M2 \ (∂M)2) of

S+NB in M2
b . Then C∞(M2

b) is locally generated by τ and β∗
bC

∞(M2).

The manifold with corners M2
b has three boundary hypersurfaces,

ff = β−1
b (B) , lb = β−1

b (∂M × M̊) , rb = β−1
b (M̊ × ∂M) ,

called the front face, and the left and right boundaries. They satisfy lb∩ rb = ∅.
Another embedded, compact submanifold of M2

b is the b-diagonal, ∆b = β−1
b (∆ \B),

where ∆ ⊂ M2 is the diagonal. We have ∆b ⋔ ff, ∆b,0 := ∆b ∩ ff = ∂∆b and

∆b ∩ lb = ∆b ∩ rb = ∅. Moreover βb : ∆b → ∆ ≡ M is a diffeomorphism, where the

last identity is given by the diagonal map.

Let also x = β∗
bx and x′ = β∗

bx
′ on M2

b . Thus r = x+x′ is a defining function of ff

in M2
b (in the same sense as in Section 2.5.1 for ∂M). For adapted local coordinates

(x, y), the lifts y and y′ of y to open subsets of M2 and M2
b are defined like x and

x′. Then (r, τ, y, y′) or (x, τ, y, y′) are local coordinates of M2
b around points of ff, the

submanifold ∆b is locally described by the conditions τ = 0 and y = y′, and ∆b,0 is

locally described by the conditions r = τ = 0 and y = y′. Other local coordinates

(r, s, y, y′) or (x, s, y, y′) of M2
b around points of f̊f are defined using the function

s :=
1 + τ

1− τ
=

x

x′
: M2

b \ rb→ (0,∞) .

With the obvious extensions to manifolds with corners of some concepts of Sec-

tions 2.5.1 and 2.5.7, we get the following [Mel93, Section 4.5]. First,

bTM2 ≡ (bTM)2 , bTM2
b ≡ β∗

b(bTM2) ,

Xb(M2) ≡ C∞(M2; bTM2) , Xb(M2
b) ≡ C∞(M2; bTM2

b) .

Second, any vector field in X(M2, B) can be lifted to a vector field in X(M2,ff);

in particular, the lifts to M2 of Xb(M), from the left and right factors, generate

Xb(M2) over C∞(M2). Third, there is a lifting map β∗
b : Xb(M2)→ Xb(M2

b), whose

image spans Xb(M2
b) over C∞(M2

b). It induces a lifting map β∗
b : Diffmb (X2) →

Diffmb (M2
b), whose image spans Diffmb (M2

b) over C∞(M2
b) [Mel93, Exercise 4.11]. For

instance, using the above local coordinates, the lift of x∂x is 1
2 (1+τ)r∂r+ 1

2 (1−τ2)∂τ .

Finally, the lift to M2
b of Xb(M) from the left factor of M2 is a Lie subalgebra of

Xb(M2
b) transverse to ∆b, giving rise to natural isomorphisms N∆b

∼= bTM and

N∗∆b
∼= bT ∗M [Mel93, Lemmas 4.5 and 4.6]. Thus there is a canonical isomorphism

bΩ1/2(M2
b)|∆b

∼= bΩM (cf. [Mel93, Eq. (4.125)]).
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2.5.27. The b-pseudodifferential operators. — A refinement of the Schwartz

kernel theorem gives a bijection [Mel93, Lemma 4.20]

L(Ċ∞(M ; bΩ
1
2 ), C−∞(M ; bΩ

1
2 ))→ C−∞(M2

b ;β∗
b(bΩ

1
2 ⊠ bΩ

1
2 )) ,

A 7→ κA , ⟨Au, v⟩ = ⟨κA, β∗
b(v ⊗ u)⟩ , u, v ∈ Ċ∞(M ; bΩ

1
2 ) .

The concept of conormal distributional sections can be also extended to sub-

manifolds whose boundary is given by a transverse intersection with the bound-

ary faces, like ∆b ⊂ M2
b . Then a continuous linear map A : Ċ∞(M ; bΩ1/2) →

C−∞(M ; bΩ1/2) is called a b-pseudodifferential operator of order at most m ∈ R if

κA ∈ Im(M2
b ,∆b;β∗

b(bΩ1/2⊠bΩ1/2)) and κA vanishes to all orders at lb∪ rb [Mel93,

Definition 4.22]. Such operators form a C∞(M2
b)-module Ψm

b (M ; bΩ1/2), obtaining

the filtered C∞(M2
b)-module Ψb(M ; bΩ1/2) =

⋃
m Ψm

b (M ; bΩ1/2). The submodule

Ψ−∞
b (M ; bΩ1/2) :=

⋂
m Ψm

b (M ; bΩ1/2) (resp., Diffb(M ; bΩ1/2)) of Ψb(M ; bΩ1/2) con-

sists of the operators A ∈ Ψb(M ; bΩ1/2) with smooth κA (resp., suppκA ⊂ ∆b). The

obvious generalization of the definition of principal symbol, like in Section 2.2.3, now

gives the principal b-symbol exact sequence,

0→ Ψm−1
b (M ; bΩ

1
2 ) ↪→ Ψm

b (M ; bΩ
1
2 )

bσm−−→ S(m)(bT ∗M ; bΩ
1
2 )→ 0 .

The principal b-symbol is used to define b-ellipticity like ellipticity in the case of

pseudodifferential operators (Section 2.1.9).

Omitting bΩ1/2, if A ∈ Ψ−∞
b (M) and κ := κA is supported in the domain of a

chart (x, s, y, y′), then we can write κ = κ′(x, s, y, y′) s−1ds dy′ because κ is rapidly

decreasing as s ↓ 0 and as s ↑ +∞, obtaining

(2.5.61) Au(x, y) =

ˆ
∂M

ˆ ∞

0

κ′(x, s, y, y′)u
(x
s
, y′

)ds
s
dy′ ,

for all u ∈ Ċ∞(M) supported in the domain of the chart (x, y).

Any A ∈ Ψm
b (M ; bΩ1/2) defines continuous endomorphisms A of Ċ∞(M ; bΩ1/2)

and C±∞(M ; bΩ1/2) [Mel93, Propositions 4.29 and 4.34 and Exercise 4.33]. In this

sense, Ψb(M ; bΩ1/2) becomes a filtered algebra with the operation of composition

[Mel93, Propositions 5.20], and the principal b-symbol map is multiplicative.

2.5.28. The indicial family. — Let A ∈ Ψm
b (M ; bΩ1/2) (m ∈ R) and write κ =

κA. Roughly speaking, the indicial family of A is an entire family, Iν(A, λ) ∈
Ψm(∂M ; Ω1/2) (λ ∈ C), depending on the trivialization ν of +N∂M (Section 2.5.1),

defined by taking the “fiberwise” Mellin transform of certain conormal distributional

section defined by κ|ff . Thus Iν(A, λ) = 0 for all λ just when κ|ff = 0.

The indicial family can be also described as follows. For z ∈ C and m ∈ R,

the mapping A 7→ x−zAxz defines an automorphism of Ψm
b (M ; bΩ1/2) [Mel93,

Proposition 5.7]. Hence every A ∈ Ψb(M ; bΩ1/2) defines a continuous endomor-

phism A of xkC∞(M ; bΩ1/2) (k ∈ N). Therefore a continuous endomorphism A∂ of
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C∞(∂M ; Ω1/2) is well defined by A∂v = Au|∂M if u ∈ C∞(M ; bΩ1/2) with u|∂M = v

[Mel93, Eq. (5.31)]. Then [Mel93, Proposition 5.8]

(2.5.62) Iν(A, λ) = (x−iλAxiλ)∂ .

We will only use the indicial family in the following cases, where bΩ1/2 is omitted

for the sake of simplicity. First, if A ∈ Ψ−∞
b (M) and κ is supported in the domain of

a chart (x, s, y, y′), as described in (2.5.61), then Iν(A, λ) ∈ Ψ−∞
b (∂M ; Ω1/2) is given

by

(2.5.63) KIν(A,λ)(y, y
′) =

ˆ ∞

0

s−iλκ′(0, s, y, y′)
ds

s
.

The support condition can be obviously removed by using a partition of unity or a

collar neighborhood of ∂M . Second, if A ∈ Diffmb (M) (m ∈ N0) is locally given by

A =
∑

j+|I|≤m

aj,I(x, y)(xDx)jDI
y ,

using adapted local coordinates (x, y), then

(2.5.64) Iν(A, λ) =
∑

j+|I|≤m

aj,I(0, y)λjDI
y .

The indicial family is multiplicative [Mel93, Corollary of Proposition 5.20], and

compatible with the operation of taking formal adjoints of b-differential operators

(Cf. [Mel93, Eq. (4.112)]).

2.5.29. The b-integral. — The b-integral is a linear map
ν́

=
ν́

M
: C1(M ; bΩ)→

C, depending on ν, defined by [Mel93, Lemma 4.62]
ν̂

u = lim
ϵ↓0

(ˆ
x≥ϵ

u+ ln ϵ

ˆ
∂M

u|L
)
,

using a boundary-defining function x with dx(ν) = 1. Another trivialization µ ∈
C∞(M ; +N∂M) is of the form µ = aν for some 0 < a ∈ C∞(∂M), and

µ̂

u−
ν̂

u =

ˆ
∂M

ln a · u|∂M .

Lemma 2.5.9. —
ν́

is continuous with the C1 topology on C1(M ; bΩ).

Proof. — Consider a chart (V, y) of ∂M , and the adapted local coordinates (x, y)

on U ≡ [0, ϵ0)x × V ⊂ M (ϵ0 > 0). Since
ν́ ≡

´
M

on C1
c (M̊ ; bΩ) ≡ C1

c (M̊ ; Ω), it

is easy to see that it is enough to prove the continuity of
ν́

on C1
c (U ; bΩ). Every

u ∈ C1
c (U ; bΩ) is of the form u(x, y) = a(x, y) |x−1dx dy| for some a ∈ C1

c (U). Then
ν̂

u = ln ϵ0 ·
ˆ
V

a(0, y) dy + lim
ϵ↓0

(ˆ
V

ˆ ϵ0

ϵ

(a(x, y)− a(0, y))
dx

x
dy

)
.

Hence ∣∣∣∣ ν̂ u

∣∣∣∣ ≤ volV ·
(

ln ϵ0 ·max
y∈V
|a(0, y)|+ ϵ0 · max

(ξ,y)∈U
|∂xa(ξ, y)|

)
.
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Corollary 2.5.10. — Let T and T ′ be collar neighborhoods of ∂M in M with T ′ ⊂
T . For any sequence uk in C1(M ; bΩ), if uk|T → 0 in C1(T ; bΩ) and limk

´
M\T ′ uk =

a ∈ C, then limk
ν́
uk = a.

Proof. — Let {λ, µ} be a smooth partition of unity of M subordinated to the open

covering {T,M \T ′}. Then limk λuk = 0 in C1(M ; bΩ), obtaining limk
ν́
λuk = 0 by

Lemma 2.5.9. Moreover limk

´
M\T ′ λuk = 0. Therefore

lim
k

ν̂

uk = lim
k

ν̂

µuk = lim
k

ˆ
M\T ′

µuk = lim
k

ˆ
M\T ′

uk = a .

Remark 2.5.11. — Consider a collar neighborhood of ∂M in M of the form T ≡
[0, ϵ)x × ∂Mϖ, and the intermediate space

C1(T ; bΩ) ≡ C1([0, ϵ), C1(∂M ; bΩ∂M ))

⊂ C0,1
ϖ (T ; bΩ) := C1([0, ϵ), C0(∂M ; bΩ∂M ))

⊂ C0(T ; bΩ) ≡ C0([0, ϵ), C0(∂M ; bΩ∂M )) .

Then
ν́

M
is actually defined on

{u ∈ C0(M ; bΩ) | u|T ∈ C0,1
ϖ (T ; bΩ) } ,

and the proof of Lemma 2.5.9 shows that it is continuous with the obvious topology

defined by the topologies of C0(M ; bΩ) and C0,1
ϖ (T ; bΩ). So Corollary 2.5.10 is true

with the weaker condition uk|T → 0 in C0,1
ϖ (T ; bΩ).

2.5.30. The b-trace. — Any A ∈ Ψ−∞
b (M ; bΩ1/2) is of trace class if and only if

A ∈ rΨ−∞
b (M ; bΩ1/2) (i.e., κA|ff = 0). The b-trace bTr : Ψ−∞

b (M ; bΩ1/2) → C is an

extension of the trace Tr : rΨ−∞
b (M ; bΩ1/2)→ C given by

bTrA =
ν̂

M

κA|∆b
,

using the canonical isomorphism bΩ1/2(M2
b)|∆b

∼= bΩM (Section 2.5.26). If A,B ∈
Ψ−∞

b (M ; bΩ1/2), then [Mel93, Proposition 5.9]

(2.5.65) bTr[A,B] = − 1

2πi

ˆ +∞

−∞
Tr(∂λIν(A, λ) Iν(B, λ)) dλ .

This equality also holds if A ∈ Diffb(M ; bΩ1/2) and B ∈ Ψ−∞
b (M ; bΩ1/2) [Mel93,

Lemma 5.10].

If E is a Z2-graded Hermitian vector bundle over M with degree involution w

(wu = (−1)ku for u ∈ Ek and k ∈ Z2), and A ∈ Ψ−∞
b (M ;E) is homogeneous of

degree zero, then its b-supertrace is bStrA = bTr(Aw). This notion extends the

supertrace Str(B) of any homogeneous operator B ∈ rΨ−∞
b (M ;E) of degree zero.
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2.6. Conormal sequence

In this section and the next one, for the sake of simplicity, we only consider sub-

manifolds of codimension one because that is the only case we use. However, the

results can be extended to submanifolds of arbitrary codimension with more work.

2.6.1. Cutting along a submanifold. — Again, for brevity reasons, we consider

only the case of a closed manifold and the trivial line bundle. Like in other sec-

tions, the spaces of distributions we are going to define have obvious extensions to

non-compact manifolds and arbitrary vector bundles, taking compact support or no

support conditions, and taking regular submanifolds that are closed subspaces. We

will consider those types of extensions without further comment.

Let M be a closed connected manifold, and L ⊂M be a (possibly non-connected)

regular closed submanifold of codimension one. M \ L may have several connected

components. First assume also that L is transversely oriented. Then, like in the case

with boundary (Section 2.5.1), there is some real-valued smooth function x on some

tubular neighborhood T of L in M , with projection ϖ : T → L, so that L = {x = 0}
and dx ̸= 0 on L. Any function x satisfying these conditions is called a defining

function of L on T . We can suppose T ≡ (−ϵ, ϵ)x × Lϖ, for some ϵ > 0. (If

M and L were not compact, and L were a regular submanifold that is a closed

subset, then the tubular neighborhood would have a more involved expression, using

a smooth positive function ϵ(y) on L instead of a fixed positive number ϵ.) For any

atlas {Vj , yj} of L, we get an atlas of T of the form {Uj ≡ (−ϵ, ϵ) × Vj , (x, y)},
whose charts are adapted to L. The corresponding local vector fields ∂x ∈ X(Uj)

can be combined to define a vector field ∂x ∈ X(T ); we can consider ∂x as the

derivative operator on C∞(T ) ≡ C∞((−ϵ, ϵ), C∞(L)). For every j, Diff(Uj , L ∩ Uj)
is spanned by x∂x, ∂

1
j , . . . , ∂

n−1
j using the operations of C∞(Uj)-module and algebra,

where ∂kj = ∂/∂ykj . Using T ≡ (−ϵ, ϵ)x × L, any A ∈ Diff(L) induces an operator

1 ⊗ A ∈ Diff(T, L), such that (1 ⊗ A)(u(x)v(y)) = u(x) (Av)(y) for u ∈ C∞(−ϵ, ϵ)
and v ∈ C∞(L). This defines a canonical injection Diff(L) ≡ 1⊗Diff(L) ⊂ Diff(T, L)

so that (1 ⊗ A)|L = A. (This also shows the surjectivity of (2.2.2) in this case.)

Moreover Diff(T ) (resp., Diff(T, L)) is spanned by ∂x (resp., x∂x) and 1 ⊗ Diff(L)

using the operations of C∞(T )-module and algebra. Clearly,

(2.6.1) [∂x, 1⊗Diff(L)] = 0 , [∂x, x∂x] = ∂x ,

yielding

(2.6.2) [∂x,Diffk(T, L)] ⊂ Diffk(T, L) + Diffk−1(T, L) ∂x .

Diffk(T, L) and Diffk(T ) satisfy the obvious versions of (2.5.26) and (2.5.27).

For a vector bundle E over M , there is an identity ET ≡ (−ϵ, ϵ) × EL over T ≡
(−ϵ, ϵ)×L, which can be used to define ∂x ∈ Diff1(T ;E). With this interpretation of
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∂x and using tensor products like in (2.1.6), the vector bundle versions of the concepts

and properties of this section are straightforward.

Let M be the smooth manifold with boundary defined by “cutting” M along L;

i.e., modifying M only on the tubular neighborhood T ≡ (−ϵ, ϵ)×L, which is replaced

with T = ((−ϵ, 0]⊔ [0, ϵ))×L in the obvious way. (M is the blowing-up [M,L] of M

along L [Mel96, Chapter 5].) Thus ∂M ≡ L ⊔ L because L is transversely oriented,

and M̊ ≡ M \ L. A canonical projection π : M → M is defined as the combination

of the identity map M̊ → M \ L and the map T → T given by the product of the

canonical projection (−ϵ, 0] ⊔ [0, ϵ) → (−ϵ, ϵ) and idL. This projection realizes M as

a quotient space of M by the equivalence relation defined by the homeomorphism

h ≡ h0 × id of ∂M ≡ ∂T = ({0} ⊔ {0}) × L, where h0 switches the two points of

{0} ⊔ {0}. Moreover π : M → M is a local embedding of a compact manifold with

boundary to a closed manifold of the same dimension.

Like in Section 2.1.6, we have the continuous linear pull-back map

(2.6.3) π∗ : C∞(M)→ C∞(M) ,

which is clearly injective. The transpose of the version of (2.6.3) with ΩM and

ΩM ≡ π∗ΩM is the continuous linear push-forward map

(2.6.4) π∗ : Ċ−∞(M)→ C−∞(M) ,

which is a surjective topological homomorphism [ÁLKL23, Proposition 7.4].

After distinguishing a connected component L0 of L, let M̃ and L̃ be the quotients

of M ⊔M ≡ M × Z2 and ∂M ⊔ ∂M ≡ ∂M × Z2 by the equivalence relation

generated by (p, a) ∼ (h(p), a) if π(p) ∈ L \L0 and (p, a) ∼ (h(p), a+ 1) if π(p) ∈ L0

(p ∈ π−1(L) = ∂M in both cases). Let us remark that M̃ may not be homeomorphic

to the double of M , which is the quotient of M × Z2 by the equivalence relation

generated by (p, 0) ∼ (p, 1), for p ∈ ∂M . Note that M̃ is a closed connected manifold

and L̃ is a closed regular submanifold. Moreover the quotient T̃ of T ⊔ T becomes a

tubular neighborhood of L̃ in M̃ . The combination π ⊔ π : M ⊔M → M induces a

two-fold covering map π̃ : M̃ →M , whose restrictions to L̃ and T̃ are trivial two-fold

coverings of L and T , respectively; i.e., L̃ ≡ L⊔L and T̃ ≡ T ⊔ T . The group of deck

transformations of π̃ : M̃ → M is {id, σ}, where σ : M̃ → M̃ is induced by the map

σ0 : M × Z2 →M × Z2 defined by switching the elements of Z2. The composition

of the injection M → M × Z2, p 7→ (p, 0), with the quotient map M ⊔M → M̃

is a smooth embedding M → M̃ . This will be considered as an inclusion map of a

regular submanifold with boundary, obtaining ∂M ≡ L̃.

Since π̃ is a two-fold covering map, we have continuous linear maps (Section 2.1.6)

π̃∗ : C∞(M̃)→ C∞(M) , π̃∗ : C∞(M)→ C∞(M̃) ,

π̃∗ : C−∞(M)→ C−∞(M̃) , π̃∗ : C−∞(M̃)→ C−∞(M) ,(2.6.5)
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both pairs of maps satisfying

(2.6.6) π̃∗π̃
∗ = 2 , π̃∗π̃∗ = Aσ ,

where Aσ : C±∞(M̃) → C±∞(M̃) is given by Aσu = u + σ∗u. Using the contin-

uous linear restriction and inclusion maps given by (2.5.2) and (2.5.7), we get the

commutative diagrams

(2.6.7)

C∞(M̃)
R−−−−→ C∞(M)

π̃∗

x xπ∗

C∞(M) C∞(M) ,

Ċ−∞(M)
ι−−−−→ C−∞(M̃)

π∗

y yπ̃∗

C−∞(M) C−∞(M) ,

the second one is the transpose of the density-bundles version of the first one.

2.6.2. Lift of differential operators from M to M̃ . — For any A ∈ Diff(M),

let Ã ∈ Diff(M̃) denote its lift via the covering map π̃ : M̃ →M . The action of Ã on

C±∞(M̃) corresponds to the action of A on C±∞(M) via π̃∗ : C±∞(M)→ C±∞(M̃)

and π̃∗ : C±∞(M̃) → C±∞(M). According to (2.5.22), Ã|M ∈ Diff(M) is the lift of

A via the local embedding π : M → M , sometimes also denoted by Ã. The action

of Ã on C∞(M) (resp., C−∞(M)) corresponds to the action of A on C∞(M) (resp.,

C−∞(M)) via π∗ : C∞(M) → C∞(M) (resp., π∗ : C−∞(M) → C−∞(M)). If

A ∈ Diff(M,L), then Ã ∈ Diff(M̃, L̃) and Ã|M ∈ Diffb(M) by (2.5.25).

2.6.3. The spaces C±∞(M,L). — Consider the closed subspaces,

(2.6.8) C∞(M,L) ⊂ C∞(M) , Ck(M,L) ⊂ Ck(M) (k ∈ N0) ,

consisting of functions that vanish to all orders at the points of L in the first case,

and that vanish up to order k at the points of L in the second case. Then let

C−∞(M,L) = C∞(M,L; Ω)′ , C ′ −k(M,L) = Ck(M,L; Ω)′ .

C−∞(M,L) is a barreled, ultrabornological, webbed, acyclic DF Montel space,

and therefore complete, boundedly/compactly/sequentially retractive and reflexive

[ÁLKL23, Corollary 7.1]. Note that (2.6.3) restricts to TVS-isomorphisms

(2.6.9) π∗ : C∞(M,L)
∼=−→ Ċ∞(M) , π∗ : Ck(M,L)

∼=−→ Ċk(M) .

Taking the transposes of its versions with density bundles, it follows that (2.6.4)

restricts to TVS-isomorphisms

(2.6.10) π∗ : C−∞(M)
∼=−→ C−∞(M,L) , π∗ : C ′ −k(M)

∼=−→ C ′ −k(M,L) .

So the spaces C∞(M,L), Ck(M,L), C−∞(M,L) and C ′ −k(M,L) satisfy the analogs

of (2.1.7) and (2.1.8).

On the other hand, there are Hilbertian spaces Hr(M,L) (r > n/2) and H ′ s(M,L)

(s ∈ R), continuously included in C0(M,L) and C−∞(M,L), resp., such that the



60 CHAPTER 2. ANALYTIC TOOLS

second map of (2.6.9) for k = 0 and the first map of (2.6.10) restrict to a TVS-

isomorphisms

(2.6.11) π∗ : Hr(M,L)
∼=−→ Ḣr(M) , π∗ : Hs(M)

∼=−→ H ′ s(M,L) .

For s = 0, the second TVS-isomorphism of (2.6.11) becomes

(2.6.12) π∗ : L2(M)
∼=−→ L2(M) .

By (2.5.16),

(2.6.13) H ′ −r(M,L) ≡ Hr(M,L; Ω)′ , Hr(M,L) ≡ H ′ −r(M,L; Ω)′ .

Now, the second identity of (2.6.13) can be used to extend the definition of Hr(M,L)

for all r ∈ R.

Alternatively, we may also use trace theorems [Ada75, Theorem 7.53 and 7.58]

to define Hm(M,L) for m ∈ Z+, and then use the first identity of (2.6.13) to define

H ′ −m(M,L).

From (2.6.3), (2.6.4), (2.6.11) and the analogs of (2.1.32)–(2.1.34) mentioned in

Section 2.5.4, we get

C∞(M,L) =
⋂
r

Hr(M,L) , C−∞(M,L) =
⋃
s

H ′ s(M,L) ,(2.6.14)

as well as a continuous inclusion and a continuous linear surjection,

C∞(M) ⊂
⋂
s

H ′ s(M,L) , C−∞(M)←
⋃
r

Hr(M,L) .(2.6.15)

By (2.6.13) and (2.6.14),

(2.6.16) C∞(M,L) = C−∞(M,L; Ω)′ .

The transpose of the version of the first inclusion of (2.6.8) with ΩM is a surjective

topological homomorphism [ÁLKL23, Proposition 7.4]

(2.6.17) R : C−∞(M)→ C−∞(M,L) ,

whose restriction to C∞(M) is the identity. It can be also described as the composition

C−∞(M)
π̃∗

−→ C−∞(M̃)
R−→ C−∞(M)

π∗−−→ C−∞(M,L) .

The canonical pairing between C∞(M) and C∞(M,L; Ω) defines a continuous dense

inclusion

(2.6.18) C∞(M) ⊂ C−∞(M,L)

such that (2.6.17) is the identity on C∞(M). We also get commutative diagrams

(2.6.19)

C∞(M)
ι←−−−− Ċ∞(M)

π∗

x ∼=
xπ∗

C∞(M)
ι←−−−− C∞(M,L) ,

Ċ−∞(M)
R−−−−→ C−∞(M)

π∗

y ∼=
yπ∗

C−∞(M)
R−−−−→ C−∞(M,L) ,
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the second one is the transpose of the density-bundles version of the first one.

2.6.4. The space C−∞
L (M). — The condition of being supported in L define closed

subspaces,

C−∞
L (M) ⊂ C−∞(M) , C ′ −k

L (M) ⊂ C ′ −k(M) , Hs
L(M) ⊂ Hs(M) ,

which are the null spaces of restrictions of (2.6.17). These spaces satisfy continuous

inclusions analogous to (2.1.7), (2.1.31) and (2.1.33). The following properties hold

[ÁLKL23, Corollaries 7.2 and 7.3]: C−∞
L (M) is a limit subspace of the LF-space

C−∞(M); and it is a barreled, ultrabornological, webbed, acyclic DF Montel space,

and therefore complete, boundedly/compactly/sequentially retractive and reflexive.

According to (2.5.19) and Section 2.6.1, we have [ÁLKL23, Eq. (7.19)]

(2.6.20) Ċ−∞
∂M (M) ≡ C−∞

L (M)⊕ C−∞
L (M) ,

The maps (2.6.4) and (2.6.5) have restrictions

(2.6.21) π∗ = π̃∗ : Ċ−∞
∂M (M)→ C−∞

L (M) , π̃∗ : C−∞
L (M)→ Ċ−∞

∂M (M) .

Using (2.6.20), these maps are given by π∗(u, v) = u+ v and π̃∗u = (u, u).

Moreover the right-hand side diagram of (2.6.19) can be completed to get the

commutative diagram

(2.6.22)

0→ Ċ−∞
∂M (M)

ι−−−−→ Ċ−∞(M)
R−−−−→ C−∞(M)→ 0

π∗

y π∗

y ∼=
yπ∗

0→ C−∞
L (M)

ι−−−−→ C−∞(M)
R−−−−→ C−∞(M,L)→ 0 .

The bottom row of this diagram is exact in the category of continuous linear maps

between LCSs by the properties of (2.6.17).

2.6.5. A description of C−∞
L (M). — According to (2.2.10) and Sections 2.1.7

and 2.6.1, we have TVS-isomorphisms

(2.6.23) ∂mx : C−∞(L; Ω−1NL)
∼=−→ ∂mx C

−∞(L; Ω−1NL) ⊂ C−∞
L (M) ,

for m ∈ N0, inducing TVS-isomorphisms [ÁLKL23, Proposition 7.7]

∞⊕
m=0

C−∞(L; Ω−1NL)
∼=−→ C−∞

L (M) ,(2.6.24)

k⊕
m=0

Cm−k(L; Ω−1NL)
∼=−→ C ′ −k

L (M) (k ∈ N0) .(2.6.25)

Remark 2.6.1 (See [Mel96, Exercise 3.3.18]). — In Section 2.5.5, for any compact

manifold with boundary M , the analogs of (2.6.24) and (2.6.25) for Ċ−∞
∂M (M) follows

from their application to C−∞
∂M (M̆).
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2.6.6. Action of Diff(M) on C−∞(M,L) and C−∞
L (M). — For every A ∈

Diff(M), At preserves C∞(M,L; Ω), and therefore A induces a continuous linear

map A = Att on C−∞(M,L). By locality, it restricts to a continuous endomorphism

A of C−∞
L (M).

2.6.7. The space J(M,L). — According to Sections 2.5.8 and 2.6.3, there is a

LCHS J(M,L), with a dense continuous inclusion

(2.6.26) J(M,L) ⊂ C−∞(M,L) ,

so that (2.6.10) restricts to a TVS-isomorphism

(2.6.27) π∗ : A(M)
∼=−→ J(M,L) ,

where A(M) is defined in (2.5.28). By (2.5.32), there is a continuous inclusion

J(M,L) ⊂ C∞(M \ L) .

We also get spaces J (s)(M,L) and Jm(M,L) (s,m ∈ R) corresponding to A(s)(M)

and Am(M) via (2.6.27). Let x be an extension of |x| to M so that it is positive and

smooth on M \ L. Its lift π∗x is a boundary-defining function of M , also denoted

by x. Using the first map of (2.6.10) and second map of (2.6.11), and according to

Section 2.6.2, we can also describe

J (s)(M,L) = {u ∈ C−∞(M,L) | Diff(M,L)u ⊂ H ′ s(M,L) } ,(2.6.28)

Jm(M,L) = {u ∈ C−∞(M,L) | Diff(M,L)u ⊂ xmL∞(M) } ,

with topologies like in (2.1.1). These spaces satisfy the analogs of (2.2.4), (2.5.28)

and (2.5.36)–(2.5.38). Using (2.6.15) and (2.6.28), we get a continuous dense inclusion

[ÁLKL23, Corollary 7.14]

(2.6.29) C∞(M) ⊂ J(M,L) .

In fact, C∞
c (M \ L) is dense in every J (s)(M,L) and Jm(M,L), and therefore in

J(M,L) [ÁLKL23, Corollaries 7.14 and 7.17 and the analog of Remark 6.41 for

J(M,L)]. Moreover the following properties hold [ÁLKL23, Corollaries 7.11–7.13

and 7.15]: every J (s)(M,L) is a totally reflexive Fréchet space; J(M,L) is barreled, ul-

trabornological, webbed and an acyclic Montel space, and therefore complete, bound-

edly/compactly/sequentially retractive and reflexive; and the topologies of J(M,L)

and C∞(M \ L) coincide on every Jm(M,L).

2.6.8. A description of J(M,L). — Take a b-metric g on M satisfying (A)

and (B) (Section 2.5.20), and consider its restriction to M̊ . Consider also the
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boundary-defining function x of M (Section 2.6.7). Taking m ∈ R, we have TVS-

isomorphisms [ÁLKL23, Corollaries 7.16 and 7.18]

Jm(M,L) ∼= xmH∞
b (M) ≡ xm+1/2H∞(M̊) ,(2.6.30)

J(M,L) ∼=
⋃
m

xmH∞
b (M) =

⋃
m

xmH∞(M̊) .(2.6.31)

The first isomorphisms of (2.6.30) and (2.6.31) are independent of g; thus they hold

without assuming (A) and (B) [ÁLKL23, the analog of Remark 6.41 for J(M,L)].

2.6.9. I(M,L) vs Ȧ(M) and J(M,L). — According to Sections 2.2.8 and 2.2.9,

we have the continuous linear maps

(2.6.32) π̃∗ : I(M,L)→ I(M̃, L̃) , π̃∗ : I(M̃, L̃)→ I(M,L) ,

which are restrictions of the maps (2.6.5), and therefore they satisfy (2.6.6). These

maps are compatible with the symbol and Sobolev filtrations because π̃ : M̃ →M is

a covering map (Sections 2.2.8 and 2.2.9).

Since (2.5.41) gives a TVS-embedding Ȧ(M) ⊂ I(M̃, L̃), which preserves the

Sobolev-order and symbol-order filtrations, the map π̃∗ of (2.6.32) has the restric-

tion

(2.6.33) π∗ : Ȧ(M)→ I(M,L) .

By (2.6.12) and according to Section 2.6.2, the map (2.6.33) restricts to a TVS-

isomorphism

(2.6.34) π∗ : Ȧ(0)(M)
∼=−→ I(0)(M,L) .

On the other hand, the map (2.6.17) restricts to a continuous linear map

(2.6.35) R : I(M,L)→ J(M,L) ,

which is the identity on C∞(M), and can be also described as the composition

I(M,L)
π̃∗

−→ I(M̃, L̃)
R−→ A(M)

π∗−−→ J(M,L) .

Both (2.6.33) and (2.6.35) are surjective topological homomorphisms [ÁLKL23,

Proposition 7.29], and therefore C∞(M) is dense in J(M,L) [ÁLKL23, Corol-

lary 7.32].

2.6.10. The space K(M,L). — Like in Section 2.5.13, the condition of being sup-

ported in L defines the LCHSs and C∞(M)-modules

K(s)(M,L) = I
(s)
L (M,L) , Km(M,L) = ImL (M,L) , K(M,L) = IL(M,L) .

These are closed subspaces of I(s)(M,L), ImL (M,L) and I(M,L), respectively; more

precisely, they are the null spaces of the corresponding restrictions of the map (2.6.35).

The identity (2.6.20) restricts to a TVS-identity

(2.6.36) K(M) ≡ K(M,L)⊕K(M,L) .
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Furthermore the maps (2.6.21) induce continuous linear maps

(2.6.37) π∗ : K(M)→ K(M,L) , π̃∗ : K(M,L)→ K(M) .

Using (2.6.36), these maps are given by π∗(u, v) = u+ v and π̃∗u = (u, u).

By (2.5.40) and (2.5.42), K(s)(M,L) and Km(M,L) satisfy analogs of (2.6.36),

using K(s)(M) and Km(M). The following properties hold true [ÁLKL23, Corollar-

ies 7.19–7.21 and 7.23]: K(M,L) is a limit subspace of the LF-space I(M,L); every

K(s)(M,L) is a totally reflexive Fréchet space; moreover it is barreled, ultrabornologi-

cal and webbed, and therefore so is K(M,L); and K(M,L) is an acyclic Montel space,

and therefore complete, boundedly/compactly/sequentially retractive and reflexive.

Example 2.6.2. — With the notation of Section 2.1.9, Diff(M) ≡ K(M2,∆) be-

comes a filtered C∞(M2)-submodule of Ψ(M), with the order filtration corresponding

to the symbol filtration. In this way, Diff(M) also becomes a LCHS satisfying the

above properties. If M is compact, it is also a filtered subalgebra of Ψ(M).

2.6.11. A description of K(M,L). — By (2.2.17) and (2.2.15), for s < −1/2,

every isomorphism (2.6.23) restricts to a TVS-isomorphism

(2.6.38) ∂mx : C∞(L; Ω−1NL)
∼=−→ ∂mx C

∞(L; Ω−1NL) ⊂ K(s−m)(M,L) ,

Then (2.6.24) restricts to a TVS-isomorphisms [ÁLKL23, Proposition 7.26]

∞⊕
m=0

C∞(L; Ω−1NL)
∼=−→ K(M,L) ,(2.6.39) ⊕

m<−s− 1
2

C∞(L; Ω−1NL)
∼=−→ K(s)(M,L) (s < −1/2) .(2.6.40)

Remark 2.6.3. — In Section 2.5.13, for any compact manifold with boundary

M , the analogs of (2.6.39) and (2.6.40) for K(M) follows from their application to

K(M̆, ∂M) using (2.5.44).

2.6.12. The conormal sequence. — The diagram (2.6.22) has the restriction

(2.6.41)

0→ K(M)
ι−−−−→ Ȧ(M)

R−−−−→ A(M)→ 0

π∗

y π∗

y ∼=
yπ∗

0→ K(M,L)
ι−−−−→ I(M,L)

R−−−−→ J(M,L)→ 0 .

The bottom row of (2.6.41) is exact in the category of continuous linear maps between

LCSs [ÁLKL23, Corollary 7.30]; it will be called the conormal sequence of M at L

(or of (M,L)).

The surjectivity of (2.6.35) can be realized with the partial extension maps given by

the following consequence of Proposition 2.5.1, whose proof is recalled by its relevance

in Chapters 5 and 6.
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Corollary 2.6.4 ([ÁLKL23, Corollary 7.31]). — For all m ∈ R, there is a con-

tinuous linear partial extension map Em : Jm(M,L) → I(s)(M,L), where s = 0 if

m ≥ 0, and m > s ∈ Z− if m < 0. For m ≥ 0, Em : Jm(M,L) → I(0)(M) is a

continuous inclusion map.

Proof. — By the commutativity of (2.6.41) and using Proposition 2.5.1, we can define

Em : Jm(M,L)→ I(s)(M,L) as the composition

Jm(M,L)
π−1

∗−−−→ Am(M)
Em−−→ Ȧ(s)(M)

π∗−−→ I(s)(M,L) .

The last assertion follows from Propositions 2.5.1 and 2.5.5 and (2.6.34).

According to this proof, Remarks 2.5.2 to 2.5.4, 2.5.7 and 2.5.8, Proposition 2.5.5,

and Corollary 2.5.6 have obvious versions for the maps given by Corollary 2.6.4.

2.6.13. Action of Diff(M) on the conormal sequence. — According to Sec-

tion 2.2.7, every A ∈ Diff(M) defines a continuous linear map A on I(M,L), which

preserves K(M,L), and induces a continuous linear map A on J(M,L). This map

satisfies the analog of (2.2.15).

The map A on J(M,L) can be also described as a restriction of A on C−∞(M,L)

(Section 2.6.6). On the other hand, according to Section 2.5.14, the lift Ã ∈ Diff(M)

defines continuous linear maps on the top spaces of (2.6.41) which correspond to the

operators defined by A on the bottom spaces via the maps π∗. If A ∈ Diff(M,L),

then it defines continuous endomorphisms A of J (s)(M,L) and Jm(M,L).

2.6.14. Pull-back maps on the conormal sequence. — Consider the notation

and conditions of Section 2.2.8. By the exactness of the conormal sequences of (M,L)

and (M ′, L′) in the category of continuous linear maps between LCSs, the map (2.2.19)

induces continuous linear maps,

ϕ∗ : K(M,L)→ K(M ′, L′) ,(2.6.42)

ϕ∗ : J(M,L)→ J(M ′, L′) .(2.6.43)

The map (2.6.42) is the restriction of (2.2.19), which is well defined because the

map (2.2.19) can be locally defined, and (2.6.43) is the induced map in the quotient.

These maps are compatible with the maps ι and R of the conormal sequences, and

satisfy the analog of (2.2.20).

2.6.15. Push-forward maps on the conormal sequence. — Consider the nota-

tion and conditions of Section 2.2.9. Like in Section 2.6.14, the map (2.2.22) induces

continuous linear maps,

ϕ∗ : K(M ′, L′; Ωfiber)→ K(M,L) ,(2.6.44)

ϕ∗ : J(M ′, L′; Ωfiber)→ J(M,L) .(2.6.45)
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They are also compatible with the maps ι and R of the conormal sequences, and

satisfy the analog of (2.2.23).

2.6.16. Case where L is not transversely orientable. — If L is not transversely

orientable, we still have a tubular neighborhood T of L in M , but there is no defining

function x of L in T trivializing the projection ϖ : T → L. We can cut M along L

as well to produce a bounded compact manifold, M , with a projection π : M → M

and a boundary collar T over T .

Using a boundary-defining function x of M , we get the same definitions, prop-

erties and descriptions of C±∞(M,L) and J(M,L) (Sections 2.6.3, 2.6.7 and 2.6.8).

C−∞
L (M) and K(M,L) also have the same definitions (Sections 2.6.4 and 2.6.10).

However (2.6.20) and (2.6.36) are not true because the covering map π : ∂M → L is

not trivial, and the descriptions given in (2.6.24), (2.6.25), (2.6.39) and (2.6.40) need

a slight modification. This problem can be solved as follows.

Let π̌ : Ľ → L denote the two-fold covering of transverse orientations of L,

and let σ̌ denote its deck transformation different from the identity. Since the lift

of NL to Ľ is trivial, π̌ on Ľ ≡ {0} × Ľ can be extended to a two-fold covering

π̌ : Ť := (−ϵ, ϵ)x × Ľ → T , for some ϵ > 0. Its deck transformation different from

the identity is an extension of σ̌ on Ľ ≡ {0} × Ľ, also denoted by σ̌. Then Ľ is

transversely oriented in Ť ; i.e., its normal bundle NĽ is trivial. Thus C−∞
Ľ

(Ť ) and

K(Ť , Ľ) satisfy (2.6.20), (2.6.24), (2.6.25), (2.6.36), (2.6.39) and (2.6.40). Since NĽ ≡
π̌∗NL, the map σ̌ lifts to a homomorphism of NĽ, which induces a homomorphism

of Ω−1NL also denoted by σ̌. Let L−1 be the union of non-transversely oriented

connected components of L, and L1 the union of its transversely oriented components.

Correspondingly, let Ľ±1 = π̌−1(L±1) and Ť±1 = (−ϵ, ϵ) × Ľ±1. Since σ̌∗x = ±x on

T±1, the isomorphisms (2.6.24), (2.6.25), (2.6.39) and (2.6.40) become true in this

case by replacing Cr(L; Ω−1NL) (r ∈ Z ∪ {±∞}) with the direct sum of the spaces

{u ∈ Cr(L±1; Ω−1NL±1) | σ̌∗u = ±u } .

The other results about C−∞
L (M) and K(M,L) (Sections 2.6.4, 2.6.5, 2.6.10

and 2.6.11) can be obtained by using these extensions of (2.6.24), (2.6.25), (2.6.39)

and (2.6.40) instead of (2.6.20) and (2.6.36). Sections 2.6.12 to 2.6.15 also have

strightforward extensions.

2.7. Dual-conormal sequence

2.7.1. The spaces K ′(M,L) and J ′(M,L). — Consider the notation of Section 2.6

assuming that L is transversely oriented; the extension to the non-transversely ori-

entable case can be made with the procedure of Section 2.6.16. Like in Sections 2.3.1

and 2.5.21, let

K ′(M,L) = K(M,L; Ω)′ , J ′(M,L) = J(M,L; Ω)′ .
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By (2.6.27) and (2.6.36),

(2.7.1) K′(M) ≡ K ′(M,L)⊕K ′(M,L) , Ȧ′(M) ≡ J ′(M,L) .

Let also

(2.7.2)

{
K ′ (s)(M,L) = K(−s)(M,L; Ω)′ , K ′m(M,L) = K−m(M,L; Ω)′ ,

J ′ (s)(M,L) = J (−s)(M,L; Ω)′ , J ′m(M,L) = J−m(M,L; Ω)′ ,

which satisfy the analog of (2.7.1). Like in Section 2.5.21, for s < s′ and m < m′, we

get continuous linear restriction maps

K ′ (s′)(M,L)→ K ′ (s)(M,L) , K ′m(M,L)→ K ′m′
(M,L) ,

and continuous injections

J ′ (s′)(M,L) ⊂ J ′ (s)(M,L) , J ′m′
(M,L) ⊂ J ′m(M,L) ,

forming projective spectra. By (2.7.1) and its analog for the spaces (2.7.2), and

according to Section 2.5.21, we get that the spaces K ′ (s)(M,L) and K ′m(M,L) satisfy

the analogs of (2.3.5) and (2.3.6), and the spaces J ′ (s)(M,L) and J ′m(M,L) satisfy

the analogs of (2.5.53) and (2.5.54) [ÁLKL23, Corollary 8.3]. Furthermore, K ′(M,L)

and J ′(M,L) are complete Montel spaces [ÁLKL23, Corollary 8.1], and K ′ (s)(M,L)

and J ′ (s)(M,L) are bornological and barreled [ÁLKL23, Corollary 8.2].

Like in Section 2.5.21, the versions of (2.6.16), (2.6.26) and (2.6.29) with ΩM

induce continuous inclusions

(2.7.3) C−∞(M) ⊃ J ′(M,L) ⊃ C∞(M,L) .

2.7.2. A description of J ′(M,L). — With the notation and conditions of Sec-

tion 2.6.8, we have the following [ÁLKL23, Corollaries 8.4 and 8.5]:

J ′m(M,L) ∼= xmH−∞
b (M) = xm− 1

2H−∞(M̊) ,(2.7.4)

J ′(M,L) ∼=
⋂
m

xmH−∞
b (M) =

⋂
m

xmH−∞(M̊) .(2.7.5)

Actually, the first isomorphisms of (2.7.4) and (2.7.5) are independent of g, and hold

true without the assumptions (A) and (B). Furthermore C∞
c (M \L) is dense in every

J ′m(M,L) and in J ′(M,L) [ÁLKL23, Corollary 8.6]. Therefore the right-hand side

inclusion of (2.7.3) is also dense.

2.7.3. Description of K ′(M,L). — The transposes of the versions of (2.6.39)

and (2.6.40) with ΩM are TVS-isomorphisms [ÁLKL23, Corollary 8.7],

K ′(M,L)
∼=−→

∞∏
m=0

C−∞(L) ,(2.7.6)

K ′ (s)(M,L)
∼=−→

∏
m<s−1/2

C−∞(L) (s > 1/2) ,(2.7.7)
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because

C∞(L; Ω−1NL⊗ ΩM)′ = C∞(L; Ω)′ = C−∞(L) .

2.7.4. Dual-conormal sequence. — The transpose of the density-bundles version

of (2.6.41) is the commutative diagram

(2.7.8)

0← K′(M)
R′

←−−−− A′(M)
ι′←−−−− Ȧ′(M)← 0

π∗

x π∗

x π∗

x∼=

0← K ′(M,L)
R′

←−−−− I ′(M,L)
ι′←−−−− J ′(M,L)← 0 ,

where R′ = ιt and ι′ = Rt. Its bottom row is exact in the category of continuous linear

maps between LCSs [ÁLKL23, Proposition 8.8], and is called the dual-conormal

sequence of M at L (or of (M,L)).

2.7.5. Action of Diff(M) on the dual-conormal sequence. — With the nota-

tion of Section 2.6.13, consider the actions of At and Ãt on the bottom and top spaces

of the version of (2.6.41) with ΩM and ΩM . Taking transposes again, we get induced

actions of A and Ã on the bottom and top spaces of (2.7.8), which correspond one

another via the linear maps π∗. These maps satisfy the analogs of (2.3.7).

2.7.6. Pull-back maps on the dual-conormal sequence. — Consider the

notation and conditions of Section 2.3.5 (the same as in Section 2.2.9). Like

in Section 2.3.5, transposing the compactly supported case of the analog of (2.2.23)

for (2.6.44) and (2.6.45) with E = ΩM , we get continuous linear maps,

ϕ∗ : K ′(M,L)→ K ′(M ′, L′) ,(2.7.9)

ϕ∗ : J ′(M,L)→ J ′(M ′, L′) .(2.7.10)

They are compatible with the maps ι′ and R′ of the dual-conormal sequences, and

satisfy the analog of (2.3.9).

2.7.7. Push-forward maps on the dual-conormal sequence. — Consider the

notation and conditions of Section 2.3.6 (the same as in Section 2.2.8). Like in Sec-

tion 2.3.6, transposing the analogs of (2.2.20) for (2.8.20) and (2.8.21) with E = ΩM ,

and using an analog of (2.1.16), we get continuous linear maps,

ϕ∗ : K ′(M ′, L′; Ωfiber)→ K ′(M,L) ,(2.7.11)

ϕ∗ : J ′(M ′, L′; Ωfiber)→ J ′(M,L) .(2.7.12)

They are compatible with the maps ι′ and R′ of the dual-conormal sequences, and

satisfy the analog of (2.3.11).
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2.8. Currents

Here, again, the manifold M may not be compact, and L ⊂ M is a regular sub-

manifold that is a closed subset. When using J(M,L; Λ) or K(M,L; Λ), it is also

assumed that L is of codimension one.

2.8.1. Differential forms and currents. — Consider the space C∞(M ; Λ) of

smooth differential forms, and the space C−∞(M ; Λ) of currents. The most typi-

cal example of elliptic complex is given by the de Rham derivative d on C∞(M ; Λ),

giving rise to the de Rham cohomology H•(M). The extension of d to C−∞(M ; Λ)

is another topological complex, which produces isomorphic cohomology [dR84]. We

typically consider cohomology with complex coefficients without further comment;

real cohomology classes are only considered in a few cases, where it is indicated; the

same applies to other cohomologies that will be considered. The basic properties of

(C±∞(M ; Λ), d) and H•(M) can be seen in [dR84, BT82]; for instance, the general

properties of elliptic complexes apply in this setup (Section 2.1.14). Some properties

will be seen in Section 2.9 with more generality.

A Riemannian metric g on M defines a Hermitian structure on ΛM , also denoted

by g. Then we have the additional operators δ (the de Rham coderivative), D and ∆

(the Laplacian) of Section 2.1.14. If needed, the subscript “M” may be added to this

notation, and to other similar notation.

We may also consider the de Rham complex with coefficients in a flat vector bundle

F , d = dF on C∞(M ; Λ ⊗ F). As above, g and a Hermitian structure on F induce

additional operators δ = δF , D = DF and ∆ = ∆F .

For any V ∈ X(M), let ιV and LV denote the corresponding inner product and Lie

derivative on C∞(M ; Λ). For η = V ♭ ∈ C∞(M ; Λ1), we write η⌟ = −(η∧)∗ = −ιV .

Let w be the degree involution on ΛM . For the bundle of Clifford algebra of T ∗M ,

we have the identity Cl(T ∗M) ≡ ΛRM defined by the symbol of filtered algebras.

Via this identity, the left Clifford multiplication by η is c(η) = η∧ + η⌟, and the

composition of w with the right Clifford multiplication by η is ĉ(η) = η∧ − η⌟.

2.8.2. Product of differential forms and currents. — The exterior product of

smooth differential forms has continuous extensions,(1)

(2.8.1) C±∞(M ; Λ)⊗ C∓∞(M ; Λ)→ C−∞(M ; Λ) ,

For example, with the notation of Section 2.2.6, assuming that M and L are oriented,

it easily follows that, for α ∈ C∞(M ; Λ) and β ∈ C∞(L; Λ⊗ Ω−1NL),

(2.8.2) α ∧ δβL = δ
α|L∧β
L , δβL ∧ α = δ

β∧α|L
L .

(1)This holds with more generality under conditions on the wavefront set [Hör71, Theorem 8.2.10],

but we will not use it.
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2.8.3. Currents on oriented manifolds. — Assume M is oriented. The orien-

tation induces a canonical identity ΩM ≡ ΛnM . Then, for every degree k, the non-

degenerate pairing ΛkM ⊗ Λn−kM → ΛnM defined by the wedge product induces a

canonical identity

(2.8.3) (ΛkM)∗ ⊗ ΩM ≡ Λn−kM .

By (2.8.3), the space (2.1.5) becomes

(2.8.4) C−∞
·/c (M ; Λk) ≡ C∞

c/·(M ; Λn−k)′

in this case. This identity corresponds to a pairing

C±∞
·/c (M ; Λk)⊗ C∓∞

c/· (M ; Λn−k)→ C ,

which will be denoted with parentheses to distinguish it from the scalar product. This

pairing can be given by the composition of (2.8.1) and the extension

C−∞
c (M ; Λn)→ C , α 7→ (α, 1) ,

of
´
M

: C∞
c (M ; ΛM)→ C.

2.8.4. Hodge operator on oriented manifolds. — Continuing with the assump-

tion of orientation, let ⋆ on ΛM denote the C-linear extension of the Hodge operator ⋆

on the real forms, which is unitary, and let ⋆̄ denote its C-antilinear extension. These

operators are determined by the conditions, for α, β ∈ C∞(M ; Λ),

α ∧ ⋆β = g(α, β) dvol = α ∧ ⋆̄β ,

where dvol = ⋆1 is the volume form. Recall that, on C∞(M ; Λk),

(2.8.5)


⋆2 = (−1)nk+k , δ = (−1)nk+n+1 ⋆ d ⋆ , η⌟ = (−1)nk+n+1 ⋆ η∧ ⋆ ,

d ⋆ = (−1)k ⋆ δ , δ ⋆ = (−1)k+1 ⋆ d , ∆ ⋆ = ⋆∆ ,

η∧ ⋆ = (−1)k ⋆ η⌟ , η⌟ ⋆ = (−1)k+1 ⋆ η∧ .

The equalities (2.8.5) are also true with ⋆̄, and can be extended to C−∞(M ; Λ).

For all α ∈ C∞(M ; Λk) and β ∈ C∞
c (M ; Λn−k),

α ∧ β = (−1)kn+kα ∧ ⋆̄2β = (−1)kn+kg(α, ⋆̄β) dvol ,

yielding

(2.8.6) (α, β) = (−1)kn+k⟨α, ⋆̄β⟩ .

2.8.5. Pull-back and push-forward of currents. — Given a smooth map ϕ :

M ′ →M , recall that its tangent map Tϕ = ϕ∗ : TM ′ → TM defines a homomorphism

ϕ∗ : TM ′ → ϕ∗TM , which induces a homomorphism

(2.8.7) ϕ∗ : ϕ∗ΛM → ΛM ′ .

Then recall that the pull-back homomorphism

(2.8.8) ϕ∗ : C∞(M ; Λ)→ C∞(M ′; Λ)
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can be given as the composition

(2.8.9) C∞(M ; Λ)
ϕ∗

−→ C∞(M ′;ϕ∗ΛM)
ϕ∗

−→ C∞(M ′; Λ) ,

where the first map ϕ∗ is given by (2.1.13), and the second map ϕ∗ is induced

by (2.8.7).

Now, suppose ϕ is a submersion and its vertical subbundle V is oriented. Let

πtop : ΛV → ΛtopV denote the canonical projection. The orientation of V gives a

canonical identity Ωfiber ≡ ΛtopV. So

ϕ∗ΛM ⊗ Ωfiber ≡ ϕ∗ΛM ⊗ ΛtopV ⊂ ϕ∗ΛM ⊗ ΛV ≡ ΛM ′ .

Moreover, πtop : ΛV → ΛtopV induces a projection

(2.8.10) πtop : ΛM ′ → ϕ∗ΛM ⊗ Ωfiber .

The push-forward homomorphism or integration along the fibers [BT82, Section I.6],

(2.8.11) ϕ∗ : C∞
c/cv(M ′; Λ)→ C∞

c/·(M ; Λ) ,

can be described as the composition

(2.8.12) C∞
c/cv(M ′; Λ)

πtop−−−→ C∞
c/cv(M ′;ϕ∗ΛM ⊗ Ωfiber)

ϕ∗−→ C∞
c/·(M ; Λ) ,

where πtop is induced by (2.8.10), and ϕ∗ is given by (2.1.14) with E = ΛM .

We also get the push-forward and pull-back maps on currents,

ϕ∗ : C−∞
c/cv(M ′; Λ)→ C−∞

c/· (M ; Λ) ,(2.8.13)

ϕ∗ : C−∞(M ; Λ)→ C−∞(M ′; Λ) ,(2.8.14)

given by the compositions

C–∞
c/cv(M ′; Λ)

πtop−−−→ C–∞
c/cv(M ′;ϕ∗ΛM ⊗ Ωfiber)

ϕ∗−→ C∞
c/·(M ; Λ) ,(2.8.15)

C−∞(M ; Λ)
ϕ∗

−→ C−∞(M ′;ϕ∗ΛM)
ϕ∗

−→ C−∞(M ′; Λ) ,(2.8.16)

where ϕ∗ and the first map ϕ∗ are given by (2.1.17)–(2.1.19) with E = ΛM , and πtop
is induced by (2.8.10). The notation

ffl
ϕ

is also used for ϕ∗, or
ffl
F

if ϕ is a trivial

bundle with typical fiber F .

Proposition 2.8.1. — The compactly supported case of (2.8.13) is the transpose

of (2.8.8), and (2.8.14) is the transpose of the compactly supported case of (2.8.11).

Proof. — By passing to double covers of orientations, we can assume M and M ′ are

oriented, and therefore we can use (2.8.4). By the density of the space of smooth

forms in the space of currents (Section 2.1.4), it is enough to check the statement on

smooth forms, where it is given by [BT82, Proposition 6.15 (b)]: for α ∈ C∞(M ; Λ)

and β ∈ C∞
c (M ′; Λ),

(ϕ∗α, β) =

ˆ
M ′

ϕ∗α ∧ β =

ˆ
M

α ∧ ϕ∗β = (α, ϕ∗β) .
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2.8.6. Homotopy operators. — Recall that any smooth homotopy, H : M ′×I →
M (I = [0, 1]), induces a continuous homotopy operator h : C∞(M ′; Λ)→ C∞(M ; Λ)

(a linear map, which is homogeneous of degree −1, and satisfies H∗
1 −H∗

0 = hd+ dh,

where Ht = H(·, t) : M ′ →M). For instance, we can take h equal to the composition

[BT82, Section 4]

(2.8.17) C∞(M ; Λ)
H∗

−−→ C∞(M ′ × I; Λ)

ffl
I−→ C∞(M ′; Λ) .

2.8.7. Pull-back of conormal currents. — With the notations and conditions of

Section 2.2.8, the map (2.8.8) has a continuous extension

(2.8.18) ϕ∗ : I(M,L; Λ)→ I(M ′, L; Λ) ,

which can be given as the composition

(2.8.19) I(M,L; Λ)
ϕ∗

−→ I(M ′, L′;ϕ∗ΛM)
ϕ∗

−→ I(M ′, L; Λ) ,

where the first map ϕ∗ is given by (2.2.20) with E = ΛM , and the second map ϕ∗

is induced by (2.8.7). If ϕ is a smooth submersion with oriented vertical subbundle,

then (2.8.18) is also a restriction of (2.8.14).

Similarly, when L is of codimension one, there are continuous homomorphisms,

ϕ∗ : K(M,L; Λ)→ K(M ′, L′; Λ) ,(2.8.20)

ϕ∗ : J(M,L; Λ)→ J(M ′, L′; Λ) ,(2.8.21)

which can be given as the compositions

K(M,L; Λ)
ϕ∗

−→ K(M ′, L′;ϕ∗ΛM)
ϕ∗

−→ K(M ′, L; Λ) ,(2.8.22)

J(M,L; Λ)
ϕ∗

−→ J(M ′, L′;ϕ∗ΛM)
ϕ∗

−→ J(M ′, L; Λ) ,(2.8.23)

where the first maps ϕ∗ are given by the analogs of (2.2.20) with E = ΛM for (2.6.42)

and (2.6.43), and the second maps ϕ∗ are induced by (2.8.7).

2.8.8. Push-forward of conormal currents. — With the notations and condi-

tions of Section 2.2.9, assume also that the vertical subbundle of ϕ is oriented. Then

the push-forward homomorphism (2.8.11) has a continuous extension

(2.8.24) ϕ∗ : Ic/cv(M ′, L′; Λ)→ Ic/·(M,L; Λ) ,

which can be described as the composition

(2.8.25) Ic/cv(M ′, L′; Λ)
πtop−−−→ Ic/cv(M ′, L′;ϕ∗ΛM ⊗ Ωfiber)

ϕ∗−→ Ic/·(M,L; Λ) ,

where πtop is induced by (2.8.10), and ϕ∗ is given by (2.2.23) with E = ΛM . The

map (2.8.24) is also a restriction of (2.8.13).

Similarly, if L is of codimension one, there are continuous homomorphisms,

ϕ∗ : Kc/cv(M ′, L′; Λ)→ Kc/·(M,L; Λ) ,(2.8.26)

ϕ∗ : Jc/cv(M ′, L′; Λ)→ Jc/·(M,L; Λ) .(2.8.27)
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which can be described as the compositions

Kc/cv(M ′, L′; Λ)
πtop−−−→ Kc/cv(M ′, L′;ϕ∗ΛM ⊗ Ωfiber)

ϕ∗−→ Kc/·(M,L; Λ) ,(2.8.28)

Jc/cv(M ′, L′; Λ)
πtop−−−→ Jc/cv(M ′, L′;ϕ∗ΛM ⊗ Ωfiber)

ϕ∗−→ Jc/·(M,L; Λ) ,(2.8.29)

where the maps πtop are induced by (2.8.10), and the maps ϕ∗ are given by the analogs

of (2.2.23) with E = ΛM for (2.6.44) and (2.6.45).

2.8.9. Pull-back of dual-conormal currents. — Consider the notations and

conditions of Section 2.3.5 (the same as in Section 2.2.9). The map (2.8.8) has a

continuous extension

(2.8.30) ϕ∗ : I ′(M,L; Λ)→ I ′(M ′, L′; Λ) ,

which can be given as the composition

I ′(M,L; Λ)
ϕ∗

−→ I ′(M ′, L′;ϕ∗ΛM)
ϕ∗

−→ I ′(M ′, L′; Λ) ,

using (2.3.9) like in (2.8.19). The map (2.8.30) is also a restriction of (2.8.14).

Similarly, when L is of codimension one, there are continuous homomorphisms,

ϕ∗ : K ′(M,L; Λ)→ K ′(M ′, L′; Λ) ,(2.8.31)

ϕ∗ : J ′(M,L; Λ)→ J ′(M ′, L′; Λ) ,(2.8.32)

which can be given as the compositions

K ′(M,L; Λ)
ϕ∗

−→ K ′(M ′, L′;ϕ∗ΛM)
ϕ∗

−→ K ′(M ′, L′; Λ) ,

J ′(M,L; Λ)
ϕ∗

−→ J ′(M ′, L′;ϕ∗ΛM)
ϕ∗

−→ J ′(M ′, L′; Λ) ,

using the analogs of (2.3.9) for (2.7.9) and (2.7.10) like in (2.8.22) and (2.8.23).

2.8.10. Push-forward of dual-conormal currents. — With the notations and

conditions of Section 2.3.6, assume also that the vertical subbundle of ϕ is oriented.

Then the map (2.8.11) has a continuous extension

(2.8.33) ϕ∗ : I ′c/cv(M ′, L′; Λ)→ I ′c/·(M,L; Λ) ,

which can be described as the composition

I ′c/cv(M ′, L′; Λ)
πtop−−−→ I ′c/cv(M ′, L′;ϕ∗ΛM ⊗ Ωfiber)

ϕ∗−→ I ′c/·(M,L; Λ) ,

using (2.3.11) like in (2.8.25). The map (2.8.33) is also a restriction of (2.8.13).

Similarly, if L is of codimension one, there are continuous homomorphisms,

ϕ∗ : K ′
c/cv(M ′, L′; Λ)→ K ′

c/·(M,L; Λ) ,(2.8.34)

ϕ∗ : J ′
c/cv(M ′, L′; Λ)→ J ′

c/·(M,L; Λ) ,(2.8.35)
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which can be described as the compositions

K ′
c/cv(M ′, L′; Λ)

πtop−−−→ K ′
c/cv(M ′, L′;ϕ∗ΛM ⊗ Ωfiber)

ϕ∗−→ K ′
c/·(M,L; Λ) ,

J ′
c/cv(M ′, L′; Λ)

πtop−−−→ J ′
c/cv(M ′, L′;ϕ∗ΛM ⊗ Ωfiber)

ϕ∗−→ J ′
c/·(M,L; Λ) ,

using the analogs of (2.3.11) for (2.7.11) and (2.7.12) like in (2.8.28) and (2.8.29).

Proposition 2.8.2. — The compact-support cases of (2.8.33)–(2.8.35) are trans-

poses of (2.8.18), (2.8.20) and (2.8.21); and (2.8.30)–(2.8.32) are transposes of the

compact-support cases of (2.8.24), (2.8.26) and (2.8.27).

Proof. — We have the commutative diagrams

Ic(M
′, L′; Λ)

ϕ∗−−−−→ Ic(M,L; Λ)x x
C∞

c (M ′; Λ)
ϕ∗−−−−→ C∞

c (M ; Λ)

I ′(M ′, L′; Λ)
ϕ∗

←−−−− I ′(M,L; Λ)y y
C−∞(M ′; Λ)

ϕ∗

←−−−− C−∞(M ; Λ) ,

where the vertical arrows are continuous dense inclusions given by (2.2.5) and (2.3.4)

with ΛM . By Proposition 2.8.1, the transpose of the first diagram is

I ′(M ′, L′; Λ)
(ϕ∗)

t

←−−−− I ′(M,L; Λ)y y
C−∞(M ′; Λ)

ϕ∗

←−−−− C−∞(M ; Λ) ,

where the vertical arrows are again inclusion maps. Comparing the second and third

diagrams, we get

(2.8.36) (ϕ∗)t = ϕ∗ : I ′(M,L; Λ)→ I ′(M ′, L′; Λ) .

The analogous argument with the commutative diagrams

I(M ′, L′; Λ)
ϕ∗

←−−−− I(M,L; Λ)x x
C∞(M ′; Λ)

ϕ∗

←−−−− C∞(M ; Λ)

I ′c(M
′, L′; Λ)

ϕ∗−−−−→ I ′c(M,L; Λ)y y
C−∞

c (M ′; Λ)
ϕ∗−−−−→ C−∞

c (M ; Λ)

shows that

(2.8.37) (ϕ∗)t = ϕ∗ : I ′c(M
′, L′; Λ)→ I ′c(M,L; Λ) .

Next, consider the commutative diagrams

Kc(M
′, L′; Λ)

ϕ∗−−−−→ Kc(M,L; Λ)

ι

y yι
Ic(M

′, L′; Λ)
ϕ∗−−−−→ Ic(M,L; Λ)

K ′(M ′, L′; Λ)
ϕ∗

←−−−− K ′(M,L; Λ)

R′

x xR′

I ′(M ′, L′; Λ)
ϕ∗

←−−−− I ′(M,L; Λ) .
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As above, comparing the second one with the transposition of the first one, and

using (2.8.36) and the surjectivity of R′ : I ′(M,L; Λ)→ K ′(M,L; Λ) (Section 2.7.4),

we get

(ϕ∗)t = ϕ∗ : K ′(M,L; Λ)→ K ′(M ′, L′; Λ) .

A similar argument with the commutative diagrams

K(M ′, L′; Λ)
ϕ∗

←−−−− K(M,L; Λ)

ι

y yι
I(M ′, L′; Λ)

ϕ∗

←−−−− I(M,L; Λ)

K ′
c(M

′, L′; Λ)
ϕ∗−−−−→ K ′

c(M,L; Λ)

R′

x xR′

I ′c(M
′, L′; Λ)

ϕ∗−−−−→ I ′c(M,L; Λ) ,

using (2.8.37), shows that

(ϕ∗)t = ϕ∗ : K ′
c(M

′, L′; Λ)→ K ′
c(M,L; Λ) .

Now, consider the commutative diagrams

Jc(M
′, L′; Λ)

ϕ∗−−−−→ Jc(M,L; Λ)

R

x xR
Ic(M

′, L′; Λ)
ϕ∗−−−−→ Ic(M,L; Λ)

J ′(M ′, L′; Λ)
ϕ∗

←−−−− J ′(M,L; Λ)

ι′

y yι′
I ′(M ′, L′; Λ)

ϕ∗

←−−−− I ′(M,L; Λ) .

Again, comparing the second one with the transposition of the first one, and us-

ing (2.8.36) and the injectivity of ι′ : J ′(M,L; Λ) → I ′(M,L; Λ) (Section 2.7.4), we

get

(ϕ∗)t = ϕ∗ : J ′(M,L; Λ)→ J ′(M ′, L′; Λ) .

Finally, the same argument with the commutative diagrams

J(M ′, L′; Λ)
ϕ∗

←−−−− J(M,L; Λ)

R

x xR
I(M ′, L′; Λ)

ϕ∗

←−−−− I(M,L; Λ)

J ′
c(M

′, L′; Λ)
ϕ∗−−−−→ J ′

c(M,L; Λ)

ι′

y yι′
I ′c(M

′, L′; Λ)
ϕ∗−−−−→ I ′c(M,L; Λ) ,

using (2.8.37), gives

(ϕ∗)t = ϕ∗ : J ′
c(M

′, L′; Λ)→ J ′
c(M,L; Λ) .

2.9. Witten’s perturbation of the de Rham complex

2.9.1. Witten’s complex. — The notation z = µ + iλ ∈ C (i =
√
−1) will be

used for a complex parameter. Any closed real η ∈ C∞(M ; Λ1) induces the Witten’s

operators on C∞(M ; Λ), depending on the parameter z ∈ C [Wit82, Nov81, Nov82,
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Paj87, BF97],

(2.9.1)


dz = d+ z η∧ , δz = d∗z = δ − z̄ η⌟ ,
Dz = dz + δz = D + µĉ(η) + iλc(η) ,

∆z = D2
z = dzδz + δzdz = ∆ + µHη − iλJη + |z|2|η|2 ,

where Hη = LV + L∗
V is of order zero and Jη = LV − L∗

V is of order one. Here, dz is

an elliptic complex, giving rise to the twisted cohomology H•
z (M), whose isomorphism

class depends only on the real class ξ := [η] ∈ H1(M) and z ∈ C. The more explicit

notation dzη, δzη, Dzη and ∆zη may be used if needed.

Suppose the manifold M is closed, and let n = dimM . Then ∆z has a discrete

spectrum, and the perturbed operators satisfy (2.1.37). We get the twisted Betti

numbers, βkz = βkz (M, ξ) = dimHk
z (M) (k = 0, . . . , n), whose alternate sum is the

Euler characteristic,
∑
k(−1)kβkz = χ(M) [Far04, Proposition 1.40]. Every βkz is in-

dependent of z outside a discrete subset of C, where βkz jumps (Mityagin and Novikov

[Nov02, Theorem 1]). This ground value of βkz , denoted by βkNo = βkNo(M, ξ), is

called the kth Novikov Betti number. Moreover βkz = βkNo for |µ| ≫ 0 [Far95,

Theorem 2.8], [BF97, Lemma 1.3] [ÁLKL21, Eq. (2.9)].

Since η is real, we have dzα = dz̄ᾱ for all α ∈ C∞(M ; Λ). So conjugation induces

a C-antilinear isomorphism Hk
z (M) ∼= Hk

z̄ (M), yielding βkz = βkz̄ .

For α ∈ C∞(M ; Λr) and β ∈ C∞(M ; Λ), we have

(2.9.2) d(α ∧ β) = dzα ∧ β + (−1)rα ∧ d−zβ .

It follows that the mappings (α, β) 7→ α ∧ β and (α, β) 7→ α ∧ β̄ induce maps,

(2.9.3) Hr
z (M)×Hs

−z(M)→ Hr+s(M) , Hr
z (M)×Hs

−z̄(M)→ Hr+s(M) ,

the first one is bilinear and the second one is sesquilinear. By density and continuity,

the formula (2.9.2) has an extension to the product (2.8.1) of smooth differential forms

and currents.

2.9.2. Interpretation as coefficients in a flat line bundle. — If η = dF for

some real function F ∈ C∞(M), we get the original operators introduced by Witten

[Wit82], which satisfy

(2.9.4)

{
dz = e−zF d ezF = e−iλF dµ e

iλF , δz = ez̄F δ e−z̄F = e−iλF δµ e
iλF ,

Dz = e−iλF Dµ e
iλF , ∆z = e−iλF ∆µ e

iλF .

Thus we have an isomorphism of differential complexes,

ezF : (C∞(M ; Λ), dz)
∼=−→ (C∞(M ; Λ), d) ,

which induces an isomorphism H•
z (M) ∼= H•(M).

Let L be the trivial line bundle M ×C with the flat structure that corresponds to

the trivial flat structure by the multiplication isomorphism eF : L →M ×C, (p, u) 7→
(p, eF (p)u). Its flat covariant derivative is determined by the condition dL1 = dF .



2.9. WITTEN’S PERTURBATION OF THE DE RHAM COMPLEX 77

Every power Lz is similarly defined by the function zF . We have dz ≡ dL
z

on

C∞(M ; Λ) ≡ C∞(M ; Λ⊗Lz). Moreover δz ≡ δL
z

and ∆z ≡ ∆Lz using the standard

Hermitian structure on Lz.
For arbitrary η, take the minimal regular covering π : M̃ →M so that the lift η̃ of

η is exact, say η̃ = dF for some real function F ∈ C∞(M̃). Thus d
M̃,z

= e−zF d
M̃
ezF

on C∞(M̃ ; Λ) corresponds to dM,z on C∞(M ; Λ) via the injection π∗ : C∞(M ; Λ)→
C∞(M̃ ; Λ). Let Γ = Aut(π) be the group of deck transformations of M̃ . The action

of every γ ∈ Γ will be denoted by Tγ or by p̃ 7→ γ · p̃. Since dF is Γ-invariant, there

is a monomorphism Γ → R, γ 7→ cγ , so that F (γ · p̃) = F (p̃) + cγ for all p̃ ∈ M̃ ; its

image is the group of periods of the cohomology class [η].

Let L̃ be the flat line bundle over M̃ defined with F as above. The flat structure

of L̃ is invariant by the first factor action of Γ on L̃, given by γ ·1 (p̃, u) = (γ · p̃, u).

Thus the corresponding quotient Hermitian line bundle L ≡ M × C has an induced

flat structure determined by the condition dL1 = zη. We have dz ≡ dL
z

, δz ≡ δL
z

and ∆z ≡ ∆Lz on C∞(M ; Λ) ≡ C∞(M ; Λ⊗ Lz).
Using the monomorphism Γ→ R×, γ 7→ aγ := ecγ , we can also define the diagonal

action of Γ on M̃ ×C, γ · (p̃, u) = (γ · p̃, aγu), which preserves the vector bundle and

trivial flat structures. Moreover the isomorphism eF : L̃ → M̃ × C is equivariant

with respect to the first factor and diagonal actions of Γ. Hence L can be also

described as the quotient of the trivial flat line bundle M̃ ×C by the diagonal action

of Γ. Let ω̃ ∈ C∞(M̃ ; L̃) be defined by ω̃(p̃) = (p̃, eF (p̃)), which corresponds to

1 ∈ C∞(M̃) ≡ C∞(M̃ ; L̃) by the isomorphism eF : L̃ → M̃ × C. This section is

Γ-invariant and satisfies dL̃ω̃ = η̃⊗ ω̃ in C∞(M̃ ; Λ⊗L̃). So it induces a non-vanishing

section ω of L satisfying dLω = η ⊗ ω in C∞(M ; Λ⊗ L). Furthermore

(2.9.5)


C±∞(M ; Λ⊗ Lz) ≡ C±∞(M ; Λ)⊗ Rωz ≡ C±∞(M ; Λ) ,

dL
z

≡ dz ⊗ 1 ≡ dz , H•
z (M) ≡ H•(M,Lz) ,

δ ≡ δz ⊗ 1 ≡ δz , D ≡ Dz ⊗ 1 ≡ Dz , ∆ ≡ ∆z ⊗ 1 ≡ ∆z ,

writing d = dL
z

, δ = δL
z

, D = DLz , ∆ = ∆Lz . Since (Lz)∗ ≡ L−z, this gives an

interpretation of (2.9.2) and (2.9.3).

2.9.3. Witten’s perturbation vs pull-back and push-forward homomor-

phisms. — For a smooth map ϕ : M ′ → M , let η′ = ϕ∗η. The homomorphism

ϕ∗ : C∞(M ; Λ)→ C∞(M ′; Λ) satisfies ϕ∗dzη = dzη′ϕ
∗. If ϕ is a smooth submersion,

then ϕ∗ : C∞
c/cv(M ′; Λ) → C∞

c/·(M ; Λ) satisfies ϕ∗dzη′ = dzηϕ∗ by [BT82, Proposi-

tion I.6.14 and I.6.15 (a)].

2.9.4. Perturbation of pull-back homomorphisms. — Consider the notation

of Section 2.9.2. For a smooth map ϕ : M →M , take a lift ϕ̃ : M̃ → M̃ . Then ϕ̃∗z :=

e−zF ϕ̃∗ ezF = ez(ϕ̃
∗F−F ) ϕ̃∗ is an endomorphism of (C∞(M̃ ; Λ), d

M̃,z
) by (2.9.4). We
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have T ∗
γ (ϕ̃∗F − F ) = ϕ̃∗F − F for all γ ∈ Γ, obtaining T ∗

γ ϕ̃
∗
z = ϕ̃∗zT

∗
γ . So ϕ̃∗z induces

an endomorphism ϕ∗z of (C∞(M ; Λ), dz), which depends on the choice of the lift ϕ̃ of

ϕ. In the case of a flow ϕ = {ϕt} on M , there is a unique lift to a flow ϕ̃ = {ϕ̃t} on

M̃ , giving rise to a canonical definition of ϕt∗z , called the perturbation of ϕt∗ defined

by η with parameter z.

2.9.5. Witten’s operators on oriented manifolds. — In this subsection, as-

sume M is oriented. If moreover M is closed, then the maps (2.9.3) and integration

on M define nondegenerate pairings,

(2.9.6) Hk
z (M)×Hn−k

−z (M)→ C , Hk
z (M)×Hn−k

−z̄ (M)→ C ,

the first one is bilinear and the second one is sesquilinear. Therefore βkz = βn−k−z =

βn−k−z̄ = βkz̄ .

2.9.6. Witten’s operators vs Hodge star operator. — Continuing with the

condition of orientation, the equalities (2.8.5) yield

(2.9.7)


δz = (−1)nk+n+1 ⋆ d−z̄ ⋆ = (−1)nk+n+1 ⋆̄ d−z ⋆̄ ,

dz ⋆ = (−1)k ⋆ δ−z̄ , δz ⋆ = (−1)k+1 ⋆ d−z̄ , ∆z ⋆ = ⋆∆−z̄ ,

dz ⋆̄ = (−1)k ⋆̄ δ−z , δz ⋆̄ = (−1)k+1 ⋆̄ d−z , ∆z ⋆̄ = ⋆̄∆−z .

Then we get a linear isomorphism ⋆ : ker ∆z → ker ∆−z̄ and an antilinear isomorphism

⋆̄ : ker ∆z → ker ∆−z. If M is closed, they induce an explicit linear isomorphism

Hk
z (M) ∼= Hn−k

−z̄ (M) and an antilinear isomorphism Hk
z (M) ∼= Hn−k

−z (M) by (2.1.37).

Using (2.9.2) and the Stokes theorem, we get

(2.9.8) dz ≡ (−1)k+1 dt−z ,

as maps C−∞(M ; Λk) → C−∞(M ; Λk+1) using (2.8.4). This identity also follows

from (2.8.5), (2.9.7) and (2.8.6): for α ∈ C∞(M ; Λk) and β ∈ C∞(M ; Λn−k−1),

(dzα, β) = (−1)(k+1)n+k+1⟨dzα, ⋆̄β⟩ = (−1)(k+1)n+k+1⟨α, δz ⋆̄β⟩

= (−1)(kn+1⟨α, ⋆̄d−zβ⟩ = (−1)k+1(α, d−zβ) .

This argument also applies to δz and ∆z, giving

δz ≡ (−1)k δt−z : C−∞(M ; Λk)→ C−∞(M ; Λk−1) ,

∆z ≡ ∆t
−z : C−∞(M ; Λk)→ C−∞(M ; Λk) .(2.9.9)

2.9.7. Perturbed operators with two parameters. — We will also consider

perturbed operators of the form

Dz,z′ = dz + δz′ , ∆z,z′ = D2
z,z′ = dzδz′ + δz′dz ,

depending on two parameters z, z′ ∈ C. They are not symmetric if z ̸= z′, but their

leading symbol is symmetric.



2.9. WITTEN’S PERTURBATION OF THE DE RHAM COMPLEX 79

2.9.8. Witten’s operators on manifolds of bounded geometry. — Consider

now the notation of Sections 2.8.1 and 2.9.1. Assume M is of bounded geometry

and η ∈ C∞
ub(M ; Λ1) (Section 2.4.3). Then the differential complex dz is uniformly

bounded and uniformly elliptic for all z ∈ C.

Using also the notation of Section 2.9.4, assume that ϕ : M → M is of bounded

geometry. Then ϕ̃∗F −F induces a function in C∞
ub(M). For m ∈ N0∪{∞}, it follows

from (2.4.6) that ϕ∗z defines a continuous linear endomorphism of Cmub(M ; Λ) f. If

moreover ϕ : M →M is uniformly metrically proper, then, by (2.4.7), ϕ∗z also defines

a continuous linear endomorphism of Hm(M ; Λ).

If ϕ is a diffeomorphism and both of ϕ±1 are of bounded geometry, then ϕ∗z defines

a continuous linear endomorphism of Hm(M ; Λ) for all m ∈ Z ∪ {±∞}. To show

this, we can assume M is oriented with a standard argument using the covering of

orientations. Then, by the version of second equality of (2.1.30) for open manifolds

and (2.8.3), ϕ∗z on H−m(M ; Λ) (m ∈ N0 ∪ {∞}) is the transpose of (ϕ−1)∗−z on

Hm(M ; Λn−•).

In the cases of C∞
ub(M ; Λ) and H±∞(M ; Λ), all of the above endomorphisms are

cochain maps with dz.

The symmetric hyperbolic equation

(2.9.10) ∂tαt = iDzαt , α0 = α ,

on any open subset of M and with t in any interval containing 0, any solution satisfies

the finite propagation speed property [Che73, Proof of Proposition 1.1] (see also

[CGT82, Theorem 1.4], [Roe98, Proof of Proposition 7.20])

(2.9.11) suppαt ⊂ Pen(suppα, |t|) .

In particular, given any α ∈ C∞(M ; Λ), this is true for αt = eitDzα.

For ψ ∈ R (Section 2.4.5), we may use the notation kz = kψ,z = Kψ(Dz), where

ψ(Dz) is given by the spectral theorem. We may also use the notation ku,z = kψu,z
for any family of functions ψu ∈ R depending on a parameter u.

For any ψ ∈ S (Section 2.9.12), we have [Roe88, Proof of Theorem 5.5]

(2.9.12) ψ(Dz) = (2π)−1

ˆ +∞

−∞
eiξDz ψ̂(ξ) dξ .

According to Remark 2.4.14, it follows from (2.9.11) and (2.9.12) that, for all r > 0,

(2.9.13) supp ψ̂ ⊂ [−r, r]⇒ supp kψ,z ⊂ { (p, q) ∈M2 | d(p, q) ≤ r } .

For instance, for ψu(x) = e−ux
2

(u > 0), we get the perturbed heat kernel ku,z =

Ke−u∆z . It satisfies the following estimate like the usual heat kernel [BE91]: for all

u0 > 0 and m1,m2,m3 ∈ N0, there are C1, C2 > 0 so that, for all 0 < u ≤ u0,

(2.9.14) |∂m1
u ∇m2

p ∇m3
q kz,u(p, q)| ≤ C1u

−(n+m2+m3)/2−m1e−C2d
2(p,q)/u .

In particular, kz,u ∈ C∞
ub(M2; Λ ⊠ (Λ∗ ⊗ Ω)) for every u > 0.
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To estimate more general kernels, consider the Fréchet algebra and C[z]-module A
which consists of the functions ψ : R → C that can be extended to entire functions

on C such that, for every compact K ⊂ R, the set {x 7→ ψ(x + iy) | y ∈ K }
is bounded in S [Roe87, Section 4]. It has the following properties: A ⊂ S; A
contains all functions with compactly supported smooth Fourier transform, as well as

the Gaussian x 7→ e−x
2

; if ψ ∈ A and u > 0, then ψu ∈ A, where ψu(x) = ψ(ux);

and, by the Paley-Wiener theorem, for every ψ ∈ A and c > 0, there is some Ac > 0

such that, for all ξ ∈ R,

(2.9.15)
∣∣ψ̂(ξ)

∣∣ ≤ Ace−c|ξ| .
Define the semi-norms ∥·∥A,C,r (C > 0 and r ∈ N0) on A by

∥ψ∥A,C,r = max
j+k≤r

ˆ +∞

−∞
|ξj∂kξ ψ̂(ξ)| eC|ξ| dξ .

Lemma 2.9.1. — If ψ ∈ A and N > n/2, then, for any W > 0, there is some

C ′
1 = C ′

1(z,W ) > 0 such that, for all p, q ∈M and m,m1,m2 ∈ N0 with m1+m2 ≤ m,

|∇m1
p ∇m2

q kz(p, q)| ≤ C ′
1e

−Wd(p,q)∥ψ∥A,W,N+m .

Proof. — Using (2.9.11), (2.9.12) and the Sobolev embedding theorem, one can show

that, for every ϵ > 0, there is some C0 = C0(z, ϵ) > 0 so that, for all ψ ∈ A and

p, q ∈M ,

|kz(p, q)| ≤ C0

ˆ
|ξ|>d(p,q)−ϵ

∣∣(1− ∂2ξ )N ψ̂(ξ)
∣∣ dξ .

Hence, for some fixed ϵ > 0, we obtain that, for any W > 0, there is some C1 =

C1(z,W ) > 0 such that, for all p, q ∈M ,

|kz(p, q)| ≤ C0

ˆ
|ξ|>d(p,q)−ϵ

e−W |ξ| ∣∣(1− ∂2ξ )N ψ̂(ξ)
∣∣ eW |ξ| dξ

≤ C1e
−Wd(p,q)

ˆ +∞

−∞

∣∣(1− ∂2ξ )N ψ̂(ξ)
∣∣ eW |ξ| dξ

= C1e
−Wd(p,q)∥ψ∥A,W,N .

By using (1 + x2)mψ(x) (m ∈ N0) instead of ψ(x), we also get

|(1 + ∆z,p)
m1(1 + ∆−z,q)

m2kz(p, q)| ≤ C1e
−Wd(p,q)∥ψ∥A,W,N+m ,

according to (2.8.4) and (2.9.9), yielding the estimate of the statement.

2.9.9. Witten’s operators on regular coverings of compact manifolds. —

Let π : M̃ → M , Γ, γ · p̃, Tγ and g
M̃

be like in Section 2.9.2. Recall that M̃ is

bounded geometry with g
M̃

.



2.9. WITTEN’S PERTURBATION OF THE DE RHAM COMPLEX 81

Let |·| : Γ → N0 denote the word length function defined by any finite set of

generators γ1, . . . , γk of Γ; recall that |γ| is the minimum length of the expressions of

γ as products of elements γ±1
i . It is well known that there is some c1 ≥ 1 such that

(2.9.16) c−1
1 |γ| ≤ dM̃ (γ · p̃, p̃) ≤ c1 |γ|

for all p̃ ∈ M̃ and γ ∈ Γ. Therefore, given any compact K ⊂ M̃2, we have

(2.9.17) c−1
1 |γ| − c2 ≤ dM̃ (γ · p̃, q̃) ≤ c1 |γ|+ c2

for all γ ∈ Γ and (p̃, q̃) ∈K, where c2 = max d
M̃

(K) ≥ 0.

Let η be a closed real 1-form on M whose lift to M̃ is exact; say η̃ = d
M̃
F for some

F ∈ C∞(M̃,R). For z ∈ C, let Dz = DM,z, ∆z = ∆M,z, D̃z = D
M̃,z

and ∆̃z = ∆
M̃,z

(Section 2.9.1). For any ψ ∈ R, let kz = Kψ(Dz) and k̃z = Kψ(D̃z)
(Section 2.9.8).

For every p̃ ∈ M̃ , let [p̃] = π(p̃). We look for conditions on ψ to get

(2.9.18) kz([p̃], [q̃]) ≡
∑
γ

T ∗
γ k̃z(γ · p̃, q̃)

for all p̃, q̃ ∈ M̃ , using the identity

Λγ·p̃M̃ ⊠ (Λq̃M̃
∗ ⊗ Ωq̃M̃) ≡ Λ[p]M ⊠ (Λ[q]M

∗ ⊗ Ω[q]M) .

In particular, (2.9.18) holds if ψ̂ ∈ C∞
c (R), which can be proved as follows. In this

case, k̃z is supported in a penumbra of the diagonal (Section 2.4.4). By (2.9.17),

taking K = F 2 for some fundamental domain F ⊂ M̃ , it follows that the right-hand

side of (2.9.18) has a finite number of nonzero terms. So it defines a smooth section

on M2, which can be checked to be kz using (2.2.14).

Examples where (2.9.18) fails are easy to construct. For instance, if Γ is non-

amenable, it is well known that the spectrum of ∆̃ on functions has a gap of the form

(0, ϵ) for some ϵ > 0, and therefore (2.9.18) fails for ψ(D) and ψ(D̃) if ψ is even and

supported in (−ϵ, ϵ), with ψ(0) ̸= 0.

Consider the Fréchet algebra and C[z]-module A of Section 2.9.8.

Proposition 2.9.2. — If ψ ∈ A, then (2.9.18) holds, where the series is convergent

in the Fréchet space C∞(M̃2; ΛM̃ ⊠ (ΛM̃∗ ⊗ ΩM̃)).

Proof. — First, let us prove that the series is uniformly convergent with all covariant

derivatives on any fixed compact subset K ⊂ M̃2.

By Lemma 2.9.1, for any W > 0 and N > n/2, there is some C1 = C1(z,W ) > 0

such that, for all p̃, q̃ ∈ M̃ , m ∈ N0 and m1 +m2 ≤ m,∣∣∇m1

p̃ ∇
m2

q̃ k̃z(p̃, q̃)
∣∣ ≤ C1e

−Wd
M̃

(p̃,q̃)∥ψ∥A,W,N+m .

Then, by (2.9.17),

(2.9.19)
∣∣∇m1

p̃ ∇
m2

q̃ k̃z(γ · p̃, q̃)
∣∣ ≤ C ′

1e
−W
c1

|γ| ∥ψ∥A,W,N+m
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for γ ∈ Γ, (p̃, q̃) ∈K and m1 +m2 ≤ m, where C ′
1 = C1e

Wc2 . Since the growth of Γ

is at most exponential, there is some W0 > 0 such that

(2.9.20)
∑
γ∈Γ

e−W0 |γ| <∞ .

Choosing W > c1W0, it follows from (2.9.19) and (2.9.20) that there is some C =

C(z,K,W,N) > 0 such that

(2.9.21)
∣∣∣∑
γ∈Γ

∇m1

p̃ ∇
m2

q̃ T ∗
γ k̃z(γ · p̃, q̃)

∣∣∣ ≤ C ∥ψ∥A,W,N+m .

So the series in (2.9.18) is uniformly convergent on K with all covariant derivatives.

The identity (2.9.18) for any ψ ∈ A follows from (2.9.21), approximating ψ in A
by a sequence of functions with compactly supported Fourier transform.

Remark 2.9.3. — Proposition 2.9.2 will be applied to an abelian covering. In that

case, or, more generally, when Γ has polynomial growth, its proof can be slightly

modified so that it works for any ψ ∈ S. However not only this proposition, but also

the estimate (2.9.19) will be used later, and we need ψ ∈ A to get the exponential

factor of this estimate.

2.9.10. Local index formula for the Witten’s complex. — Suppose M is

of bounded geometry and consider the perturbed heat operator e−t∆z (t > 0) in

L2(M ; Λ), defined by the spectral theorem. By the ellipticity of ∆z, the opera-

tor e−t∆z is smoothing and let kz,t ∈ C∞
ub(M2; Λ ⊠ (Λ∗ ⊗ Ω)) denote its Schwartz

kernel (the perturbed heat kernel). It has an asymptotic expansion as t ↓ 0 in

C∞
ub(M2; Λ ⊠ (Λ∗ ⊗ Ω)) of the form

(2.9.22) kz,t(p, q) ∼ ht(p, q)
∞∑
j=0

tjΘz,j(p, q) · |dvol|(q) ,

where |dvol| denotes the Riemannian density and

ht(p, q) =
1

(4πt)n/2
e−d(p,q)

2/4t , Θz,j ∈ C∞
ub(M2; Λ ⊠ Λ∗) .

This expression can be formally differentiated to obtain also asymptotic expansions of

the derivatives of kz,t(p, q) with respect to t, p and q. On the diagonal ∆ ⊂M2, the

terms Θz,j can be locally described with algebraic expressions of the local coefficients

of the metric and the form η, and their derivatives. When z = 0, we simply write

kt and Θj . (See e.g. [Gil95, Section 1.8.1] or [BGV04, Section 2.5].) We have

Θz,j(p, p) = Θµ,j(p, p) by (2.9.4) since η is locally exact.

For even n, let e(M, g) ∈ C∞(M ; Λ⊗o(M)) = C∞(M ; Ω) denote the Euler density

of (M, g) (the representative of the Euler class given by the Chern-Weil theory).

Theorem 2.9.4 ([BZ92, Theorem 13.4]; see also [ÁLG21, Theorem 1.5])

We have:
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(i) str Θz,j(p, p) = 0 for j < n/2; and,

(ii) if n is even, then str Θz,n/2(p, p) |dvol(p)| = e(M, g)(p).

Remark 2.9.5. — In the given references, Theorem 2.9.4 was stated for compact

manifolds, but its proof is a local computation, and therefore compactness is irrel-

evant. We have an additional proof of Theorem 2.9.4 (ii) using Getzler’s rescaling,

following [BGV04, Section 4.3]. In the case n = 2, this can be also checked directly.

We omit the details of our alternative proof for brevity reasons.

2.9.11. Local Lefschetz trace formula for the Witten’s complex. — Let ϕ :

U → V be a smooth map between open subsets of M with U ⊂ V , whose fixed

point set is denoted by Fix(ϕ). Recall that a fixed point p of ϕ is called simple if the

eigenvalues of ϕ∗ : TpM → TpM are different from 1. This means that the graph of ϕ

is transverse to ∆ in M2 at (p, p); in particular, p is isolated in Fix(ϕ). In this case,

let

(2.9.23) ϵp = ϵp(ϕ) = sign det(id−ϕ∗ : TpM → TpM) ∈ {±1} .

Assume V is simply connected, and therefore η = dF on V for some F ∈ C∞(V ).

Consider the perturbed linear map ϕ∗z = ez(ϕ
∗F−F ) ϕ∗ : ϕ∗ΛV → ΛU (z ∈ C) (Sec-

tion 2.9.4). Take any relatively compact open neighborhood W of p in U such that

W ∩Fix(ϕ) = {p}. Without loss of generality, we can assume that U is an open subset

of a manifold of bounded geometry (or even of a closed manifold), where η and ϕ can

be extended to a closed real 1-form and a smooth map.

Proposition 2.9.6. — For all z ∈ C,

lim
t↓0

ˆ
q∈W

str(ϕ∗zkz,t(ϕ(q), q) = ϵp(ϕ) .

Proof. — This follows like in the analytic proof of the Lefschetz trace formula [AB67]

(see also [Roe98, Chapter 10] or [Gil95, Section 3.9]), using (2.9.22) and the expres-

sion

ez(Fϕ(x)−F (x)) = 1 +O(|x|) ,
in terms of normal coordinates x = (x1, . . . , xn) centered at p.

2.9.12. A tempered distribution associated to some closed 1-forms. — As-

sume M is closed, and let S = S(R) (Section 2.1.11). We would like to define a limit

(2.9.24) Z = Z(M, g, η) = lim
µ→+∞

Zµ

in S ′, where Zµ = Zµ(M, g, η) ∈ S ′ (µ≫ 0) should be given by

(2.9.25) ⟨Zµ, f⟩ = − 1

2π

ˆ ∞

0

ˆ +∞

−∞
Str

(
η∧ δze−u∆z

)
f̂(ν) dλ du ,
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for all f ∈ S, where Str denotes the supertrace. If Z(M, g,−η) is defined, then

Zµ(M, g, η) ∈ S ′ is defined for µ≪ 0, and, in S ′,

−Z(M, g,−η) = lim
µ→−∞

Zµ(M, g, η) .

Theorem 2.9.7 ([ÁLKL21, Theorems 1.1–1.4]). — Let M be a closed manifold of

dimension n. For every real class ξ ∈ H1(M) and τ ≫ 0, there is some η ∈ ξ and

some Riemannian metric g on M such that (2.9.24) and (2.9.25) define the tempered

distribution Z = τδ0, using the Dirac distribution δ0 on R. If n is even, this property

holds for all τ ∈ R, and we can choose η ∈ ξ so that Z(M, g,±η) is defined and

±Z(M, g,±η) = τδ0.

Remark 2.9.8. — If n is even, we can choose η and g in Theorem 2.9.7 so that

Z(M, g,±η) = 0.



CHAPTER 3

FOLIATION TOOLS

3.1. Foliations

Standard references on foliations are [HH81, HH83, CLN85, God91, CC00,

CC03], and for analysis on foliations see [Con82, MS88].

3.1.1. Basic concepts. — Recall that a (smooth) foliation F on a manifold M ,

with codimension n′ and dimension n′′ (codimF = n′, dimF = n′′), can be described

by a foliated atlas {Uk, xk} of M . The foliated charts or foliated coordiates (Uk, xk)

are of the form

(3.1.1) xk = (x′k, x
′′
k) : Uk → xk(Uk) = Σk ×B′′

k ,

where B′′
k is an open ball of Rn′′

and Σk is open in Rn′
, and the corresponding changes

of coordinates are locally of the form

(3.1.2) xlx
−1
k (u, v) = (hlk(u), glk(u, v)) .

We will use the notation

xk = (x1k, . . . , x
n
k ) = (x′1k , . . . , x

′n′

k , x′′n
′+1

k , . . . , x′′nk ) .

It is also said that (M,F) is a foliated manifold. The open sets Uk and the projections

x′k : Uk → Σk are said to be distinguished, the fibers of x′k are called plaques, and the

fibers of x′′k are called local transversals defined by (Uk, xk), which can be identified

with Σk via x′k. Thus the sets Σk can be considered as local transversals of F with

disjoint closures. The open subsets of all plaques form a base of a topology on M ,

called the leaf topology, becoming a smooth manifold of dimension n′′ with the obvious

charts induced by {Uk, xk}, and its connected components are called leaves. The leaf

through any point p may be denoted by Lp. The F-saturation of a subset S ⊂ M ,

denoted by F(S), is the union of leaves that meet S.
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Foliations on manifolds with boundary are similarly defined, assuming the bound-

ary is either tangent or transverse to the leaves; we will only use the case where the

boundary is tangent to the leaves (it is a union of leaves).

If a smooth map ϕ : M ′ →M is transverse to (the leaves of) F , then the connected

components of the inverse images ϕ−1(L) of the leaves L of F are the leaves of

a smooth foliation ϕ∗F on M ′ of codimension n′, called pull-back of F by ϕ. In

particular, for the inclusion map of any open subset, ι : U ↪→ M , the pull-back ι∗F
is the restriction F|U .

Any connected manifold M can be considered as a foliation with one leaf, also

denoted by M . On the other hand, we can consider the foliation by points on M ,

denoted by Mδ (δ refers to the discreteness of the leaf topology). Given foliations Fa
on manifolds Ma (a = 1, 2), the products of leaves of F1 and F2 are the leaves of the

product foliation F1×F2, whose charts can be defined using products of charts of F1

and F2.

3.1.2. Holonomy. — After considering a refinement if necessary, we can assume

the foliated atlas {Uk, xk} is regular in the following sense: it is locally finite; for every

k, there is a foliated chart (Ũk, x̃k) such that Uk ⊂ Ũk and x̃k extends xk; and, if

Ukl := Uk ∩Ul ̸= ∅, then there is another foliated chart (U, x) such that Uk ∪Ul ⊂ U .

In this case, (3.1.2) holds on the whole of Ukl, obtaining the elementary holonomy

transformations hkl : x′l(Ukl) → x′k(Ukl), determined by the condition hklx
′
l = x′k on

Ukl. The collection {Uk, x′k, hkl} is called a defining cocycle. The maps hkl generate

the holonomy pseudogroup H on Σ :=
⊔
k Σk, which is unique up to certain equivalence

of pseudogroups [Hae80]. This Σ can be considered as a complete transversal of F ,

in the sense that it meets all leaves. The notation (Σ,H) may be also used. The

H-orbit of every p̄ ∈ Σ is denoted by H(p̄). The maps x′k induce a homeomorphism

between the leaf space, M/F , and the orbit space, Σ/H.

The paths in the leaves are called leafwise paths when considered in M . Let

c : I := [0, 1]→ M be a leafwise path with p := c(0) ∈ Uk and q := c(1) ∈ Ul. There

is a partition of I = [0, 1], 0 = t0 < t1 < · · · < tm = 1, and a sequence of indices,

k = k1, k2, . . . , km = l, such that c([ti−1, ti]) ⊂ Uki for i = 1, . . . ,m. The composition

hc = hkmkm−1
· · ·hk2k1 , wherever defined, is a diffeomorphism with x′k(p) ∈ domhc ⊂

Σk and x′l(q) = hcx
′
k(p) ∈ imhc ⊂ Σl. The tangent map hc∗ : Tx′

k(p)
Σk → Tx′

l(q)
Σl

is called infinitesimal holonomy of c. The germ hc of hc at x′k(p), called germinal

holonomy of c, depends only on F and the end-point homotopy class of c in L = Lp.

In particular, taking q = p and l = k, this defines the holonomy homomorphism

onto the holonomy group, h = hL : π1(L, p) → Hol(L, p). The isomorphism class

of Hol(L, p) is independent of p; thus the notation HolL may be used, like π1L. If

HolL is trivial, then L is said to be without holonomy. Residually many leaves have

no holonomy [Hec77, EMT77]. If all leaves have no holonomy, then F is said to

be without holonomy. The kernel of h : π1L → HolL defines the holonomy cover
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L̃ = L̃hol of L. If D is a compact domain of a leaf L with smooth boundary, then F
can be completely described in some neighborhood of D in M by the composition

π1D → π1L
h−→ HolL ,

where the first homomorphism is induced by D ↪→ L [Hae62, Section 2.7] (see

also [HH81, Theorem 2.1.7], [CLN85, Theorem IV.2], [God91, Theorem II.2.29],

[CC00, Theorem 2.3.9]). This description, called Reeb’s local stability, involves the

so-called suspension foliation, which allows the lifting of smooth paths from L to

nearby leaves, continuously in the C∞ topology.

3.1.3. Infinitesimal transformations and transverse vector fields. — The

vectors tangent to the leaves form the tangent bundle TF ⊂ TM , obtaining also the

normal bundle NF = TM/TF , the cotangent bundle T ∗F = (TF)∗ and the conormal

bundle N∗F = (NF)∗, the flat line bundles of tangent/normal orientations, o(F) =

o(TF) and o(NF), the tangent/normal density bundles, ΩaF = ΩaTF (a ∈ R) and

ΩaNF (removing “a” from the notation when it is 1), and the tangent/normal exterior

bundles, ΛF =
∧
T ∗F⊗C and ΛNF =

∧
N∗F⊗C. Again, we typically consider these

density and exterior bundles with complex coefficients, without changing the notation;

the few cases of real coefficients will be indicated. The terms tangent/normal vector

fields, densities and differential forms are used for their smooth sections. Sometimes,

“leafwise” is used instead of “tangent”. Any X ∈ TM (resp., X ∈ X(M)) canonically

defines an element of NF (resp., C∞(M ;NF)) denoted by X. For any smooth

local transversal Σ of F through a point p ∈ M , there is a canonical isomorphism

TpΣ ∼= NpF .

A smooth vector bundle E over M , endowed with a flat TF-partial connection, is

said to be F-flat. For instance, NF is F-flat with the Bott TF-partial connection

∇F , given by ∇F
VX = [V,X] for V ∈ X(F) := C∞(M ;TF) and X ∈ X(M). For

every leafwise path c from p to q, its infinitesimal holonomy can be considered as a

homomorphism hc∗ : NpF → NqF , which is the ∇F -parallel transport along c.

X(F) is a Lie subalgebra and C∞(M)-submodule of X(M), whose normalizer is

denoted by X(M,F), obtaining the quotient Lie algebra X(M,F) = X(M,F)/X(F).

The elements of X(M,F) (resp., X(M,F)) are called infinitesimal transformations

(resp., transverse vector fields). The projection of every X ∈ X(M,F) to X(M,F) is

also denoted by X; in fact,

X(M,F) ≡ {X ∈ C∞(M ;NF) | ∇FX = 0 } ⊂ C∞(M ;NF) .

Any X ∈ X(M) is in X(M,F) if and only if every restriction X|Uk can be projected

by x′k, defining an H-invariant vector field on Σ, also denoted by X. This induces a

canonical isomorphism of X(M,F) to the Lie algebra X(Σ,H) of H-invariant tangent

vector fields on Σ.
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When M is not closed, we can consider the subsets of complete vector fields,

Xcom(F) ⊂ X(F) and Xcom(M,F) ⊂ X(M,F). Let Xcom(M,F) ⊂ X(M,F) be the

projection of Xcom(M,F).

3.1.4. Holonomy groupoid. — On the space of leafwise paths in M , with the

compact-open topology, two leafwise paths are declared to be equivalent if they have

the same end points and the same germinal holonomy. This is an equivalence relation,

and the corresponding quotient space, G = Hol(M,F), becomes a smooth manifold

of dimension n+n′ in the following way. An open neighborhood U of a class [c] in G,

with c(0) ∈ Uk and c(1) ∈ Ul, is defined by the leafwise paths d such that d(0) ∈ Uk,

d(1) ∈ Ul, x
′
kd(0) ∈ domhc, and hd and hc have the same germ at x′kd(0). Local

coordinates on U are given by [d] 7→ (d(0), x′′l d(1)). Moreover, G is a Lie groupoid,

called the holonomy groupoid, where the space of units G(0) ≡ M is defined by the

constant paths, the source and range projections s, r : G→M are given by the first

and last points of the paths, the operation is induced by the opposite of the usual

path product, and the inversion is induced by the usual path inversion. Note that G

is Hausdorff if and only if H is quasi-analytic in the following sense: for any h ∈ H
and open O ⊂ Σ with O ⊂ domh, if h|O = idO, then h is the identity on some

neighborhood of O. Observe also that s, r : G → M are smooth submersions, and

(r, s) : G → M2 is a smooth immersion. Let RF = { (p, q) ∈ M2 | Lp = Lq } ⊂ M2,

which is not a regular submanifold in general, and let ∆ ⊂ M2 be the diagonal. We

have (r, s)(G) = RF and (r, s)(G(0)) = ∆. For any leaf L and p ∈ L, we have

Hol(L, p) = s−1(p) ∩ r−1(p), the map r : s−1(p) → L is the covering projection

L̃hol → L, and s : r−1(p) → L corresponds to r : s−1(p) → L by the inversion of G.

Thus (r, s) : G→M2 is injective if and only if all leaves have trivial holonomy groups,

but, even in this case, this map may not be a topological embedding. The fibers of

s and r define smooth foliations of codimension n on G. We also have the smooth

foliation s∗F = r∗F of codimension n′ with leaves s−1(L) = r−1(L) = (r, s)−1(L2)

for leaves L of F , and every restriction (r, s) : (r, s)−1(L2)→ L2 is a smooth covering

projection.

Let Fk = F|Uk , Gk = Hol(Uk,Fk) and Rk = RFk . The set
⋃
kGk (resp.,

⋃
kRk)

is an open neighborhood of G(0) in G (resp., of ∆ in RF ). Furthermore, by the

regularity of {Uk, xk}, the map (r, s) :
⋃
kGk → M2 is a smooth embedding with

image
⋃
kRk; we will write

⋃
kGk ≡

⋃
kRk.

3.1.5. The convolution algebra on G and its global action. — Consider the

notation of Section 3.1.4. For the sake of simplicity, assume G is Hausdorff [Con79].

The extension of the following concepts to the case where G is not Hausdorff can be

made like in [Con82].

Given a vector bundle E over M , let S = r∗E ⊗ s∗(E∗ ⊗ ΩF), which is a vector

bundle over G. Let C∞
cs (G;S) ⊂ C∞(G;S) denote the subspace of sections k ∈
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C∞(G;S) such that supp k∩s−1(K) is compact for all compact K ⊂M ; in particular,

C∞
cs (G;S) = C∞

c (G;S) if M is compact. Similarly, define C∞
cr (G;S) by using r instead

of s. Both C∞
cs (G;S) and C∞

cr (G;S) are associative algebras with the convolution

product defined by

(k1 ∗ k2)(γ) =

ˆ
s(ϵ)=s(γ)

k1(γϵ−1) k2(ϵ) =

ˆ
r(δ)=r(γ)

k1(δ) k2(δ−1γ) ,

and C∞
csr(G;S) := C∞

cs (G;S) ∩ C∞
cr (G;S) and C∞

c (G;S) are subalgebras.

The global action of C∞
cr (G;S) on C∞(M ;E) is the left action defined by

(k · u)(p) =

ˆ
r(γ)=p

k(γ)u(s(γ)) .

In this way, C∞
cr (G;S) can be considered as an algebra of operators on C∞(M ;E).

Moreover C∞
csr(G;S) preserves C∞

c (M ;E), obtaining an algebra of operators on

C∞
c (M ;E). It can be said that these operators are defined by a leafwise version of a

smooth Schwartz kernel (cf. Section 2.1.5).

Let S′ = r∗(E∗ ⊗ΩF)⊗ s∗E. The mapping k 7→ kt, kt(γ) = k(γ−1), defines anti-

homomorphisms C∞
cs/cr(G;S)→ C∞

cr/cs(G;S′) and C∞
csr(G;S)→ C∞

csr(G;S′), obtaining

a leafwise version of the transposition of operators (cf. Section 2.1.5). Similarly, using

E = Ω1/2F , or if E has a Hermitian structure and we fix a non-vanishing leafwise

density, we get a leafwise version of taking adjoint operators. Moreover, in this case,

C∞
c (G;S) is ∗-algebra.

3.1.6. Leafwise metric. — A Euclidean structure gF on TF is called a leafwise

(Riemannian) metric of F . The corresponding leafwise distance is the map dF :

M2 → [0,∞] given by the distance function of the leaves on RF , taking dF (M2 \
RF ) = ∞. For p ∈ M , S ⊂ M and r > 0, the open and closed leafwise balls,

BF (p, r) and BF (p, r), and the open and closed leafwise penumbras, PenF (S, r) and

PenF (S, r), are defined with dF like in the case of Riemannian metrics (Section 2.4).

The Levi-Civita connection on the leaves defines a TF-partial connection on TF , also

denoted by ∇F .

Equip the foliation r∗F on G with the leafwise Riemannian metric so that the

foliated immersion (r, s) : (G, r∗F) → (M2,F2) is isometric on the leaves. Let dr :

G→ [0,∞] denote the leafwise distance for the foliation on G defined by the fibers of

r, and consider the corresponding open and closed leafwise penumbras, Penr(G(0), r)

and Penr(G(0), r). Note that we get the same penumbras by using s instead of

r; indeed, they are given by the conditions dholF < r and dholF ≤ r, resp., where

dholF : G→ [0,∞) is defined by

dholF (γ) = inf
c

length(c) ,

with c running in the piecewise smooth representatives of γ.
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For example, if M is endowed with a Riemannian metric, its restriction to the

leaves defines a leafwise Riemannian metric. In this case, dF ≥ dM (the distance

function of M), and the leafwise metric of r∗F is given by the Riemannian metric on

G so that the immersion (r, s) : G→M2 is isometric.

By the smooth lifting of leafwise paths to nearby leaves, it easily follows that dholF :

G → [0,∞) and dF : RF → [0,∞) are upper semicontinuous. Moreover dholF ≡ dF
on

⋃
kGk ≡

⋃
kRk. Using the convexity radius (see e.g. [Pet98, Section 6.3.2]), it

follows that, after refining {Uk, xk} if necessary, we can assume dF is continuous on⋃
kRk.

Lemma 3.1.1. — The following properties hold for any compact K ⊂M2:

(i) If K ⊂ RF , then dF |K reaches a finite maximum at some point.

(ii) If K ∩∆ = ∅, then inf dF (K) > 0. If moreover inf dF (K) is small enough, then

it is the minimum of dF |K .

Proof. — Using that K is compact, ∆ = {dF = 0}, RF = {dF <∞}, and
⋃
kRk is

a neighborhood of ∆ in RF containing K ∩ {dF ≤ r} for some r < 0, we get (i) by

the upper semicontinuity of dF , and (ii) by the continuity of dF on
⋃
kRk.

Remark 3.1.2. — The obvious version of Lemma 3.1.1 for dholF and compact subsets

of G can be proved with analogous arguments.

From now on, suppose the leaves with gF are complete Riemannian manifolds.

Then their exponential maps define a smooth map expF : TF →M .

With the notation of Section 3.1.5, let C∞
p (G;S) ⊂ C∞(G;S) denote the sub-

space of sections supported in leafwise penumbras of G(0). This is a subalgebra

of C∞
csr(G;S), and the leafwise transposition restricts to an anti-homomorphism

C∞
p (G;S)→ C∞

p (G;S′) [ÁLKL20, Section 4.6].

3.1.7. Foliated maps and foliated flows. — A foliated map ϕ : (M1,F1) →
(M2,F2) is a map ϕ : M1 →M2 that maps leaves of F1 to leaves of F2. In this case,

assuming that ϕ is smooth, its tangent map defines homomorphisms ϕ∗ : TF1 → TF2

and ϕ∗ : NF1 → NF2, where the second one is compatible with the corresponding

flat partial connections. We also get an induced Lie groupoid homomorphism Hol(ϕ) :

Hol(M1,F1)→ Hol(M2,F2), defined by Hol(ϕ)([c]) = [ϕc]. The set of smooth foliated

maps (M1,F1) → (M2,F2) is denoted by C∞(M1,F1;M2,F2). A smooth family

ϕ = {ϕt | t ∈ T } of foliated maps (M1,F1) → (M2,F2) can be considered as the

smooth foliated map ϕ : (M1 × T,F1 × T δ)→ (M2,F2).

For example, if a smooth map ψ : M ′ → M is transverse to a foliation F on M ,

then it is a foliated map (M ′, ψ∗F)→ (M,F). Moreover ψ∗ : Nψ∗F → NF restricts

to isomorphisms between the fibers; i.e., it induces an isomorphism ψ∗ : Nψ∗F
∼=−→

ψ∗NF of ψ∗F-flat vector bundles over M ′.
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Let Diffeo(M,F) be the group of foliated diffeomorphisms (or transformations) of

(M,F). A smooth flow ϕ = {ϕt} on M is called foliated if ϕt ∈ Diffeo(M,F) for all

t ∈ R. More generally, a local flow ϕ : Ω→M , defined on some open neighborhood Ω

of M×{0} in M×R, is called foliated if it is a foliated map (Ω, (F×Rδ)|Ω)→ (M,F).

Then X(M,F) consists of the smooth vector fields whose local flow is foliated, and

Xcom(M,F) consists of the complete smooth vector fields whose flow is foliated.

Let X ∈ Xcom(M,F), with foliated flow ϕ = {ϕt}, and let ϕ̄ be the local flow on Σ

generated by X ∈ X(Σ,H) (Sections 3.1.2 and 3.1.3). The following properties hold

[ÁLKL20, Section 4.8]: via x′k : Uk → Σk, the local flow defined by ϕ on every Uk
corresponds to the restriction of ϕ̄ to Σk; and ϕ̄ is H-equivariant in an obvious sense.

Take another vector field Y ∈ Xcom(M,F) with foliated flow ψ = {ψt}.

Lemma 3.1.3. — We have Y = X if and only if ϕt(L) = ψt(L) for all t ∈ R and

every leaf L.

Proof. — The condition Y = X is equivalent to ϕ̄ = ψ̄, which means that the local

flows defined by ϕ and ψ on every Uk correspond to the same local flow on Σk via

π′
k. In turn, this is equivalent to the existence of some open Ω ⊂ M × R, containing

M × {0}, such that ϕ(p, t) and ψ(p, t) are in the same leaf for all (p, t) ∈ Ω. But this

is equivalent to ϕt(L) = ψt(L) for all leaf L and t ∈ R because ϕ and ψ are foliated

flows.

A smooth homotopy H : M1 × I → M2 (I = [0, 1]) between foliated maps ϕ, ψ :

(M1,F1) → (M2,F2) is said to be leafwise (or integrable) if it is a foliated map

(M1× I,F1× I)→ (M2,F2). When there is such a leafwise homotopy, it is said that

ϕ and ψ are leafwisely homotopic.

A smooth leafwise homotopy between foliated flows on (M,F), ϕ = {ϕt} and

ψ = {ψt}, is a smooth family H = {Ht}, where every Ht : M × I → M is a

leafwise homotopy between ϕt and ψt; in other words, it can be considered as a

leafwise homotopy H : M × R × I → M between the corresponding foliated maps

ϕ, ψ : (M ×R,F ×Rδ)→ (M,F). If moreover every H(·, ·, s) : M ×R→M is a flow,

then H is called a smooth flow leafwise homotopy.

Proposition 3.1.4. — Let X,Y ∈ Xcom(M,F), with foliated flows ϕ = {ϕt} and

ψ = {ψt}, such that V := Y −X ∈ Xc(F). Then there is a flow leafwise homotopy

H : M ×R× I →M between ϕ and ψ such that H(p, t, s) = ϕt(p) for all p ∈M with

ϕt(p) = ψt(p).

Proof. — Since X ∈ Xcom(M,F) and V ∈ Xc(F), we have Zs := X + sV ∈
Xcom(M,F) (s ∈ I). Let ξs : M ×R→M denote the flow of every Zs. Since Zs = X

for all s, it follows from Lemma 3.1.3 that the statement holds withH : M×R×I →M

defined by H(·, ·, s) = ξs.
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3.1.8. Differential operators on foliated manifolds. — Like in Section 2.1.7,

using X(F) instead of X(M), we get the filtered subalgebra and C∞(M)-submodule

of leafwise differential operators, Diff(F) ⊂ Diff(M), and a leafwise principal symbol

exact sequence for every order m,

0→ Diffm−1(F) ↪→ Diffm(F)
Fσm−−−→ P (m)(T ∗F)→ 0 .

Moreover these concepts can be extended to vector bundles E and F over M like in

Section 2.1.7, obtaining the filtered C∞(M)-submodule Diff(F ;E,F ) (or Diff(F ;E)

if E = F ) of Diff(M ;E,F ), and the leafwise principal symbol Fσm : Diffm(F ;E,F )→
P (m)(T ∗F ;F ⊗ E∗). The diagram

Diffm(F ;E,F )
Fσm−−−−→ P (m)(T ∗F ;F ⊗ E∗)y y

Diffm(M ;E,F )
σm−−−−→ P (m)(T ∗M ;F ⊗ E∗)

is commutative, where the left-hand side vertical arrow denotes the inclusion ho-

momorphism, and the right-hand side vertical arrow is induced by the restriction

homomorphism T ∗M → T ∗F . The condition of being a leafwise differential operator

is preserved by compositions and by taking transposes, and by taking formal adjoints

in the case of Hermitian vector bundles; in particular, Diff(F ;E) is a filtered subal-

gebra of Diff(M ;E). It is said that A ∈ Diffm(F ;E,F ) is leafwisely elliptic if the

symbol σm(A)(p, ξ) is an isomorphism for all p ∈ M and 0 ̸= ξ ∈ T ∗
pF . In this way,

the concepts of leafwise differential complex and its leafwise ellipticity can be defined

like in Section 2.1.14.

A smooth family of leafwise differential operators, A = {At | t ∈ T } ⊂
Diffm(F ;E,F ), can be canonically considered as a leafwise differential operator

A ∈ Diffm(F × T δ; pr∗1 E,pr∗1 F ), where pr1 : M × T → M is the first-factor

projection.

On the other hand, considering the canonical injection N∗F ⊂ T ∗M , it is said

that A ∈ Diffm(M ;E,F ) is transversely elliptic if the symbol σm(A)(p, ξ) is an iso-

morphism for all p ∈ M and 0 ̸= ξ ∈ N∗
pF . The concept of transverse ellipticity has

an obvious extension to differential complexes like in Section 2.1.14.

We can use Diff(F ;E) to define variants of the section spaces recalled in Sec-

tion 2.1.4. For instance, for m ∈ N0, we have the LCHS

C0,m
F (M ;E) = {u ∈ C(M ;E) | Diffm(F ;E) · u ⊂ C(M ;E) } ,

with the topology defined like in (2.1.1). Let also C0,∞
F (M ;E) =

⋂
m C

0,m(M ;E).

If F is described by a submersion ϖ : M → M ′, then the subscript ϖ may be used

instead of F , which agrees with the notation already used in Remark 2.5.11.

3.1.9. Transverse structures. — Recall that (Σ,H) denotes the holonomy pseu-

dogroup of F . An (invariant) transverse structure of F is an H-invariant structure on
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Σ. It can be also considered as a ∇F -parallel structure on NF . For our purposes, it is

enough to consider structures on Σ (resp., on NF) defined by smooth sections of bun-

dles associated with TΣ (resp., NF) satisfying some conditions. For instance, we will

use the concepts of a transverse orientation, a transverse Riemannian metric and a

transverse parallelism. The existence of these transverse structures defines the classes

of transversely orientable, (transversely) Riemannian, and transversely parallelizable

(TP) foliations.

A transverse orientation of F can be simply described as an orientation of NF ,

which is necessarily ∇F -parallel. It can be determined by a non-vanishing real form

ω ∈ C∞(M ; Λn
′
NF); i.e., some real ω ∈ C∞(M ; Λn

′
) defining F in the sense that

TF = {Y ∈ TM | ιY ω = 0 }. By Frobenius theorem, the integrability of TF
means that dω = η ∧ ω for some real η ∈ C∞(M ; Λ1), which is unique modulo

C∞(M ; Λ1NF). All other pairs of differential forms ω′ and η′ satisfying these condi-

tions are of the form ω′ = efω and η′ = η+ df for any real function f ∈ C∞(M). We

have dω = 0 just when ω defines an invariant transverse volume form. Any invariant

transverse volume form ω defines an invariant transverse density |ω| ∈ C∞(M ; ΩNF),

which can be considered as an invariant transverse measure.

Remark 3.1.5. — Even when F is not transversely oriented, it is defined by some

real ω ∈ C∞(M ; Λn
′
NF ⊗ o(NF)) ≡ C∞(M ; ΩNF), and we have dω = ω ∧ η for

some real 1-form η, as above.

A transverse parallelism can be described as a global frame of NF consisting of

transverse vector fields X1, . . . , Xn′ . If its linear span is a Lie subalgebra g ⊂ X(M,F),

it is called a transverse Lie structure, giving rise to the concept of (g-)Lie foliation.

If moreover X1, . . . , Xn′ ∈ Xcom(M,F), then the TP or Lie foliation F is said to be

complete.

Let G be the simply connected Lie group with Lie algebra g as above. Then

F is a g-Lie foliation just when H is equivalent to some pseudogroup generated by

restrictions of some left translations on some open T ⊂ G, which is complete just

when we can take T = G.

Similarly, a transverse Riemannian metric can be described as a ∇F -parallel Eu-

clidean structure on NF . It is always induced by a Riemannian metric on M such

that every x′k : Uk → Σk is a Riemannian submersion, which is called a bundle-like

metric. Thus F is Riemannian if and only if it can be endowed with a bundle-like

metric on M .

It is said that F is transitive at a point p ∈ M when the evaluation map evp :

X(M,F)→ TpM is surjective, or, equivalently, the evaluation map evp : X(M,F)→
NpF is surjective. The transitive point set is open and saturated. If F is transitive

at every point, then it is called transitive. If evp(Xcom(M,F)) spans TpM for all

p ∈ M , then F is called transversely complete (TC ). Since evp : Xcom(F) → TpF is
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surjective [Mol88, Section 4.5], F is TC if and only if evp(Xcom(M,F)) spans NpF
for all p ∈M .

All TP foliations are transitive, and all transitive foliations are Riemannian. On

the other hand, Molino’s theory describes Riemannian foliations in terms of TP foli-

ations [Mol88]. A Riemannian foliation is called complete if, using Molino’s theory,

the corresponding TP foliation is TC. Furthermore Molino’s theory describes TC

foliations in terms of complete Lie foliations with dense leaves. In turn, complete

Lie foliations have the following description due to Fedida [Fed71, Fed73] (see also

[Mol88, Theorem 4.1 and Lemma 4.5]). Assume M is connected and F a complete g-

Lie foliation. Let G be the simply connected Lie group with Lie algebra g. Then there

is a regular covering π : M̃ →M (the holonomy covering), a fiber bundle D : M̃ → G

(the developing map) and a monomorphism h : Γ := Aut(π) ≡ π1L/π1L̃ → G (the

holonomy homomorphism) such that the leaves of F̃ := π∗F are the fibers of D, and

D is h-equivariant with respect to the left action of G on itself by left translations.

As a consequence, π restricts to diffeomorphisms between the leaves of F̃ and F . The

subgroup HolF = imh ⊂ G, isomorphic to Γ, is called the global holonomy group.

The Molino’s description also gives a precise equivalence between the holonomy

pseudogroup H and the pseudogroup on G generated by the action of HolF by left

translations. Thus the leaves are dense if and only if HolF is dense in G, which means

g = X(M,F).

The F̃-leaf through every p̃ ∈ M̃ will be denoted by L̃p̃. Since D induces an

identity M̃/F̃ ≡ G, the π-lift and D-projection of vector fields define identities

(3.1.3) X(M,F) ≡ X(M̃, F̃ ,Γ) ≡ X(G,HolF) .

(Given an action, the group is added to the notation of a space of vector fields to

indicate the subspace of invariant elements.) These identities give a precise realization

of g ⊂ X(M,F) as the Lie algebra of left invariant vector fields on G.

If a smooth map ψ : M ′ → M is transverse to F , since ψ∗ : Nψ∗F → NF
restricts to isomorphisms between the fibers and is compatible with the corresponding

flat partial connections (Section 3.1.7), it follows that any transverse structure of F
canonically induces a transverse structure of ψ∗F of the same type.

3.1.10. Foliations of codimension one. — In this section, assume F is of codi-

mension one (n′ = 1 and n′′ = n− 1). Then the notation (x, y) = (x, y1, . . . , yn−1) is

used for the foliated coordinates instead (x′, x′′).

Suppose also that F is transversely oriented. Thus there are real forms ω, η ∈
C∞(M ; Λ1) such that ω defines F and its transverse orientation, and dω = η ∧ ω
(Section 3.1.9). There is some X ∈ X(M) with ω(X) = 1; in fact, X ∈ C∞(M ;NF)

and ω determine each other. Now F is Riemannian just when ω can be chosen so

that dω = 0; i.e., X ∈ X(M,F). Actually, F is an R-Lie foliation in this case because

R ·X is a Lie subalgebra of X(M,F).
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3.1.11. Complete R-Lie foliations. — F is a complete R-Lie foliation when there

is some Z ∈ Xcom(M,F) so that Z has no zeros. This means that the orbits of the

foliated flow ϕ : M × R → M of Z are transverse to F . Its Fedida’s description

is given by some π : M̃ → M , D : M̃ → R and h : Γ → R (Section 3.1.9). Let

Z̃ ∈ Xcom(M̃, F̃) and ϕ̃ : M̃ ×R→ M̃ be the lifts of Z and ϕ. Then Z̃ is Γ-invariant

and D-projectable. Without loss of generality, we can assume D∗Z̃ = ∂x ∈ X(R),

where x denotes the standard global coordinate of R. Thus ϕ̃ is Γ-equivariant and

induces via D the flow ϕ̄ = {ϕ̄t} on R defined by ϕ̄t(x) = t + x. Since ϕ̄t preserves

every HolF-orbit in R if and only if t ∈ HolF , it follows that ϕt preserves every leaf

of F if and only if t ∈ HolF .

3.1.12. Foliations almost without holonomy. — Assume M is compact. It

is said that F is almost without holonomy when all non-compact leaves have no

holonomy. The structure of such a foliation was described by Hector [Hec72, Hec78].

In the case where F has a finite number of leaves with holonomy and is transversely

oriented, the description of F is as follows. Let M0 be the finite union of compact

leaves with holonomy. Let M1 = M \M0, whose connected components are denoted

by M1
l (l = 1, . . . , k), and let F1

l = F|M1
l
. Then, for every l, there is a connected

compact manifold Ml, possibly with boundary, endowed with a smooth transversely

oriented foliation Fl tangent to the boundary, such that, equipping M :=
⊔
lMl

with the combination F of the foliations Fl, there is foliated smooth local embedding

π : (M ,F)→ (M,F), preserving the transverse orientations, so that:

– π : M̊l →M1
l is a diffeomorphism for all l (we may write M̊l ≡M1

l );

– π : ∂M →M0 is a 2-fold covering map; and

– every Fl is one of the following models:

(0) Fl is given by a trivial bundle over [0, 1],

(1) F̊l := Fl|M̊l
is given by a fiber bundle over S1, or

(2) all leaves of F̊l are dense in M̊l.

Thus M is obtained by gluing the manifolds Ml along corresponding pairs of bound-

ary components. Equivalently, M can be described by cutting M along M0 like in

Section 2.6. Since F is transversely oriented, the restriction of π : ∂M →M0 to every

connected component of ∂M is a diffeomorphism to its image. Thus ∂M ≡M0⊔M0.

The restriction of F to the interior M̊ is denoted by F̊ . Thus π restricts to a foliated

diffeomorphism (M̊ , F̊)
≈−→ (M1,F1).

Remark 3.1.6. — In the above description, we have the following:

(i) If Fl is a model (2), then F̊l becomes a complete R-Lie foliation after a possible

change of the differentiable structure of M̊l, keeping the same differentiable

structure on the leaves [Hec78, Theorem 2].

(ii) The description holds as well if M0 is any finite union of compact leaves, includ-

ing all leaves with holonomy. In particular, if Fl is a model (1) with ∂Ml = ∅,
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then Ml = M can be cut into models (0) by adding compact leaves to M0. Con-

versely, if all foliations Fl are models (0), then F is a model (1) with ∂M = ∅.

3.2. Differential forms on foliated manifolds

3.2.1. The leafwise complex. — Let dF ∈ Diff1(F ; ΛF) be given by (dFα)|L =

dL(α|L) for every leaf L and α ∈ C∞(M ; ΛF). Then (C∞(M ; ΛF), dF ) is a differ-

ential complex, called the leafwise or tangential (de Rham) complex. The elements

of C∞(M ; ΛF) are called leafwise forms; the leafwise forms in ker dF (resp., im dF )

are called leafwise-closed forms (resp., leafwise-exact forms). The leafwise complex

gives rise to the leafwise or tangential cohomology H•(F). The leafwise complex is

not elliptic if n′ > 0, and therefore it makes sense to consider also its reduced coho-

mology H̄•(F) (Section 2.1.13). The more precise notation H•C∞(F) = H•(F) and

H̄•C∞(F) = H̄•(F) may be also used. Recall that we typically take complex coeffi-

cients without any comment; the case of real coefficients will be indicated. Compactly

supported versions may be also considered when M is not compact.

We can also take coefficients in any complex F-flat vector bundle E over M , ob-

taining the differential complex C∞(M ; ΛF ⊗ E) with dF ∈ Diff1(F ; ΛF ⊗ E), and

the corresponding cohomology, H•(F ;E), and reduced cohomology, H̄•(F ;E). For

example, we can consider the vector bundle E defined by the GL(n′)-principal bundle

of (real) normal frames and any unitary representation of GL(n′), with the F-flat

structure induced by the F-flat structure of NF . A particular case is ΛNF , which

gives rise to the differential complex (C∞(M ; ΛF ⊗ ΛNF), dF ). Note that

(3.2.1) ΛF ≡ ΛF ⊗ Λ0NF ⊂ ΛF ⊗ ΛNF ,

and therefore C∞(M ; ΛF) becomes a subcomplex of C∞(M ; ΛF ⊗ ΛNF) with dF .

3.2.2. Bigrading of differential forms. — Consider any splitting

(3.2.2) TM = TF ⊕H ∼= TF ⊕NF ,

for some vector subbundle H ⊂ TM . Recall that ΛH =
∧

H∗ ⊗ C. The split-

ting (3.2.2) induces a decomposition

(3.2.3) ΛM ≡ ΛF ⊗ ΛH ∼= ΛF ⊗ ΛNF ,

giving rise to the bigrading of ΛM defined by

(3.2.4) Λu,vM ≡ ΛvF ⊗ ΛuH ∼= ΛvF ⊗ ΛuNF ,

and the corresponding bigrading of C∞(M ; Λ) with bihomogeneous components

C∞(M ; Λu,v) ≡ C∞(M ; ΛvF ⊗ ΛuNF) .
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In particular, Λ0,vM ≡ ΛvF and Λu,0M ≡ ΛuH, and then the identity of (3.2.4)

becomes(1) Λ0,vM ⊗ Λu,0M ≡ Λu,vM , α⊗ β ≡ α ∧ β.

This bigrading depends on H, but the spaces Λ≥u,·M and C∞(M ; Λ≥u,·) are in-

dependent of H (see e.g. [ÁL89]). There are canonical identities

(3.2.5) Λ≥u,·M/Λ≥u+1,·M ≡ Λu,·M ≡ ΛF ⊗ ΛuNF ,

where only Λu,·M depends on H.

3.2.3. Bihomogeneous components of the derivative. — The de Rham deriva-

tive on C∞(M ; Λ) decomposes into bihomogeneous components,

(3.2.6) d = d0,1 + d1,0 + d2,−1 ,

where the double subscript denotes the corresponding bidegree. By comparing bide-

grees in the anti-derivation formula of d, we also get that every di,1−i (i ∈ {0, 1, 2})
satisfies the same anti-derivation formula. Thus d2,−1 is of order 0. The other compo-

nents, d0,1 and d1,0, are of order 1. Moreover, d2,−1 = 0 if and only if H is completely

integrable. By comparing bi-degrees in d2 = 0, we get [ÁL89]

(3.2.7) d20,1 = d0,1d1,0 + d1,0d0,1 = 0 .

So (C∞(M ; Λ), d0,1) is a differential complex of order one. In fact, via (3.2.3),

(3.2.8) d0,1 ≡ dF .

Moreover

(3.2.9) d0,1 = d : C∞(M ; Λn
′,•)→ C∞(M ; Λn

′,•+1) .

3.2.4. Basic complex. — It is said that α ∈ C∞(M ; Λ) is a basic form if ιXα =

ιXdα = 0 for all X ∈ X(F). This means that α is an F-parallel section of ΛNF ≡
Λ•,0M ; i.e., α ∈ C∞(M ; Λ•,0) ∩ ker d0,1. The basic forms form a subcomplex of the

de Rham complex, called the basic complex. It is isomorphic to the complex of H-

invariant forms on Σ via the distinguished projections x′k : Uk → Σk (Section 3.1.1).

3.2.5. Bihomogeneous components of the coderivative. — Given a leafwise

metric gF , the coderivative on the leaves defines an operator δF ∈ Diff1(M ; ΛF), like

in the case of dF .

Fix a Riemannian metric g on M . Using H = TF⊥ and taking formal adjoints

in (3.2.6) and (3.2.7), we get a decomposition of the coderivative on C∞(M ; Λ),

(3.2.10) δ = δ0,−1 + δ−1,0 + δ−2,1 ,

and the bihomogeneous components δ−i,i−1 = d∗i,1−i satisfy the analog of (3.2.7).

(1)This order in the wedge product, introduced in [ÁLKL20] and different from [ÁLK01], produces

simpler sign expressions. However, the transverse degree is written first in the bigrading, like in the

extension to foliations of the Leray-Serre spectral sequence.
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The metric g induces a leafwise metric gF . It also induces an Euclidean structure

on NF , which in turn induces a Hermitian structure on ΛNF . Thus the adjoint

δF = d∗F is also defined on C∞(M ; ΛF ⊗ ΛNF). The analogue of (3.2.8),

(3.2.11) δ0,−1 ≡ δF

via (3.2.3), holds if and only if g is bundle-like [ÁLKL20, Lemma 4.12]. Thus, in

this case, δ = δ0,−1 ≡ δF on C∞(M ; Λ0,•) ≡ C∞(M ; ΛF) via (3.2.1) and (3.2.4).

The following operators will be also used:

(3.2.12)

{
D0 = d0,1 + δ0,−1 , D⊥ = d1,0 + δ−1,0 ,

∆0 = D2
0 = d0,1δ0,−1 + δ0,−1d0,1 .

3.2.6. Bigrading vs orientations. — Recall that a transverse orientation of F
can be described by a non-vanishing real form ω ∈ C∞(M ; Λn

′
NF) ≡ C∞(M ; Λn

′,0).

According to Section 3.1.9, there is a real 1-form η satisfying dω = η ∧ ω. We write

η = η0 + η1, where η0 ∈ C∞(M ; Λ0,1) is determined by ω, and η1 ∈ C∞(M ; Λ1,0) can

be chosen arbitrarily.

On the other hand, an orientation of TF is called a (leafwise or tangential) orienta-

tion of F , which can be described by a non-vanishing real form χ ∈ C∞(M ; Λn
′′F) ≡

C∞(M ; Λ0,n′′
). It is said F is oriented if it is endowed with an orientation. Given

transverse and tangential orientations of F , described by forms ω and χ as above,

we consider the induced orientation of M defined by the non-vanishing real form

χ ∧ ω ∈ C∞(M ; Λn
′,n′′

) = C∞(M ; Λn).

Suppose that M is a Riemannian manifold and take H = TF⊥. Then, us-

ing (3.2.3), the induced Hodge star operators, ⋆ on ΛM , ⋆F on ΛF and ⋆⊥ on ΛH,

satisfy(2) [ÁLT91, Lemma 4.8], [ÁLK01, Lemma 3.2], [ÁLKL20, Eq. (42)]

(3.2.13) ⋆ ≡ (−1)u(n
′′−v)⋆F ⊗ ⋆⊥ : Λu,vM → Λn

′−u,n′′−vM .

If ω = ⋆⊥1 and χ = ⋆F1, then χ ∧ ω = ⋆1. We have

(3.2.14) δ−i,i−1 = (−1)nk+n+1 ⋆ di,1−i ⋆

on C∞(M ; Λk), and

(3.2.15) δF = (−1)n
′′v+n′′+1 ⋆F dF ⋆F

on C∞(M ; ΛvF). Using (3.2.13)–(3.2.15), we easily get

δ0,−1 ≡ δF + η0⌟

on C∞(M ; Λ0,v) ≡ C∞(M ; ΛvF).

(2)The sign of this expression, used in [ÁLKL20, Eq. (42)], is different from the sign used in

[ÁLK01, Lemma 3.2] by the different choices of induced orientation of M .
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3.2.7. Leafwise Euler form. — If F is oriented, then ΩF ≡ Λ0,n′′
M ≡ Λn

′′F . If

moreover F is equipped with a leafwise Riemannian metric gF and n′′ is even, then

the leafwise Euler form e(F , gF ) ∈ C∞(M ; Λn
′′F) ≡ C∞(M ; ΩF) is defined by the

Euler form of the leaves (Section 2.9.10). When F is not oriented, e(F , gF ) is defined

as an element of C∞(M ; Λn
′′F ⊗ o(F)) ≡ C∞(M ; ΩF).

3.2.8. Leafwise currents. — We may also consider the continuous extension of

dF to C−∞(M ; ΛF) (Section 2.1.7), defining another topological complex whose co-

homology and reduced cohomology are denoted by H•C−∞(F) and H̄•C−∞(F) (see

Section 3.2.1). The elements of C−∞(M ; ΛF) are called leafwise currents. In gen-

eral, C∞(M ; ΛF) ↪→ C−∞(M ; ΛF) does not induce an isomorphism in cohomology

or reduced cohomology (consider a foliation by points).

Like in (2.8.1), the exterior product has continuous extensions,

C±∞(M ; ΛF)⊗ C∓∞(M ; ΛF)→ C−∞(M ; ΛF) ,

with a corresponding extension of the property of dF to be a derivation. Given

a leafwise metric gF on M , we can also consider the continuous extension δF to

C−∞(M ; ΛF)

The concept of leafwise currents with coefficients in any F-flat vector bundle E can

be also considered, and the obvious notation is used for the corresponding topological

complex and its cohomology and reduced cohomology. In particular, E can be any

vector bundle associated with NF .

3.2.9. Bigrading of currents. — Consider also the bigrading of C−∞(M ; Λ) in-

duced by the bigrading of ΛM , and the continuous extensions to C−∞(M ; Λ) of the

operators di,1−i, which satisfy (3.2.8) and (3.2.9). Given a metric g on M , we can

also consider the continuous extensions of the operators δ−i,i−1 to C−∞(M ; Λ).

If M is oriented, then (2.8.3), (2.8.4) and (2.9.8) for z = 0 give

(Λu,vM)∗ ⊗ ΩM ≡ Λn
′−u,n′′−vM ,(3.2.16)

C−∞(M ; Λu,v) ≡ C∞
c (M ; Λn

′−u,n′′−v)′ ,(3.2.17)

d0,1 ≡ (−1)u+v+1 dt0,1 : C−∞(M ; Λu,v)→ C−∞(M ; Λu,v+1) .(3.2.18)

When M is not oriented, these identities hold after adding the tensor product with

o(M) to the exterior bundles in the right-hand sides, or working locally, or passing to

the double cover of orientations. By (3.2.9), if u = n′, then (3.2.18) agrees with (2.9.8)

for z = 0 on C−∞(M ; Λn
′,v). By (3.2.3), (3.2.8) and (3.2.9), if u = 0, then (3.2.16)–

(3.2.18) become

(ΛvF)∗ ⊗ ΩM ≡ Λn
′,n′′−vM ≡ Λn

′′−vF ⊗ Λn
′
NF ≡ Λn

′′−vF ⊗ ΩNF ,(3.2.19)

C−∞(M ; ΛvF) ≡ C∞
c (M ; Λn

′,n′′−v)′ ≡ C∞
c (M ; Λn

′′−vF ⊗ ΩNF)′ ,(3.2.20)

dF ≡ (−1)v+1 dt ≡ (−1)v+1 dtF : C−∞(M ; ΛvF)→ C−∞(M ; Λv+1F) .(3.2.21)
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3.2.10. Pull-back of leafwise forms. — Let ϕ ∈ C∞(M ′,F ′;M,F). Like

in (2.8.8) and (2.8.9), the homomorphisms ϕ∗ : TF ′ → TF and ϕ∗ : NF ′ → NF
induce continuous homomorphisms,

ϕ∗ : (C∞(M ; ΛF ⊗ ΛNF), dF )→ (C∞(M ′; ΛF ′ ⊗ ΛNF ′), dF ′) ,(3.2.22)

ϕ∗ : (C∞(M ; ΛF), dF )→ (C∞(M ′; ΛF ′), dF ′) ,(3.2.23)

the second one is a restriction of the first one according to (3.2.1).

On the other hand, ϕ∗ : C∞(M ; Λ)→ C∞(M ′; Λ) has restrictions

ϕ∗ : C∞(M ; Λ≥u,·)→ C∞(M ′; Λ≥u,·) ,

which induce (3.2.22) using (3.2.5).

3.2.11. Bihomogeneous components of pull-back homomorphisms. — For

any smooth map ϕ : M ′ → M , the homomorphism ϕ∗ : C∞(M ; Λ) → C∞(M ′; Λ)

decomposes into bihomogeneous components,

ϕ∗ = · · ·+ ϕ∗−1,1 + ϕ∗0,0 + ϕ∗1,−1 + · · ·

If ϕ ∈ C∞(M ′,F ′;M,F), then ϕ∗i,−i = 0 for i < 0. Moreover, via (3.2.3),

(3.2.24) ϕ∗0,0 ≡ ϕ∗ ,

where the right-hand side is (3.2.22).

3.2.12. Bihomogeneous components of the Lie derivative. — For any X ∈
X(M), by comparing bidegrees in Cartan’s formula, LX = dιX + ιXd, we get a

decomposition into bi-homogeneous components,

LX = LX,−1,1 + LX,0,0 + LX,1,−1 + LX,2,−2 .

For instance,

(3.2.25) LX,0,0 = d0,1ιV X + ιV Xd0,1 + d1,0ιHX + ιHXd1,0 ,

where V : TM → TF and H : TM → H denote the projections defined by (3.2.2).

By comparing bidegrees in the derivation formula of LX , we also get that every LX,i,−i
(i ∈ {−1, 0, 1, 2}) satisfies the same derivation formula. Thus LX,−1,1, LX,1,−1 and

LX,2,−2 are of order zero. For the sake of simplicity, we will write ΘX = LX,0,0, which

is of order 1.

If X ∈ X(M,F), then LX,−1,1 = 0, obtaining

(3.2.26) ΘXd0,1 = d0,1ΘX

by comparing bi-degrees in the formula LXd = dLX . On the other hand, by (3.2.25),

if X ∈ C∞(M ;H), then, for all f ∈ C∞(M),

(3.2.27) ΘfX = fΘX

on C∞(M ; Λ0,•) ≡ C∞(M ; ΛF). If d1,0f = 0, then (3.2.27) holds on C∞(M ; Λ)

by (3.2.25) and the derivation formula of ΘX .
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3.2.13. Local descriptions. — Let (U, x) be a foliated chart of F , with x =

(x′, x′′), like in (3.1.1). To emphasize the difference between the coordinates x′ and

x′′, we use the following notation on U or x(U). Let x′i = xi and ∂′i = ∂i for i ≤ n′,

and x′′i = xi and ∂′′i = ∂i for i > n′. Thus, when using x′i or ∂′i, it will be un-

derstood that i runs in {1, . . . , n′}, and, when using x′′i or ∂′′i , it will be understood

that i runs in {n′ + 1, . . . , n}. For multi-indices of the form J = {j1, . . . , jr} with

1 ≤ j1 < · · · < jr ≤ n, let dxJ = dxj1 ∧ · · · ∧ dxjr be denoted by dx′J or dx′′J if J

only contains indices in {1, . . . , n′} or {n′ + 1, . . . , n}, respectively. Using functions

fI ∈ C∞(U), dF on U can be described by

(3.2.28) dF (fI dx
′′I) = ∂′′j fI dx

′′j ∧ dx′′I .

Since the forms dx′J are basic, (3.2.8) on U means that

(3.2.29) d0,1(fIJ dx
′′I ∧ dx′J) = dF (fIJ dx

′′I) ∧ dx′J ,

using functions fIJ ∈ C∞(U).

Given a metric g on M , the local description

(3.2.30) δ0,−1(fIJ dx
′′I ∧ dx′J) = δF (fIJ dx

′′I) ∧ dx′J

is satisfied just when g is bundle-like [ÁLK01, Lemma 3.4]; in fact this is a local

expression of (3.2.8).

From (3.2.25), we also get that, on C∞(U,Λ0,•),

(3.2.31) d1,0 = dx′i∧ΘH∂′
i
.

Since d1,0 is an anti-derivation, it follows that

(3.2.32) d1,0(fIJ dx
′′I ∧ dx′J) = (−1)|I|ΘH∂′

i
(fIJ dx

′′I) ∧ dx′i ∧ dx′J .

3.2.14. Bigrading of leafwise forms. — Suppose F is subfoliation of another

smooth foliation G on M . Like in Section 3.2.2, for any choice of a complement G of

TF in TG, we have ΛG = ΛF ⊗ΛG, obtaining a bigrading of ΛG defined by Λu,vG =

ΛvF⊗ΛuG, and a corresponding bigrading of C∞(M ; ΛG). The decomposition (3.2.6)

has an obvious version for dG satisfying analogous properties.

3.2.15. Push-forward and pull-back of leafwise currents. — With the nota-

tion of Section 2.8.5, assume ϕ : M ′ → M is a smooth submersion and V oriented.

Using any complement H of V in TM ′, we get a corresponding bigrading of ΛM ′ with

ϕ∗ΛM ⊗ ΩfiberM
′ ≡ Λ•,topM ′. Suppose M is equipped with a smooth foliation F ,

and let F ′ = ϕ∗F . Choose complements, H of TF in TM and H ′ of TF ′ in TM ′.

The tangent map ϕ∗ defines an identity H ′ ≡ ϕ∗H. Consider the bigradings of ΛM

and ΛM ′ induced by (F ,H) and (F ′,H ′). Then the maps (2.8.11)–(2.8.14) have
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restrictions compatible with d0,1,

ϕ∗ : C±∞
c/cv(M ′; Λu,•)→ C±∞

c/· (M ; Λu,•−p) (p = dimV) ,

ϕ∗ : C−∞(M ; Λu,•)→ C−∞(M ′; Λu,•) .

For u = 0, by (3.2.1), they are continuous homomorphisms,

ϕ∗ : (C±∞
c/cv(M ′; ΛF ′), dF ′)→ (C±∞

c/· (M ; ΛF), dF ) ,(3.2.33)

ϕ∗ : (C−∞(M ; ΛF), dF )→ (C−∞(M ′; ΛF ′), dF ′) .(3.2.34)

Like in (2.8.13)–(2.8.16), the maps (3.2.33) and (3.2.34) can be also defined as the

compositions

C±∞
c/cv(M ′; ΛF ′)

πtop−−−→ C±∞
c/cv(M ′;ϕ∗ΛF)

ϕ∗−→ C±∞
c/· (M ; ΛF) ,(3.2.35)

C−∞(M ; ΛF)
ϕ∗

−→ C−∞(M ′;ϕ∗ΛF)
ϕ∗

−→ C−∞(M ′; ΛF ′) .(3.2.36)

We can directly extend the definition of (3.2.33) to the case where M ′ is a manifold

with boundary, assuming F ′ is tangent or transverse to the boundary. It is a cochain

map when F ′ is tangent to the boundary. If F ′ is transverse to the boundary and

ϕ|∂M ′ : ∂M ′ →M is a submersion, the Stokes’ formula gives

(3.2.37) ϕ∗dF ′ − dFϕ∗ = (ϕ|∂M ′)∗ι
∗ : C∞

c (M ′; ΛF ′)→ C∞
c (M ; ΛF) ,

where ι : ∂M ′ ↪→M ′.

3.2.16. Leafwise homotopy operators. — With the notation of Section 2.8.6,

suppose M and M ′ are equipped with respective smooth foliations F and F ′, H

is a leafwise homotopy, and consider H∗
t : C∞(M ; ΛF) → C∞(M ′; ΛF ′) (t ∈ I).

Then we similarly get a continuous linear map h : C∞(M ; ΛF) → C∞(M ′; ΛF ′),

called a leafwise homotopy operator, which is homogeneous of degree −1 and satisfies

H∗
1 −H∗

0 = hdF + dF ′h. By using (3.2.23), (3.2.37) and (3.2.33), h can be given as

the composition

(3.2.38) C∞(M ; ΛF)
H∗

−−→ C∞(M ′ × I; Λ(F ′ × I))

ffl
I−→ C∞(M ′; ΛF ′) .

So H0 and H1 induce the same homomorphisms H•C∞(F) → H•C∞(F ′) and

H̄•C∞(F)→ H̄•C∞(F ′).

Suppose H is transverse to F and H∗F = F ′×I. Let pr1 : M ′×I →M ′ denote the

first-factor projection. Consider the bigradings defined by F , F ′, and complements

H and H ′ of their tangent bundles. So H∗ defines a homomorphism pr∗1 H
′ → H

whose restrictions to the fibers are isomorphisms. Then (3.2.38) is the bihomogeneous

component of bidegree (0,−1) of (2.8.17).

If moreover H is a submersion, then (3.2.33) and (3.2.34) give a continuous exten-

sion of the maps of (3.2.38),

C−∞(M ; ΛF)
H∗

−−→ C−∞(M ′ × I; Λ(F ′ × I))

ffl
I−→ C−∞(M ′; ΛF ′) .
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Their composition, h : C−∞(M ; ΛF) → C−∞(M ′; ΛF ′), satisfies H∗
1 − H∗

0 =

hdF + dF ′h. Thus H0 and H1 also induce the same homomorphisms H•C−∞(F) →
H•C−∞(F ′) and H̄•C−∞(F)→ H̄•C−∞(F ′).

3.3. Witten’s perturbation on foliated manifolds

The operators acting on differential forms on foliated manifolds (Section 3.2) are

extended now by taking Witten’s perturbations (Section 2.9).

3.3.1. Perturbation vs bigrading. — Using the notation of Sections 2.9.1

and 3.2, write(3) η = η0 + η1 with η0 ∈ C∞(M ; Λ0,1) ≡ C∞(M ; Λ1F) and

η1 ∈ C∞(M ; Λ1,0). The condition dη = 0 means

(3.3.1) d0,1η0 = d1,0η1 = d1,0η0 + d0,1η1 = 0 .

Like in (3.2.6) and (3.2.10), we get

dz = dz,0,1 + dz,1,0 + d2,−1 , δz = δz,0,−1 + δz,−1,0 + δ−2,1 ,

where

dz,0,1 = d0,1 + z η0∧ , dz,1,0 = d1,0 + z η1∧ ,
δz,0,−1 = δ0,1 − z̄ η0⌟ , δz,−1,0 = δ−1,0 − z̄ η1⌟ .

We will also use the perturbed versions of the operators (3.2.12), denoted by Dz,0,

Dz,⊥ and ∆z,0, defined with the operators dz,i,1−i and δz,i,i−1.

There is an obvious analog of (3.2.7) for the operators dz,i,1−i, giving rise to analo-

gous relations for the operators δz,i,i−1. In particular, dz,0,1 and δz,0,−1 define leafwise

differential complexes. By (2.9.7), the expressions (3.2.14) and (3.2.15) have direct

extensions to this setting as well.

Concerning uniform leafwise/transverse ellipticity, symmetry and being non-

negative, the perturbations dz,0,1, δz,0,−1, Dz,0, Dz,⊥ and ∆z,0 satisfy the same

properties as d0,1, δ0,−1, D0, D⊥ and ∆0.

By (3.2.31), on a foliated chart (U, x), we get

d1,0η0 = dx′i ∧ΘH∂iη0 = −ΘH∂iη0 ∧ dx′i .

But, writing η1 = hi dx
′j , by (3.3.1),

d1,0η0 = −d0,1η1 = −∂′′j hi dx′′j ∧ dx′i .

So

ΘH∂iη0 = ∂′′j hi dx
′′j .

Then, since ΘH∂i is a derivation, on C∞(M ; ΛF),

(3.3.2) [ΘH∂i , η0∧] = (ΘH∂iη0)∧ = ∂′′j hi dx
′′j∧ = (dFhi)∧ = [dF , hi] .

(3)In [ÁLKL20, Section 11], we took η ∈ C∞(M ; Λ0,1). However a general η is needed, and therefore

additional work is required in Sections 3.3 and 3.5.
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Thus (3.2.26) has the following change in this setting:

[ΘH∂i , dz,0,1] = z[dF , hi] .

3.3.2. Perturbation of the leafwise complex. — Consider also the perturbed

leafwise complex, dF,z = dF + zη0∧ on C∞(M ; ΛF), or on C∞(M ; ΛF ⊗ ΛNF), as

well as its formal adjoint δF,z = δF − z̄ η0⌟, and the induced perturbations, DF,z of

DF and ∆F,z of ∆F . They satisfy the obvious versions of (3.2.8) and (3.2.29). If g

is bundle-like, they also satisfy the obvious versions of (3.2.11) and (3.2.30).

3.3.3. Perturbation with two parameters. — For z, z′ ∈ C, the operators

D0,z,z′ and ∆0,z,z′ are defined like Dz,z′ and ∆z,z′ (Section 2.9.7), by using dz,0,1
and δz′,0,−1 instead of dz and δz′ . In other words, D0,z,z′ is the component of Dz,z′

that preserves the transverse degree, and ∆z,z′ = D2
z,z′ . They are uniformly leafwise

elliptic, with a symmetric leading symbol.

The operators DF,z,z′ and ∆F,z,z′ on C∞(M ; ΛF), or on C∞(M ; ΛF ⊗ΛNF), are

defined like Dz,z′ and ∆z,z′ , by using dF,z and δF,z′ instead of dz and δz′ . They are

also uniformly leafwise elliptic, with a symmetric leading symbol. If g is bundle-like,

they also agree with Dz,z′ and ∆z,z′ via (3.2.3).

3.3.4. Perturbation vs foliated maps. — With the notation of Sections 2.9.2

and 2.9.4 for a smooth foliated map ϕ : (M,F)→ (M,F), let F̃ and η̃j (j = 1, 2) be

the lifts of F and ηj to M̃ . Thus η̃0 = d0,1F ≡ dFF and η̃1 = d1,0F . Any lift ϕ̃ of ϕ to

M̃ is a foliated diffeomorphism of (M̃, F̃). The endomorphism ϕt∗z of (C∞(M ; Λ), dz)

decomposes into the sum of bihomogeneous components ϕ∗z,i,−i, like in Section 3.2.11,

whose lifts to C∞(M̃ ; Λ) are ez(ϕ̃
∗F−F )ϕ̃∗i,−i. Then ϕ∗z,0,0 is an endomorphism of

(C∞(M ; Λ), dz,0,1).

Similarly, the endomorphism ϕ∗ of (C∞(M ; ΛF⊗ΛNF), dF ) given by (3.2.22) has

a perturbation ϕ∗z, which is an endomorphism of (C∞(M ; ΛF ⊗ ΛNF), dF,z). We

have ϕ∗z,0,0 ≡ ϕ∗z like in (3.2.24). By restriction using (3.2.1), we get an endomor-

phism ϕ∗z of (C∞(M ; ΛF), dF,z), which is a perturbation of the endomorphism ϕ∗ of

(C∞(M ; ΛF), dF ) given by (3.2.23).

3.4. Analysis on Riemannian foliations of bounded geometry

In this section, F is a Riemannian foliation on a possibly open manifold M ,

equipped with a bundle-like metric g. We adopt the notation of Section 2.4 for

the metric concepts of M .

3.4.1. Riemannian foliations of bounded geometry. — The vector subbun-

dle H := TF⊥ ⊂ TM is called horizontal, giving rise to the concepts of horizontal

vectors, vector fields and frames. Consider the corresponding splitting (3.2.2), ob-

taining orthogonal projections V : TM → TF and H : TM → H. The O’Neill
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tensors [O’N66] of the local Riemannian submersions defining F can be combined to

produce (1, 2)-tensors T and A on M , defined by

TEF = H∇V E(V F ) + V ∇V E(HF ) ,

AEF = H∇HE(V F ) + V ∇HE(HF ) ,

for E,F ∈ X(M). By [O’N66, Theorem 4], if M is connected, given g and any p ∈M ,

the foliation F is determined by T, A and TpF .

The adapted Riemannian connection ∇̊ on M is defined by

∇̊EF = V ∇E(V F ) + H∇E(HF ) ,

for E,F ∈ X(M) [ÁLT91]. It satisfies the following properties [ÁLKL14, Section 3],

[ÁLKL20, Section 5]: for V ∈ X(F) and X ∈ C∞(M ;H),

∇V − ∇̊V = TV , ∇X − ∇̊X = AX ,(3.4.1)

V ([X,V ]) = ∇̊XV − TVX .(3.4.2)

Moreover, the leaves are ∇̊-totally geodesic, the ∇̊-geodesics in the leaves are the

∇F -geodesics, and ∇̊ and ∇ have the same geodesics orthogonal to the leaves.

Let x′ : U → Σ be a distinguished submersion around any p ∈ M . Consider the

Riemannian metric on Σ such that x′ is a Riemannian submersion, and let ∇̌ and ˇexp

denote the corresponding Levi-Civita connection and exponential map of Σ. For all

horizontal X,Y ∈ X(U,F|U ), we have ∇̊XY ∈ X(U,F|U ) and ∇̊XY = ∇̌XY [O’N66,

Lemma 1 (3)].

Let ˚exp denote the exponential map of the geodesic spray of ∇̊ (see e.g. [Poo81,

pp. 96–99]). The maps ˚exp and ˇexp restrict to diffeomorphisms of some open neigh-

borhoods, V of 0 in TpM and V̌ of 0 in Tx′(p)Σ, to some open neighborhoods, O

of p in M and Ǒ of x′(p) in Σ. Moreover we can suppose O ⊂ U , x′∗(V ) ⊂ V̌ and

x′(O) ⊂ Ǒ, and we have x′ ˚exp = ˇexpx′∗ on V ∩ TpF⊥. Let κ = κp be the smooth

map of some neighborhood W of 0 in TpM to M defined by

κp(X) = ˚expq(P̊HXV X) ,

where q = ˚expp(HX), and P̊HX : TpM → TqM denotes the ∇̊-parallel transport

along the ∇̊-geodesic t 7→ ˚expp(tHX), 0 ≤ t ≤ 1, which is orthogonal to the leaves.

Assume W ⊂ V and κ(W ) ⊂ O, and therefore x′∗(W ) ⊂ V̌ and x′κ(W ) ⊂ Ǒ. For

X,Y ∈ W , we have X − Y ∈ TpF if and only if κ(X) and κ(Y ) belong to the

same plaque in U [ÁLKL14, Proposition 6.1]. Moreover x′κ(X) = ˇexpx′∗(X) for

all X ∈ W ∩ TpF⊥, and κ defines a diffeomorphism of some neighborhood of 0 in

TpM to some neighborhood of p in M with κ∗ ≡ id : T0(TM) ≡ TpM → TpM

[ÁLKL14, Proposition 6.2 and Corollary 6.3]. Consider identities TpF⊥ ≡ Rn′
and

TpF ≡ Rn′′
given by the choice of horizontal and vertical orthonormal frames at p.

Then, for some open balls centered at the origin, B′ in Rn′
and B′′ in Rn′′

, we can

assume κ is a diffeomorphism of B′ ×B′′ to some open neighborhood of p, obtaining
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foliated coordinates x = (x′, x′′) := κ−1 : U := κ(B′ × B′′) → B′ × B′′, which

are said to be normal. As usual, gij denotes the corresponding metric coefficients

and (gij) = (gij)
−1. It is said that F has positive injectivity bi-radius if there are

normal foliated coordinates xp : Up → B′ × B′′ at every p ∈ M such that the balls

B′ and B′′ are independent of p. Then F is said to be of bounded geometry if it

has positive injectivity bi-radius, and the functions |∇mR|, |∇mT| and |∇mA| are

uniformly bounded on M for every m ∈ N0 [ÁLKL14, Definition 8.1].

Example 3.4.1. — Let H be a connected Lie group, L ◁ H a normal connected

Lie subgroup and Γ ⊂ H a discrete subgroup. Then the projection of the translates

of L to Γ\H are the leaves of a Riemannian foliation of bounded geometry with the

bundle-like metric induced by any left invariant metric on H.

The following chart characterization of bounded geometry for Riemannian folia-

tions is connected with another definition given by Sanguiao [San08, Definition 1.7].

Theorem 3.4.2 ([ÁLKL14, Theorem 8.4]). — With the above notation, F is of

bounded geometry if and only if there is a normal foliated chart xp : Up → B′ ×
B′′ at every p ∈ M , such that the balls B′ and B′′ are independent of p, and the

corresponding coefficients gij and gij, as family of smooth functions on B′ × B′′

parametrized by i, j and p, lie in a bounded subset of the Fréchet space C∞(B′×B′′).

For the rest of Section 3.4, let us assume that F is of bounded geometry. Then M

and the disjoint union of the leaves are of bounded geometry [ÁLKL14, Remark 8.2

and Proposition 8.6]. Consider the foliated charts yp : Vp → B and foliated charts

xp : Up → B′ × B′′ given by Theorems 2.4.1 and 3.4.2. Let r0, r′0 and r′′0 denote the

radii of the balls B, B′ and B′′. For 0 < r ≤ r0, 0 < r′ ≤ r′0 and 0 < r′′ ≤ r′′0 ,

let Rr, B
′
r′ and B′′

r′′ denote the balls in Rn′
and Rn′′

centered at the origin with

radii r, r′ and r′′, respectively. If r is small enough, then Vp,r := x−1
p (Br) ⊂ Up

for all p [ÁLKL14, Proposition 8.6]. On the other hand, if r′ + r′′ ≤ r0, then

Up,r′,r′′ := x−1
p (B′

r′×B′′
r′′) ⊂ Vp for all p by the triangle inequality. Then the following

subsets are bounded in the corresponding Fréchet spaces [ÁLKL20, Proposition 5.6

and 5.7]:

(3.4.3)

{
{xpy−1

p | p ∈M } ⊂ C∞(B,Rn
′
× Rn

′′
) ,

{ ypx−1
p | p ∈M } ⊂ C∞(B′

r′ ×B′′
r′′ ,Rn) .

Let E be the Hermitian vector bundle of bounded geometry associated to the

principal O(n)-bundle of orthonormal frames on M and a unitary representation of

O(n) (Example 2.4.6). Since ∇ on TM is of bounded geometry, it follows from (3.4.1)

that ∇̊ is also of bounded geometry. Thus we get induced connections ∇ and ∇̊ of

bounded geometry on E (Example 2.4.10). By (3.4.1), we also get that ∇̊ can be used

instead of ∇ to define equivalent versions of ∥·∥Cmub and ⟨·, ·⟩m in the spaces Cmub(M ;E)

and Hm(M ;E). Since the subsets (3.4.3) are bounded, if B′ and B′′ are small enough,
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then we can use the coordinates (Up, xp) instead of coordinates of (Vp, yp) to define

equivalent versions of ∥·∥′Cmub
and ⟨·, ·⟩′m. Similarly, given another bundle F like E,

we can use the coordinates (Up, xp) instead of (Vp, yp) to describe Diffmub(M ;E,F )

by requiring that the local coefficients form a bounded subset of the Fréchet space

C∞(B′ ×B′′;Cl′ ⊗ Cl∗), where l and l′ are the ranks of E and F .

The condition of being leafwise differential operators of bounded geometry is

preserved by compositions, and by taking transposes and formal adjoints. They

form a filtered C∞
ub(M)-submodule Diffub(F ;E,F ) ⊂ Diff(F ;E,F ). The nota-

tion Diffub(F ;E) is used if E = F ; this is a filtered subalgebra of Diff(F ;E).

The concepts of uniform leafwise ellipticity for operators in Diffm(F ;E,F ) can

be defined like uniform ellipticity (Section 2.4.4), and can be extended to leaf-

wise differential complexes of order m like in Section 2.1.14. The same applies

to uniform transverse ellipticity for operators in Diffm(M ;E,F ) and for differen-

tial complexes of order m. If P ∈ Diff2
ub(F ;E) is uniformly leafwise elliptic and

Q ∈ Diff2
ub(M ;E) is uniformly transversely elliptic, and both P and Q are symmetric

and non-negative, then Hs(M ;E) (s ∈ R) can be described with the scalar product

⟨u, v⟩s = ⟨((1 + P )s + (1 +Q)s)u, v⟩.
Let Xub(F) and Xub(M,F) denote the intersections of Xub(M) with X(F) and

X(M,F), respectively. Then Diffub(F) can be also described like in Section 2.1.7,

using C∞
ub(M) and Xub(F) instead of C∞(M) and X(M), and Diffub(F ;E,F ) can be

also described as the C∞
ub(M)-tensor product of Diffub(F) and C∞

ub(M ;E,F ).

3.4.2. Operators of bounded geometry on differential forms. — Since∇ and

∇̊ are of bounded geometry on TM , the induced connections ∇ and ∇̊ on ΛM are of

bounded geometry as well (Example 2.4.10). Using Examples 2.4.6 and 2.4.10, we get

that H and TF are also of bounded geometry, and the restrictions of ∇̊ to H and

TF are of bounded geometry [ÁLKL20, Section 6]. Thus every Λu,vM is of bounded

geometry (Example 2.4.7), and ∇̊ is of bounded geometry on Λu,vM (Example 2.4.11).

So this also applies to ΛF ≡ Λ0,•M .

By using ∇̊ instead of ∇ in the definitions of ∥·∥Cmub and ⟨·, ·⟩s (m ∈ N0 and s ∈ R),

it follows that the spaces Cmub(M ; Λ) and Hs(M ; Λ) inherit the bigrading of ΛM , and

therefore C∞
ub(M ; Λ) and H±∞(M ; Λ) have an induced bigrading.

The following properties hold [ÁLK01, Section 3], [ÁLKL20, Section 6]: the

canonical projections ΛM → Λu,vM , the operators ⋆, ⋆F or ⋆⊥ (under appropriate

orientability assumptions), and the operators of (3.2.6), (3.2.10) and (3.2.12) are of

bounded geometry; the differential complexes d0,1 and δ0,−1 are uniformly leafwise

elliptic; the differential operators D0 and ∆0 are symmetric and uniformly leafwise

elliptic; the differential operator D⊥ is uniformly transversely elliptic; and there is an
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endomorphism of bounded geometry, K of ΛM , such that(4)

(3.4.4) D⊥δ0,−1 + δ0,−1D⊥ = Kδ0,−1 + δ0,−1K .

Let us recall the definition of K and the proof of (3.4.4) because an extension will

be needed, which is slightly more general than the extension considered in [ÁLKL20,

Section 11]. Let Θ : X(F) → C∞(M ;H∗ ⊗ TF) be the differential operator defined

by ΘXV = V ([X,V ]) (the expression (3.4.2)), which induces a differential operator

Θ : C∞(M ; ΛF) → C∞(M ;H∗ ⊗ ΛF). If X ∈ X(M,F) ∩ C∞(M ;H), then ΘX

on C∞(M ; ΛF) agrees with ΘX on C∞(M ; Λ0,•) via (3.2.3) (Section 3.2.12). A

homomorphism Ξ : ΛF →H∗ ⊗ ΛF can be locally defined by

ΞX = (−1)(n
′′−v)v[ΘX , ⋆F ]⋆F

on C∞(M ; ΛvF), for any X ∈ C∞(M ;H), where ⋆F is defined with any choice of

local orientation of F . Using (3.2.3), its tensor product with the identity on ΛH is

a homomorphism Ξ : ΛM →H∗ ⊗ ΛM . Using the notation of Section 3.2.13 on any

normal foliated chart (U, x), the local expression

K = dx′i∧ΞH∂′
i

defines an endomorphism of ΛM . A computation using (3.2.15), (3.2.26), (3.2.30)

and (3.2.32) gives

(3.4.5) d1,0δ0,−1 + δ0,−1d1,0 = Kδ0,−1 + δ0,−1K ,

yielding (3.4.4) by the analog of (3.2.7) for the operators δ−i,i−1.

3.4.3. Foliated maps of bounded geometry. — For a = 1, 2, let Fa be a Rie-

mannian foliation of bounded geometry on a manifold Ma with a bundle-like met-

ric. To refer to each Fa, the subscript “a” is added to the notation used in Sec-

tion 3.4.1: n′a, n′′a, ya,p : Va,p → Ba, xa,p : Ua,p → B′
a × B′′

a , ra,0, r′a,0 and r′′a,0,

Va,p,r and Ua,p,r′,r′′ . Like in the case of uniform spaces and differential operators,

in the definition of bounded geometry for maps M1 → M2, we can replace the

charts (V1,p, y1,p) and (V2,ϕ(p), y2,ϕ(p)), and sets B1(p, r) with the charts (U1,p, x1,p)

and (U2,ϕ(p), x2,ϕ(p)), and sets U1,p,r′,r′′ . Let C∞
ub(M1,F1;M2,F2) be the subset

of C∞(M1,F1;M2,F2) consisting of foliated maps of bounded geometry. For any

m ∈ N0 and ϕ ∈ C∞
ub(M1,F1;M2,F2), using the versions of ∥ · ∥′Cmub and ⟨·, ·⟩′m defined

with the foliated charts (Up, xp) in the case where m < ∞ (Section 3.4.1), we get

the following versions of (2.4.6) and (2.4.7) [ÁLKL20, Section 8]: (3.2.22) induces

continuous homomorphisms,

(3.4.6) ϕ∗ : Cmub(M2; ΛF2 ⊗ ΛNF2)→ Cmub(M1; ΛF1 ⊗ ΛNF1) ,

and, if ϕ is uniformly metrically proper,

(3.4.7) ϕ∗ : Hm(M2; ΛF2 ⊗ ΛNF2)→ Hm(M1; ΛF1 ⊗ ΛNF2) .

(4)In [ÁLKL20, Eq. (55)], D0 should be δ0,−1, like in [ÁLK01, Proposition 3.1].
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In particular, we get (3.4.7) if ϕ is a foliated diffeomorphism with ϕ±1 of bounded

geometry. In this case, it can be continuously extended to Sobolev spaces of order

−m using the version of the second equality of (2.1.30) for open manifolds, (3.2.3)

and (3.2.16), like in Section 2.4.6.

3.4.4. Leafwise functional calculus. — Consider the notation of Sections 3.4.1

and 3.4.2. Like in (2.9.10) and (2.9.11), the hyperbolic equation

(3.4.8) ∂tαt = iD0αt , α0 = α ,

has a unique solution on any open subset of M and for t in any interval containing

zero, which satisfies [Che73, Theorem 1.3], [Roe87, Proposition 1.2]

(3.4.9) suppαt ⊂ PenF (suppα, |t|) .

The operators D0 and ∆0, with domain C∞
c (M ; Λ), are essentially self-adjoint in

L2(M ; Λ) [Che73, Theorem 2.2], and their self-adjoint extensions are also denoted

by D0 and ∆0. The functional calculus of D0, given by the spectral theorem, assigns

a (bounded) operator ψ(D0) to every (bounded) measurable function ψ on R; in

particular, we have a unitary operator eitD0 and a bounded self-adjoint operator

e−t∆0 on L2(M ; Λ). The notation Π0 = e−∞∆0 is used for the orthogonal projection

of L2(M ; Λ) to kerD0 = ker ∆0 in L2(M ; Λ).

If α ∈ C∞
c (M ; Λ), the solution of (3.4.8) is given by αt = eitD0α. For every m ∈ N0,

there is some Cm ≥ 0 such that [Tay81, Section IV.2], [Roe87, Proposition 1.4],

[ÁLKL20, Proposition 7.1]

(3.4.10) ∥eitD0α∥m ≤ eCm|t|∥α∥m ,

for all α ∈ C∞
c (M ; Λ).

On the other hand, like in (2.9.12), for ψ ∈ S, we get

(3.4.11) ψ(D0) =
1

2π

ˆ +∞

−∞
ψ̂(ξ)eiξD0 dξ .

Taking ψ ∈ A (Section 2.9.8), it follows from (2.9.15), (3.4.10) and (3.4.11) that, for

every m ∈ Z ∪ {±∞}, the functional calculus ψ 7→ ψ(D0) restricts to a continuous

homomorphisms of C[z]-modules and algebras [Roe87, Proposition 4.1], [ÁLKL20,

Proposition 7.2],

(3.4.12) A → End(Hm(M ; Λ)) , A → End(H∞(M ; Λ)) .

By taking coefficients in o(M) and transposition (see Section 3.2.9), ψ 7→ ψ(D0) also

induces continuous homomorphisms of C[z]-modules and algebras,

(3.4.13) A → End(H−m(M ; Λ)) , A → End(H−∞(M ; Λ)) .
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3.4.5. Leafwise Hodge decomposition. — According to (3.4.12), the operator

e−t∆0 (t > 0) restricts to a continuous endomorphism of H∞(M ; Λ). As pointed out

in [San08], using the bounded geometry and uniform leafwise/transverse ellipticity

of the operators considered in Section 3.4.2, and applying (3.4.4) and (3.4.12), the

arguments of [ÁLK01] can be adapted to show the following, where ∆0 is considered

on H∞(M ; Λ) [San08], [ÁLKL20, Theorem 7.3 and Corollary 7.4]: there is a TVS-

direct-sum decomposition,

(3.4.14) H∞(M ; Λ) = ker ∆0 ⊕ im d0,1 ⊕ im δ0,−1 ,

whose terms are orthogonal in L2(M ; Λ); the map

(3.4.15) [0,∞]×H∞(M ; Λ)→ H∞(M ; Λ) , (t, α) 7→ e−t∆0α ,

is well-defined and continuous; and Π0 : H∞(M ; Λ) → ker ∆0 induces a TVS-

isomorphism

(3.4.16) H̄(H∞(M ; Λ), d0,1)
∼=−→ ker ∆0 ,

whose inverse is induced by ker ∆0 ↪→ H∞(M ; Λ). The analogs of (3.4.14)–(3.4.16)

with H−∞(M ; Λ) are also true.

By (3.2.3) and (3.2.8), we can consider (H∞(M ; ΛF), dF ) as a topological subcom-

plex of (H∞(M ; Λ), d0,1), and the notation H•H∞(F) and H̄•H∞(F) is used for its

cohomology and reduced cohomology. By (3.2.30), δF on H∞(M ; ΛF) is also given

by δ0,−1. Thus we get the operators DF = dF +δF and ∆F = D2
F = δFdF +dFδF on

H∞(M ; ΛF), which are essentially self-adjoint in L2(M ; ΛF). Let ΠF = e−∞∆F be

the orthogonal projection to kerDF = ker ∆F in L2(M ; ΛF). Then (3.4.10)–(3.4.16)

have obvious versions with DF , ∆F , H̄•H∞(F) and ΠF [San08], [ÁLKL20, Sec-

tion 7].

3.4.6. A class of smoothing operators. — Suppose F is of codimension one for

the sake of simplicity. (The case of codimension > 1 can be treated like in [ÁLK08].)

Assume also that M is endowed with a bundle-like metric g so that F is of bounded

geometry. Let ϕ : M ×R→M be a foliated flow of R-local bounded geometry, whose

infinitesimal generator is Z ∈ Xub(M,F) (Section 2.4.7). Assume infM |Z| > 0; in

particular, the orbits of ϕ are transverse to the leaves. Given f ∈ C∞
c (R), consider

the following operators on H−∞(M ; ΛF). For every ψ ∈ A, the operator

(3.4.17) P =

ˆ
R
ϕt∗ f(t) dt ψ(DF )

is defined by the version of (3.4.13) for DF and the version of (3.4.7) for ϕt∗ on

H−∞(M ; ΛF). The subscripts “ψ” or “f” may be added to the notation of P if

needed, or the subscript “u” in the case of functions ψu ∈ A depending on a parameter

u. For example, we may take ψu(x) = e−ux
2

and the corresponding operators Pu
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(u > 0) on H−∞(M ; ΛF). Let also

P∞ =

ˆ
R
ϕt∗ f(t) dtΠF .

The following properties hold [ÁLKL20, Propositions 9.1, 9.4 and 9.6 and Corollar-

ies 9.2, 9.3 and 9.5]: every Pψ,f , given by (3.4.17), is smoothing, obtaining continuous

bilinear maps(5)

(3.4.18)

{
A× C∞

c (R)→ L(H−∞(M ; ΛF), H∞(M ; ΛF)) , (ψ, f) 7→ Pψ,f ,

A× C∞
c (R)→ C∞

ub(M2; ΛF ⊠ (ΛF∗ ⊗ ΩM)) , (ψ, f) 7→ KPψ,f ;

P∞ is smoothing, with

(3.4.19)

 lim
u→∞

Pu = P∞ in L(H−∞(M ; ΛF), H∞(M ; ΛF)) ,

lim
u→∞

KPu = KP∞ in C∞
ub(M2; ΛF ⊠ (ΛF∗ ⊗ ΩM)) ;

and, for any compact I ⊂ R containing supp f and m,m′ ∈ N0 m ≤ m′ in N0?, there are *

some C,C ′ > 0 and N ∈ N0, depending on m, m′ and I, such that

(3.4.20) ∥Pψ,f∥m,m′ ≤ C ′∥ψ∥A,C,N ∥f∥I,CN .

3.4.7. Description of some Schwartz kernels. — In Section 3.4.6, Z defines

the structure of a transversely complete R-Lie foliation on F , and therefore we can

consider also the notation of Section 3.1.11. Then the lift g̃ of g to M̃ is a bundle-like

metric of F̃ = π∗F , and Z̃ ∈ Xub(M̃, F̃). AssumeD∗Z̃ = ∂x ∈ X(R) and ϕ̄t(x) = t+x;

hence ϕt preserves every leaf of F if and only if t ∈ HolF (Section 3.1.11).

For any ψ ∈ A and f ∈ C∞
c (R), we have the smoothing operator P given

by (3.4.17), and a similar smoothing operator P̃ is defined by using ϕ̃ and F̃ instead

of ϕ and F . We are going to describe their Schwartz kernels.

Let G = Hol(M,F) and G̃ = Hol(M̃, F̃), whose source and range maps are denoted

by s, r : G→M and s̃, r̃ : G̃→ M̃ (Section 3.1.4). Since the leaves of F and F̃ have

trivial holonomy groups, the smooth immersions (r, s) : G→M2 and (r̃, s̃) : G̃→ M̃2

are injective, with images RF and RF̃ . Via these injections, the restriction π × π :

RF̃ → RF corresponds to the Lie groupoid homomorphism πG := Hol(π) : G̃ → G

(Section 3.1.7), which is a covering map with Aut(πG) ≡ Γ. In fact, since F̃ is

defined by the fiber bundle D, we get that RF̃ is a regular submanifold of M̃2, and

(r̃, s̃) : G̃→ RF̃ is a diffeomorphism. We may write G ≡ RF and G̃ ≡ RF̃ .

Consider the C∞ vector bundles, S = r∗ΛF ⊗ s∗(ΛF ⊗ ΩF) over G and S̃ =

r̃∗ΛF̃ ⊗ s̃∗(ΛF̃ ⊗ ΩF̃) over G̃. Note that S̃ ≡ π∗
GS, and any k ∈ C∞(G;S) lifts via

(5)In [ÁLKL20, Propositions 9.1 and Corollary 9.2], only the continuous dependence on ψ ∈ A is

indicated, but the additional continuous dependence on f ∈ C∞
c (R) is given by [ÁLKL20, Propo-

sition 9.6], indicated in (3.4.20).
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πG to a section k̃ ∈ C∞(G̃; S̃). Since π restricts to diffeomorphisms of the leaves of

F̃ to the leaves of F , it follows that k̃ ∈ C∞
p (G̃; S̃) if and only if k ∈ C∞

p (G;S).

For any ψ ∈ R, the collection of Schwartz kernels kL := Kψ(DL), for all leaves L

of F , defines a section k = kψ of S. This also applies to the operators ψ(DL̃) on the

leaves L̃ of F̃ , obtaining a section k̃ = k̃ψ of S̃.

If ψ̂ ∈ C∞
c (R), then kψ ∈ C∞

p (G;S), and the global action of kψ on C∞
c (M ; ΛF)

(Section 3.1.5) agrees with the restriction of the operator ψ(DF ) on H∞(M ; ΛF)

defined by the version of (3.4.12) for DF [ÁLKL20, Proposition 10.1]. Precisely, if

supp ψ̂ ⊂ [−R,R] for some R > 0, then supp kψ ⊂ PenF (G(0), R) by (2.9.13), and

therefore suppψ(DF )α ⊂ PenF (suppα,R) for all α ∈ H∞(M ; ΛF) by Remark 2.4.14.

Let Λ̃ = D∗dx ≡ dx, which is an invariant transverse volume form of F̃ defining

the same transverse orientation as Z̃. Since Λ̃ is Γ-invariant by the h-equivariance

of D, it defines a transverse volume form Λ of F , which defines the same transverse

orientation as Z. These Λ̃ and Λ define invariant transverse densities |Λ̃| and |Λ| of

F̃ and F .

Let p̃, q̃ ∈ M̃ over p, q ∈M , and write tp̃,q̃ = D(q̃)−D(p̃). If ψ ∈ A, then(6)

(3.4.21) KP (p, q) ≡
∑
γ∈Γ

T ∗
γ ϕ̃

tp̃,q̃−h(γ)∗k̃
(
Tγ ϕ̃

tp̃,q̃−h(γ)(p̃), q̃
)
f(tp̃,q̃ − h(γ)) |Λ|(q) ,

defining a convergent series in C∞
ub(M̃2; S̃) [ÁLKL20, Proposition 10.3]. Here, the

identity S̃(p̃,q̃) ≡ S(p,q) is used, and the leafwise part of the density of KP (·, q) at q is

given by the density of k̃(·, q̃) at q̃.

3.5. Witten’s operators on Riemannian foliations of bounded geometry

Consider the notation of Section 3.3.1 with our assumption that F is Rieman-

nian of bounded geometry. Suppose also that η ∈ C∞
ub(M ; Λ1), and therefore η0 ∈

C∞
ub(M ; Λ0,1) ≡ C∞

ub(M ; Λ1F) and η1 ∈ C∞
ub(M ; Λ1,0). Thus the operators dz,i,1−i,

δz,i,i−1, Dz,0, Dz,⊥ and ∆z,0 are of bounded geometry. Arguing like in (3.4.4), we get

(d1,0 η0⌟ + η0⌟ d1,0)(fIJ dx
′′I ∧ dx′J)

= (K η0⌟ + η0⌟K)(fIJ dx
′′I ∧ dx′J)

+ (−1)(n
′′+1)|I|+n′′(

⋆F [ΘH∂′
i
, η0∧] ⋆F (fIJ dx

′′I)
)
∧ dx′i ∧ dx′′J .

(6)There is an error in the statement of [ÁLKL20, Proposition 10.3]: it is written f(tp̃,q̃) instead of

f(tp̃,q̃ − h(γ)). However, its proof shows the expression given in (3.4.21).
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Using (3.2.30) and (3.3.2), it follows that

(d1,0 η0⌟ + η0⌟ d1,0 −K η0⌟− η0⌟K)(fIJ dx
′′I ∧ dx′J)

= (−1)(n
′′+1)|I|+n′′(

⋆F [dF , hi] ⋆F (fIJ dx
′′I)

)
∧ dx′i ∧ dx′′J

= −(−1)|I|
(
δF (hifIJ dx

′′I)
)
∧ dx′i ∧ dx′′J

+ (−1)|I|
(
δF (fIJ dx

′′I)
)
∧ η1 ∧ dx′′J

= −δ0,−1

(
η1 ∧ fIJ dx′′I ∧ dx′′J

)
− η1 ∧ δ0,−1

(
fIJ dx

′′I ∧ dx′′J
)
.

This shows that

(3.5.1) d1,0 η0⌟ + η0⌟ d1,0 = K η0⌟ + η0⌟K − δ0,−1 η1∧ − η1∧ δ0,−1 .

Combining (3.4.5) and (3.5.1), and using that η0⌟ is an anti-derivation, we compute

dz,1,0δz,0,−1 + δz,0,−1dz,1,0

= Kδ0,−1 + δ0,−1K − z̄(K η0⌟ + η0⌟K − δ0,−1 η1∧ − η1∧ δ0,−1)

+ z(η1∧ δ0,−1 + δ0,−1 η1∧) + |z|2(η1∧ η0⌟ + η0⌟ η1∧)

= Kδz,0,−1 + δz,0,−1K + 2ℜz (η1∧ δ0,−1 + δ0,−1 η1∧)

− 2ℜz z̄(η1∧ η0⌟ + η0⌟ η1∧)

= Kzδz,0,−1 + δz,0,−1Kz ,

where Kz = K + 2ℜz η1∧ is an endomorphism of ΛM of bounded geometry. Using

also the analog of (3.2.7) for the operators dz,i,1−i, it follows that(7)

(3.5.2) Dz,⊥δz,0,−1 + δz,0,−1Dz,⊥ = Kzδz,0,−1 + δz,0,−1Kz .

Using this key equality, we get straightforward generalizations of all results in Sec-

tions 3.4.4 and 3.4.5 for dz,0,1, δz,0,−1, Dz,0 and ∆z,0, which also have obvious versions

for dF,z, δF,z, DF,z and ∆F,z. Let Π0,z and ΠF,z denote the corresponding versions

of Π0 and ΠF .

Let ϕ : (M,F) → (M,F) be a smooth foliated map of bounded geometry. Since

η ∈ C∞
ub(M ; Λ), we get versions of the continuity of (3.4.6) and (3.4.7) for ϕ∗z, assuming

ϕ is uniformly metrically proper for the second one (Section 2.4.6). In particular, this

applies to any foliated flow of R-local bounded geometry (Section 2.4.7), ϕ = {ϕt}
on (M,F), using its unique lift ϕ̃ = {ϕ̃t} to M̃ . Then the definitions and results of

Sections 3.4.6 and 3.4.7 have obvious twisted extensions using ϕt∗z , DF,z and ΠF,z.

The subscript “z” may be added to the notation P , Pu, P∞, k, k̃, ku and k̃u in this

setting.

(7)The equality

d−z̄,1,0δz,0,−1 + δz,0,−1d−z̄,1,0 = Kδz,0,−1 + δz,0,−1K

is also true, but this does not fit the analog of (3.2.7).
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Recall that D0,z,z′ and ∆0,z,z′ are uniformly leafwise elliptic with a symmetric

leading symbol (Section 3.3.3). Moreover, they are of bounded geometry. Then the

obvious version of (3.4.8) withD0,z,z′ has a unique solution, which satisfies the obvious

analogs of (3.4.9) and (3.4.10). Thus ψ(D0,z,z′) (ψ ∈ S) can be defined by the analog

of (3.4.11), obtaining corresponding analogs of (3.4.12) and (3.4.13). Then, using ϕt∗z
and DF,z,z′ , we get obvious extensions of the definitions and results of Sections 3.4.6

and 3.4.7, except for the statements involving Π∞ and P∞. The double subscript

“z, z′” may be added to the notation P , Pu, k, k̃, ku and k̃u in this setting. However,

if z ̸= z′ and η ̸= 0, D0,z,z′ and ∆0,z,z′ are not symmetric, and therefore the results

of Section 3.4.5 cannot be generalized for these operators.



CHAPTER 4

FOLIATIONS WITH SIMPLE FOLIATED FLOWS

4.1. Simple foliated flows

4.1.1. Simple flows. — Let ϕ : Ω→M be a smooth local flow, where Ω is an open

neighborhood of M × {0} in M × R. Let Z ∈ X(M) be the infinitesimal generator.

For p ∈M and t ∈ R, let

Ωp = { t ∈ R | (p, t) ∈ Ω } , Ωt = { q ∈M | (q, t) ∈ Ω } ,

and let ϕt = ϕ(·, t) : Ωt →M . The fixed point set is

Fix(ϕ) = { p ∈M | p ∈ Fix(ϕt) ∀t ∈ Ωp close enough to 0 } ,

which equals the zero set of Z. Recall that a fixed point p of ϕ is called simple (or

transverse) if it is a simple fixed point of ϕt for all t ̸= 0 close enough to 0 in Ωp
(see Section 2.9.11). In this case, the associated number ϵp(ϕ

t), defined in (2.9.23),

is independent of t > 0 close enough to 0 in Ωp, and is denoted by ϵp = ϵp(ϕ). If

the fixed points of ϕ are simple, then Fix(ϕ) is a discrete subset of M . For a fixed

point p, we can write ϕt∗ = etA on TpM for some endomorphism A of TpM . Then p

is simple just when A is an automorphism.

Now, assume Z is complete, and therefore we can take Ω = M×R. On M \Fix(ϕ),

let Nϕ denote the normal bundle of the foliation defined by the orbits of ϕ; i.e.,

Npϕ = TpM/RZ(p) for every p ∈ M \ Fix(ϕ). Let C = C(ϕ) denote the set of closed

orbits of ϕ (without including fixed points). For any c ∈ C, let ℓ(c) denote its minimum

positive period. For every subset I ⊂ R, let

CI = CI(ϕ) = { c ∈ C | ℓ(c) ∈ I } .

The nonzero periods of all closed orbits form the set

P = P(ϕ) = { kℓ(c) | c ∈ C, k ∈ Z× } .

For all c ∈ C, k ∈ Z and p ∈ c, let ϕ
kℓ(c)
∗ : Npϕ → Npϕ be the homomorphism

induced by ϕ
kℓ(c)
∗ : TpM → TpM . Recall that c is called simple when the eigenvalues
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of ϕ
kℓ(c)
∗ : Npϕ→ Npϕ are different from 1 for some (and therefore for all) p ∈ c and

k ∈ Z×; in this case, let

ϵc(k) = ϵc(k, ϕ) = sign det
(

id−ϕkℓ(c)∗ : Npϕ→ Npϕ
)
∈ {±1} .

Every simple closed orbit c, there are neighborhoods, V where c in M and I of ℓ(c) in

R, such that c is the only closed orbit whose first positive period is in I, and moreover

that V ∩ Fix(ϕ) = ∅.
The flow ϕ is called simple if all of its fixed points and closed orbits are simple.

If moreover M is closed, then Fix(ϕ) is finite, and CI(ϕ) are finite for all compact

I ⊂ R. Therefore P(ϕ) is a discrete subset of R.

4.1.2. Transversely simple foliated flows. — Let F be a transversely oriented

smooth foliation of codimension one on a closed manifold M . We assume M is

closed for the sake of simplicity, but the concepts and properties recalled here also

have obvious versions when M is a manifold with boundary, where both F and ϕ are

tangent to ∂M . Some generalizations to non-compact manifolds will be also indicated

and needed.

Let ϕ = {ϕt} be a foliated flow on M and let Z ∈ X(M,F) be its infinitesimal

generator (Section 3.1.7). Let M0 be the union of leaves preserved by ϕ, and let

M1 = M \ M0. The ϕ-invariant set M0 is compact because it is the zero set of

Z ∈ X(M,F) ⊂ C∞(M ;NF). Therefore the ϕ-invariant set M1 is open in M .

Moreover ϕ is transverse to the leaves on M1. So there is a canonical isomorphism

Nϕ ∼= TF on M1, and F is transitive at every point of M1 (Section 3.1.9); in

particular, the leaves inM1 have no holonomy. Consider the notation of Sections 3.1.2,

3.1.3 and 3.1.7, using the notation (xk, yk) instead of (x′k, x
′′
k) because codimF = 1.

Let ϕ̄ be the local flow on Σ generated by Z ∈ X(Σ,H). Via the homeomorphism

M/F → Σ/H induced by the coordinates xk : Uk → Σk, the leaves preserved by ϕ

correspond to the H-orbits preserved by ϕ̄, which indeed form Fix(ϕ̄) because the

H-orbits are totally disconnected. Z is H-invariant, and ϕ̄ is H-equivariant in an

obvious sense.

Since dim Σ = 1, for all simple p̄ ∈ Fix(ϕ̄), there is some κ = κp̄ ∈ R× such

that ϕ̄t∗ ≡ eκt on Tp̄Σ ≡ R. By the H-equivariance of ϕ̄, we get κp̄ = κq̄ for all

q̄ ∈ H(p̄) ⊂ Fix(ϕ̄). Thus we can use the notation κL = κp̄ if H(p̄) corresponds to a

leaf L.

The leaves preserved by ϕ that correspond to simple fixed points of ϕ̄ are said to

be transversely simple. If all leaves preserved by ϕ are transversely simple, then ϕ (or

Z) is called transversely simple; if moreover its closed orbits are simple, then ϕ (or

Z) is said to be weakly simple. If ϕ is weakly simple, every closed orbit is contained

either in M0 or in M1, and its (possibly non-simple) fixed points belong to M0.

Suppose ϕ is transversely simple unless otherwise stated. Then M0 is a finite

union of compact leaves because every fixed point of ϕ̄ is isolated. For any point p in
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a preserved leaf L, there are foliated coordinates (x, y) : U → Σ×B, where Σ ⊂ R is

an open interval containing 0, so that [ÁLKL22, Lemma 3.2]

(4.1.1) x(p) = 0 , Z = κLx∂x , ϕ̄t(x) = eκLtx .

Hence the following properties hold [ÁLKL22, Propositions 3.4 and 3.5]:

(C) F is almost without holonomy with finitely many leaves with holonomy.

(D) The holonomy groups of the compact leaves are groups of germs at 0 of homo-

theties on R, for some choice of {Uk, (xk, yk)}.

According to (C) and Remark 3.1.6 (ii), we can consider Hector’s description with

this choice of M0 and M1, even though there may be leaves without holonomy in M0.

With the notation of Section 3.1.12, since π : (Ml,Fl) → (M,F) is a foliated local

embedding and π : ∂Ml →M0 a local diffeomorphism, any A ∈ X(M,M0) has a lift

Al ∈ Xb(Ml). Moreover Al ∈ X(Ml,Fl) if A ∈ X(M,F). Thus any (foliated) flow

ζ = {ζt} on (M,F) preserving M0 can be lifted via π to a (foliated) flow ζl = {ζtl }
on (Ml,Fl) preserving ∂Ml. If a foliated flow ζ on (M,F) is weakly simple, then ζl is

also weakly simple (on the foliated manifold with boundary (Ml,Fl)). The restrictions

Al|M̊l
≡ A|M1

l
and ζl|M̊l

≡ ζ|M1
l

are also denoted by Al and ζl. In particular, this

notation applies to Z and ϕ, obtaining Zl and ϕl = {ϕtl}, which induces the structure

of a complete R-Lie foliation on F1
l . According to Section 3.1.12, we consider the

transverse orientation of every Fl so that π : (Ml,Fl) → (M,F) is compatible with

the transverse orientations. However, we will consider the transverse orientation of

every F1
l defined by Zl. Now Hector’s description has the following more specific

cases [ÁLKL22, Section 3]:

(c) F is given by a fiber bundle M → S1 with connected fibers.

(d) F is an R-Lie foliation with dense leaves.

(e) M0 ̸= ∅, HolL ∼= Z for all leaves L ⊂ M0, and the foliations F1
l are given by

fiber bundles M1
l → S1 with connected fibers.

(f) M0 ̸= ∅, HolL is a finitely generated abelian group of rank > 1 for all leaves

L ⊂M0, and all foliations F1
l are minimal R-Lie foliations.

The case (c) can be considered as a model (1) with empty boundary, avoiding the use

of models (0), or it can be cut into models (0) by adding a finite number of leaves

without holonomy to M0. Except in this case, M1 is just the transitive point set of

F , and X(M,F) spans X(M,M0) as C∞(M)-module by (4.1.1).

For every leaf L ⊂ M0, its holonomy homomorphism h = hL is induced by a ho-

momorphism ĥ = ĥL : π1L→ Diffeo+(R, 0) whose image consists of homotheties; i.e.,

writing Γ = ΓL = π1L/ ker ĥ, ĥ induces a monomorphism h = hL : Γ→ Diffeo+(R, 0),

γ 7→ hγ , with hγ(x) = aγx for some monomorphism Γ → R+ ≡ (R+,×), γ 7→ aγ =

aL,γ . The restriction of F to some neighborhood of L can be described as the suspen-

sion of h (Section 3.1.2); its definition for this case will be recalled in Section 4.2.1.
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On the other hand, every F1
l has a Fedida’s description, which will be better analyzed

in Section 4.3.4.

Remark 4.1.1. — The concepts recalled in this subsection do not need the com-

pactness of M . Only the completeness of Z and compactness of M0 are needed to

extend the indicated notions and properties.

4.1.3. Existence of simple foliated flows. — For a transversely oriented folia-

tion F of codimension one on a closed foliated manifold M , the following conditions

are equivalent [ÁLKL22, Propositions 6.1 and 6.3 and Theorem 6.9]:

(g) It satisfies (C) and (D).

(h) There is a transversely simple foliated flow.

(i) There is a weakly simple foliated flow.

(j) There is a simple foliated flow.

Moreover the families of foliated flows ϕ satisfying (h), (i) or (j) induce the same

family of local flows ϕ̄ on Σ. In the case (i), it can be also assumed that M0 ⊂ Fix(ϕ)

and there are no closed orbits in some neighborhood of M0, obtaining the same family

of local flows ϕ̄ on Σ.

A more precise description of the foliations satisfying these equivalent conditions

is given in [ÁLKL22, Theorem 6.9], but it will not be needed here.

4.2. Case of suspension foliations

4.2.1. Suspension foliations defined with homotheties. — For a pointed con-

nected closed manifold (L, p), let ĥ : π1L = π1(L, p)→ Diffeo+(R, 0) be a homomor-

phism whose image consists of homotheties, like in Section 4.1. Therefore, writing

Γ = π1L/ ker ĥ, ĥ induces a monomorphism h : Γ → Diffeo+(R, 0), γ 7→ hγ , where

hγ(x) = aγx for some monomorphism Γ → R+, γ 7→ aγ ; in particular, Γ is abelian,

torsion free and finitely generated. Let π = πL : (L̃, p̃)→ (L, p) be the pointed regular

covering map with π1L̃ = π1(L̃, p̃) ≡ ker ĥ, and therefore Aut(π) ≡ Γ. Like in Sec-

tions 2.9.2 and 2.9.9, the canonical left action of every γ ∈ Γ on L̃ is denoted by Tγ or

ỹ 7→ γ · ỹ, and write [ỹ] = π(ỹ) for ỹ ∈ L̃. For the diagonal left Γ-action on M̃ = R×L̃,

γ ·(x, ỹ) = (aγx, γ · ỹ), the orbit space M = Γ\M̃ is called a suspension manifold. The

canonical projection πM : M̃ → M is a Γ-cover with deck transformations hγ × Tγ
(γ ∈ Γ). Write [x, ỹ] = πM (x, ỹ) for (x, ỹ) ∈ M̃ .

Let ϖ̃ : M̃ → L̃ denote the second-factor projection, and let F̃ be the foliation on M̃

with leaves {x}× L̃ (x ∈ R). Since ϖ̃ is Γ-equivariant, we get an induced fiber bundle

map ϖ : M → L, defined by ϖ([x, ỹ]) = π(ỹ). On the other hand, since F̃ and its

canonical transverse orientation are Γ-invariant, we also get an induced transversely

oriented foliation F on M , called a suspension foliation, which is transverse to the

fibers of ϖ. The typical fiber of ϖ is R because the corresponding fibers of ϖ̃ and ϖ
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can be identified via πM . Since 0 is fixed by the Γ-action on R, the leaf {0} × L̃ ≡ L̃
of F̃ is Γ-invariant, and πM ({0} × L̃) ≡ L is a compact leaf of F . The other leaves

of F̃ are diffeomorphic via πM to the corresponding leaves of F because the elements

of Γ \ {e} have no fixed points in R×. Given any p̃ ∈ L̃ with π(p̃) = p ∈ L, the fiber

ϖ−1(p) ≡ ϖ̃−1(p̃) = R × {p̃} ≡ R is a global transversal of F through p ≡ [0, p̃].

Note that the holonomy homomorphism h : π1L → HolL is induced by h, and

therefore L̃hol ≡ L̃ (Section 3.1.2). The standard orientation of R induces a transverse

orientation of F̃ , which is Γ-invariant because the image of h consists of orientation

preserving homotheties, giving rise to a transverse orientation of F . Let H ⊂ TM and

H̃ ⊂ TM̃ be the linear subbundles of vectors tangent to the fibers of ϖ and ϖ̃, which

induce bigradings of ΛM and ΛM̃ satisfying d2,−1 = 0 (Sections 3.2.2 and 3.2.3). For

p̃ ∈ M̃ and p ∈ M , we will use the identities Λp̃F̃ ≡ Λϖ̃(p̃)L̃ and ΛpF ≡ Λϖ(p)L

induced by ϖ̃ and ϖ.

4.2.2. Transversely simple flows on suspension foliations. — Let ϕ = {ϕt}
be any transversely simple foliated flow on M and let Z ∈ Xcom(M,F) be its in-

finitesimal generator. Let us recall the notation of Section 4.1.2 in this case (see also

Section 3.1.12). Without loss of generality, we can assume M0 = πM ({0} × L̃) ≡ L

for the description around a compact leaf. By (4.1.1), we can suppose the lifts of ϕ

and Z to M̃ , denoted by ϕ̃ and Z̃, are of the form

(4.2.1) ϕ̃t(x, ỹ) = (eκtx, ϕ̃tx(ỹ)) , Z̃ = (κx∂x, Z̃x) ,

for some κ ∈ R×, and smooth families, { ϕ̃tx | x, t ∈ R } ⊂ Diffeo(L̃) and { Z̃x | x ∈
R } ⊂ X(L̃), with ϕ̃0x = idL̃. In particular, Z̃0 and ϕ̃t0 are the restrictions of Z̃ and

ϕ̃t to L̃ ≡ {0} × L̃. Thus Z̃0 is Γ-invariant and ϕ̃0 = {ϕ̃t0} is Γ-equivariant, inducing

the restrictions of Z and ϕt to L, denoted by Z0 and ϕ0 = {ϕt0}; we may also use

the notation ZL = Z0 and ϕL = {ϕtL} = {ϕt0}. The Γ-equivariance of ϕ̃t and the

Γ-invariance of Z̃ mean that, for all γ ∈ Γ and x, t ∈ R,

(4.2.2) Tγ ϕ̃
t
x = ϕ̃taγxTγ , Tγ∗Z̃x = Z̃aγx .

The only preserved leaf of ϕ̃, {0}× L̃ ≡ L̃, is transversely simple. Now M̃0 = {0}× L̃
and M̃1 = M̃ \M̃0 = R××L̃, which has two connected components, M̃1

± = R±×L̃. In

this case, M̃± = (R±∪{0})×L̃, with
˚̃
M± = M̃1

± and ∂M̃± = M̃0 ≡ L̃. The connected

components of M1 = M \M0 are M1
± = πM (M̃1

±), and we have M± = πM (M̃±),

with M̊± = M1
± and ∂M± = M0 ≡ L. The restriction πM : M̃± → M± will

be denoted by πM± . The foliations F̃1
± =

˚̃F± on M̃1
± =

˚̃
M± and F̃± on M̃± are

restrictions of F̃ , and the foliations F1
± = F̊± on M1

± = M̊± and F± on M± are

restrictions of F . We have M = M+ ⊔M− (resp., M̃ = M̃+ ⊔ M̃−), equipped with

the combination F (resp., F̃) of F+ and F− (resp., F̃+ and F̃−). The restriction of

F to M̊ is denoted by F̊ . Now the map π : M → M (resp., π̃ : M̃ → M̃) is the
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combination of the inclusion maps M± ↪→ M (resp., M̃± ↪→ M̃). The combination

of the maps πM± is a covering projection πM : M̃ → M . Moreover ϖ (resp., ϖ̃)

restricts to global collar neighborhoods of the boundaries, ϖ± : M± → ∂M± ≡ L

(resp., ϖ̃± : M̃± → ∂M̃± ≡ L̃), whose combination is a global collar neighborhood

of the boundary, ϖ : M → ∂M ≡ L ⊔ L (resp., ϖ̃ : M̃ → ∂M̃ ≡ L̃ ⊔ L̃). Like in

Section 4.2.1, for p̃ ∈ M̃± and p ∈M±, we have canonical identities Λp̃F̃± ≡ Λϖ̃±(p̃)L̃

and ΛpF± ≡ Λϖ±(p)L.

Recall also that any A ∈ X(M,F), with foliated flow ζ = {ζt}, induces vector

fields A± ∈ X(M±,F±) ⊂ Xb(M±), with foliated flows ζ± = {ζt±}, whose restrictions

to M̊± ≡ M1
± are denoted in the same way. In particular, we get Z± with flow

ϕ± = {ϕt±}. The same kind of notation is used for vector fields and flows induced by

elements of Xcom(M̃, F̃). Then F1
± ≡ F̊± on M1

± ≡ M̊± is a transversely complete

R-Lie foliation with the structure defined by Z± ∈ Xcom(M1
±,F1

±) (see Remark 4.1.1).

In its Fedida’s description (Section 3.1.9), M̃1
± is the holonomy covering of M1

±, whose

group of deck transformations is also Γ, the developing map D± : M̃1
± → R is given

by D±(x, y) = κ−1 ln |x| =: t, the holonomy monomorphism h± : Γ → R is given

by h±(γ) = κ−1 ln aγ , and therefore HolF± = {κ−1 ln aγ | γ ∈ Γ }. Thus Z̃± ∈
Xcom(M̃1

±, F̃1
±) is D±-projectable and (D±)∗Z̃± = ∂t. Furthermore ϕt± preserves

every leaf of F± if and only if t = h±(γ) = κ−1 ln aγ for some γ ∈ Γ (Section 3.1.11).

Let ξ̃ = {ξ̃t} be the weakly simple foliated flow on (M̃, F̃), with infinitesimal

generator is Ỹ ∈ Xcom(M̃, F̃), given by

(4.2.3) ξ̃t(x, ỹ) = (eκtx, ỹ) , Ỹ = (κx∂x, 0) .

We have Ỹ = Z̃ ≡ κx∂x, Fix(ξ̃t) = L̃, and the orbits of ξ̃t on
˚̃
M± are the fibers

of the restriction ϖ̃ :
˚̃
M± → L̃. Since ξ̃t is Γ-equivariant and Ỹ is Γ-invariant, they

project to M obtaining a weakly simple foliated flow ξt on (M,F) and its infinitesimal

generator Y ∈ X(M,F). We have Y = Z ≡ κx∂x, Fix(ξt) = L, and the orbits of ξt

on M̊± are the fibers of the restriction ϖ : M̊± → L.

On the one hand, we consider the restriction of the transverse orientations of F̃
and F to F̃± and F±, and, on the other hand, we consider the transverse orientations

of F̃1
± and F1

± induced by Z̃± and Z±, which corresponds to the standard orientation

of R by D± (Sections 3.1.12 and 4.1.2). They agree on M̃1
+ and M1

+ (resp., M̃1
− and

M1
−) if and only if κ > 0 (resp., κ < 0).

4.2.3. A defining form of F . — For k = rank Γ, fix generators γ1, . . . , γk of Γ. Let

ci be a piecewise smooth loop in L based at p such that [ci] ∈ π1(L, p) projects to γi,

and let ai = aγi . By the universal coefficients and Hurewicz theorems, there are closed

1-forms β1, . . . , βk on L such that δij = ⟨[βi], [cj ]⟩ =
´ 1
0
c∗jβi and ⟨[βi], ker ĥ⟩ = 0.

Every π∗βi is exact on L̃. Let η = − ln(a1)β1− · · · − ln(ak)βk and η̃ = π∗η = dF for

some F ∈ C∞(L̃). Note that h(Γ) ∼= Γ is the group of periods of η. With some abuse
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of notation, write also F ≡ ϖ̃∗F ∈ C∞(M̃), and

η ≡ ϖ∗η ∈ C∞(M ; Λ0,1) ≡ C∞(M ; Λ1F) ,

η̃ ≡ ϖ̃∗η̃ = π∗
Mη = dF ∈ C∞(M̃ ; Λ0,1) ≡ C∞(M ; Λ1F̃) ,

using (3.2.5). Thus η = η0 in this case, with the notation of Section 3.3.1. It is easy

to check that

(4.2.4) T ∗
γF = F − ln aγ

for all γ ∈ Γ, yielding T ∗
γ e

F = a−1
γ eF . It easily follows that the 1-form ω̃ = |κ|−1eF dx

on M̃ is Γ-invariant. (Recall that the Γ-action on M̃ is given by γ ·(x, ỹ) = (aγx, γ ·ỹ).)

Furthermore T F̃ = ker ω̃ and ω̃ defines the transverse orientation of F̃ . Therefore ω̃

induces a 1-form ω on M satisfying TF = kerω and defining the transverse orientation

of F . On the other hand, it is easy to compute dω̃ = η̃ ∧ ω̃, yielding dω = η ∧ ω.

The vector field X̃ = (|κ|e−F∂x, 0) ≡ |κ|e−F∂x ∈ C∞(M̃ ; H̃) is determined by

ω̃(X̃) = 1. Thus X̃ is Γ-invariant and induces the vector field X ∈ C∞(M ;H)

satisfying ω(X) = 1. So X̃ and X also define the transverse orientations of F̃ and F .

On the other hand, ω̃(Z̃) = sign(κ)eFx by (4.2.1), yielding sign ω̃(Z̃±) = ± sign(κ),

and therefore

signω(Z±) = ± sign(κ) .

So the transverse orientation of F1
± is also defined by the restrictions to M1

± of

± sign(κ)X or ± sign(κ)ω.

4.2.4. A defining function of M0. — Let ρ̃ = eFx, which is a defining function

of M̃0 ≡ L̃ on the whole of M̃ . Moreover ρ̃ is Γ-invariant by (4.2.4), and therefore it

induces a defining function ρ of M0 ≡ L on the whole of M . It is easy to compute

dρ̃ = eF (xη̃ + dx) = ρ̃η̃ + |κ|ω̃ ,

yielding

(4.2.5) dρ = ρη + |κ|ω ,

and therefore

(4.2.6) dρ ∧ ω = ρη ∧ ω .

Since ξ̃t∗ρ̃ = eκtρ̃ by (4.2.3), we also get

(4.2.7) ξt∗ρ = eκtρ .

The global tubular neighborhood ϖ̃ : M̃ → L̃ ≡ M̃0 can be trivialized with ρ̃,

obtaining M̃ ≡ Rρ̃×L̃ϖ̃ besides M̃ = Rx×L̃ϖ̃. Thus the global tubular neighborhood

ϖ : M → L ≡ M0 can be trivialized with ρ, obtaining M ≡ Rρ × Lϖ. According to

Section 2.6, we have corresponding vector fields ∂x, ∂ρ̃ ∈ X(M̃) and ∂ρ ∈ X(M), and

operators ∂x, ∂ρ̃ ∈ Diff1(M̃ ; Λ) and ∂ρ ∈ Diff1(M ; Λ). We compute

|κ|∂ρ̃ = |κ|∂ρ̃(x) ∂x = |κ|∂ρ̃(e−F ρ̃) ∂x = |κ|e−F ∂x = X̃ ∈ X(M̃) .
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It easily follows that

|κ|∂ρ̃ = |κ|e−F ∂x ∈ Diff1(M ; Λ) .

But, with the notation of Section 3.2.12, it is easy to check that

∂x = Θ∂x ∈ Diff1(M̃ ; Λ) .

Since X̃ ∈ C∞(M̃ ; H̃) and d1,0F = 0, we can apply (3.2.27) on C∞(M̃ ; Λ) to get

ΘX̃ = |κ|e−FΘ∂x = |κ|e−F∂x = |κ|∂ρ̃ ∈ Diff1(M̃ ; Λ) .

So, by derivation formula of ΘX̃ , (3.2.26) and (3.2.27), and since ∂x ∈ X(M̃, F̃) ∩
C∞(M̃ ; H̃) and LX̃ η̃ = 0,

[d0,1,ΘX̃ ] = |κ|[d0,1, e−FΘ∂x ] = |κ|[d0,1, e−F ]Θ∂x

= −|κ|e−F η̃∧Θ∂x = −η̃∧ΘX̃ = −ΘX̃ η̃∧ .

Hence |κ|∂ρ = X ∈ X(M), and

|κ|∂ρ = ΘX ∈ Diff1(M ; Λ) ,(4.2.8)

[ΘX , d0,1] = η∧ΘX = ΘX η∧ ∈ Diff1(M ; Λ) .(4.2.9)

Note also that ΘX̃ ω̃ = 0, and therefore ΘXω = 0. Moreover, ΘXη = 0.

For any ϵ > 0, the restriction ϖ̃ : T̃ϵ := {|ρ̃| < ϵ} → L̃ is a smaller tubular

neighborhood of L̃ in M̃ , which induces a smaller tubular neighborhood ϖ : Tϵ :=

{|ρ| < ϵ} → L of L in M . Let T̃ 1
ϵ = T̃ϵ ∩ M̃1, T̃ 1

±,ϵ = T̃ϵ ∩ M̃1
±, T 1

ϵ = Tϵ ∩M1 and

T 1
±,ϵ = Tϵ ∩M1

±.

4.2.5. A boundary-defining function of M±. — Now consider the boundary-

defining function ρ̃± = eF |x| = ±ρ̃ = |ρ̃| on M̃±, which is Γ-invariant, and therefore

it induces a boundary-defining function ρ± on M± satisfying

(4.2.10) ρ± = ±ρ = |ρ| .

If there is no danger of confusion, with some abuse of notation, these boundary-

defining functions may be simply denoted by ρ̃ and ρ. Furthermore, we have the

boundary-defining function τ = τ± := |x| on M̃±.

The global collar neighborhood ϖ̃ : M̃± → ∂M̃± ≡ L̃ can be trivialized with, either

τ , or ρ̃, obtaining

M̃± ≡ [0,∞)τ × L̃ϖ̃(4.2.11)

≡ [0,∞)ρ̃ × L̃ϖ̃ .(4.2.12)

So the global collar neighborhood ϖ : M± → ∂M ≡ L can be trivialized with ρ,

obtaining

(4.2.13) M± ≡ [0,∞)ρ × Lϖ .
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By (4.2.5), (4.2.8), (4.2.9) and (4.2.10),

dρ = ρη ± |κ|ω ,(4.2.14)

[∂ρ, d0,1] = η∧ ∂ρ ∈ Diff1(M±; Λ) ,(4.2.15)

using the operator ∂ρ ∈ Diff1(M±; Λ) introduced in Remarks 2.5.2 and 2.5.3. We

have ∂ρω = 0, and therefore ∂ρη = 0.

Observe that ρ̃−1ω̃ = |κx|−1dx is a basic form of
˚̃F±, and therefore ρ−1ω is a basic

form of F̊±. The transverse orientation of F̊± = F1
± is also defined by the basic form

(4.2.16) ωb,± = sign(κ) ρ−1ω = ± sign(κ) ρ−1
± ω = sign(ω(Z±)) ρ−1

± ω ,

whose lift to
˚̃
M± is ω̃b,± = (κx)−1 dx; in fact, ω̃b,±(Z̃±) = 1, and therefore

ωb,±(Z±) = 1. By (4.2.14) and (4.2.16),

(4.2.17) ρ−1
± dρ± = η + κ ωb,± .

Let ν = ν± be the unique smooth trivialization of +N∂M± so that dρ(ν) = 1

(Section 2.5.1). By (4.2.14), ν is represented by the restriction of ±|κ|−1X to L ≡
∂M±.

The combination of ρ+ and ρ− is a boundary-defining function ρ on M , and the

combination of ν+ and ν− is the unique smooth trivialization ν of +N∂M so that

dρ(ν) = 1. Similarly, we define ρ̃ on M̃ and ν̃ on ∂M̃ .

For ϵ > 0, the restriction ϖ̃± = ϖ̃ : T̃±,ϵ := {ρ̃± < ϵ} → L̃ is a smaller collar

neighborhood of the boundary in M̃±, which induces a smaller collar neighborhood

ϖ± = ϖ : T±,ϵ := {ρ± < ϵ} → L of the boundary in M±. By combination, we get

smaller collar neighborhoods of the boundaries, ϖ̃ : T̃ ϵ := {ρ̃ < ϵ} → ∂M̃ = L̃ ⊔ L̃
and ϖ : T ϵ := {ρ < ϵ} → ∂M = L⊔L. We have

˚̃
T ϵ ≡ T̃ 1

ϵ ,
˚̃
T±,ϵ ≡ T̃ 1

±,ϵ, T̊ϵ ≡ T 1
ϵ and

T̊±,ϵ ≡ T 1
±,ϵ.

4.2.6. The metric gM . — Take a Riemannian metric gL on L, and let gL̃ be its

lift to L̃. Consider leafwise metrics, gF = ϖ∗gL for F and gF̃ = ϖ̃∗gL̃ for F̃ ; their

restrictions to F± and F̃± may be denoted by gF± and gF̃±
. Consider also the metric

gM = ω2 + gF on M . The lift of gM to M̃ is

g
M̃

= ω̃2 + gF̃ = |κ|−2e2F (dx)2 + gF̃ .

With respect to gM , the transverse volume form is ω, X is unitary and orthogonal to

F , and TF⊥ = H.

4.2.7. The b-metrics gb,±. — Define also the metric gb,± = ρ−2
± ω2 + gF = ω2

b,± +

gF on M̊± = M1
±, where the last equality uses (4.2.16). It is bundle-like for F̊± = F1

±,

and its lift to
˚̃
M± is

(4.2.18) g̃b,± = ρ̃−2
± ω̃2 + gF̃ = ω̃2

b,± + gF̃ = (κx)−2 (dx)2 + gF̃ .
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With respect to gb,±, the transverse volume form is ωb,±, Z± is unitary and orthogonal

to F̊±, and T F̊⊥
± = H|M̊±

. The metrics g̃b,± and gb,± on
˚̃
M± and M̊± are restrictions

of b-metrics on M̃± and M±, also denoted by g̃b,± and gb,±. In the rest of this

subsection,
˚̃
M± and M̊± (resp., M̃± and M±) are assumed to be endowed with the

metrics (resp., b-metrics) g̃b,± and gb,±. By (4.2.17), if η ̸= 0 or κ2 ̸= 1, then the

b-metrics g̃b,± and gb,± are not exact (Section 2.5).

Proposition 4.2.1. — F̊± is of bounded geometry.

Proof. —
˚̃
M± is of bounded geometry because it is the Riemannian product of

(R±, (κx)−2(dx)2) and (L̃, gL̃), which are of bounded geometry since L is compact and

the change of coordinate t = κ−1 ln |x| defines an isometry between (R±, (κx)−2(dx)2)

and (R, (dt)2). Via this isometry, ω̃b,± ≡ (κx)−1 dx on R± is the pull-back of dt on

R. On the other hand, the leaves of
˚̃F± are the fibers {x} × L̃ (x ∈ R±), and the

O’Neill tensors of
˚̃F± with g̃b,± vanish. Hence, on M̊± with F̊± and gb,±, all covariant

derivatives of the curvature tensor are uniformly bounded, and the O’Neill tensors

vanish.

Finally, the bi-injectivity radius of
˚̃F± with g̃b,± is positive because a normal

foliated chart centered at any p̃ = (x0, q̃) is given by

χ̃p̃,± = (tx0
, ỹq̃) : Ũp̃,± = R± ×BL̃(q̃, r)→ R×B ,

where tx0 = κ−1(ln |x| − ln |x0|), r = injL ≤ injL̃, B is the open ball in Rn−1 of

radius r and center 0, and ỹq̃ : BL̃(q̃, r) → B is a normal chart of L̃. Let q = π(q̃),

p = πM (p̃) and Up,± = πM (Ũp̃,±). Then π : BL̃(q̃, r)→ BL(q, r) is a diffeomorphism,

obtaining a normal chart yq : BL(q, r) → B of L that corresponds to ỹq̃ via π. So

πM : Ũp̃,± → Up,± is also a diffeomorphism, and χ̃p̃,± induces via πM a normal foliated

chart of F̊± with gb,±, centered at p,

χp,± ≡ (tx0
, yq) : Up,± ≡ R± ×BL(q, r)→ R×B .

This shows that the injectivity bi-radius of F̊± with gb,± is positive.

By Proposition 4.2.1 and according to Section 3.4.1, M̊± is of bounded geometry

(the property (A) of Section 2.5.20).

Proposition 4.2.2. — M± satisfies the property (B) of Section 2.5.20.

Proof. — According to the proof of Proposition 4.2.1, it is easy to check that

(M̃±, g̃b,±) satisfies (B) on the whole of M̃± with ρ̃∂ρ̃ and the extensions B′ =

(B, 0) ∈ X(M̃±) of vector fields B ∈ X(L̃). It follows that (M±, gb,±) also satis-

fies (B) on the whole of M± with ρ∂ρ and the extensions A′ ∈ X(M±) of vector fields

A ∈ X(L) defined as follows. For every A ∈ X(L), let Ã denote its lift to L̃. Then
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Ã′ = (Ã, 0) ∈ X(M̃±) is Γ-invariant, and therefore it is πM±-projectable to a vector

field A′ ∈ X(M±).

Proposition 4.2.3. — We have d(ln ρ) ∈ C∞
ub(M̊±; Λ1).

Proof. — On the one hand, by the compactness of L and the definition of gb,±,

we have η ∈ C∞
ub(M̊±; Λ0,1). On the other hand, ρ−1ω ∈ C∞

ub(M̊±; Λ1,0) by Propo-

sition 4.2.1, since ωb,± = sign(κ)ρ−1ω is the gb,±-transverse volume form. Hence

d(ln ρ) = η ± |κ|ρ−1ω ∈ C∞
ub(M̊±; Λ1) by (4.2.14).

Let |·| : Γ→ N0 be the word length function given by a finite generating set. There

is some c0 > 0 so that, for all γ ∈ Γ,

(4.2.19) | ln aγ | ≤ c0 |γ| .

By (2.9.16), (4.2.3) and (4.2.18), for all p̃ ∈ ˚̃
M± and γ ∈ Γ,

c−1
1 |γ| ≤ d˚̃F±

(
γ−1 · ξh±(γ)(p̃), p̃

)
≤ c1|γ| ,

using the holonomy homomorphism h± : Γ→ R of F1
± ≡ F̊± (Section 4.2.2).

Lemma 4.2.4. — There are C > 0 and c ≥ 1 so that, for all ỹ, ỹ′ ∈ L̃ and x ∈ R×,

dL̃(ỹ, ỹ′) ≥ C ln
ρ([x, ỹ])

cρ([x, ỹ′])
.

Proof. — Let F ⊂ L̃ be a fundamental domain. Without loss of generality, we can

assume ỹ ∈ F . Take some γ ∈ Γ such that γ · ỹ′ ∈ F . Then

ρ([x, ỹ]) = eF (ỹ)x , ρ([x, ỹ′]) = ρ([aγx, γ · ỹ′]) = eF (γ·ỹ′)aγx .

There is some C0 ≥ 1 such that, for all ỹ1, ỹ2 ∈ F ,

C−1
0 eF (ỹ1) ≤ eF (ỹ2) ≤ C0e

F (ỹ1) .

So, using (2.9.17) with K = F 2 and (4.2.19),

ρ([x, ỹ])

ρ([x, ỹ′])
=

eF (ỹ)

eF (γ·ỹ′)aγ
≤ C0aγ−1 ≤ C0e

c0 |γ−1| ≤ C0e
c0c1(dL̃(ỹ

′,ỹ)+c2) .

Corollary 4.2.5. — For R, ϵ > 0, we have PenF (Tϵ, R) ⊂ TceR/Cϵ.

Lemma 4.2.6. — For p ∈ M̊± and t ∈ R×, if ϕt(Lp) = Lp, then dF (ϕt(p), p) ≥
injL.

Proof. — We have p = [x0, q̃] for some x0 ∈ R± and q̃ ∈ L̃, and let q = π(q̃) ∈ L.

For r = injL, take normal charts ỹq̃ : BL̃(q̃, r)→ B and yq : BL(q, r)→ B like in the

proof of Proposition 4.2.1. We have the foliated chart of F̃ ,

χ̃q̃ = (x, ỹq̃) : Ũq̃ = R×BL̃(q̃, r)→ R×B ,
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which induces via πM a foliated chart of F ,

χq = (x, yq) : Uq = πM (Ũq̃) ≡ R×BL(q, r)→ R×B .

On the one hand, if ϕt(p) ∈ Uq, then χqϕ
t(p) = (eκtx0, ϕ̃

t
x0

(q̃)) by (4.2.1), with

eκtx0 ̸= x0 because t ̸= 0. So p and ϕt(p) lie in different plaques of (Uq, χq). On

the other hand, if ϕt(p) ̸∈ Uq, then a fortiori ϕt(p) is not in the plaque of (Uq, χq)

through p. In any case, dF (ϕt(p), p) ≥ r because the plaque through p is BLp(p, r) ≡
BL̃(q̃, r).

Proposition 4.2.7. — If Z± ∈ Xub(M1
±,F1

±), then, for any compact I ⊂ R, there
are c1, c2 > 0 such that, for all p ∈ M̊± and γ ∈ Γ with h±(γ) ∈ I,

dF
(
ϕh±(γ)(p), p

)
≥ c−1

1 |γ| − c2 .

Proof. — Since I is compact and ϕ± is of R-local bounded geometry on M̊± (Sec-

tion 2.4.7), there is some R > 0 such that dL̃(ϕ̃tx(ỹ), ỹ) ≤ R for all x ∈ R±, t ∈ I and

ỹ ∈ L̃. Given any fundamental domain F ⊂ L̃, let K = PenL̃(F , R)×F . By (2.9.17),

there are c1 ≥ 1 and c2 ≥ 0 such that

(4.2.20) dL̃(γ · ϕ̃tx(ỹ), ỹ′) ≥ c−1
1 |γ| − c2

for all x ∈ R±, t ∈ I, ỹ, ỹ′ ∈ F and γ ∈ Γ, because (ϕ̃tx(ỹ), ỹ′) ∈K.

Any p ∈ M̊± is of the form p = [x, ỹ] for some x ∈ R± and ỹ ∈ F . Let γ ∈ Γ with

t := h±(γ) = κ−1 ln aγ ∈ I. Then ϕt(Lp) = Lp (Section 4.2.1), and, by (4.2.20),

dF (ϕt(p), p) = dF ([eκtx, ϕ̃tx(ỹ)], [x, ỹ]) = dF ([aγx, ϕ̃
t
x(ỹ)], [x, ỹ])

= dF ([x, γ−1 · ϕ̃tx(ỹ)], [x, ỹ]) = dL̃(γ−1 · ϕ̃tx(ỹ), ỹ) ≥ c−1
1 |γ| − c2 .

Corollary 4.2.8. — If Z± ∈ Xub(M1
±,F1

±), then, for any compact I ⊂ R×, there is

some c3 > 0 such that, for all p ∈ M̊± and γ ∈ Γ with h±(γ) ∈ I,

dF
(
ϕh±(γ)(p), p

)
≥ c3|γ| .

Proof. — By Lemma 4.2.6 and Proposition 4.2.7, the result follows taking c3 > 0

such that, for all γ ∈ Γ,

c3|γ| ≤

{
injL if |γ| ≤ c1c2
c−1
1 |γ| − c2 if |γ| > c1c2 .

Proposition 4.2.9. — If Z± ∈ Xub(M1
±,F1

±), then, for any compact I ⊂ R, there
exists some c′ > 0 such that ϕt(Tϵ) ⊂ Tc′ϵ for all t ∈ I and ϵ > 0.

Proof. — Take some R > 0 like in the proof of Proposition 4.2.7. Let ỹ ∈ L̃ and

x ∈ R± such that ρ([x, ỹ]) < ϵ. If c : [0, 1] → L̃ is a minimizing geodesic segment

from ỹ to ϕ̃tx(ỹ), then

F (ϕ̃tx(ỹ))− F (ỹ) =

ˆ 1

0

c∗dF =

ˆ 1

0

c∗η̃ ≤ ∥η̃∥L∞dL̃(ỹ, ϕ̃tx(ỹ)) ≤ ∥η∥L∞R .
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Take also some c′1 > 0 such that eκt ≤ c′1 for all t ∈ I. Then

ρ(ϕt([x, ỹ])) = eF (ϕ̃tx(ỹ))−F (ỹ)+κtρ([x, ỹ]) ≤ e∥η∥L∞Rc′1ϵ .

Proposition 4.2.10. — Suppose Γ is nontrivial. For any ϵ > 0, there is some

0 < ϵ′ < ϵ such that, for all leaf L′ of F , if a connected component W of L′∩Tϵ meets

Tϵ′ , then L ⊂W .

Proof. — Let F ⊂ L̃ be a fundamental domain. We can choose 0 < ϵ′ < ϵ such that

eF (ỹ)−F (ỹ′)ϵ′ < ϵ for all ỹ, ỹ′ ∈ F . Let W be a connected component of L′ ∩ Tϵ that

meets Tϵ′ at some point [x, ỹ]. We can assume ỹ ∈ F . For every ỹ′ ∈ F , we have

[x, ỹ′] ∈ L′ and

|ρ([x, ỹ′])| = eF (ỹ′)|x| = eF (ỹ′)−F (ỹ)|ρ([x, ỹ])| < eF (ỹ′)−F (ỹ)ϵ′ < ϵ .

So πM ({x}×F ) ⊂W because F is connected. Since Γ is nontrivial and h is injective,

there is some γ ∈ Γ such that γ ·F ∩F ̸= ∅ and aγ > 1. Then W0 :=
⋃∞
m=0 γ

m ·F is

connected in L̃. Moreover, by (4.2.4), for all m ∈ N0 and ỹ′ ∈ F ,

|ρ([x, γmỹ′])| = eF (γmỹ′)|x| = a−mγ eF (ỹ′)|x| = a−mγ |ρ([x, ỹ′])| < a−mγ ϵ ,

which is < ϵ and converges to 0 as m → ∞. Since [x, γmỹ′] ∈ ϖ−1([ỹ′]), it follows

that [x, γmỹ′] → [0, ỹ′] ≡ [ỹ′] as m → ∞. Hence πM ({x} × W0) ⊂ W and L ⊂
πM ({x} ×W0).

4.2.8. The b-metrics gc,±. — Using (4.2.13), we can also define the metric gc,± ≡
(κρ)−2 (dρ)2 + gL on M̊± and its lift g̃c,± ≡ (κρ̃)−2 (dρ)2 + gL̃ on

˚̃
M±. These are

restrictions to the interiors of b-metrics, also denoted by gc,± and g̃c,±. The b-metrics

κ2gc,± and κ2g̃c,± are exact and cylindrical around the boundary (Section 2.5.1); in

particular, the level hypersurfaces of ρ and ρ̃ are totally geodesic for gc,± and g̃c,±.

Proposition 4.2.11. — The metrics gc,± and gb,± are quasi-isometric on M̊±;

more precisely,

|·|gc,± ≤
√

2(1 + κ−2∥η∥L∞) |·|gb,± , |·|gb,± ≤
√

2 |·|gc,± .

Proof. — Take any p ∈ M̊± and u ∈ TpM̊± ≡ TpM = Hp ⊕V p, and let v = V u and

w = Hu. Then

|u|2gb,± = ρ−2ω(w)2 + |v|2gL .
By (4.2.14) and since ω(X) = 1, it follows that u is the sum of the vectors

v ∓ |κ|−1ρη(v)Xp ∈ ker(dρ)p , w ± |κ|−1ρη(v)Xp ∈Hp = kerϖ∗p ,

obtaining

|u|2gc,± = (κρ)−2
(
± |κ|ω(w) + ρη(v)

)2
+ |v|2gL

= |u|2gb,± + κ−2η(v)2 ± 2(|κ|ρ)−1ω(w)η(v) .
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Then

|u|2gc,± ≤ |u|
2
gb,±

+ 2κ−2η(v)2 + ρ−2ω(w)2 ≤ 2(1 + κ−2∥η∥L∞)|u|2gb,± ,

|u|2gb,± ≤ |u|
2
gc,± + ρ−2ω(w)2 ≤ 2|u|2gc,± .

4.2.9. Vector fields. — Assume again that
˚̃
M± and M̊± are endowed with g̃b,±

and gb,±. Recall that any A ∈ X(M,F) induces a vector field A± ∈ X(M,F), whose

restriction to M̊± is also denoted by A± (Sections 4.1.2 and 4.2.1).

Proposition 4.2.12. — Y± ∈ Xub(M̊±, F̊±).

Proof. — This follows from the proof of Proposition 4.2.1 because ∂t corresponds to

κx∂x by the change of coordinate t = κ−1 ln |x|.

Lemma 4.2.13. — If V ∈ Xc(F), then V± ∈ Xub(F̊±).

Proof. — Consider the normal foliated charts of F̊±, χp,± = (tx0 , yq) = (t, y) on Up,±,

like in the proof of Proposition 4.2.1, and the foliated charts of F̃ , χq = (x, yq) = (x, y)

on Uq, like in the proof of Lemma 4.2.6. Then Uq = ϖ−1(BL(q, r)), Up,± = Uq ∩ M̊±
and x = eκtx0. Let ∂i = ∂yi and ∂I = ∂i1 · · · ∂im for any multi-index I = (i1, . . . , im).

Take a partition of unity subordinated to a finite open cover of the compact manifold

L by balls BL(q, r) (q ∈ L). By using the ϖ-lift of this partition of unity to M , it

easily follows that we can assume V is supported in some Uq. Thus we can write V =

f i(x, y)∂i on Uq for functions f i ∈ C∞
c (R×B) ≡ C∞

c (Uq), and write V± = hi(t, y)∂i
on Up,± for functions hi ∈ C∞(R± ×B). We have

(4.2.21) ∂Ih
i(t, y) = ∂If

i(eκtx0, y) .

Claim 4.2.14. — For l ≤ k in N, there are ck,l ∈ N such that, on Up,±,

∂kt =
∑
l

ck,lx
l∂lx =

∑
l

(±1)lck,lρ
lX l .

To simplify the notation, we define ck,l for all k, l ∈ Z by setting ck,l = 0 if

min{k, l} < 0, c0,0 = 1, and ck,l = κ(lck−1,l + ck−1,l−1) if max{k, l} > 0. Note that

ck,l = 0 if l ≤ 0 < k or l > k.

The first equality of Claim 4.2.14 follows by induction on k. The case k = 1 is true

because ∂t = κx∂x. If k > 1 and the first equality holds for k − 1, then

∂kt = κx∂x
∑
l

ck−1,lx
l∂lx =

∑
l

κck−1,l

(
xl+1∂l+1

x + x
[
∂x, x

l
]
∂lx

)
=

∑
l

κck−1,l

(
xl+1∂l+1

x + lxl∂lx
)

=
∑
l

κ(lck−1,l + ck−1,l−1)xl∂lx .

The second equality of Claim 4.2.14 holds because

ρ̃lX̃ l = elF (y)|x|l(e−F (y)∂x)l = |x|l∂lx = (±1)lxl∂lx .
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By (4.2.21) and Claim 4.2.14,

∂k+1
t ∂Ih

i(t, y) =

k∑
l=1

(±1)lck,lρ
lX l∂If

i(eκtx0, y) .

Thus every function |∂k+1
t ∂Ih

i| is uniformly bounded on R±×B because f i ∈ C∞
c (R×

B) ≡ C∞
c (Uq) and X ∈ X(M).

Proposition 4.2.15. — For any ϵ > 0, there is some A ∈ Xcom(M,F) such that

A± ∈ Xub(M̊±, F̊±) and A = Z on Tϵ.

Proof. — Let Ṽ = (0, Z̃x) ∈ X(F̃), which projects to a vector field V ∈ X(F)

by (4.2.2). For any λ ∈ C∞
c (M) such that 0 ≤ λ ≤ 1 and λ = 1 on Tϵ, we have V ′ :=

λV ∈ Xc(F). Then V ′
± ∈ Xub(F̊±) by Lemma 4.2.13, A := Y + V ′ ∈ Xcom(M,F),

A = Z on Tϵ, and A± = Y± + V ′
± ∈ Xub(M̊±, F̊±) by Proposition 4.2.12.

4.3. Global objects on foliations with simple foliated flows

Consider the notation of Sections 3.1.12 and 4.1.2, where M is compact, F is

transversely oriented, and ϕ is transversely simple.

4.3.1. Tubular neighborhoods of M0. — In the following, for L ∈ π0M0 (the

set of leaves in M0), we have corresponding objects ĥL, hL, ΓL, πL : L̃→ L, κL and

aL,γ (Section 4.1.2). Consider also the corresponding suspension foliated manifold,

(M ′
L,F ′

L), and all other associated objects (Sections 4.2.1 to 4.2.8). A prime and the

subscript “L” is added to their notation; for instance, we have ξ′L = {ξ′ tL }, Y ′
L, M ′ 0

L ,

M ′ 1
L , F ′ 1

L , ϖ′
L, ρ′L, T ′

L,ϵ, T
′ 1
L,ϵ, X

′
L, ω′

L, η′L, gM ′
L

and gF ′
L

. The corresponding disjoint

unions or combinations, with L running in π0M
0, are denoted by M ′, F ′, ξ′ = {ξ′ t},

Y ′, M ′ 0, M ′ 1, F ′ 1, ϖ′, ρ′, T ′
ϵ , T

′ 1
ϵ , X ′, ω′, η′, gM ′ and gF ′ , removing the subscript

“L”.

By the Reeb’s local stability, if ϵ > 0 is small enough, there is a tubular neigh-

borhood of every L in M , ϖL : TL,ϵ → L, such that TL,ϵ is diffeomorphic to T ′
L,ϵ,

with ϖL and F|TL,ϵ corresponding to ϖ′
L and F ′

L|T ′
L,ϵ

; we simply write ϖL ≡ ϖ′
L and

F ≡ F ′
L on TL,ϵ ≡ T ′

L,ϵ. We can assume the closures TL,ϵ are disjoint one another.

Then the combination of the maps ϖL,ϵ is a tubular neighborhood of M0 in M ,

ϖ ≡ ϖ′ : Tϵ :=
⋃
L

TL,ϵ ≡ T ′
ϵ →M0 ≡M ′ 0 .

4.3.2. Collar neighborhoods of every ∂Ml. — Given any connected compo-

nent M1
l of M1, consider only leaves L ∈ π0(M0 ∩M1

l ) ≡ π0(∂Ml). The notation

(M ′
L,l,F ′

L,l) is used for (M ′
L,+,F ′

L,+) (resp., (M ′
L,−,F ′

L,−)) if the transverse orienta-

tion of Fl along L points inwards (resp., outwards), like the transverse orientation



130 CHAPTER 4. FOLIATIONS WITH SIMPLE FOLIATED FLOWS

along L of F ′
L,+ (resp., F ′

L,−). This kind of change is applied to the rest of no-

tation concerning these foliated manifolds with boundary (Sections 4.2.2 and 4.2.5

to 4.2.9). For instance, we obtain ξ′L,l = {ξ′ tL,l}, Y ′
L,l, ϖ

′
L,l, ρ

′
L,l, ν

′
L,l, T

′
L,l,ϵ, ω

′
b,L,l,

η′L,l, g
′
b,L,l and g′c,L,l. Similarly, we have (M ′ 1

L,l,F ′ 1
L,l) ≡ (M̊ ′

L,l, F̊ ′
L,l), whose Molino’s

description involves M̃ ′ 1
L,l, F̃ ′ 1

L,l, h
′
L,l : ΓL → R and D′

L,l : M̃ ′ 1
L,l → R. We have

T̊ ′
L,l,ϵ ≡ T ′

L,ϵ ∩M ′ 1
l =: T ′ 1

L,l,ϵ. The corresponding disjoint unions or combinations,

with L running in π0(∂Ml), are denoted by M ′
l , F ′

l , ξ
′
l = {ξ′ tl }, Y ′

l , ϖ′
l, ρ

′
l, ν

′
L,l, T

′
l,ϵ,

ω′
b,l, η

′
l, g

′
b,l and g′c,l, deleting the subscript “L”. In the same way, we have M ′ 1

l , F ′ 1
l

and T ′ 1
l,ϵ = T ′

ϵ ∩M ′ 1
l ≡ T̊ ′

l,ϵ.

Next, we delete “l” from this notation and use boldface for the corresponding

disjoint unions or combinations for all l, obtaining M ′, F ′, ϖ′, ρ′, ν′, T ′
ϵ, ω

′
b, η′, g′

b

and g′
c.

On the other hand, ϖL : TL,ϵ → L induces a collar neighborhood ϖL,l : TL,l,ϵ → L

of the boundary component L of Ml, and the identity TL,ϵ ≡ T ′
L,ϵ induces an identity

TL,l,ϵ ≡ T ′
L,l,ϵ, and we have ϖL,l ≡ ϖ′

L,l and Fl ≡ F ′
L,l on TL,l,ϵ ≡ T ′

L,l,ϵ. Moreover

T ′ 1
L,l,ϵ ≡ T 1

L,l,ϵ := TL,ϵ ∩M1
l ≡ T̊L,l,ϵ and T ′ 1

L,l,ϵ ≡ T 1
l,ϵ := Tϵ ∩M1

l ≡ T̊L,l,ϵ.
The combination of the maps ϖL,l, with L running in π0Ml, is a collar neighbor-

hood ϖl ≡ ϖ′
l : Tl,ϵ ≡ T ′

l,ϵ → ∂Ml ≡ ∂M ′
l of the boundary in Ml, where Fl ≡ F ′

l . In

turn, the combination of the maps ϖl is a collar neighborhood

ϖ ≡ϖ′ : T ϵ :=
⊔
l

Tl,ϵ ≡ T ′
ϵ → ∂M ≡M0 ⊔M0

of the boundary in M , and we have F ≡ F ′ on T ϵ ≡ T ′
ϵ.

4.3.3. Globalization. — For fixed 0 < ϵ < ϵ0 small enough, we can construct the

following objects with standard arguments, using a partition of unity subordinated

to the open cover {Tϵ0 ,M \ Tϵ} of M :

(E) For any A′ ∈ Xcom(M ′,F ′) with A′ = Y ′, there is some A ∈ Xcom(M,F) with

A = Z, A ≡ A′ on Tϵ ≡ T ′
ϵ and A = Z on M \Tϵ0 . Moreover A induces a vector

field Al ∈ X(Ml,Fl) (Section 4.1.2), whose restriction to M̊l ≡ M1
l is denoted

in the same way. In particular, this applies to Y ′ ∈ Xcom(M ′,F ′), obtaining

Y ∈ X(M,F) with flow ξ = {ξt} and Yl ∈ X(Ml,Fl) with flow ξl = {ξtl}. We

have Fix(ξ) = M0, and the orbits of ξ agree with the fibers of ϖ on Tϵ ∩M1.

Thus ξ has no closed orbit in Tϵ ∩M1.

(F) Some Z ′ ∈ Xcom(M ′,F ′), with flow ϕ′ = {ϕ′ t}, such that Z ′ = Y ′, Z ′ ≡ Z

on Tϵ ≡ T ′
ϵ , and Z ′ = Y ′ on M ′ \ T ′

ϵ0 . This Z ′ induces vector fields Z ′
L,l ∈

X(M ′
L,l,F ′

L,l) with flow ϕ′L,l = {ϕ′ tL,l}, and Z ′
l ∈ X(M ′

l ,F ′
l ) with flow ϕ′l = {ϕ′ tl }.

(G) A bundle-like metric gb,l of every F1
l ≡ F̊l on M1

l ≡ M̊l such that gb,l ≡ g′b,l on

T 1
l,ϵ ≡ T ′ 1

l,ϵ . Thus gb,l is the restriction to M̊l of a b-metric on Ml, also denoted

by gb,l. Let ωb,l be the gb,l-transverse volume form, defining the transverse
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orientation given by Zl; thus ωb,l ≡ ω′
b,l on T 1

l,ϵ ≡ T ′ 1
l,ϵ . Since ω′

b,l(Y
′
l ) =

ω′
b,l(Z

′
l) = 1 (Section 4.2.5), we can assume ωb,l(Yl) = ωb,l(Zl) = 1.

(H) A Riemannian metric gc,l on every M1
l ≡ M̊l such that gc,l ≡ g′c,l on T 1

l,ϵ ≡ T ′ 1
l,ϵ .

Thus gc,l is the restriction to M̊l of a b-metric on Ml, also denoted by gc,l, and

the b-metric κ2
Lgc,l is exact and cylindrical around every boundary component

L of Ml.

(I) A Riemannian metric gM on M such that gM ≡ gM ′ on Tϵ ≡ T ′
ϵ , gM = gb,l on

every M1
l \ Tϵ0 , and gM defines the same orthogonal complement of TF as gb,l

on every M1
l . We consider the bigrading of ΛM defined by the gM -orthogonal

complement of the leaves (Section 3.2).

(J) A leafwise Riemannian metric gF of F such that gF ≡ gF ′ on Tϵ ≡ T ′
ϵ . We can

assume it is induced by gM on M , and by gb,l and gc,l on every M1
l . It induces

a leafwise metric gFl for every Fl.
(K) Differential forms, ω ∈ C∞(M ; Λ1,0) and η ∈ C∞(M ; Λ0,1), such that ω is

the transverse volume form of F with respect to gM , and dω = η ∧ ω. Thus

kerω = TF , η = 0 on M \Tϵ0 , and they extend the forms ω and η we had on Tϵ.

For every L ∈ π0M0, we may use the notation ηL = η|L and η̃L = π∗
LηL = dL̃FL

for some FL ∈ C∞(L̃). Moreover, η = η0 on Tϵ with the notation of Section 3.3.1

because this is true for every F ′
L.

(L) A defining function ρ ≡ ρ′ of M0 in Tϵ0 ≡ T ′
ϵ0 .

(M) A boundary-defining function ρ = ρl on every Ml such that ρl ≡ ρ′l on Tl,ϵ ≡ T ′
l,ϵ,

and ρl = 1 on M1
l \T 1

l,ϵ0
. The level hypersurfaces of ρl in T 1

l,ϵ are totally geodesic

with respect to gc,l. Let ν = νl be the unique smooth trivialization of +N∂Ml

with dρl(νl) = 1 (Section 2.5.1). Thus νl ≡ ν′l via Tl,ϵ ≡ T ′
l,ϵ.

From Propositions 4.2.1 to 4.2.3, 4.2.12 and 4.2.15, it easily follows that F1
l is of

bounded geometry, (Ml, gb,l) satisfies the properties (A) and (B) of Section 2.5.18,

d(ln ρl) ∈ C∞
ub(M̊l;T

∗M̊l), and Yl ∈ Xub(M1
l ,F1

l ) with respect to gb,l, and we can

assume Z ′
L,l ∈ Xub(M ′ 1

L,l,F ′ 1
L,l) with respect to g′b,L,l. So Zl ∈ Xub(M1

l ,F1
l ) with

respect to gb,l. By Proposition 4.2.11 and since M1
l \T 1

l,ϵ is compact, we also get that

the metrics gb,l and gc,l are quasi-isometric on M1
l ; this also follows because both

of these metrics are restrictions to M̊l of b-metrics on the compact manifold with

boundary Ml.

By (4.2.16), we have ω = sign(ω(Zl)) ρlωb,l on M̊l ∩ T ϵ ≡ M1
l ∩ Tϵ. This equality

is also true on M1
l \ Tϵ0 , where gM = gb,l and ρl = 1. Indeed, we can choose ρl so

that this equality holds on the whole of M̊l ≡M1
l . So

dω = sign(ω(Zl)) dρl ∧ ωb,l = dρl ∧ ρ−1
l ω = d(ln ρl) ∧ ω

on M̊l ≡M1
l , yielding

(4.3.1) η0 = d0,1(ln ρl) ≡ dFl(ln ρl) .
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Taking combinations of the above objects on the manifolds Ml, we get a boundary-

defining function ρ on M , a trivialization ν of +N∂M , real 1-forms ωb and η, and

b-metrics gb and gc. They agree with ρ′, ν′, ω′
b, η′, g′

b and g′
c on T ϵ ≡ T ′

ϵ.

4.3.4. The components of M1. — Recall that every F1
l ≡ F̊l on M1

l ≡ M̊l is a

transversely complete R-Lie foliation, where this transverse structure is defined by

Zl ∈ Xcom(M1
l ,F1

l ). Of course, the transverse orientation of F1
l defined by Zl may

not agree with the original transverse orientation of F .

The Fedida’s description of F1
l is given by a regular covering πl : M̃1

l → M1
l with

group of deck transformations Γl, a holonomy monomorphism hl : Γl → R and a

developing map Dl : M̃1
l → R (Sections 3.1.9 and 3.1.11). Note that Γl has finite

rank because M1
l ≡ M̊l and Ml is compact. Recall that the action of any γ ∈ Γl on

M̃1
l is denoted by p̃ 7→ γ · p̃ or by Tγ .

Let Yl and ξl = {ξtl} denote the restrictions of Y and ξ to every M1
l . Let F̃1

l , Ỹl,

Z̃l, ξ̃l = {ξ̃tl} and ϕ̃l = {ϕ̃tl} be the lifts to M̃1
l of F1

l , Zl and ϕl, respectively. Recall

from Section 3.4.7 that Z̃l is Γl-invariant and Dl-projectable, and ϕ̃l is Γl-equivariant.

Moreover we can assume Dl∗Z̃l = ∂x, where x denotes the canonical global coordinate

of R, and therefore ϕ̃l corresponds via Dl to the flow ϕ̄l on R defined by ϕ̄tl(x) = t+x.

So Dl restricts to diffeomorphisms between the orbits of ϕ̃l and R.

Proposition 4.3.1. — Given any leaf Ll of F1
l , there is a left action of Γl on Ll

and there is an identity M̃1
l ≡ R× Ll such that:

(i) Dl is the left-factor projection;

(ii) Ỹl ≡ (∂x, 0) and ξ̃tl (x, y) = (t+ x, y);

(iii) the action of Γl on M̃
1
l is given by γ · (x, y) = (hl(γ) + x, γ · y); and

(iv) there is some compact Kl ⊂ M1
l so that, if γ · y = y for some γ ∈ Γl and

y ∈ Ll \Kl, then γ = e.

Proof. — Since Ỹl is projectable by Dl to ∂x because Ỹl = Z̃l, it follows that Dl also

restricts to diffeomorphisms of the ξ̃l-orbits to R. So, given any leaf L̃l of F̃1
l over Ll,

we get M̃1
l ≡ R× L̃l ≡ R× Ll such that (i) and (ii) hold.

The action of every γ ∈ Γl on (x, y) ∈ R× Ll ≡ M̃1
l can be written as γ · (x, y) =

(hl(γ)+x, Tγ(x, y)) for some smooth map Tγ : R×Ll → Ll. Then, since the flow ξ̃tl is

Γl-equivariant, it easily follows that Tγ(x, y) = Tγ(t+x, y). So Tγ(x, y) is independent

of x, and therefore it can be written as γ · y. It is easy to check that this defines a

left Γl-action on Ll, and (iii) follows.

Let us prove (iv). If γ · y = y for some γ ∈ Γl \ {e} and y ∈ Ll, then we easily

compute γ · ξ̃t(x, y) = ξ̃hl(γ)+t(x, y) for all x, t ∈ R. Thus the ξ̃t-orbit of (x, y) is

invariant by the action of γ, and therefore the ξt-orbit of [x, y] is closed because

γ ̸= e. Since Y ≡ Y ′ on Tϵ ≡ T ′
ϵ , it follows that y ∈ Ll \ Tϵ, and M1

l \ Tϵ is compact

in M1
l .
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Remark 4.3.2. — In Proposition 4.3.1, the projection Ll → Γl\Ll may not be a

covering map, and therefore (M1
l ,F1

l ) may not be given by a suspension. According

to its proof, a point y ∈ Ll is fixed by some γ ∈ Γl \ {e} just when R× {y} projects

to a closed orbit of ξt in M1
l whose group of periods contains hl(γ).

According to Proposition 4.3.1, we may use the notation [x, y] = πl(x, y) ∈M1
l for

(x, y) ∈ R × Ll ≡ M̃1
l , and the action of every γ ∈ Γl on Ll may be also denoted by

Tγ . Like in (4.2.1) and (4.2.2), we get

(4.3.2) ϕ̃tl(x, ỹ) = (t+ x, ϕ̃tl,x(ỹ)) , Z̃l = (∂x, Z̃l,x) ,

for some smooth families, { ϕ̃tl,x | x, t ∈ R } ⊂ Diffeo(Ll) and { Z̃l,x | x ∈ R } ⊂ X(Ll),

such that

Tγ ϕ̃
t
l,x = ϕ̃tl,hl(γ)+xTγ , Tγ∗Z̃x = Z̃hl(γ)+x .

Let c be a closed orbit of ϕl with period t0, and let p = [x, y] ∈ c and p̃ =

(x, y) ∈ M̃1
l ≡ R × Ll. Then k = t0/ℓ(c) ∈ Z and there is a unique γ0 ∈ Γl

such that ϕ̃t0l (p̃) = γ0 · p̃. Using (4.3.2) and Proposition 4.3.1 (iii), it easily follows

that t0 = hl(γ0) and ϕ̃t0l,x(y) = γ0 · y; i.e., y is a fixed point of the diffeomorphism

T−1
γ0 ϕ̃

t0
l,x of Ll. Moreover y is simple if and only if c is simple, and, in this case,

ϵy(Tγ0 ϕ̃
t0
l,x) = ϵc(k, ϕ) = ϵc(k).

We have ω̃b,l := π∗
l ωb,l = D∗

l dx ≡ dx because Dl∗Z̃l = ∂x and ωb,l(Zl) = 1

(Section 4.3.3).

4.3.5. Metric properties of the components of M1. — With the notation of

Sections 4.3.2 to 4.3.4, for leaves L ⊂M0 ∩M1
l and 0 < ϵ′ ≤ ϵ, the open subsets

T̃ ′ 1
L,l,ϵ′ = π−1

M ′
L,l

(T ′ 1
L,l,ϵ′) ⊂ M̃ ′ 1

L,l , T̃ 1
L,l,ϵ′ = π−1

l (T 1
L,l,ϵ′) ⊂ M̃1

l ,

are invariant by ΓL and Γl, respectively. Let ρ̃l = π∗
l ρl and M1

l,ϵ′ = M1
l \ Tl,ϵ′ ,

which is a connected compact smooth submanifold with boundary of M1
l . Then

T̃ 1
l,ϵ′ := π−1

l (T 1
l,ϵ′) = {ρ̃l < ϵ′} is a Γl-invariant open subspace of M̃1

l , and πl : M̃1
l,ϵ′ :=

M̃1
l \ T̃ 1

l,ϵ′ →M1
l,ϵ′ is a regular Γl-covering.

Let dl denote the length-metric on M1
l defined by gb,l. Let g̃b,l and g̃c,l be the lifts

to M̃1
l of gb,l and gc,l. Both of them induce the same leafwise metric gF̃l of F̃l, which

is the lift of gFl . Let d̃l and d̃l,ϵ′ denote the length-metrics on M̃1
l and M̃1

l,ϵ′ defined

by g̃b,l. Similarly, let d̃c,l and d̃c,l,ϵ′ be the length-metrics on M̃1
l and M̃1

l,ϵ′ defined

by g̃c,l. Since gb,l and gc,l are quasi-isometric (Section 4.3.3), the metrics g̃b,l and g̃c,l
are also quasi-isometric. Therefore there is some C1 ≥ 1 such that, for all p̃, q̃ ∈ M̃1

l ,

(4.3.3) C−1
1 d̃l(p̃, q̃) ≤ d̃c,l(p̃, q̃) ≤ C1d̃l(p̃, q̃) .

On the other hand, d̃l ≤ d̃l,ϵ′ on M̃1
l,ϵ′ .

Lemma 4.3.3. — We have d̃c,l = d̃c,l,ϵ′ on M̃
1
l,ϵ′ .
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Proof. — It is enough to show that any g̃c,l-geodesic segment with end-points in

M̃1
l,ϵ′ is contained in M̃1

l,ϵ′ (M̃1
l,ϵ′ is g̃c,l-convex). This follows easily using that the

level hypersurfaces of ρ̃l are g̃c,l-totally geodesic because the level hypersurfaces of ρl
in T 1

l,ϵ are gc,l-totally geodesic ((M) of Section 4.3.3).

Let |·| = |·|l : Γl → N0 and |·| = |·|L : ΓL → N0 be the word length functions

induced by any choice of finite sets of generators of Γl and ΓL. By the compactness

of M1
l,ϵ′ , there is some C2 = C2(ϵ′) ≥ 1 such that, for all γ ∈ Γl and p̃ ∈ M̃1

l,ϵ′ ,

(4.3.4) C−1
2 |γ| ≤ d̃l,ϵ′(p̃, γ · p̃) ≤ C2|γ| .

Since gb,l and gc,l are quasi-isometric on M1
l , it follows from (4.3.3), (4.3.4) and

Lemma 4.3.3 that there is some C3 = C3(ϵ′) ≥ 1 such that, for all γ ∈ Γl and

p̃ ∈ M̃1
l,ϵ′ ,

(4.3.5) C−1
3 |γ| ≤ d̃l(p̃, γ · p̃) ≤ C3|γ| .

Remark 4.3.4. — For any leaf L ⊂ M0 ∩M1
l , the given descriptions of F on T 1

L,ϵ

and M1
l have the following relation, whose proof is omitted because it will not be used.

There is a monomorphism HL,l : ΓL → Γl such that, for every connected component

T̃ 1
L,l,ϵ′,0 of T̃ 1

L,l,ϵ′ , the identity T ′ 1
L,l,ϵ′ ≡ T 1

L,l,ϵ′ can be lifted to an HL,l-equivariant

identity T̃ ′ 1
L,l,ϵ′ ≡ T̃ 1

L,l,ϵ′,0, which is locally equivariant with respect to the local flows

defined by ξ̃′L on T̃ ′ 1
L,ϵ′,± and ξ̃l on T̃ 1

L,l,ϵ′,0, and so that Dl corresponds to D′
L,l.



CHAPTER 5

CONORMAL LEAFWISE REDUCED COHOMOLOGY

5.1. Conormal sequence of leafwise currents

Let F be a transversely orientable smooth foliation of codimension one on a closed

manifold M satisfying the conditions (C) and (D) of Section 4.1.2. Then M0 is

determined by F in the cases (d)–(f) of Section 4.1.2, whereas M0 must be also given

in the case (c). The compactness condition on M is assumed for the sake of simplicity,

but all concepts, results and arguments of this section have straightforward extensions

to the case where M is not compact and M0 is compact, using compactly supported

versions or versions without support restrictions of the spaces of leafwise currents that

will be considered. The compactly supported versions, in the non-compact case, will

be used in the arguments.

Since Diff1(F ; ΛF) ⊂ Diff1(M,M0; ΛF), the graded LCHS

I(F) = IΛ•(F) := I(M,M0; ΛF)

becomes a topological complex with dF (Sections 2.2.7 and 3.2.1). If we take coeffi-

cients in some leafwise flat vector bundle E, then the notation I(F ;E) will be used,

and all other notations will be modified in the same way. We may even consider

I(F ;E) for an arbitrary vector bundle E, missing the leafwise differential map dF .

The topological complex (I(F), dF ) produces the conormal leafwise cohomology

and conormal leafwise reduced cohomology of F (or of (F ,M0) when M0 is not de-

termined by F), denoted by H•I(F) and H̄•I(F), which are LCSs (Section 2.1.13).

The image and kernel of dF in I(F) are denoted by BI(F) and ZI(F), and we write

B̄I(F) = BI(F).

The LCHSs

I(s)(F) = I(s)Λ•(F) := I(s)(M,M0; ΛF) (s ∈ R)

also become topological complexes with dF (Section 2.2.7). The notation H•I(s)(F),

H̄•I(s)(F), BI(s)(F), ZI(s)(F) and B̄I(s)(F) is used as before. We have continuous
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inclusion maps (Section 2.2.2)

(5.1.1) js : I(s)(F) ↪→ I(F) , js,s′ : I(s)(F) ↪→ I(s
′)(F) (s′ ≤ s) .

The induced homomorphism in cohomology and reduced cohomology are denoted by

js∗, js,s′∗, ȷ̄s∗ and ȷ̄s,s′∗. The homomorphism js,s′∗ and ȷ̄s∗ form inductive spectra,

giving rise to inductive limits as s ↓ −∞. The maps js∗ and ȷ̄s∗ induce canonical

continuous linear isomorphisms (Section 5.2),

(5.1.2)

ȷ̃∗ := lim−→ js∗ : H̃•I(F) := lim−→H•I(s)(F)
∼=−→ H•I(F) ,

ȷ̂∗ := lim−→ ȷ̄s∗ : Ĥ•I(F) := lim−→ H̄•I(s)(F)
∼=−→ H̄•I(F) .

The canonical maps of the steps to the inductive limits are denoted by

ȷ̃s∗ : H•I(s)(F)→ H̃•I(F) , ȷ̂s∗ : H̄•I(s)(F)→ Ĥ•I(F) .

The graded LCHSs,

J(F) = JΛ•(F) := J(M,M0; ΛF) , K(F) = KΛ•(F) := K(M,M0; ΛF) ,

also become topological complexes with dF (Section 2.6.13). The above kind of no-

tation is also used for the induced spaces: BJ(F), ZJ(F), B̄J(F) and H•J(F),

H̄•J(F), and the same for K(F).

Similarly, we have topological complexes J (s)(F), Jm(F) and K(s)(F) (s,m ∈ R)

with dF (Section 2.6.13). The analogs of the inclusion maps (5.1.1) for the spaces

J (s)(F) and K(s)(F) are denoted in the same way. The induced homomorphisms in

cohomology and reduced cohomology form inductive spectra. Their inductive lim-

its, denoted by H̃•K(F), Ĥ•K(F), H̃•J(F) and Ĥ•J(F), satisfy analogs of (5.1.2)

(proved with the same arguments). In fact, in the case of K(F), we have canonical

TVS-identities (Corollary 5.3.2),

(5.1.3)

{
H•K(F) ≡ H̄•K(F) , H•K(s)(F) ≡ H̄•K(s)(F) ,

H̃•K(s)(F) ≡ H•K(F) , Ĥ•K(s)(F) ≡ H̄•K(F) .

There are also continuous inclusion maps (Section 2.6.7)

(5.1.4)


jm : Jm(F) ↪→ J(F) , jm,m′ : Jm(F) ↪→ Jm

′
(F) (m′ ≤ m) ,

js,m : J (s)(F) ↪→ Jm(F) (m < s− n/2− 1) ,

jm,s : Jm(F) ↪→ J (s)(F) (s ≤ m, 0) ,

denoted like in (5.1.1) with some abuse of notation. The homomorphisms induced by

the maps jm,m′ in cohomology and reduced cohomology form inductive spectra whose

inductive limits as m ↓ −∞ agree with the previous ones for J(F), and the maps jm
induce a continuous linear isomorphism analogous to (5.1.2).

There are similar constructions for the spaces of the symbol-order filtration of I(F)

and K(F), with similar properties, but they will not be used here.
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The leafwise conormal exact sequence of F is the bottom row of (2.6.41) with ΛF ,

(5.1.5) 0→ K(F)
ι−→ I(F)

R−→ J(F)→ 0 .

Besides being exact in the category of continuous linear maps between LCSs, it is

compatible with dF . The exactness of the induced sequences,

0→ H•K(F)
ι∗−→ H•I(F)

R∗−−→ H•J(F)→ 0 ,(5.1.6)

0→ H•K(F)
ῑ∗−→ H̄•I(F)

R̄∗−−→ H̄•J(F)→ 0 ,(5.1.7)

will be proved in Section 5.5; in particular, this shows Theorem 1.3.3.

Concerning notation, the subscript “s” may be added to the notation of cochain

maps between the topological complexes K(s)(F), I(s)(F) or J (s)(F), like

(5.1.8) ιs = ι : K(s)(F)→ I(s)(F) , Rs = R : I(s)(F)→ J (s)(F) .

The subscript “s” may be also added to the elements of their cohomologies or reduced

cohomologies: [α]s ∈ H•I(s)(F) and [α]s ∈ H̄•I(s)(F) for α ∈ ZI(s)(F).

5.2. Injective limits in cohomology and reduced cohomology

The purpose of this section is to prove that the maps (5.1.2) are isomorphisms.

The details are given for the case of H̄•I(F). Some remarks indicate how to modify

the arguments to show the simpler case of H•I(F).

5.2.1. Injectivity of ȷ̂∗. — Take any element in ker ȷ̂∗, which is of the form ȷ̂s∗([α]s)

for some [α]s ∈ H̄•I(s)(F). Then there is some net φl ∈ I(F) such that α = liml dFφl
in I(F). We can assume φl ∈ C∞(M ; ΛF) by the density of C∞(M ; ΛF) in I(F)

(Section 2.2.2). The set {α, dFφl}l is compact in I(F). Then {α, dFβl}l is contained

and compact in some step I(s
′)(F) (s′ ≤ s) because I(F) is compactly retractive

(Section 2.2.2). Thus α = liml dFφl in I(s
′)(F); otherwise, using that {α, dFφl}l is

compact in I(s
′)(F), it is easy to find a subnet dFφlk convergent to some β ̸= α in

I(s
′)(F), which contradicts the continuity of js′ : I(s

′)(F)→ I(F) and the convergence

dFφl → α in I(F). (Indeed, we can assume dFϕl is a sequence because I(s
′)(F) is a

Fréchet space.) So [α]s′ = 0 in H̄•I(s
′)(F), and therefore ȷ̂s∗([α]s) = ȷ̂s′∗([α]s′) = 0.

Remark 5.2.1. — To prove injectivity of ȷ̃∗, take some ȷ̃s∗([α]s) in ker ȷ̃∗. Now

modify the above argument by using cohomology classes, and taking an element

φ ∈ I(F) with dFφ = α instead of a net φl. Then φ and α are in some step I(s
′)(F)

(s′ ≤ s), yielding [α]s′ = 0 in H•I(s
′)(F), and therefore ȷ̂s∗([α]s) = ȷ̂s′∗([α]s′) = 0.
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5.2.2. Surjectivity of ȷ̂∗. — For any [α] ∈ H̄•I(F), there is some s such that

α ∈ I(s)(F), and therefore α ∈ ZI(s)(F). Hence the element [α]s ∈ H̄I(s)(F) is

defined, and the element ȷ̂s∗([α]s) ∈ Ĥ•I(s)(F) is mapped to [α] by ȷ̂∗.

Remark 5.2.2. — To prove the surjectivity of ȷ̃∗, simply modify the argument by

using cohomology classes instead of reduced cohomology classes.

5.3. Description of H•K(F)

Consider also the notation of Section 4.3.3. For every z ∈ C, we have the Witten’s

complex dz = d + z η∧ on C∞(M0; Λ), whose cohomology is denoted by H•
z (M0)

(Section 2.9.1). Consider also the trivialization of the flat line bundle ΩzNM0 =

ΩzNF|M0 defined by |ω|z. Then, by (2.9.5) and since dω = η∧ω ((K) of Section 4.3.3),

C±∞(M0; Λ⊗ ΩzNM0) ≡ C±∞(M0; Λ)⊗ R|ω|z ≡ C±∞(M0; Λ) ,

d ≡ dz ⊗ 1 ≡ dz , H•(M0; ΩzNM0) ≡ Hz(M
0) .

These identities will be applied without further comment. By Reeb’s local stability,

the following result follows from the case of a suspension foliation, which will be

proved in Section 5.6.1 (Corollary 5.6.2).

Proposition 5.3.1. — We have identities of topological complexes,

K(F) ≡
⊕
k

C∞(M0; Λ) ≡
⊕
k

C∞(M0; Λ⊗ Ω−k−1NM0) ,

dF ≡
⊕
k

d−k−1 ≡
⊕
k

d ,

where k runs in N0. Moreover the subcomplex K(s)(F) ⊂ K(F) corresponds to the

finite direct sum with k < −s− 1/2.

Corollary 5.3.2. — We have TVS-identities,

H•K(F) ≡
⊕
k

H•
−k−1(M0) ≡

⊕
k

H•(M0,Ω−k−1NM0) .

Moreover H•K(s)(F) is the topological vector subspace of H•K(F) given by the finite

direct sum with k < −s− 1/2. In particular, (5.1.3) is satisfied.

Remark 5.3.3. — The differential complexes on M0 used in Proposition 5.3.1 ob-

viously split into direct sums of the same complexes given by leaves L ⊂ M0. The

same applies to their cohomologies in Corollary 5.3.2.

Remark 5.3.4. — Like in Proposition 5.3.1, the isomorphism (2.6.24) gives

C−∞
M0 (M ; ΛF) ≡

⊕
k

C−∞(M0; Λ) ≡
⊕
k

C−∞(M0; Λ⊗ Ω−k−1NM0) .
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5.4. Description of H̄•J(F)

With the notation of Sections 3.1.12 and 4.1.2, by (2.6.30) and (2.6.31), for m ∈ R,

Jm(F) ∼= ρmH∞
b (M ; ΛF) ≡ ρm+ 1

2H∞(M̊ ; ΛF̊) ,(5.4.1)

J(F) ∼=
⋃
m

ρmH∞
b (M ; ΛF) =

⋃
m

ρmH∞(M̊ ; ΛF̊) ,(5.4.2)

as topological complexes with dF , dF or dF̊ , using the b-metric g to define

H∞
b (M ; ΛF), and using g|M̊ to define H∞(M̊ ; ΛF̊).

On the other hand, since η = dF (lnρ) on M̊ by (4.3.1), we get isomorphisms of

topological complexes,

(5.4.3) ρ−m− 1
2 :

(
ρm+ 1

2H∞(M̊ ; ΛF̊), dF̊
) ∼=−→

(
H∞(M̊ ; ΛF̊), dF̊ ,m+ 1

2

)
,

by the leafwise version of (2.9.4) (Section 3.5).

By (5.4.1) and (5.4.3), and the analog of (3.4.16) for ∆F̊ ,m+ 1
2

in H∞(M̊ ; ΛF̊)

(Section 3.5), we get induced TVS-isomorphisms

H̄•Jm(F) ∼= H̄•(ρm+ 1
2H∞(M̊ ; ΛF̊), dF̊

)
(5.4.4)

∼= H̄•(H∞(M̊ ; ΛF̊), dF̊ ,m+ 1
2

)
(5.4.5)

∼= ker ∆F̊ ,m+ 1
2
.(5.4.6)

By the analog of (5.1.2) for J(F) and (5.4.6), the LCHS H̄•J(F) is an inductive

limit of Hilbertian spaces. The isomorphisms (5.4.4) and (5.4.5) are also true in

cohomology.

Theorem 1.3.2 follows from the analog of (5.1.2) for J(F) and (5.4.1)–(5.4.3).

5.5. Short exact sequence of conormal reduced cohomology

The goal of this section is to prove Theorem 1.3.3; i.e., the exactenss (5.1.7). Some

remarks will indicate how to modify the argument to get also the exactness of (5.1.6).

To begin with, we choose appropriate partial extension maps.

5.5.1. Compatibility of the maps Em with dF . — For m ∈ R, take s ∈ R such

that s = 0 if m ≥ 0, and m > s ∈ Z− if m < 0. For fixed 0 < ϵ < 1, using the

tubular neighborhood T := Tϵ of M0 in M (Section 4.3.1), consider the continuous

inclusions of I
(s)
c (F|T ) ⊂ I(s)(F) and Jmc (F|T ) ⊂ Jm(F), using the extension by zero.

Let Em,T : Jmc (F|T ) → I
(s)
c (F|T ) be the continuous linear partial extension map

constructed in the proofs of the compactly supported versions of Proposition 2.5.1

and Corollary 2.6.4 with ΛF|T (see Remarks 2.5.3 and 2.5.4). By the Reeb’s local

stability, the following result follows from its case for suspension foliations, which will

be proved in Section 5.6.3 (Corollary 5.6.6).

Proposition 5.5.1. — Em,T dF = dFEm,T .
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Let {λ, µ} be a smooth partition of unity of R subordinated to the open cover

{(−ϵ, ϵ),R×}, which induces the smooth partition of unity {λ(ρ), µ(ρ)} of M subordi-

nated to the open cover {T,M1}, where λ(ρ) (resp., µ(ρ)) is extended by 0 (resp., 1)

to the whole of M . According to Remarks 2.5.2 and 2.5.3, take the continuous linear

partial extension map Em : Jm(F)→ I(s)(F) defined by

(5.5.1) Emα = Em,T (λ(ρ)α) + µ(ρ)α .

Corollary 5.5.2. — EmdF = dFEm.

Proof. — By the version of Corollary 2.5.6 for Em,T (Section 2.6.12), and since

dFλ(ρ) = −dFµ(ρ) is supported in M1, we get, for α ∈ Jm(F),

EmdFα = Em,T (λ(ρ) dFα) + µ(ρ) dFα

= Em,T dF (λ(ρ)α)− Em,T (dFλ(ρ) ∧ α)

+ dF (µ(ρ)α)− dFµ(ρ) ∧ α ∧ ω
= dFEm,T (λ(ρ)α)− dFλ(ρ) ∧ α

+ dF (µ(ρ)α)− dFµ(ρ) ∧ α
= dFEm,T (λ(ρ)α) + dF (µ(ρ)α) = dFEmα .

5.5.2. The maps Fm. — For s ∈ R and m < s − n/2 − 1, we can consider R :

I(s)(F) → Jm(F) by the analog of (2.5.37) for J(F) (Section 2.6.7). Taking s′ = 0

if m ≥ 0, and m > s′ ∈ Z− if m < 0, let Em : Jm(F) → I(s
′)(F) be defined like in

Section 5.5.1.We can also consider

(5.5.2) Em = Emjs,m : J (s)(F)→ I(s
′)(F) .

Then define the continuous linear map

Fm := 1− EmR : I(s)(F)→ K(s′)(F) .

Note that

EmRs + ιs′Fm = js,s′ : I(s)(F)→ I(s
′)(F) ,(5.5.3)

Fmιs = js,s′ : K(s)(F)→ K(s′)(F) .(5.5.4)

Moreover, by Corollary 5.5.2,

(5.5.5) FmdF = dFFm .

Take smaller numbers, s1 < s, m1 < m and s′1 < s′, satisfying the same inequalities

as s, m and s′. Then, with (5.5.2), the version of Proposition 2.5.5 with ΛF (see

Remark 2.5.8) gives

(5.5.6) js′,s′1Em = Em1js,s1 .

Then, using the definition of Fm, we also get

(5.5.7) js′,s′1Fm = Fm1js,s1 .
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Remark 5.5.3. — According to Remark 6.1.1, we can also define

Fm : I(s)(F ; ΩM)→ K(s′)(F ; ΩM)

satisfying similar properties, using dtF .

5.5.3. The equality ker R̄∗ = im ῑ∗. — We already know that ker R̄∗ ⊃ im ῑ∗. To

prove that ker R̄∗ ⊂ im ῑ∗, take any class [α] ∈ ker R̄∗ in H̄•I(F). Hence there is some

net φl ∈ J(F) such that Rα = liml dFφl in J(F). We can assume φl ∈ C∞
c (M1; ΛF)

by the density of C∞
c (M1; ΛF) in J(F) (Section 2.6.7).

Using that J(F) is compactly retractive (Section 2.6.7) and arguing like in Sec-

tion 5.2.1, we get that {Rα, dFβl}l is contained in some step J (s)(F), and Rα =

liml dFφl in J (s)(F). Moreover, we can assume dFϕl is a sequence because J (s)(F)

is a Fréchet space.

Consider the notation of Section 5.5.2. We have Rα = liml dFφl in Jm(F) by the

version of (2.5.36) for J(F) (Section 2.6.7). We have β := Fmα ∈ ZJ (s′)(F) ⊂ ZJ(F)

by (5.5.5), obtaining a class [β] ∈ H̄•J(F).

Since the sequence φl is in C∞
c (M1; ΛF), it is also in Jm(F) and in I(s

′)I(F),

and we have Emφl = φl by the version of Corollary 2.5.6 with Jm(F). Hence, by

Corollary 5.5.2,

β = α− EmRα = α− lim
l
EmdFφl = α− lim

l
dFEmφl = α− lim

l
dFφl

in I(s
′)(F), and therefore also in I(F). This shows that ῑ∗([β]) = [α] in H̄•I(F).

Remark 5.5.4. — Using cohomology instead of reduced cohomology and a single

element φ instead of a net φl, the analogous argument gives kerR∗ ⊂ im ι∗, obtaining

kerR∗ = im ι∗.

5.5.4. Injectivity of ῑ∗. — Take any [α] ∈ H•K(F) with ῑ∗([α]) = 0 in H̄•I(F).

Since I(F) is compactly retractive, C∞(M ; ΛF) is dense in I(F) and every I(s)(F) is

a Fréchet space (Section 2.2.2), we get as above that there is some s and a sequence

φl in C∞(M ; ΛF) such that α ∈ K(s)(F) and α = liml dFφl in I(s)(F).

Consider again the notation of Section 5.5.2. By (5.5.4),

α = Fmα = lim
l
FmdFφl = lim

l
dFFmφl

in K(s)(F), and therefore in K(F). So α ∈ B̄K(F) = BK(F) by (5.1.3), and

therefore [α] = 0 in H•K(F).

Remark 5.5.5. — Like in Remark 5.5.6, we also get the injectivity of ι∗.
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5.5.5. Surjectivity of R̄∗. — For any class [α] ∈ H̄•J(F), the representative α

is in some step J (s)(F), and therefore it is also in ZJ (s)(F). With the notation

of Section 5.5.2, β := Emα ∈ ZI(s
′)(F) ⊂ ZI(F) by Corollary 5.5.2, and we have

Rβ = α. This shows that [α] = R̄([β]).

Remark 5.5.6. — Using cohomology instead of reduced cohomology, the analogous

argument gives the surjectivity of R∗.

5.6. Computations in the case of a suspension foliation

Consider the notation of Sections 4.2.1 to 4.2.5, where the case of a suspension

foliation with a simple foliated flow was considered.

5.6.1. Description of (K(F), dF ). — For every m ∈ N0 and s < −1/2, consider

the injection defined by (2.6.38) for the vector bundle ΛF ,

(5.6.1) C∞(L; Λ⊗ Ω−1NL)→ K(s−m)(M,L; ΛF) , α 7→ ∂mρ δ
α
L .

Proposition 5.6.1. — Via (5.6.1), the operator dF on K(s−m)(M,L; ΛF) corre-

sponds to the operator dL −mη∧ on C∞(L; Λ⊗ Ω−1NL).

Proof. — Consider first the case m = 0. According to (3.2.20), for some degree

v, take α ∈ C∞(L; Λv ⊗ Ω−1NL) and β ∈ C∞
c (M ; Λ1,n−1−v). We can write α =

α0 ⊗ |ω|−1 and β = β0 ∧ ω for some α0 ∈ C∞(L; Λv) and β0 ∈ C∞
c (M ; Λ0,n−1−v).

By (2.9.5), (2.8.4), (2.9.8) (or (2.9.2) and the Stokes’ theorem), (3.2.20) and (3.2.21),

and since dω = η ∧ ω,

⟨dFδαL, β⟩ = −(−1)v⟨δαL, dβ⟩ = −(−1)v⟨δαL, (dβ0 + (−1)n−1−vβ0 ∧ η) ∧ ω⟩

= −(−1)v
ˆ
L

α0 ∧ ((d+ η∧)β0)|L = −(−1)v
ˆ
L

α0 ∧ (d+ η∧)(β0|L)

=

ˆ
L

(dL − η∧)α0 ∧ β0|L =

ˆ
L

dLα ∧ β|L = ⟨δdLαL , β⟩ .

The general case follows from the previous case because dF∂ρ = ∂ρ(dF − η∧) on

C−∞(M ; ΛF) by (4.2.8) and (4.2.9), and η ∧ δαL = δη∧αL by (2.8.2).

Corollary 5.6.2. — Proposition 5.3.1 is true in this case.

Proof. — Apply (2.6.39), (2.6.40) and Proposition 5.6.1.

5.6.2. A partial extension map on M±. — The notation of Sections 2.5.8

to 2.5.13, concerning conormal distributions at the boundary, is also used here. By

Proposition 2.5.1, there is a continuous linear partial extension map,

Em,± : Am(M±; ΛF±)→ Ȧ(s)(M±; ΛF±) ,
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where s = 0 if m ≥ 0, and m > s ∈ Z− if m < 0. According to the proof of

Proposition 2.5.1 and Remarks 2.5.2 and 2.5.3, in the case 0 > m > s ∈ Z−, the

homomorphism Em,± can be given by the composition

Am(M±; ΛF±)
JN−−→ A0(M±; ΛF±)

E0,±−−−→ Ȧ(0)(M±; ΛF±)
∂Nρ−−→ Ȧ(s)(M±; ΛF±) ,

where N = −s ∈ Z+, E0,± is a continuous inclusion map, and J is the endomorphism

of C∞(M±; ΛF±) given by

Jα(ρ, y) =

ˆ ρ

1

α(ρ1, y) dρ1 ,

using (2.5.32), (4.2.13) and the identity Λ(ρ,y)F ≡ ΛyL.

Consider also the endomorphism J̃ of C∞(M̃±; ΛF̃±) defined like J ,

J̃ α̃(ρ̃, ỹ) =

ˆ ρ̃

1

α̃(ρ̃1, y) dρ̃1 ,

using (4.2.12) and the identity Λ(ρ,ỹ)F± ≡ ΛỹL̃. Clearly, J̃ corresponds to J via

π∗
M±

: C∞(M±; ΛF±)→ C∞(M̃±; ΛF̃±) .

Using (4.2.11), we can also write

(5.6.2) J̃ α̃(τ, ỹ) = eF (ỹ)

ˆ τ

e−F (ỹ)

α̃(τ1, ỹ) dτ1 ,

with the change of variable ρ̃1 = eF (ỹ)τ1, because ρ̃ = ±eF (ỹ)τ .

For fixed 0 < ϵ < 1, consider the collar neighborhoods T± := T±,ϵ and T̃± =

T̃±,ϵ = π−1
M±

(T±) of the boundaries in M± and M̃±. Using (3.2.3), consider η ∈
C∞(M±; Λ1F±) and η̃ ∈ C∞(M̃±; Λ1F̃±).

Proposition 5.6.3. — JdF± = (dF± − η∧)J on C∞
c (T±; ΛF±).

Proof. — Take open subsets B̃ ⊂ L̃ such that πL : B̃ → B := πL(B̃) is a diffeomor-

phism. Since the open sets of the form ϖ−1
± (B) ≡ [0,∞)ρ× B̃ϖ̃ cover M± and J pre-

serves the spaces C∞
c (T±∩ϖ−1

± (B); ΛF±), it is enough to prove the stated equality on

C∞
c (T± ∩ϖ−1

± (B); ΛF±). In turn, this follows by checking that J̃dF̃±
= (dF̃±

− η̃∧)J̃

on C∞
c (T̃±; ΛF̃±) because

πM± ≡ id×πL : ϖ̃−1
± (B̃) ≡ [0,∞)ρ̃ × B̃ϖ̃ → ϖ−1

± (B) ≡ [0,∞)ρ ×Bϖ

is a diffeomorphism. Let α̃ ∈ C∞
c (T̃±; ΛF̃±) and (τ, ỹ) ∈ [0,∞)× L̃ with τ < e−F (ỹ)ϵ,

which means that (τ, ỹ) corresponds to an element of T± via (4.2.11); in particular,
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α̃(e−F (ỹ), ỹ) = 0. So, by (5.6.2) and since dF̃±
τ = 0,

J̃dF̃±
α̃(τ, ỹ) = eF (ỹ)

ˆ τ

e−F (ỹ)

dF̃±
α̃(τ1, ỹ) dτ1 = eF (ỹ)dF̃±

ˆ τ

e−F (ỹ)

α̃(τ1, ỹ) dτ1

= dF̃±
eF (ỹ)

ˆ τ

e−F (ỹ)

α̃(τ1, ỹ) dτ1 − eF (ỹ)η̃(ỹ) ∧
ˆ τ

e−F (ỹ)

α̃(τ1, ỹ) dτ1

= (dF̃±
− η̃∧)J̃ α̃(x, ỹ) .

Proposition 5.6.4. — We have ∂ρdF± = (dF± + η∧)∂ρ on C−∞(M±; ΛF±).

Proof. — Apply (3.2.3), (3.2.8) and (4.2.15).

Corollary 5.6.5. — For all m ∈ R, Em,±dF± = dF±Em,± on Amc (T±; ΛF±).

Proof. — It is enough to consider the case m < 0. Then apply Propositions 5.6.3

and 5.6.4, using the given definition of Em,± and the density of C∞
c (T±; ΛF±) in

Amc (T±; ΛF±) (see Section 2.5.10).

5.6.3. A partial extension map on M . — Let us apply the notation of Sec-

tion 2.6 to the suspension foliation (that notation is compatible with the notation of

Sections 3.1.12, 4.1.2 and 4.2). Recall that M = M− ⊔M+, F is the combination

of F±, and π : M → M is the combination of π± : M± → M . The version of the

commutative diagram (2.6.41) for ΛF ≡ π∗ΛF is

(5.6.3)

K(M ; ΛF)
ι−−−−→ Ȧ(M ; ΛF)

R−−−−→ A(M ; ΛF)

π∗

y π∗

y π∗

y∼=

K(F)
ι−−−−→ I(F)

R−−−−→ J(F) .

Moreover dF ∈ Diffb(M ; ΛF) is the lift of dF . Hence the operators defined by dF
on the spaces of the top row of (5.6.3) correspond to the operators defined by dF on

the spaces of its bottom row via the homomorphisms π∗ (Section 2.6). According

to Section 2.5.14, dF preserves the subspaces Ȧ(s)(M ; ΛF) and Am(M ; ΛF).

The partial extension maps of Section 5.6.2,

Em,± : Am(M±; ΛF±)→ Ȧ(s)(M±; ΛF±) ,

can be combined to define a continuous linear partial extension map

Em : Am(M ; ΛF)→ Ȧ(s)(M ; ΛF) .

Then, according to Corollary 2.6.4 and its proof, a continuous linear partial extension

map Em : Jm(F)→ I(s)(F) is given by the composition

Jm(F)
π−1

∗−−−→ Am(M ; ΛF)
Em−−→ Ȧ(s)(M ; ΛF)

π∗−−→ I(s)(F) ,

which is a continuous inclusion map if m ≥ 0. Recall that T ≡ (−ϵ, ϵ)ρ × Lϖ and

T = T− ⊔ T+ = π−1(T ) ≡ [0, ϵ)ρ × ∂Mϖ .
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Like in Section 5.5.4, consider the restriction Em,T : Jmc (T ; ΛF) → I
(s)
c (T ; ΛF) of

Em. Suppose ϵ < 1, like in Section 5.6.2.

Corollary 5.6.6. — For all m ∈ R, Em,T satisfies Em,T dF = dFEm,T .

Proof. — Apply Corollary 5.6.5.

5.7. Functoriality and leafwise homotopy invariance

5.7.1. Pull-back of conormal leafwise currents. — Let M ′ be another closed

manifold, and let ϕ : M ′ → M be a smooth map transverse to F . Then F ′ := ϕ∗F
is another transversely oriented foliation of codimension one satisfying the condi-

tions (C) and (D) in Section 4.1.2 with M ′ 0 := ϕ−1(M0).

Remark 5.7.1. — The results of Section 5.7 have direct extensions to the case where

M or M ′ may not be compact, with the condition that M0 and M ′ 0 are compact.

According to Section 2.2.8, the map (3.2.23) has a continuous extension

(5.7.1) ϕ∗ : I(F)→ I(F ′) .

defined as the composition

(5.7.2) I(F)
ϕ∗

−→ I(M ′,M ′ 0;ϕ∗ΛF)
ϕ∗

−→ I(F ′) ,

like (2.8.19), using (2.2.20) with E = ΛF . We can also describe (5.7.1) as the re-

striction of (2.8.18) to conormal currents of bidegree (0, •), like in (3.2.34). The

map (5.7.1) is also a restriction of (3.2.34).

Similarly, the analogs of (2.2.20) with E = ΛF for (2.6.42) and (2.6.43) induce

continuous homomorphisms

ϕ∗ : K(F)→ K(F ′) ,(5.7.3)

ϕ∗ : J(F)→ J(F ′) .(5.7.4)

By passing to cohomology and reduced cohomology, we get continuous homomor-

phisms,

(5.7.5)


ϕ∗ : H•K(F)→ H•K(F ′) ,

ϕ∗ :H•I(F)→ H•I(F ′) , ϕ∗ :H̄•I(F)→ H̄•I(F ′) ,

ϕ∗ :H•J(F)→ H•J(F ′) , ϕ∗ :H̄•J(F)→ H̄•J(F ′) .

The assignment of the homomorphisms (5.7.1)–(5.7.5) is functorial.
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5.7.2. Description of ϕ∗ : K(F) → K(F ′). — For ω′ = ϕ∗ω and η′ = ϕ∗η, we

have TF ′ = kerω′ and dω′ = η′ ∧ ω′ (the Frobenius integrability condition for F ′).

Thus

(5.7.6) ϕ∗ : C∞(M0; Λ)→ C∞(M ′ 0; Λ)

is a cochain map for dsη and dsη′ (s ∈ R) (Section 2.9.3). In other words, ϕ induces

(5.7.7) ϕ∗ : C∞(M0; Λ⊗ ΩsNM0)→ C∞(M ′ 0; Λ⊗ ΩsNM ′ 0) ,

given by

(5.7.8) ϕ∗(α⊗ |ω|s) = ϕ∗α⊗ |ω′|s ,

which is another cochain map for the de Rham differentials defined with the flat

bundle structures of ΩsNM0 and ΩsNM ′ 0.

If ρ is a defining function of M0 in some open neighborhood T , then ρ′ := ϕ∗ρ is

a defining function of M ′ 0 in T ′ = ϕ−1(T ), and (5.7.7) satisfies

(5.7.9) ϕ∗(α⊗ |dρ|s) = ϕ∗α⊗ |dρ′|s .

Note the compatibility of (5.7.8) and (5.7.9) with (4.2.5). Furthermore, the inverse

image of T := Tϵ ≡ (−ϵ, ϵ)ρ×M0
ϖ, for ϵ > 0 small enough, is a tubular neighborhood

T ′ ≡ (−ϵ, ϵ)ρ′×M ′ 0
ϖ′ of M ′ 0 in M ′, where ϖ′ : T ′ →M ′ 0 satisfies ϕϖ′ = ϖϕ as maps

T ′ →M0. Thus

ϕ ≡ id×ϕ : T ′ ≡ (−ϵ, ϵ)×M ′ 0 → T ≡ (−ϵ, ϵ)×M0 ,

which is proper because M ′ 0 is compact. We can use these tubular neighborhoods to

define the operators ∂ρ and ∂ρ′ on C∞
c (T ; ΛF) and C∞

c (T ′; ΛF ′) (Section 2.6), which

are used in the identities of Proposition 5.3.1 for K(F) and K(F ′) (Section 5.6.1).

Clearly,

(5.7.10) ∂ρ′ϕ
∗ = ϕ∗∂ρ ,

as maps C∞
c (T ; ΛF)→ C∞

c (T ′; ΛF ′),

Proposition 5.7.2. — According to Proposition 5.3.1, the map (5.7.3) is given by

ϕ∗ ≡
⊕
k

ϕ∗ ≡
⊕
k

ϕ∗ ,

where the terms of the first direct sum are given by (5.7.6), and the terms of the

second direct sum are given by (5.7.7), taking s = −k − 1.

Proof. — The second identity follows from the first one and (5.7.8). To prove the

first identity, by (5.7.10), it is enough to consider the term with k = 0.

For α ∈ C∞(M0; Λ), let u = α ⊗ |dρ|−1 ∈ C∞(M0; Λ ⊗ Ω−1NM0). Using the

first identity of Proposition 5.3.1 for k = 0, we have u ≡ δuM0 = ϖ∗α · ρ∗δ0 in

K(F), using Dirac sections (Section 2.2.6). Here, ρ∗δ0 ∈ K(T,M0) is defined because

ρ : T → (−ϵ, ϵ) is transverse to 0. Moreover u′ := ϕ∗u = ϕ∗α · |dρ′|−1 by (5.7.9).
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As before, u′ ≡ δu
′

M ′ 0 = ϖ′∗ϕ∗α · ρ′∗δ0 in K(F ′). Take a sequence fi ∈ C∞
c (−ϵ, ϵ)

converging to δ0 in C−∞
c (−ϵ, ϵ). Then

ϕ∗δuM0 = ϕ∗(ϖ∗α · ρ∗δ0) = lim
i
ϕ∗(ϖ∗α · ρ∗fi) = lim

i
ϕ∗ϖ∗α · ϕ∗ρ∗fi

= lim
i
ϖ′∗ϕ∗α · ρ′∗fi = ϖ′∗ϕ∗α · ρ′∗δ0 = δu

′

M ′ 0 .

Remark 5.7.3. — The equality ∂ρ′ϕ
∗ = ϕ∗∂ρ has a continuous extension as maps

C−∞
c (T ; ΛF) → C−∞

c (T ′; ΛF ′), and the computations of the above proof also work

also with α ∈ C−∞(M0; Λ). So we get similar expressions of ϕ∗ : C−∞
M0 (M ; ΛF) →

C−∞
M ′ 0(M ′; ΛF ′) according to Remark 5.3.4.

5.7.3. Push-forward of conormal leafwise currents. — With the notation and

conditions of Section 5.7.1, suppose that moreover ϕ is a submersion such that the

vertical bundle V is oriented (Section 3.2.15). Thus ϕ : M ′ 0 →M0 is also a submer-

sion whose vertical bundle is V|M ′ 0 ⊂ TM ′ 0, also oriented. Then the case of (3.2.33)

on smooth leafwise forms has a continuous extension

(5.7.11) ϕ∗ : Ic/cv(F ′)→ Ic/·(F) .

This map can be described as the restriction of the map (2.8.24) to conormal currents

of bidegree (0, •), like (3.2.33) in Section 3.2.15. We can also describe (5.7.11) as the

composition

Ic/cv(M ′, L′; ΛF)
πtop−−−→ Ic/cv(M ′, L′;ϕ∗ΛF ⊗ Ωfiber)

ϕ∗−→ Ic/·(M,L; ΛF) ,

like in (3.2.35), where ϕ∗ is given by (2.2.23) for E = ΛF . The map (5.7.11) is also a

restriction of the case of (3.2.33) for leafwise currents.

According to Section 2.6.15, the map (5.7.11) induces homomorphisms

ϕ∗ : K(F ′)→ K(F) ,(5.7.12)

ϕ∗ : Jc/cv(F ′)→ Jc/·(F) .(5.7.13)

Like in Section 5.7.1, we get induced continuous homomorphisms,

(5.7.14)


ϕ∗ : H•K(F ′)→ H•K(F) ,

ϕ∗ :H•Ic(F ′)→ H•Ic(F) , ϕ∗ :H̄•Ic(F ′)→ H̄•Ic(F) ,

ϕ∗ :H•Jc(F ′)→ H•Jc(F) , ϕ∗ :H̄•Jc(F ′)→ H̄•Jc(F) .

The assignments of homomorphisms (5.7.11)–(5.7.14) are clearly functorial.

5.7.4. Description of ϕ∗ : K(F ′)→ K(F). — For ϕ as above, consider the nota-

tion of Section 5.7.2. Then

(5.7.15) ϕ∗ : C∞(M ′ 0; Λ)→ C∞(M0; Λ)

is a cochain map for dsη and dsη′ (s ∈ R) (Section 2.9.3). That is, ϕ induces

(5.7.16) ϕ∗ : C∞(M ′ 0; Λ⊗ ΩsNM ′ 0)→ C∞(M0; Λ⊗ ΩsNM0) ,
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given by

(5.7.17) ϕ∗(α⊗ |ω′|s) = ϕ∗α⊗ |ω|s ,

which is another cochain map for the de Rham differentials defined with the flat bundle

structures of ΩsNM0 and ΩsNM ′ 0 induced by the Bott flat TF-partial connection

(Section 3.1.3). Like in (5.7.9) and (5.7.10), we have

ϕ∗(α⊗ |dρ′|s) = ϕ∗α⊗ |dρ|s ,(5.7.18)

∂ρϕ∗ = ϕ∗∂ρ′ ,(5.7.19)

where (5.7.19) holds as maps C∞
c (T ′; ΛF ′)→ C∞

c (T ; ΛF).

Proposition 5.7.4. — According to Proposition 5.3.1, the map (5.7.12) is given by

ϕ∗ ≡
⊕
k

ϕ∗ ≡
⊕
k

ϕ∗ ,

where the terms of the first direct sum are given by (5.7.15), and the terms of the

second direct sum are given by (5.7.16), taking s = −k − 1.

Proof. — The second identity follows from the first one and (5.7.17). To prove the

first identity, by (5.7.19), it is enough to consider the term with k = 0.

For β ∈ C∞(M ′ 0; Λ), let v′ = β ⊗ |dρ′|−1 ∈ C∞(M ′ 0; Λ ⊗ Ω−1NM ′ 0). Like in

the proof of Proposition 5.7.2, we have v′ ≡ δv′M ′ 0 = ϖ′∗β · ρ′∗δ0 in K(F ′). Moreover

v := ϕ∗v
′ = ϕ∗β · |dρ|−1 by (5.7.18), with v ≡ δvM0 = ϖ′∗ϕ∗β

′ · ρ∗δ0 in K(F). Take a

sequence fi ∈ C∞
c (−ϵ, ϵ) converging to δ0 in C−∞

c (−ϵ, ϵ). We get

ϕ∗δ
v′

M ′ 0 = ϕ∗(ϖ′∗β · ρ′∗δ0) = lim
i
ϕ∗(ϖ′∗β · ρ′∗fi) = lim

i
ϕ∗ϖ

∗β · ρ∗fi

= lim
i
ϖ∗ϕ∗β · ρ∗fi = ϖ∗ϕ∗β · ρ∗δ0 = δvM0 .

The analog of Remark 5.7.3 for ϕ∗ : K(F ′)→ K(F) is true.

5.7.5. Leafwise homotopy invariance. — With the notation of Section 3.2.16,

let H : (M ′ × I,F ′ × I) → (M,F) (I = [0, 1]) be a smooth leafwise homotopy such

that H0 is transverse to M0 and H−1
0 (M0) = M ′ 0. Then, for every p′ ∈ M ′, the

map Ht∗ : Np′F ′ → NHt(p′)F is the composition of H0∗ : Np′F ′ → NH0(p′)F with the

parallel transport along the leafwise path s ∈ [0, t] 7→ Hs(p
′). It follows that every

Ht is transverse to M0 and H−1
t (M0) = M ′ 0. Hence H is transverse to M0 and

H−1(M0) = M ′ 0 × I. Then, by (3.2.38) and according to Sections 5.7.1 and 5.7.3,

the corresponding leafwise homotopy operator h : C∞(M ; ΛF) → C∞(M ′; ΛF ′) has

continuous linear extensions,

h : K(F)→ K(F ′) , h : I(F)→ I(F ′) , h : J(F)→ J(F ′) .

By continuity and according to Section 3.2.16, we have H∗
1 −H∗

0 = hdF + dF ′h with

H∗
0 and H∗

1 given by (5.7.1), (5.7.3) and (5.7.4). Hence we get the following.
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Proposition 5.7.5. — Let ϕ, ψ : (M ′,F ′)→ (M,F) be smooth foliated maps trans-

verse to M0 with ϕ−1(M0) = ψ−1(M0) = M ′ 0. If ϕ is leafwise homotopic to ψ, then

ϕ and ψ induce the same homomorphisms (5.7.5).

5.8. Action of foliated flows on the conormal sequence

Let ϕ = {ϕt} be a foliated flow with transversely simple preserved leaves on a

compact foliated manifold (M,F). The homomorphisms (5.7.5) induced by the maps

ϕt define actions of R on H•K(F), H•I(F) and H•J(F), denoted by ϕ∗ = {ϕt∗},
and actions on H̄•I(F) and H̄•J(F), denoted by ϕ̄∗ = {ϕ̄t∗}. By Proposition 5.7.5,

they only depend on the flow-leafwise-homotopy class of ϕ (Section 3.1.7).

With the notation of Section 4.3.3, the foliated flow ξ = {ξt} has transversely

simple preserved leaves and satisfies ξ̄ = ϕ̄ and ξt = id on M0. By Proposition 3.1.4,

there is a flow-leafwise homotopy between ϕ and ξ, and therefore ϕ∗ = ξ∗ on H•K(F).

Consider the tubular neighborhood with defining function, Tϵ ≡ (−ϵ, ϵ)ρ ×M0
ϖ, like

in Section 5.7.2.

Proposition 5.8.1. — According to Corollary 5.3.2 and Remark 5.3.3,

ϕt∗ ≡
⊕
k,L

e−(k+1)κLt ≡
⊕
k,L

e−(k+1)κLt

on H•K(F), where k runs in N0 and L in π0M
0.

Proof. — Since ξt∗ρ = eκLtρ on every TL,ϵ ∩ ξ−t(TL,ϵ) by (4.2.7), it follows

from (5.7.9) and Proposition 5.7.2 that

ξt∗ ≡
⊕
k,L

e−(k+1)κLt ≡
⊕
k,L

e−(k+1)κLt

on K(F), according to Proposition 5.3.1 and Remark 5.3.3. Hence ϕt∗ = ξt∗ has the

stated expression on H•K(F).

Propositions 5.3.1 and 5.8.1, Corollary 5.3.2, and Remark 5.3.3 show Theo-

rem 1.3.1.





CHAPTER 6

DUAL-CONORMAL LEAFWISE REDUCED

COHOMOLOGY

6.1. Dual-conormal sequence of leafwise differential forms

Assume the conditions of Section 5.1 on (M,F). According to Section 2.3.4, the

LCHS

I ′(F) = I ′Λ•(F) := I ′(M,M0; ΛF)

is a topological complex with dF . It induces the dual-conormal leafwise cohomology

and dual-conormal leafwise reduced cohomology of F (or of (F ,M0)). The notation

BI ′(F), ZI ′(F), B̄I ′(F), H•I ′(F) and H̄•I ′(F) is used like in Section 5.1.

For a leafwise flat vector bundle E, we can also consider the topological complex

I ′(F ;E) = I ′Λ•(F ;E) = I ′(M,M0; ΛF ⊗ E)

with dF . The LCHS I ′(F ;E) is also defined for an arbitrary vector bundle E, missing

the leafwise differential map dF .

Moreover, the LCHSs

I ′ (s)(F) = I ′ (s)Λ•(F) = I ′ (s)(M,M0; ΛF) (s ∈ R) .

also become topological complexes with dF . The notation BI ′ (s)(F), ZI ′ (s)(F),

B̄I ′ (s)(F), H•I ′ (s)(F) and H̄•I ′ (s)(F) is used like in Section 5.1.

Remark 6.1.1. — Although ΩM has no leafwise flat structure in general, we can

assume F is oriented by working locally or passing to the double cover of orientations

of F . Then we can apply (3.2.19)–(3.2.21) and the leafwise flat structure of ΩNF
to define dF and dtF on every I(s)(F ; ΩM) ≡ I(s)(F ; ΩNF). Since the condition of

being in I(s)(F ; ΩM) is local for elements of C−∞(M ; ΛF ⊗Ω), this procedure gives

the definition of dF = dttF .

For s′ ≤ s in R, we have the continuous linear restriction maps (Section 2.3.1)

(6.1.1) j′s : I ′(F)→ I ′ (s)(F) , j′s,s′ : I ′ (s)(F)→ I ′ (s
′)(F) ,



152 CHAPTER 6. DUAL-CONORMAL LEAFWISE REDUCED COHOMOLOGY

where j′s = jt−s and j′s,s′ = jt−s′,−s for the version of (5.1.1) with ΩM . The induced

homomorphisms in cohomology and reduced cohomology are denoted by j′s∗, j′s,s′∗,

ȷ̄′s∗ and ȷ̄′s,s′∗. The homomorphisms j′s,s′∗ and ȷ̄′s,s′∗ form projective spectra, giving

rise to projective limits as s ↑ +∞. Like in (5.1.2), the maps j′s∗ and ȷ̄′s∗ induce

canonical continuous linear maps,

(6.1.2)

 ȷ̃′∗ := lim←− j
′
s∗ : H•I ′(F)→ H̃•I ′(F) := lim←−H

•I ′ (s)(F) ,

ȷ̂′∗ := lim←− ȷ̄
′
s∗ : H̄•I ′(F)

∼=−→ Ĥ•I ′(F) := lim←− H̄
•I ′ (s)(F) ,

where the second one is a linear isomorphism (Section 6.2). The canonical maps of

the inductive limits to the steps are denoted by

ȷ̃s∗ : H̃•I ′(F)→ H•I ′ (s)(F) , ȷ̂s∗ : Ĥ•I ′(F)→ H̄•I ′ (s)(F) .

Using the above type of notation, the LCHSs J ′(F) and K ′(F) are also topolog-

ical complexes with dF (Section 2.7.5), with corresponding spaces BJ ′(F), ZJ ′(F),

B̄J ′(F), H•J ′(F) and H̄•J ′(F), and the same for K ′(F).

Similarly, we have topological complexes J ′ (s)(F), J ′m(F) and K ′ (s)(F) (s,m ∈
R) (Sections 2.6.13 and 2.7.4), with corresponding spaces BJ ′ (s)(F), ZJ ′ (s)(F),

B̄J ′ (s)(F), H•J ′ (s)(F) and H̄•J ′ (s)(F), and the same for J ′m(F) and K ′ (s)(F).

There are obvious versions for J ′ (s)(F) and K ′ (s)(F) of the maps (6.1.1) (Sec-

tion 2.7.1), also denoted by j′s and j′s,s′ , giving rise to projective spectra in coho-

mology and reduced cohomology, and the corresponding projective limits. In the case

of J ′(F), the maps j′s,s′ and j′s are continuous inclusions (Section 2.7.1).

There are also continuous inclusion maps (Section 2.7.1)

(6.1.3)


j′m : J ′(F) ↪→ J ′m(F) , j′m,m′ : J ′m(F) ↪→ J ′m′

(F) (m′ ≤ m) ,

j′m,s : Jm(F) ↪→ J (s)(F) (m > s+ n/2 + 1) ,

j′s,m : J (s)(F) ↪→ Jm(F) (s ≥ m, 0) ,

denoted like in (5.1.1) with some abuse of notation. The homomorphisms induced

by the maps j′m,m′ in cohomology and reduced cohomology form projective spectra

whose inductive limits as m ↑ +∞ agree with the previous ones for J(F), and the

maps j′m induce a continuous linear isomorphism analogous to (6.1.2).

It will be shown (Corollary 6.3.2) that the canonical projections are TVS-identities,

(6.1.4)

{
H•K ′(F) ≡ H̄•K ′(F) , H•K ′ (s)(F) ≡ H̄•K ′ (s)(F) ,

H•K ′(F) ≡ lim←−H
•K ′ (s)(F) , H̄•K ′(F) ≡ lim←− H̄

•K ′ (s)(F) .

The version of the bottom row of (2.7.8) with ΛF is a short exact sequence of

continuous homomorphisms of topological complexes,

(6.1.5) 0← K ′(F)
R′

←− I ′(F)
ι′←− J ′(F)← 0 ,
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using the notation R′ = ιt and ι′ = Rt. The exactness of the induced sequences,

0← H•K ′(F)
R′

∗←−− H•I ′(F)
ι′∗←− H•J ′(F)← 0 ,(6.1.6)

0← H•K ′(F)
R̄′

∗←−− H̄•I ′(F)
ῑ′∗←− H̄•J ′(F)← 0 ,(6.1.7)

will be proved in Section 6.5; in particular, this shows Theorem 1.3.6.

Taking the transpose of the analog of (5.1.8) with ΩM , we get continuous linear

maps

(6.1.8) R′
s : K ′ (s)(F)→ I ′ (s)(F) , ι′s : I ′ (s)(F)→ J ′ (s)(F) .

Like in Section 5.1, the subscript “s” may be also added to the elements of the

cohomologies or reduced cohomologies of K ′ (s)(F), I ′ (s)(F) or J ′ (s)(F).

6.2. Projective limits in reduced cohomology

The goal of this section is to prove the linear isomorphism (6.1.2), and its version

for J ′(F). The case of K ′(F) is given by (6.1.4).

To simplify the notation, we write

H̃•I ′(F) = lim←−H
•I ′ (s)(F) , Ĥ•I ′(F) = lim←− H̄

•I ′ (s)(F) ,

and the canonical maps of the projective limits to the steps are denoted by

ȷ̃′s : H̃•I ′(F)→ H•I ′ (s)(F) , ȷ̂′s : Ĥ•I ′(F)→ H̄•I ′ (s)(F) .

The same type of notation is used in the cases of J ′(F) and K ′(F).

Lemma 6.2.1. — BI ′(F) is dense in every BI ′ (s)(F) is dense.

Proof. — Use that the image of J ′(F) is dense in J ′ (s)(F) (Section 2.3.1) and dF is

continuous on J ′(F) and J ′ (s)(F) (Section 2.7.5).

Recall that B̄J ′(F) (resp., B̄J ′ (s)(F)) denotes the closure of BJ ′(F) (resp.,

BJ ′ (s)(F)) in J ′(F) (resp., J ′ (s)(F)).

Corollary 6.2.2. — As vector spaces,

B̄J ′(F) =
⋂
s

B̄J ′ (s)(F) .

Proof. — By the definition of the projective topology of
⋂
s J

′ (s)(F) [Sch71, Sec-

tion II.5] and using Lemma 6.2.1, we get that BJ ′(F) is dense in
⋂
s B̄J

′ (s)(F).

Moreover, this intersection is closed in J ′(F). Then the stated equality is true.

Lemma 6.2.3. — As vector spaces,

ZJ ′(F) =
⋂
s

ZJ ′ (s)(F) .
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Proof. — Consider the commutative diagram

0 −−−−→
⋂
s ZJ

′ (s)(F) −−−−→
⋂
s J

′ (s)(F)
dF−−−−→

⋂
sBJ

′ (s)(F)x ∥∥∥ x
0 −−−−→ ZJ ′(F) −−−−→ J ′(F)

dF−−−−→ BJ ′(F) −−−−→ 0 .

Here, the central vertical equality is the analog (2.5.54), the arrows that are not

given by dF and do not go to 0 denote inclusion maps, and the bottom row is exact.

Since the surjective maps dF : J ′ (s)(F)→ BJ ′ (s)(F) form a homomorphism between

projective spectra whose kernel is the projective spectrum consisting of the spaces

ZJ ′ (s)(F), the top row is also exact [Wen03, Proposition 3.1.8]. Thus the left-hand-

side vertical arrow is an equality of vector spaces.

Proposition 6.2.4. — The canonical map H̄•J ′(F)→ Ĥ•J ′(F) is a linear isomor-

phism.

Proof. — Consider the commutative diagram

0 −−−−→
⋂
s B̄J

′ (s)(F) −−−−→
⋂
s ZJ

′ (s)(F) −−−−→ Ĥ•J ′(F) −−−−→ 0∥∥∥ ∥∥∥ x
0 −−−−→ B̄J ′(F) −−−−→ ZJ ′(F) −−−−→ H̄•J ′(F) −−−−→ 0 .

Here, Corollary 6.2.2 and Lemma 6.2.3 give the vertical equalities of vector spaces, the

vertical arrow is canonical, and the other maps are canonical; in particular, the bottom

row is exact. Lemma 6.2.1 also shows that every BJ (s)(F) is dense in BJ (s′)(F)

for s′ < s. Hence the right derived functor lim←−
1 satisfies lim←−

1 B̄J (s)(F) = 0 as

s ↑ +∞ [Wen03, Theorem 3.2.1], obtaining that the top row is also exact by [Wen03,

Corollary 3.1.5]. Then the result follows.

On the other hand, the kind of arguments that will be given in Section 6.5 can be

adapted to show the exactness of the sequence

(6.2.1) 0← H•K ′(F)
R̂′

∗←−− Ĥ•I ′(F)
ι̂′∗←− Ĥ•J ′(F)← 0 ,

where R̂′
∗ = lim←− R̄

′
s∗ and ι̂′∗ = lim←− ῑ

′
s∗, using the homomorphisms induced by (6.1.8).

This fits into a commutative diagram

0 ←−−−− H•K ′(F) ←−−−− H̄•I ′(F) ←−−−− H̄•J ′(F) ←−−−− 0∥∥∥ y y∼=

0 ←−−−− H•K ′(F) ←−−−− Ĥ•I ′(F) ←−−−− Ĥ•J ′(F) ←−−−− 0 ,

where the top row is the exact sequence (6.1.7), and the vertical arrows are canonical.

The last vertical arrow is a linear isomorphism by Proposition 6.2.4. Then the central

vertical arrow is also a linear isomorphism by the five lemma.
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6.3. Description of H•K ′(F)

As explained in Section 6.1, there is no loss of generality in assuming F is oriented,

and then we can apply (3.2.19)–(3.2.21) to get K(s)(F ; ΩM) ≡ K(s)(F ; ΩNF), where

we can consider dF or dtF using the leafwise flat structure of ΩNF .

Consider the notation of Section 5.3. Since dω = η ∧ ω and dF satisfies the

derivation rule on products of smooth leafwise currents and smooth leafwise forms

(Section 3.2.8), it follows that the version of Proposition 5.3.1 with coefficients in

ΩNF states that

(6.3.1)


K(F ; ΩNF) ≡

⊕
k

C∞(M0; Λ) ≡
⊕
k

C∞(M0; Λ⊗ Ω−kNM0) ,

dF ≡
⊕
k

d−k ≡
⊕
k

d ,

where k runs in N0. Moreover the subcomplex K(s)(F ; ΩNF) ⊂ K(F ; ΩNF) corre-

sponds to the finite direct sum with k < −s−1/2. Taking dual spaces and transposing

maps, using (2.8.4) and (2.9.8), we get the following consequence.

Corollary 6.3.1. — We have identities of topological complexes,

K ′(F) ≡
∏
k

C−∞(M0; Λ) ≡
∏
k

C−∞(M0; Λ⊗ ΩkNM0) ,

dF ≡
∏
k

dk ≡
∏
k

d ,

where k runs in N0. Moreover the quotient complex K ′ (s)(F) corresponds to the finite

direct sum with k < s− 1/2.

Corollary 6.3.2. — We have TVS-identities,

H•K ′(F) ≡
∏
k

H•
k(M0) ≡

∏
k

H•(M0,ΩkNM0) ,

where k runs in N0. Moreover H•K ′ (s)(F) is the quotient space of H•K ′(F) given

by the finite product with k < s− 1/2. In particular, (6.1.4) is satisfied.

Remark 6.3.3. — The differential complexes on M0 used in Corollary 6.3.1 split

into direct sums of the same complexes given by leaves L ⊂M0. The same applies to

their cohomologies, used in Corollary 6.3.2.

Corollary 6.3.4. — There is a canonical TVS-isomorphism,

H•K ′(F) ≡ H•(M0)⊕Hn′′−•K(F)′ ,

Proof. — Apply Corollaries 5.3.2 and 6.3.2, and (2.9.6).
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6.4. Description of H̄•J ′(F)

Like in Section 5.4, by (2.7.4) and (2.7.5), for m ∈ R,

J ′m(F) ∼= ρmH−∞
b (M ; ΛF) ≡ ρm− 1

2H−∞(M̊ ; ΛF̊) ,(6.4.1)

J ′(F) ∼=
⋂
m

ρmH−∞
b (M ; ΛF) =

⋂
m

ρmH−∞(M̊ ; ΛF̊) ,(6.4.2)

as topological complexes with dF , dF and dF̊ , using the b-metric g to define

H−∞
b (M ; ΛF), and using g|M̊ to define H−∞(M̊ ; ΛF̊). The leafwise version

of (2.9.4) (Section 3.5) also gives isomorphisms of topological complexes,

(6.4.3) ρ−m+ 1
2 :

(
ρm− 1

2H∞(M̊ ; ΛF̊), dF̊
) ∼=−→

(
H∞(M̊ ; ΛF̊), dF̊ ,m− 1

2

)
.

By (6.4.1) and (6.4.3), and the analog of (3.4.16) for ∆F̊ ,m− 1
2

in H−∞(M̊ ; ΛF̊)

(Section 3.5), we get induced TVS-isomorphisms

H̄•J ′m(F) ∼= H̄•(ρm− 1
2H−∞(M̊ ; ΛF̊), dF̊

)
(6.4.4)

∼= H̄•(H−∞(M̊ ; ΛF̊), dF̊ ,m− 1
2

)
(6.4.5)

∼= ker ∆F̊ ,m− 1
2
.(6.4.6)

By the analog of (6.1.2) for J ′(F) and (6.4.6), the LCHS H̄•J(F) is a projective

limit of a sequence of Hilbertian spaces, and therefore a Fréchet space. The isomor-

phisms (6.4.4) and (6.4.5) are also true in cohomology.

Theorem 1.3.5 follows from the analog of (6.1.2) for J ′(F) and (6.4.1)–(6.4.3).

6.5. Short exact sequence of dual-conormal reduced cohomology

The goal of this section is to prove the exactness of (6.1.7). Some remarks will

indicate how to adapt the proof to show also the exactness of (6.1.6) and (6.2.1).

6.5.1. The maps F ′
m. — For every m ∈ R, let

F ′
m = Et

−m : I ′ (s)(F)→ J ′m(F) ,

where s = 0 if m ≤ 0, and m < s ∈ Z+ if m > 0, where

E−m : J−m(F ; ΩM)→ I(−s)(F ; ΩM)

is given by the version of Corollary 5.5.2 with ΩM (see Remark 6.1.1); thus

(6.5.1) F ′
mdF = dFF

′
m .

Since s ≥ m, 0, the map j′s,m is defined, and we have

(6.5.2) F ′
mι

′
s = Et

−mR
t
−s = (R−sE−m)t = jt−m,−s = j′s,m .
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6.5.2. The maps E′
m. — For s ∈ R and m > s+ n/2 + 1, let

E′
m = F t

−m : K ′ (s′)(F)→ I ′ (s)(F) ,

where s′ = 0 if m ≤ 0, and m < s′ ∈ Z+ if m > 0. Here, we use the map

F−m : I(−s)(F ; ΩM)→ K(−s′)(F ; ΩM)

given be the version of Section 5.5.2 with coefficients in ΩM (Remark 5.5.3). Consider

(6.5.3) F ′
m = j′m,sF

′
m : I ′ (s

′)(F)→ J ′ (s)(F) ,

which is the transpose of the version of (5.5.2) with coefficients in ΩM ,

E−m : J (−s)(F ; ΩM)→ I(−s
′)(F ; ΩM) .

Then (6.5.2) becomes

(6.5.4) F ′
mι

′
s = j′s,s′ .

Transposing the versions of (5.5.3)–(5.5.5) with coefficients in ΩM , we get

ι′sF
′
m + E′

mR
′
s′ = j′s′,s : I ′ (s

′)(F)→ I ′ (s)(F) ,(6.5.5)

R′
sE

′
m = j′s′,s : K ′ (s′)(F)→ K ′ (s)(F) ,(6.5.6)

E′
mdF = dFE

′
m .(6.5.7)

Take greater numbers, s1 > s, m1 > m and s′1 > s′, satisfying the same inequalities

as s, m and s′. Using (6.5.3), the transposition of the versions of (5.5.6) and (5.5.7)

with coefficients in ΩM give

F ′
mj

′
s′1,s

′ = j′s1,sF
′
m1

,(6.5.8)

E′
mj

′
s′1,s

′ = j′s1,sE
′
m1

.(6.5.9)

6.5.3. The equality ker R̄′
∗ = im ῑ′∗. — We already know that ker R̄′

∗ ⊃ im ῑ′∗. To

prove ker R̄′
∗ ⊂ im ῑ′∗, take any class [u] ∈ ker R̄′

∗ in H̄•I ′(F). Thus there is some

net vl in K ′(F) such that R′u = liml dFvl in K ′(F). Write us = j′su ∈ I ′ (s)(F) and

vl,s = j′svl ∈ K ′ (s)(F). Take s, m and s′ satisfying the the conditions of Section 6.5.2,

obtaining E′
m : K ′ (s′)(F) → I ′ (s)(F) and F ′

m : I ′ (s
′)(F) → J ′ (s)(F). Let as =

F ′
mus′ ∈ J ′ (s)(F) and bl,s = E′

mvl,s′ ∈ I ′ (s)(F). By (6.5.1),

dFas = F ′
mdFus′ = 0 .

Moreover, by (6.5.5) and (6.5.7),

us = j′s′,sus′ = ι′sF
′
mus′ + E′

mR
′
s′us′

= ι′sas + lim
l
E′
mdFvl,s′ = ι′sas + lim

l
dFbl,s .
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Now consider the above notation for greater real numbers s1, m1 and s′1, satisfying

the same properties as s, m and s′. By (6.5.8) and (6.5.9),

j′s1,sas1 = j′s1,sF
′
m1
us′1 = F ′

mj
′
s′1,s

′us′1 = F ′
mus′ = as .

j′s1,sbl,s1 = j′s1,sE
′
m1
vl,s′1 = E′

mj
′
s′1,s

′vl,s′1 = E′
mvl,s′ = bl,s .

Therefore, taking s ↑ +∞, m ↑ +∞ and s′ ↑ +∞, satisfying the above relations, the

elements as ∈ J ′ (s)(F) and bl,s ∈ I ′ (s)(F) define elements a := (as)s ∈ ZJ ′(F) and

bl := (bl,s)s ∈ I ′(F), and we have u = ι′a+ liml dFbl. Hence [u] = ῑ∗([a]).

Remark 6.5.1. — A similar argument, taking an element v ∈ K ′(F) instead of a

net vl, shows the inclusion kerR′
∗ = im ι′∗ in H•I ′(F).

Remark 6.5.2. — As before, to prove ker R̂′
∗ = im ι̂′∗ in (6.2.1), we only have to

prove “⊂”. For any û := ([us]s)s ∈ ker R̂′
∗, there is some v ∈ K ′(F) such that

R′
sus = dFvs, where vs = j′sv. Moreover, j′s′,sus′ = us + liml dFgl,s,s′ for some net

gl,s,s′ in I ′ (s)(F). Take as and bs,l as above. The given argument shows that

dFas = 0 , us + lim
l
dFgl,s′,s = ι′sas + lim

l
dFbl,s ,

j′s1,sas1 = as + lim
l
dFF

′
mgl,s′1,s′ , j′s1,sbl,s1 = bl,s .

Hence â := ([as]s)s ∈ Ĥ•J ′(F) is defined and ι̂′∗(â) = û.

6.5.4. Injectivity of ῑ′∗. — Let [u] ∈ H̄rJ ′(F) such that ῑ′∗([u]) = 0. This means

that there is a net vl in I ′(F) such that ι′u = liml dFvl in I ′(F). Write us =

j′su ∈ ZK ′ (s)(F) and vl,s = j′svl ∈ I ′ (s)(F). With the notation of Section 6.5.3, let

bl,s = F ′
mvl,s′ ∈ J ′ (s)(F). By (6.5.1) and (6.5.4),

us = j′s′,sus′ = F ′
mι

′
s′us′ = lim

l
F ′
mdFvl,s′ = lim

l
dFbl,s .

Like in Section 6.5.3, it can be shown that, taking s ↑ +∞, m ↑ +∞ and s′ ↑ +∞
as above, the elements bl,s ∈ J ′ (s)(F) define elements bl := (bl,s)s ∈ J ′(F), and we

have u = liml dFbl. Thus [u] = 0 in H̄rJ ′(F).

Remark 6.5.3. — Like in Remark 6.5.1, we also get the injectivity of ι′∗.

Remark 6.5.4. — To prove the injectivity of ι̂′∗, take any û := ([us]s)s ∈ ker ι̂′∗
in (6.2.1). Then there is some net vl,s in every I ′ (s)(F) such that ι′sus = liml dFvl,s
in I ′ (s)(F). Moreover, j′s′,sus′ = us + liml dFgl,s,s′ for some net gl,s,s′ in J ′ (s)(F).

Take bl,s as before. The above argument shows that

us + lim
l
dFgl,s′,s = lim

l
dFbl,s .

So û = 0 in Ĥ•J ′(F).
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6.5.5. Surjectivity of R̄′
∗. — Take any [u] ∈ H•K(F), and write us = j′su ∈

ZK(s)(F). With the notation of Section 6.5.2, we have vs := E′
mvs′ ∈ ZI(s

′)(F)

by (6.5.7), and R′
svs = j′s′,sus′ = us by (6.5.6).

Now consider the above notation for greater real numbers s1, m1 and s′1, satisfying

the same properties as s, m and s′. By (6.5.9),

j′s1,svs1 = j′s1,sE
′
m1
vs′1 = E′

mj
′
s′1,s

′vs′1 = E′
mvs′ = vs .

So v := (vs)s ∈ ZI ′(F) satisfies R′v = u, and therefore R̄′
∗([v]) = [u].

Remark 6.5.5. — Using cohomology instead of reduced cohomology, the analogous

argument gives the surjectivity of R′
∗.

Remark 6.5.6. — To prove the surjectivity of R̂′
∗ in (6.2.1), for any [u] ∈ H•K(F),

define us and vs as above. We also have R′
svs = us and j′s1,svs1 = vs. Thus v̂ :=

([vs]s)s ∈ Ĥ•I ′(F) and R̂′
∗v̂ = [u].

6.6. Functoriality and leafwise homotopy invariance

6.6.1. Pull-back of dual-conormal leafwise currents. — Consider the notation

and conditions of Section 5.7.3 (including the conditions of Section 5.7.1). According

to Section 2.3.5, the map (3.2.23) has a continuous extension

(6.6.1) ϕ∗ : I ′(F)→ I ′(F ′) ,

defined as the composition

I ′(F)
ϕ∗

−→ I ′(M ′,M ′ 0;ϕ∗ΛF)
ϕ∗

−→ I ′(F ′) ,

like (5.7.2), using (2.3.11) with E = ΛF . We can also describe (6.6.1) as the re-

striction of (2.8.24) to dual-conormal currents of bidegree (0, •), like in (3.2.33). The

map (6.6.1) is also a restriction of (3.2.33).

(2.3.11) with E = ΛF
Similarly, the analogs of (2.2.20) with E = ΛF for (2.7.9) and (2.7.10) induce

continuous homomorphisms

ϕ∗ : K ′(F)→ K ′(F ′) ,(6.6.2)

ϕ∗ : J ′(F)→ J ′(F ′) .(6.6.3)

By passing to cohomology and reduced cohomology, we get continuous homomor-

phisms,

(6.6.4)


ϕ∗ : H•K ′(F)→ H•K ′(F ′) ,

ϕ∗ :H•I ′(F)→ H•I ′(F ′) , ϕ∗ :H̄•I ′(F)→ H̄•I ′(F ′) ,

ϕ∗ :H•J ′(F)→ H•J ′(F ′) , ϕ∗ :H̄•J ′(F)→ H̄•J ′(F ′) .

The assignment of the homomorphisms (6.6.1)–(6.6.4) is functorial.
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6.6.2. Description of ϕ∗ : K ′(F)→ K ′(F ′). — Consider the notation and condi-

tions of Section 5.7.2, and assume also that ϕ is a submersion. By the density of the

space of smooth forms in the space of currents, we get from (5.7.6) that

(6.6.5) ϕ∗ : C−∞(M0; Λ)→ C−∞(M ′ 0; Λ)

is a cochain map for dsη and dsη′ (s ∈ R), and we get from (5.7.7) that

(6.6.6) ϕ∗ : C−∞(M0; Λ⊗ ΩsNM0)→ C−∞(M ′ 0; Λ⊗ ΩsNM ′ 0)

is another cochain map for the de Rham differentials defined with the flat bundle

structures of ΩsNM0 and ΩsNM ′ 0.

Proposition 6.6.1. — According to Corollary 6.3.1, the map (6.6.2) is given by

ϕ∗ ≡
∏
k

ϕ∗ ≡
∏
k

ϕ∗ ,

where the terms of the first direct sum are given by (6.6.5), and the terms of the

second direct sum are given by (6.6.6), taking s = k.

Proof. — Apply Propositions 2.8.1, 2.8.2 and 5.7.4.

6.6.3. Push-forward of dual-conormal leafwise currents. — Consider the no-

tation and conditions of Section 5.7.3 (containing those of Section 5.7.1). Then the

case of (3.2.33) on smooth leafwise forms has a continuous extension

(6.6.7) ϕ∗ : I ′c/cv(F ′)→ I ′c/·(F) .

This map can be described as the restriction of the map (2.8.33) to dual-conormal

currents of bidegree (0, •), like (3.2.33) in Section 3.2.15. We can also describe (6.6.7)

as the composition

I ′c/cv(M ′, L′; ΛF)
πtop−−−→ I ′c/cv(M ′, L′;ϕ∗ΛF ⊗ Ωfiber)

ϕ∗−→ I ′c/·(M,L; ΛF) ,

like in (3.2.35), where ϕ∗ is given by (2.3.10) with E = ΛF . The map (6.6.7) is also

a restriction of the case of (3.2.33) for leafwise currents.

According to Section 2.7.7, the map (6.6.7) induces homomorphisms

ϕ∗ : K ′(F ′)→ K ′(F) ,(6.6.8)

ϕ∗ : J ′
c/cv(F ′)→ J ′

c/·(F) .(6.6.9)

Like in Section 6.6.1, we get induced continuous homomorphisms,

(6.6.10)


ϕ∗ : H•K ′(F ′)→ H•K ′(F) ,

ϕ∗ :H•I ′c(F ′)→ H•I ′c(F) , ϕ∗ :H̄•I ′c(F ′)→ H̄•I ′c(F) ,

ϕ∗ :H•J ′
c(F ′)→ H•J ′

c(F) , ϕ∗ :H̄•J ′
c(F ′)→ H̄•J ′

c(F) .

The assignments of homomorphisms (6.6.7)–(6.6.10) are clearly functorial.
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6.6.4. Leafwise homotopy invariance. — Consider the notation and conditions

of Section 5.7.5, and assume that every Ht is a submersion. Like in Section 5.7.5,

according to Sections 6.6.1 and 6.6.3, the corresponding leafwise homotopy operator

h : C∞(M ; ΛF)→ C∞(M ′; ΛF ′) has continuous linear extensions,

h : K ′(F)→ K ′(F ′) , h : I ′(F)→ I ′(F ′) , h : J ′(F)→ J ′(F ′) .

By continuity and according to Section 3.2.16, we have H∗
1 −H∗

0 = hdF + dF ′h with

H∗
0 and H∗

1 given by (6.6.1), (6.6.2) and (6.6.3). Hence we get the following.

Proposition 6.6.2. — Let ϕ, ψ : (M ′,F ′)→ (M,F) be smooth foliated maps trans-

verse to M0 with ϕ−1(M0) = ψ−1(M0) = M ′ 0. If ϕ is leafwise homotopic to ψ, then

ϕ and ψ induce the same homomorphisms (6.6.4).

6.7. Action of foliated flows on the dual-conormal sequence

Consider the notation and conditions of Section 5.8.

Proposition 6.7.1. — According to Corollary 6.3.2 and Remark 6.3.3,

ϕt∗ ≡
∏
k,L

ekκLt ≡
∏
k,L

ekκLt

on H•K(F), where k runs in N0 and L in π0M
0.

Proof. — Argue like in the proof of Proposition 5.8.1 and its previous observations,

using Corollary 6.3.1, Remark 6.3.3 and Proposition 6.6.2.

Corollaries 6.3.1 and 6.3.2, Remark 6.3.3, and Proposition 6.7.1 show Theo-

rem 1.3.4.





CHAPTER 7

CONTRIBUTION FROM M1

7.1. Operators on a suspension foliation

Consider again the notation of Section 4.2, where the case of a weakly simple

foliated flow ϕ = {ϕt} on a suspension foliated manifold (M,F) was described. Equip

M̊± with g±, obtaining that F̊± is of bounded geometry (Proposition 4.2.1). We can

assume ϕ is of R-local bounded geometry on M̊± by Proposition 4.2.15 and according

to Section 2.4.7. Thus, on
˚̃
M± ≡ (

˚̃
M±, g̃±),

˚̃F± is of bounded geometry and ϕ̃ is of

R-local bounded geometry. Consider the leafwise perturbed operators for (M̊±, F̊±)

and (
˚̃
M±,

˚̃F±) defined by the leafwise-closed form η0 and the leafwise-exact form η̃0
(Section 3.3.1 ). For any ψ ∈ A, f ∈ C∞

c (R) and z ∈ C, the operator

(7.1.1) P̊± =

ˆ +∞

−∞
ϕt∗z ψ(DF̊±,z

) f(t) dt

on H−∞(M̊±; ΛF̊±) is a version of (3.4.17) for ϕt∗z and DF̊±,z
, and therefore it is

smoothing by the corresponding analog of (3.4.18). Let K̊± = KP̊±
.

By (4.2.1) and (4.2.2), for γ ∈ Γ and t ∈ R, the equality ϕ̃t∗z T
∗
γ = T ∗

γ ϕ̃
t∗
z means

that, for all x ∈ R,

(7.1.2) ϕ̃t∗x,zT
∗
γ = T ∗

γ ϕ̃
t∗
aγx,z

on C∞(L̃,Λ) (Section 2.9.4). Consider also the notation of Section 2.9.9 for the regular

covering π = πL : L̃ → L used in the suspension construction; in particular, recall

the notation k̃z. Recall that h±(γ) = κ−1 ln aγ for γ ∈ Γ, and D±(x, ỹ) = κ−1 ln |x|
for (x, ỹ) ∈ ˚̃

M± (Section 4.2.1). Thus, by the version of (3.4.21) for the leafwise

perturbed differential complex (Section 3.5), and by (4.2.1), (4.2.2) and (7.1.2), if

ψ̂ ∈ C∞
c (R), then

(7.1.3) K̊±([x, ỹ], [x′, ỹ′]) ≡
∑
γ∈Γ

K̊±,γ([x, ỹ], [x′, ỹ′])
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for all (x, ỹ), (x′, ỹ′) ∈ ˚̃
M±, where

(7.1.4) K̊±,γ([x, ỹ], [x′, ỹ′])

=
1

|κ|
ϕ̃

1
κ ln x′

aγx
∗

x,z T ∗
γ k̃z

(
γ · ϕ̃

1
κ ln x′

aγx

x (ỹ), ỹ′
)
f
( 1

κ
ln

x′

aγx

)∣∣∣dx′
x′

∣∣∣ .
According to Section 2.5.26, for the boundary-defining function ρ on M± (Sec-

tion 4.2.5), let ρ and ρ′ denote its lifts to (M±)2 from the left and right factors, and

let s = ρ/ρ′ : (M±)2 → [0,∞]. We have corresponding smooth functions ρ, ρ′ and s

on (M±)2b. Similarly, let η and η′ denote the lifts of η from the left and right factors.

Using (4.2.13), we get

(M±)2 ≡ [0,∞)ρ × [0,∞)ρ′ × L2 , (M̊±)2 ≡ (0,∞)2 × L2 .

Then

(M±)2b ≡ [0,∞)ρ × [0,∞]s × L2 ,

with boundary components lb = {s = 0}, rb = {s =∞} and ff = {ρ = 0}. Moreover

∆b ≡ { (ρ, 1, y, y) | ρ ≥ 0, y ∈ L } .

With the above identities, the restriction of βb : (M±)2b → (M±)2 to the interior

corresponds to the diffeomorphism

(0,∞)2 × L2 → (0,∞)2 × L2 , (ρ, s, y, y′) 7→ (ρ, ρs−1, y, y′) .

Similar observations apply to M̃±, using L̃ instead of L, and using the lifts ρ̃, ρ̃′ and

s̃ instead of ρ, ρ′ and s. The subscript “±” will be added to the notation ∆b and

∆b,0 = ∆b ∩ ff if needed.

Let κ̊± be the C∞ section of β∗
b(ΛF± ⊠ (ΛF∗

± ⊗ ΩM±)) on the interior of (M±)2b
that corresponds to K̊± via βb. If ψ̂ ∈ C∞

c (R), then, using the changes of variables

x = ±e−F (ỹ)ρ̃ , x′ = ±e−F (ỹ′)ρ̃′ ,

with

ln
x′

x
= F (ỹ)− F (ỹ′)− ln s̃ ,

dx′

x′
= −η̃′ +

dρ̃′

ρ̃′
,

ds̃

s̃
= −dρ̃

′

ρ̃′
,

x′ = 0⇔ ρ̃′ = 0⇔ s̃ =∞ , x′ = ±∞⇔ ρ̃′ =∞⇔ s̃ = 0 ,

it follows from (7.1.3) and (7.1.4) that

K̊±(ρ, ρ′, [ỹ], [ỹ′]) =
∑
γ∈Γ

K̊±,γ(ρ, ρ′, [ỹ], [ỹ′]) ,(7.1.5)

κ̊±(ρ, s, [ỹ], [ỹ′]) =
∑
γ∈Γ

κ̊±,γ(ρ, s, [ỹ], [ỹ′]) ,(7.1.6)
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where

(7.1.7) K̊±,γ(ρ, ρ′, [ỹ], [ỹ′])

=
1

|κ|
ϕ̃

1
κ (F (ỹ)−F (ỹ′)+ln ρ′

aγρ
)∗

±e−F (ỹ)ρ,z
T ∗
γ k̃z

(
γ · ϕ̃

1
κ (F (ỹ)−F (ỹ′)+ln ρ′

aγρ
)

±e−F (ỹ)ρ
(ỹ), ỹ′

)
× f

( 1

κ

(
F (ỹ)− F (ỹ′) + ln

ρ′

aγρ

))∣∣∣dρ′
ρ′

∣∣∣ ,
and

(7.1.8) κ̊±,γ(ρ, s, [ỹ], [ỹ′])

=
1

|κ|
ϕ̃

1
κ (F (ỹ)−F (ỹ′)−ln aγs)∗
±e−F (ỹ)ρ,z

T ∗
γ k̃z

(
γ · ϕ̃

1
κ (F (ỹ)−F (ỹ′)−ln aγs)

±e−F (ỹ)ρ
(ỹ), ỹ′

)
× f

( 1

κ
(
F (ỹ)− F (ỹ′)− ln aγs

))∣∣∣ds
s

∣∣∣ .
Let us look for more general conditions on ψ to get (7.1.6) by using the Fréchet

algebra and C[z]-module A (Section 2.9.8). Notice that every κ̊±,γ(ρ, s, [ỹ], [ỹ′]) has

a C∞ extension to ρ = 0.

Lemma 7.1.1. — If ψ ∈ A, then, given any fundamental domain F ⊂ L̃, the series

in (7.1.6) converges with all covariant derivatives, uniformly on ρ ≥ 0, 0 < s < ∞
and ỹ, ỹ′ ∈ F . Moreover its sum is κ̊±(ρ, s, [ỹ], [ỹ′]) for ρ > 0.

Proof. — Since ϕ̃ is of R-local bounded geometry on
˚̃
M± with g̃± and supp f is

compact, we can take R > 0 and K ⊂ L̃2 like in the proof of Proposition 4.2.7 with

supp f ⊂ I for any compact I ⊂ R. Using (2.9.19) with this K, for any W > 0, we

get ∣∣k̃z(γ · ϕ̃tx(ỹ), ỹ′)
∣∣ ≤ C ′

1e
−W
c1

|γ| ∥ψ∥A,W,N
for γ ∈ Γ, x ∈ R±, t ∈ supp f and ỹ, ỹ′ ∈ F . Using again the R-local bounded

geometry of ϕ̃ on
˚̃
M± with g̃± and compactness of I, it follows that there is some

C2 = C2(z,W ) > 0 such that

(7.1.9)
∣∣̊κ±,γ(ρ, s, [ỹ], [ỹ′])

∣∣ ≤ C2e
−W
c1

|γ| ∥ψ∥A,W,N ∥f∥I,C0

for γ ∈ Γ, ρ ≥ 0, s > 0 and ỹ, ỹ′ ∈ F . By (2.9.20) and (7.1.9), if W > c1W0, then the

series in (7.1.6) converges uniformly on ρ ≥ 0, s > 0 and ỹ, ỹ′ ∈ F , and the norm of

its sum is ≤ C∥ψ∥A,W,N for some C = C(z,W,N) > 0.

With more generality, by the R-local bounded geometry of ϕ̃ on
˚̃
M± and the

compactness of I, the higher order derivatives of ϕ̃tx(ỹ) with respect to x, t and ỹ (in

normal coordinates) are also uniformly bounded for x ∈ R±, t ∈ I and ỹ ∈ L̃. Hence,

for every m ∈ N0, it follows from (2.9.19) that∣∣∣∇m1

ỹ ∇
m2

ỹ′ k̃z(γ · ϕ̃
t
x(ỹ), ỹ′)

∣∣∣ ≤ C ′
1e

−W
c1

|γ| ∥ψ∥A,W,N+m
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for γ ∈ Γ, x ∈ R±, t ∈ I, ỹ, ỹ′ ∈ F and m1 + m2 ≤ m. Moreover, since I and F are

compact, there is some c3 ∈ R such that, for all ỹ, ỹ′ ∈ F ,

ln aγs > c3 ⇒ κ−1
(
F (ỹ)− F (ỹ′)− ln aγs

)
/∈ I .

Thus we can assume s−1 < e−c3aγ , yielding s−1 < ec0|γ|−c3 by (4.2.19). Hence there

is some C3 = C3(z,W,m) > 0 such that

(7.1.10)
∣∣∂m1
ρ ∂m2

s ∇
m3

[ỹ] ∇
m4

[ỹ′ ]̊κ±,γ(ρ, s, [ỹ], [ỹ′])
∣∣

≤ C3e
(mc0−W

c1
)|γ| ∥ψ∥A,W,N+m ∥f∥I,Cm ,

for γ ∈ Γ, ρ ≥ 0, s > 0, ỹ, ỹ′ ∈ F and m1 + · · ·+m4 ≤ m. By (2.9.20) and (7.1.10), if

W > c1(mc0 +W0), then the series defined by the covariant derivatives of order ≤ m
of the terms in (7.1.6) is also convergent, uniformly on ρ ≥ 0, s > 0 and ỹ, ỹ′ ∈ F , and

the norm of its sum is ≤ C ′∥ψ∥A,W,N+m ∥f∥I,Cm for some C ′ = C ′(z,W,N,m) > 0.

We already know that the sum of the series in (7.1.6) is κ̊±(ρ, s, [ỹ], [ỹ′]) for ρ > 0

if ψ̂ ∈ C∞
c (R). Then this also holds when ψ ∈ A, as follows by taking a convergent

sequence ψk → ψ in A with ψ̂k ∈ C∞
c (R), and using the above estimates of the

sum.

Remark 7.1.2. — Like in Remark 2.9.3, Lemma 7.1.1 is true for any ψ ∈ S since

Γ is abelian. But ψ ∈ A is needed for the estimates (7.1.9) and (7.1.10), which will

be used later.

Proposition 7.1.3. — If ψ ∈ A, then κ̊± has a C∞ extension κ± to (M±)2b,

also given by (7.1.6) and (7.1.8) using C∞ extensions κ±,γ of the sections κ̊±,γ
to (M±)2b, which vanishes to all orders at lb∪ rb. Therefore κ± = κP± for some

P± ∈ Ψ−∞
b (M±; ΛF±) induced by P̊±.

Proof. — By Lemma 7.1.1, κ̊± extends smoothly to f̊f (ρ = 0 and 0 < s <∞).

Take any compact I ⊂ R containing supp f . According to (7.1.8), the sum in (7.1.6)

can be taken for γ ∈ Γ with

κ−1(F (ỹ)− F (ỹ′)− ln aγs) ∈ I .

Then, since ỹ, ỹ′ ∈ F , there exists R > 0 such that

ln s−R < ln aγ < ln s+R .

Combining this with (4.2.19), we get

(7.1.11) c−1
0 (± ln s−R) < |γ| .
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By (2.9.20), (7.1.9) and (7.1.11), for any W > c1W0, there is some C ′
2 = C ′

2(z,W ) > 0

such that, for ρ ≥ 0, s > 0 and y, y′ ∈ L,∣∣̊κ±(ρ, s, y, y′)
∣∣ < C2

∑
|γ|>c−1

0 (± ln s−R)

e−c
−1
1 W |γ| ∥ψ∥A,W,N ∥f∥I,C0

< C2e
−(c−1

1 W−W0)c
−1
0 (± ln s−R)

∑
γ∈Γ

e−W0|γ| ∥ψ∥A,W,N ∥f∥I,C0

< C ′
2s

∓(c−1
1 W−W0)c

−1
0 ∥ψ∥A,W,N ∥f∥I,C0 .(7.1.12)

Using (7.1.10) and (7.1.11), we similarly get that, for m ∈ N0, if W > c1(mc0 +W0),

then there is some C ′
3 = C ′

3(z,W,m) > 0 such that

(7.1.13)
∣∣∂m1
ρ ∂m2

s ∇m3
y ∇

m4

y′ κ̊±(ρ, s, y, y′)
∣∣

< C ′
3s

∓(c−1
1 W−mc0−W0)c

−1
0 ∥ψ∥A,W,N+m ∥f∥I,Cm

for ρ ≥ 0, s > 0, y, y′ ∈ L and m1 +m2 +m3 +m4 ≤ m. Since W is arbitrarily large,

it follows that κ̊± also extends smoothly to lb∪ rb (s = 0,∞), where it vanishes to

all orders.

Notation 7.1.4. — The subscripts “ψ”, “f” or “z” may be added to the notation

P̊±, K̊±, K̊±,γ , κ̊±, κ± and P± if needed.

Proposition 7.1.5. — The bilinear map

A× C∞
c (R)→ C∞(

(M±)2b;β∗
b(ΛF± ⊠ (ΛF∗

± ⊗ ΩM±))
)
, (ψ, f) 7→ κ±,ψ,f ,

is continuous.

Proof. — This is an additional consequence of (7.1.12) and (7.1.13).

Recall the notation ϕL = {ϕtL} = {ϕt0} on M0 ≡ L and ϕ̃L̃ = {ϕ̃t
L̃
} = {ϕ̃t0} on

M̃0 ≡ L̃ (Section 4.2.2), and the trivialization ν of +N∂M± (Section 4.2.5). Recall

also that the indicial family is defined in Section 2.5.28.

Proposition 7.1.6. — We have

Iν±(P±,z, λ) ≡
ˆ +∞

−∞
ϕt∗L,z+iλ ψ(DL,z+iλ) eiλκtf(t) dt .

Proof. — By (2.5.63), it is enough to show that the Schwartz kernel of the smoothing

operator ˆ +∞

−∞
ϕt∗L,z+iλ ψ(DL,z+iλ) eiλκtf(t) dt

on C−∞(L; Λ) is given by ˆ ∞

0

s−iλκ±,z(0, s, y, y
′)
ds

s
,
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at every (y, y′) ∈ L2. By Lemma 7.1.1 and Proposition 7.1.3, for all ỹ, ỹ′ ∈ L̃,

ˆ ∞

0

s−iλκ±,z(0, s, [ỹ], [ỹ′])
ds

s

=
1

|κ|
∑
γ∈Γ

ˆ ∞

0

s−iλϕ̃
1
κ (F (ỹ)−F (ỹ′)−ln aγs)∗
0,z T ∗

γ

◦ k̃z
(
γ · ϕ̃

1
κ (F (ỹ)−F (ỹ′)−ln aγs)
0 (ỹ), ỹ′

)
× f

( 1

κ

(
F (ỹ)− F (ỹ′)− ln aγs

))ds
s

=
∑
γ∈Γ

eiλ(F (ỹ′)−F (ỹ)−ln aγ)

ˆ +∞

−∞
ϕ̃t∗0,zT

∗
γ k̃z(γ · ϕ̃t0(ỹ), ỹ′)eiλκtf(t) dt ,

where we have used the change of variable

t = κ−1(F (ỹ)− F (ỹ′)− ln s+ ln aγ) ,

with

s = eF (ỹ)−F (ỹ′)+ln aγ−κt , dt = − ds
κs

,

s = 0⇔ t = sign(κ)∞ , s =∞⇔ t = − sign(κ)∞ .

By Proposition 2.9.2,

kz+iλ([ỹ], [ỹ′]) =
∑
γ∈Γ

T ∗
γ k̃z+iλ(γ · ỹ, ỹ′) .

Moreover, by (2.9.4),

k̃z+iλ(ỹ, ỹ′) = eiλ(F (ỹ′)−F (ỹ))k̃z(ỹ, ỹ
′) .

So, by (4.2.2) and (4.2.4),∑
γ∈Γ

eiλ(F (ỹ′)−F (ỹ)−ln aγ)ϕ̃t∗0,zT
∗
γ k̃z(γ · ϕ̃t0(ỹ), ỹ′)

=
∑
γ∈Γ

eiλ(F (ỹ′)−F (γ·ỹ))ϕ̃t∗0,zT
∗
γ k̃z(γ · ϕ̃t0(ỹ), ỹ′)

=
∑
γ∈Γ

eiλ(ϕ̃
t∗
0 F−F )(γ·ỹ)ϕ̃t∗0,ze

iλ(F (ỹ′)−F (γ·ϕ̃t0(ỹ)))T ∗
γ k̃z(γ · ϕ̃t0(ỹ), ỹ′)

= ϕ̃t∗0,z+iλ
∑
γ∈Γ

T ∗
γ k̃z+iλ(γ · ϕ̃t0(ỹ), ỹ′) ≡ ϕt∗0,z+iλ kz+iλ(ϕt0([ỹ]), [ỹ′]) .

Notation 7.1.7. — In Notation 7.1.4, we may also add the subscript “u” if we use

a family of functions ψu ∈ A depending on a parameter u. This also applies to kz
and k̃z.

The identity element of Γ is denoted by e.
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Proposition 7.1.8. — If ψu(x) = e−ux
2

, then (κ±,u − κ±,e,u)|∆b,± → 0 as u ↓ 0 in

the C∞ topology.

Proof. — For γ ∈ Γ and p = [x, ỹ] = [aγx, γ · ỹ] ∈ M̊±, by (4.2.1) and (4.2.2),

ϕ−h±(γ)(p) =
[
x, ϕ−h±(γ)

aγx (γ · ỹ)
]

=
[
x, γ · ϕ−h±(γ)

x (ỹ)
]
.

Thus, using that πM defines an isometric diffeomorphism of {x} × L̃ ≡ L̃ to Lp, it

follows from Corollary 4.2.8 that there is some c3 > 0, independent of p and γ, such

that, if h±(γ) ∈ supp f , then

dL̃
(
γ · ϕ−h±(γ)

x (ỹ), ỹ
)

= dF
(
ϕ−h±(γ)(p), p

)
≥ c3|γ| .

Therefore, by (2.9.14) and since ϕ is of R-local bounded geometry, for m1,m2 ∈ N0,

0 < u < u0, γ ∈ Γ, ρ > 0 and ỹ ∈ L̃, we get∣∣∂m1
ρ ∇

m2

ỹ k̃u,z
(
γ · ϕ−h±(γ)

±e−F (ỹ)ρ
(ỹ), ỹ

)∣∣ ≤ C1u
−(n−1+m1+m2)/2e−C2c

2
3|γ|

2/u ,

where k̃u,z is the Schwartz kernel of ψu(DL̃,z) = e−u∆L̃,z . Using again the R-local

bounded geometry of ϕ and the compactness of supp f , it follows that there is some

C3 > 0 such that

|∂m1
ρ ∇m2

y κγ,u(ρ, 1, y, y)| ≤ C3u
−(n−1+m1+m2)/2e−C2c

2
3|γ|

2/u

for m1,m2 ∈ N0, 0 < u < u0, γ ∈ Γ, ρ > 0 and y ∈ L. So

|∂m1
ρ ∇m2

y (κ±,u − κ±,e,u)(ρ, 1, y, y)| ≤ C3u
−(n−1+m1+m2)/2

∑
γ∈Γ\{e}

e−C2c
2
3|γ|

2/u ,

which converges to zero as u ↓ 0.

Corollary 7.1.9. — If ψu(x) = e−ux
2

and f(0) = 0, then κ±,u|∆b,± → 0 as u ↓ 0

in the C∞ topology.

Recall the notation e(F±, gF±) if n− 1 is even (Sections 3.2.7 and 4.2.6), and also

the notation C0,∞
ϖ±

(M±; bΩ) (Section 3.1.8).

Corollary 7.1.10. — If ψu(x) = e−ux
2

, then

lim
u↓0

str(κ±,u|∆b,±) ≡

{
f(0) e(F±, gF±) |ω±| if n− 1 is even

0 if n− 1 is odd

in C0,∞
ϖ±

(M±; bΩ), using the identity ∆b,± ≡M±.
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Proof. — By Propositions 7.1.3 and 7.1.8, and (7.1.5), (7.1.7) and (4.2.17), for all

ρ > 0 and y = [ỹ] ∈ L with ỹ ∈ L̃,

lim
u↓0

str κ̊±,u(ρ, 1, y, y)

= lim
u↓0

str κ̊±,e,u(ρ, 1, y, y) = lim
u↓0

str K̊±,e,u(ρ, ρ, y, y)

=
f(0)

|κ|

∣∣∣dρ
ρ

∣∣∣ lim
u↓0

str k̃z,u(ỹ, ỹ) = f(0) |ω±|(y) lim
u↓0

str k̃z,u(ỹ, ỹ) .

But, by Theorem 2.9.4,

lim
u↓0

str k̃z,u(ỹ, ỹ) = e(L̃, gL̃)(ỹ) = e(L, gL)(y) ≡ e(F±, gF±)(ρ, y)

if n− 1 is even, and

lim
u↓0

str k̃z,u(ỹ, ỹ) = 0

if n− 1 is odd.

7.2. Operators on the components M1
l

Consider the notation of Sections 4.3.3 and 4.3.4; in particular, consider the

boundary-defining function ρ = ρl on every Ml and the trivialization ν = νl of

+N∂Ml. According to Section 2.5.26, consider also the lifts of ρ to M2
l from the left

and right factors, ρ and ρ′, and the function s = sl = ρ/ρ′ : M2
l → [0,∞], as well

as the corresponding functions ρ, ρ′ and s on (Ml)
2
b. Equip M̊l with the Rieman-

nian metric gb,l, so that F̊l becomes a Riemannian foliation of bounded geometry

(Section 3.4.1). Consider the leafwise perturbed operators for (M̊l, F̊l) defined by

the leafwise-closed form η0, which agrees with η on the collar neighborhood of the

boundaty we have fixed. For any ψ ∈ A, f ∈ C∞
c (R), z ∈ C and every index l, the

operator

P̊l =

ˆ +∞

−∞
ϕt∗l,z ψ(DF̊l,z )f(t) dt

on H−∞(M̊l; ΛF̊l) is a twisted version of (3.4.17), which is smoothing by the appro-

priate analog of (3.4.18) (Section 3.5). Let

K̊l = KP̊l
∈ C∞(M̊2

l ; ΛF̊l ⊠ (ΛF̊∗
l ⊗ ΩM̊l)) .

Lemma 7.2.1. — For any compact I ⊂ R containing supp f , and for all k,m ∈ N0

and a ∈ R, there are some C ′, C ′′ > 0 and N ∈ N0, depending only on I, k, m and

a, such that ∥∥P̊l∥∥ρaHk,ρaHm ≤ C ′′ ∥ψ∥A,C′,N ∥f∥I,CN .

Proof. — By (2.9.4) and (4.3.1), DF̊l,z = ρaDF̊l,z+a,z−aρ
−a (see Section 3.3.3). So

the result follows from the analog of (3.4.20) for DF̊l,z+a,z−a (Section 3.5).
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Proposition 7.2.2. — The kernel K̊l has a C∞ extension to M2
l \ (∂Ml)

2 that

vanishes to all orders on (∂Ml × M̊l) ∪ (M̊l × ∂Ml).

Proof. — We will use the arguments from the proof of [Hör83, Theorem 5.2.6].

For any q ∈ M̊l and α ∈ ΛqF̊l ⊗ Ω−1
q M̊l, we have δαq ∈ Hk(M̊l; ΛF̊l) for any k <

−n/2, and ∥δαq ∥k ≤ Ck |α|, where Ck > 0 is independent of q and α (Section 2.2.6).

Therefore, by the definition of weighted Sobolev spaces and the properties of Dirac

sections at submanifolds (Sections 2.1.12 and 2.2.6), for all a ∈ R, we have δαq ∈
ρaHk(M̊l; ΛF̊l) and

∥δαq ∥ρaHk ≤ Ckρ(q)−a|α| .

Moreover, for any α ∈ C∞(M̊l; ΛF̊l ⊗ Ω−1M̊l), the map

M̊l → ρaHk(M̊l; ΛF̊l) , q 7→ δα(q)q ,

is continuous by the continuity of (2.2.13).

Fix any compact I ⊂ R containing supp f . By Lemma 7.2.1, we have P̊lδ
α
q ∈

ρaHm(M̊l; ΛF̊l) for any m ∈ N0, and∥∥P̊lδαq ∥∥ρaHm ≤ C ′
mρ(q)−a ∥ψ∥A,C′,N ∥f∥I,CN |α|

for q ∈ M̊l and α ∈ ΛqF̊l ⊗ Ω−1
q M̊l, where C ′

m > 0 is independent of a, q and α.

Moreover, for any α ∈ C∞(M̊l; ΛF̊l ⊗ Ω−1M̊l), the map

M̊l → ρaHm(M̊l; ΛF̊l) , q 7→ P̊lδ
α(q)
q ,

is continuous. On the other hand, by (2.2.14), for all q ∈ M̊l and α ∈ ΛqF̊l ⊗Ω−1
q M̊l,

K̊l(·, q)(α) = P̊lδ
α
q ∈ C∞(M̊l; ΛF̊l) .

It follows that the map

M̊l → ρaHm(M̊l; ΛF̊l ⊗ ΩqM̊l) , q 7→ K̊l(·, q) ,

is continuous for any a ∈ R and m ∈ N0, with∥∥K̊l(·, q)
∥∥
ρaHm

≤ C ′
mρ(q)−a ∥ψ∥A,C′,N ∥f∥I,CN

for all q ∈ M̊l. Using the Sobolev embedding theorem, we conclude that K̊l is contin-

uous on M̊2
l , and ∣∣K̊l(p, q)

∣∣ ≤ C (
ρ(p)

ρ(q)

)a
∥ψ∥A,C′,N , ∥f∥I,CN

= C s(p, q)a ∥ψ∥A,C′,N ∥f∥I,CN ,

for all a ∈ R and p, q ∈ M̊l, where C,C ′ > 0 and N ∈ N0 are independent of a, p

and q. So K̊l extends to a continuous section on M2
l \ (∂Ml)

2, which vanishes on

(∂Ml × M̊l) ∪ (M̊l × ∂Ml).
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For any D1, D2 ∈ Diffkb(Ml; ΛFl), applying the above arguments to the operator

D1P̊lD2 and using (2.1.28), it follows that, for all a ∈ R and p, q ∈ M̊l,

(7.2.1)
∣∣D1,pD

t
2,qK̊l(p, q)

∣∣ ≤ C s(p, q)a ∥ψ∥A,C′,N ∥f∥I,CN ,

where C,C ′ > 0 and N ∈ N0 are independent of a, p and q.

Let κ̊l be the C∞ section of β∗
b(ΛFl ⊠ (ΛF∗

l ⊗ ΩMl)) on the interior of (Ml)
2
b

that corresponds to K̊l via β∗
b, using the notation of Section 2.5.26. Fix 0 < ϵ < ϵ0

like in Section 4.3.3, and consider the notation of Sections 4.3.2 and 4.3.3. Let L

be a boundary component of Ml, which can be identified with a leaf of F in M0.

For 0 < σ ≤ ϵ0, via the identity T̊L,l,σ ≡ T̊ ′
L,l,σ, the sections in C∞

c (M̊l; ΛF̊l) and

C∞
c (M̊l; ΛF̊l⊗Ω) supported in T̊L,l,σ can be identified with sections in C∞

c (M̊ ′
l ; ΛF̊ ′

l )

and C∞
c (M̊ ′

l ; ΛF̊ ′
l ⊗ Ω) supported in T̊ ′

L,l,σ. Similarly, according to Section 7.1,

β−1
b (T̊ 2

L,l,σ) ≡ β−1
b (T̊ ′ 2

L,l,σ) ≡ { (ρ, s, y, y′) ∈ (0,∞)2 × L2 | ρ, ρs−1 < σ } .

The operator (7.1.1), studied in Section 7.1, is now expressed as

P̊ ′
L,l =

ˆ +∞

−∞
ϕ′ t∗L,l,z ψ(DF̊ ′

L,l,z
)f(t) dt .

Let K̊ ′
L,l = KP̊ ′

L,l
, with lift κ̊′L,l to the interior of (M ′

L,l)
2
b, and let κ′L,l = κP ′

L,l
denote

the extension of κ̊′L,l to (M ′
L,l)

2
b given by Proposition 7.1.3.

The subscripts of Notations 7.1.4 and 7.1.7 may be also used with P̊l, K̊l, κ̊l, P̊
′
L,l,

K̊ ′
L,l, κ̊

′
L,l and κ′L,l.

Proposition 7.2.3. — Given ψ ∈ A and u > 0, take ψu ∈ A defined by ψu(x) =

ψ(ux), and consider the restrictions of κ̊l,u and κ̊′L,l,u to β−1
b (T̊ 2

L,l,ϵ) ≡ β−1
b (T̊ ′ 2

L,l,ϵ).

There is some 0 < ϵ′ < ϵ such that, for any R > 0, m,N ∈ N0 and a ∈ R, there

exist Ĉ,W > 0 and N ′ ∈ N0 so that, for m1 + m2 + m3 + m4 ≤ m, 0 < u ≤ 1 and

(ρ, s, y, y′) ∈ β−1
b (T̊ 2

L,l,ϵ′),∣∣∂m1
ρ ∂m2

s ∇m3
y ∇

m4

y′ (̊κl,u − κ̊′L,l,u)(ρ, s, y, y′)
∣∣ ≤ Ĉe−R

u ρNsa ∥ψ∥A,W,N ′ ∥f∥I,CN′ .

Proof. — Take C > 0 and c ≥ 1 like in Lemma 4.2.4 and Corollary 4.2.5, and take

c′ > 0 like in Proposition 4.2.9, for the suspension foliation F ′
L,l on M ′

L,l and any

compact I ⊂ R containing supp f .

Claim 7.2.4. — For α, β ∈ C∞
c (M̊L,l; ΛF̊L,l), α′, β′ ∈ C∞

c (M̊ ′
L,l; ΛF̊ ′

L,l) and ξ ∈ R,

let

α(ξ) = e
iξDF̊L,l,zα , β(ξ) = e

iξDF̊L,l,zβ ,

α′(ξ) = e
iξDF̊′

L,l
,zα′ , β′(ξ) = e

iξDF̊′
L,l

,zβ′ .

The following properties hold for 0 < σ, τ < ϵ:
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(i) If α and α′ are supported in T̊L,l,σ ≡ T̊ ′
L,l,σ and agree there, then α(ξ) and α′(ξ)

are supported in T̊L,l,ϵ ≡ T̊ ′
L,l,ϵ and agree there for |ξ| < C ln ϵ

cσ .

(ii) If β and β′ agree on T̊L,l,ϵ ≡ T̊ ′
L,l,ϵ, then β(ξ) ≡ β′(ξ) on T̊L,l,τ ≡ T̊ ′

L,l,τ for

|ξ| < C ln ϵ
cτ .

This is a consequence of Corollary 4.2.5 and the leafwise twisted version of (3.4.9)

applied to the equation ∂ξµ(ξ) = iDF̊l,zµ(ξ) on T̊L,l,ϵ ≡ T̊ ′
L,l,ϵ, where µ(ξ) = α(ξ) ≡

α′(ξ) in (i), and µ(ξ) = β(ξ) ≡ β′(ξ) in (ii).

Claim 7.2.5. — Let α, α′, α(ξ) and α′(ξ) be defined like in Claim 7.2.4, and let

0 < σ < ϵ and 0 < τ < ϵ, ϵ/c′. If α and α′ are supported in T̊L,l,σ ≡ T̊ ′
L,l,σ

and agree there, then ϕt∗α(ξ) ≡ ϕ′ t∗α′(ξ) on T̊L,l,τ ≡ T̊ ′
L,l,τ for any t ∈ I and

|ξ| < C(ln ϵ
cσ + ln ϵ

cc′τ ).

By Claim 7.2.4 (i), if ξ < C ln ϵ
cσ , then α(ξ) and α′(ξ) are supported in T̊L,l,ϵ ≡

T̊ ′
L,l,ϵ and agree there. Thus, by Claim 7.2.4 (ii), if |ζ| < C ln ϵ

cc′τ , then α(ξ + ζ) ≡
α′(ξ + ζ) on T̊L,l,c′τ ≡ T̊ ′

L,l,c′τ . Hence ϕt∗α(ξ + ζ) ≡ ϕ′ t∗α′(ξ + ζ) on T̊L,l,τ ≡ T̊ ′
L,l,τ

for all t ∈ I since ϕt(T̊L,l,τ ) ⊂ T̊L,l,c′τ by Proposition 4.2.9. This shows Claim 7.2.5.

Take any µ ∈ C∞(R) such that 0 ≤ µ ≤ 1, suppµ ⊂ (−∞, 0], and µ = 1 on

(−∞,− ln 2]. For 0 < σ < ϵ, let χσ = µ(ln ρ − lnσ) ∈ C∞
ub(M̊l). We have χσ ≥ 0,

suppχσ ⊂ T̊L,l,σ, and χσ = 1 on T̊L,l,σ/2. Moreover χσ ∈ C∞
ub(M̊l) and ∥χσ∥Cmub is

independent of σ for m ∈ N0 because d(ln ρ) ∈ C∞
ub(M̊l;T

∗M̊l) (Section 4.3.3). Let

also 0 < τ < ϵ, ϵ/c′ and define χτ as above. Then the operator χτ (P̊l,u − P̊ ′
L,l,u)χσ is

well defined on H−∞(M̊l; ΛF̊l) via the identity T̊L,l,ϵ ≡ T̊ ′
L,l,ϵ.

Let α ∈ C∞
c (M̊l; ΛF̊l) and β ∈ C∞

c (M̊l; ΛF̊∗
l ⊗Ω). By Claim 7.2.5 and the version

of (3.4.11) for ξuDFl,z and ξuDF ′
L,l,z

instead of tD0 (Section 3.5),

〈
χτ (P̊l,u − P̊ ′

L,l,u)χσα, β
〉

=
1

2π

ˆ
|ξ|>C

u ln ϵ2

c2c′στ

ˆ +∞

−∞
ψ̂(ξ)Al,z,u(t, ξ)f(t) dξ dt ,

where

Al,z,u(t, ξ) =
〈(
ϕt∗l,z e

iξuDF̊l,z − ϕ′ t∗L,l,z e
iξuDF̊′

L,l
,z

)
χσα, χτβ

〉
.

Then, by the version of (3.4.10) for ξuDFl,z and ξuDF ′
L,l,z

instead of tD0 (Section 3.5),

since ϕl and ϕ′L,l are of R-local bounded geometry, and using that ∥χσ∥Ckub and

∥χτ∥Ckub
are finite and independent of σ and τ for all k ∈ N0, we get that, for all

m ∈ R,

|Al,z,u(t, ξ)| ≤
∥∥∥(ϕt∗l,z eiξuDF̊l,z − ϕ′ t∗L,l,z e

iξuDF̊′
L,l

,z

)
χσα

∥∥∥
m
∥χτβ∥−m

≤ C ′eCm|ξ|∥χσα∥m∥χτβ∥−m ≤ C ′′eCm|ξ|∥α∥m∥β∥−m ,



174 CHAPTER 7. CONTRIBUTION FROM M1

for some Cm, C
′, C ′′ > 0 independent of α, β, σ, τ , and u ∈ (0, 1]. So, for all W > 0,∣∣〈χτ (P̊l,u − P̊ ′
L,l,u)χσα, β

〉∣∣
≤ 1

2π

ˆ
|ξ|>C

u (ln ϵ
cσ+ln ϵ

cc′τ )

ˆ +∞

−∞

∣∣ψ̂(ξ)
∣∣ |Al,z,u(t, ξ)| |f(t)| dξ dt

≤ C ′′∥α∥m∥β∥−m∥f∥L1

ˆ
|ξ|>C

u (ln ϵ
cσ+ln ϵ

cc′τ )

eCm|ξ| ∣∣ψ̂(ξ)
∣∣ dξ

≤ C ′′∥α∥m∥β∥−m∥f∥L1e−
CW
u (ln ϵ

cσ+ln ϵ
cc′τ )

ˆ ∞

−∞
e(W+Cm)|ξ| ∣∣ψ̂(ξ)

∣∣ dξ ,
for some Cm, C

′, C ′′ > 0 independent of α, β, σ, τ , and u ∈ (0, 1]. Now, assume

(7.2.2) σ <
ϵ

ce
, τ <

ϵ

cc′e
.

Thus ln ϵ
cσ , ln

ϵ
cc′τ > 1, obtaining

e−
CW
u (ln ϵ

cσ+ln ϵ
cc′τ ) ≤ e−CW

u (1+ 1
2 (ln

ϵ
cσ+ln ϵ

cc′τ )) ≤ e−CW
u e−

CW
2 (ln ϵ

cσ+ln ϵ
cc′τ )

= e−
CW
u e−

CW
2 (ln ϵ

c+ln ϵ
cc′ )(στ)

CW
2 ≤ e−CW

u (στ)
CW
2 .

Hence∣∣〈χτ (P̊l,u − P̊ ′
L,l,u)χσα, β

〉∣∣
≤ C ′′′e−

CW
u (στ)

CW
2 ∥ψ∥A,W+Cm,0 ∥f∥I,C0 ∥α∥m ∥β∥−m ,

for some C ′′′ > 0 independent of α, β, σ, τ , and u ∈ (0, 1], but involving the length

of I. Thus, for any R > 0, N ∈ N0 and m ∈ R, there are some Ĉ,W > 0, such that,

for all σ and τ as in (7.2.2), and every u ∈ (0, 1],∥∥χτ (P̊l,u − P̊ ′
L,l,u)χσ

∥∥
m
≤ Ĉe−R

u σNτN∥ψ∥A,W,0 ∥f∥I,C0 .

Using the arguments of the proof of (7.2.1), we similarly get that, for any R > 0,

N ∈ N0 and m,m′ ∈ R, there are Ĉ,W > 0 and N ′ ∈ N0 such that, for all σ and τ

as in (7.2.2), and every u ∈ (0, 1],∥∥χτ (P̊l,u − P̊ ′
L,l,u)χσ

∥∥
m,m′ ≤ Ĉe−

R
u σNτN∥ψ∥A,W,N ′ ∥f∥I,CN′ .

Moreover, for any a ∈ R, replacing α with ρ−aα and β with ρaβ in the above argument,

we also get〈
χτ (P̊l,u − P̊ ′

L,l,u)χσρ
−aα, ρaβ

〉
=

1

2π

ˆ
|ξ|u>C(ln ϵ

cσ+ln ϵ
cc′τ )

ˆ +∞

−∞
ψ̂(ξ)Bl,z(t, ξ, a)f(t) dξ dt ,
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where

Bl,z(t, ξ, a) =
〈(
ϕt∗l,z e

iξuDF̊l,z − ϕ′ t∗L,l,z e
iξuDF̊′

L,l
,z

)
χσρ

−aα, χτρ
aβ

〉
=

〈(
ρaϕt∗l,z e

iξuDF̊l,zρ−a − ρaϕ′ t∗L,l,z e
iξuDF̊′

L,l
,zρ−a

)
χσα, χτβ

〉
=

〈(
ϕt∗l,z−ae

iξuDF̊l,z−a,z+a − ϕ′ t∗L,l,z−ae
iξuDF̊′

L,l
,z−a,z+a

)
χσα, χτβ

〉
.

Then, proceeding as above, we obtain∥∥χτ (P̊l,u − P̊ ′
L,l,u)χσ

∥∥
ρaHm,ρaHm′ ≤ Ĉe−

R
u σNτN∥ψ∥A,W,N ′ ∥f∥I,CN′ ,

for some Ĉ,W > 0 and N ′ ∈ N0, depending only on R, N , m, m′ and a. Using the

Sobolev embedding theorem as in Proposition 7.2.2, it follows that, for any a ∈ R,

R > 0 and N ∈ N0, there are some Ĉ,W > 0 and N ′ ∈ N0 such that∣∣χτ (p)(K̊l,u(p, q)− K̊ ′
L,l,u(p, q))χσ(q)

∣∣
≤ Ĉe−R

u

(ρ(p)

ρ(q)

)a
σNτN ∥ψ∥A,W,N ′ ∥f∥I,CN′ ,

for all p, q ∈ T̊L,l,ϵ and u ∈ (0, 1], and every σ and τ as in (7.2.2). Put

ϵ′ = min
( ϵ

4ce
,

ϵ

4cc′e

)
.

For p, q ∈ T̊L,l,ϵ′ , we set τ = 3ρ(p) and σ = 3ρ(q). It is clear that σ and τ satisfy (7.2.2)

and χτ (p) = χσ(q) = 1 (since ρ(p) < τ/2, ρ(q) < σ/2). Therefore, by the above

estimate, we get∣∣(K̊l,u − K̊ ′
L,l,u)(p, q)

∣∣ ≤ 9N Ĉe−
R
u s(p, q)aρ(p)Nρ(q)N ∥ψ∥A,W,N ′ ∥f∥I,CN′

= 9N Ĉe−
R
u s(p, q)a−Nρ(p)a+N∥ψ∥A,W,N ′ ∥f∥I,CN′ ,

for all p, q ∈ T̊L,l,ϵ′ and u ∈ (0, 1].

For any k ∈ N0, taking arbitrary operators D1, D2 ∈ Diffkb(Ml; ΛFl) and D′
1, D

′
2 ∈

Diffkb(M ′
L,l; ΛF ′

L,l) with Di ≡ D′
i on T̊L,l,ϵ ≡ T̊ ′

L,l,ϵ (i = 1, 2), and applying the above

arguments to the operators D1P̊l,uD2 and D′
1P̊

′
l,uD

′
2, we obtain that, for all a ∈ R

and N ∈ N0, there are some Ĉ,W > 0 and N ′ ∈ N0 such that, for all p, q ∈ T̊L,l,ϵ′
and u ∈ (0, 1],

(7.2.3)
∣∣D1,pD

t
2,q(K̊l,u − K̊ ′

L,l,u)(p, q)
∣∣ ≤ Ĉe−R

u s(p, q)aρ(p)N∥ψ∥A,W,N ′ ∥f∥I,CN′ .

Consider the vector bundle S = ΛFl ⊠ (ΛF∗
l ⊗ ΩMl) over M2

l . Recall that

Diffkb((Ml)
2
b;β∗

bS) is C∞((Ml)
2
b)-spanned by the lift of Diffkb(M2

l ;S), and Diffkb(M2
l ;S)

is C∞(M2
l )-spanned by the lift of Diffkb(Ml; ΛFl) from the left-factor projection and

the lift of Diffkb(Ml; ΛF∗
l ⊗ Ω) from right-factor projection (Section 2.5.26). Then it

follows from (7.2.3) that, for all A ∈ Diffkb((Ml)
2
b;β∗

bS), a ∈ R and N ∈ N0, there are

some Ĉ,W > 0 and N ′ ∈ N0 such that, on β−1
b (T̊ 2

L,l,ϵ′),∣∣A(̊κl,u − κ̊′L,l,u)
∣∣ ≤ Ĉe−R

u saρN∥ψ∥A,W,N ′ ∥f∥I,CN′ .
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Since a and N are arbitrary, this indeed holds with A ∈ Diffk((Ml)
2
b;β∗

bS), after

possibly increasing Ĉ, obtaining the stated inequality.

Proposition 7.2.3 means that κ̊l,u − κ̊′L,l,u has a Ċ∞ extension on the open subset

(TL,l,ϵ)
2
b ⊂ (Ml)

2
b over Tϵ′ ≡ T ′

ϵ′ .

Recall that ϕL = {ϕtL} denotes the restriction of ϕl, or of ϕ, to any boundary leaf

L of Fl.

Corollary 7.2.6. — The section κ̊l has a C
∞ extension κl to (Ml)

2
b, which vanishes

to all orders at lb∪ rb, and therefore P̊l defines an operator Pl ∈ Ψ−∞
b (Ml; ΛFl).

Moreover

Iνl(Pl, λ) ≡
⊕
L

ˆ +∞

−∞
ϕt∗L,z+iλ ψ(DL,z+iλ) eiλκLtf(t) dt

∈ Ψ−∞(∂Ml; Λ) ≡
⊕
L

Ψ−∞(L; Λ) ,

where L runs in π0(∂Ml).

Proof. — This follows from Propositions 7.1.3, 7.1.6, 7.2.2 and 7.2.3.

The subscripts of Notations 7.1.4 and 7.1.7 may be also used with Pl and κl. If

needed, the subscript “l” is also added to the notation of the b-diagonal ∆b of (Ml)
2
b,

and to ∆b,0 = ∆b ∩ ff.

Corollary 7.2.7. — The bilinear map

A× C∞
c (R)→ C∞(

(Ml)
2
b;β∗

b(ΛFl ⊠ (ΛF∗
l ⊗ ΩMl))

)
, (ψ, f) 7→ κl,ψ,f ,

is continuous.

Proof. — Apply (7.2.1) and Propositions 7.1.5 and 7.2.3.

Corollary 7.2.8. — If ψu(x) = e−ux
2

(u > 0) and f(0) = 0, then there is some

0 < ϵ′ < ϵ such that κl,u → 0 on ∆b,l ∩ β−1
b (T 2

l,ϵ′) ≡ Tl,ϵ′ , in the C∞ topology, as

u ↓ 0.

Proof. — This is a consequence of Corollary 7.1.9 and Proposition 7.2.3.

Corollary 7.2.9. — If ψu(x) = e−ux
2

, then there is some 0 < ϵ′ < ϵ such that

lim
u↓0

str(κl,u|∆b,l
) ≡

{
f(0) e(Fl, gFl) |ωb,l| if n− 1 is even

0 if n− 1 is odd

in C0,∞
ϖl

(Tl,ϵ′ ;
bΩ), using the identity ∆b,l ∩ β−1

b (T 2
l,ϵ′) ≡ Tl,ϵ′ .

Proof. — This is a consequence of Corollary 7.1.10 and Proposition 7.2.3.

Proposition 7.2.10. — We have

dFl,z ∈ Diff1
b(Ml; ΛFl) , Iνl(dFl,z, λ) = d∂Ml,z+iλ .
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Proof. — By (3.2.28), dFl,z ∈ Diff1(Fl; ΛFl) ⊂ Diff1
b(Ml; ΛFl). By (2.5.62)

and (4.3.1),

Iνl(dFl,z, λ) = (ρ−iλdFl,zρ
iλ)∂ = (dFl,z + iλρ−1dFlρ∧)∂ = d∂Ml,z+iλ .

Alternatively, we can use (2.5.64) and (3.2.28) to describe Iνl(dFl,z, λ).

Recall that M ≡
⊔
lMl and ν is the combination of the sections νl (Section 4.3.3).

This boldface notation of Sections 4.2.2, 4.3.2 and 4.3.3 allows to simplify the notation

of direct sums of section spaces, cohomologies and operators defined on the manifolds

Ml. For instance, we get the operators

P ≡
⊕
l

Pl ∈ Ψ−∞
b (M ; ΛF) ≡

⊕
l

Ψ−∞
b (Ml; ΛFl) ,

dF ,z ≡
⊕
l

dFl,z ∈ Ψ1
b(M ; ΛF) ≡

⊕
l

Ψ1
b(Ml; ΛFl) ,

whose indicial operators are

Iν(P , λ) ≡
⊕
l

Iνl(Pl, λ) ∈ Ψ−∞(∂M ; Λ) ≡
⊕
L

Ψ−∞(L; Λ) ,

Iν(dF ,z, λ) ≡
⊕
l

Iνl(dFl,z, λ) ∈ Ψ1(∂M ; Λ) ≡
⊕
L

Ψ1(L; Λ) ,

where L runs in π0(∂M) ≡ π0M0 ⊔π0M0. On the other hand, according to Proposi-

tion 7.2.10, Iν(dF ,z, λ) = d∂M ,z+iλ. Let also κ = κP on M2
b ≡

⊔
l(Ml)

2
b, which is the

combination of the sections κl. In M2
b, we have ∆b ≡

⊔
l ∆b,l and ∆b,0 ≡

⊔
l ∆b,0,l.

The subscripts of Notations 7.1.4 and 7.1.7 may be also used with P and κ.

When z = µ ∈ R and ψ(x) = ψu(x) = e−ux
2

(u > 0), the above P = P u

is the operator P µ,u,f of Section 1.3.4. Thus Theorem 1.3.7 is a consequence of

Corollaries 2.5.10, 7.2.6 and 7.2.7.

7.3. The limit of bStr(P u) as u ↓ 0

With the notation of Section 4.1.1, let C = C(ϕ), P = P(ϕ), Cl = C(ϕl) and

Pl = P(ϕl). For any leafwise density α ∈ C∞(Ml; ΩFl), we can consider α |ωb,l| ∈
C∞(Ml;

bΩ). In particular, if n − 1 is even, the leafwise Euler density e(Fl, gFl) ∈
C∞(Ml; ΩFl) (Section 3.2.7) gives rise to the b-density e(Fl, gFl) |ωb,l| ∈ C∞(Ml;

bΩ),

whose b-integral,

bχ|ωb,l|(Fl) =
νl̂

Ml

e(Fl, gFl) |ωb,l| ,

can be called the b-Connes |ωb,l|-Euler characteristic of Fl. This is a b-normalized

version of the Connes |ωb,l|-Euler characteristic, where |ωb,l| is considered as an in-

variant transverse measure of F1
l . The usual Connes |ωb,l|-Euler characteristic is not

defined because M1
l is not compact. If n− 1 is odd, let bχ|ωb,l|(Fl) = 0.

Recall the operator P defined in Section 7.2.
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Theorem 7.3.1. — If ψu(x) = e−ux
2

(u > 0), then

lim
u↓0

bStr(P u) =
∑
l

bχ|ωb,l|(Fl) · f(0) +
∑
c∈C

ℓ(c)
∑
k∈Z×

ϵc(k) · f(kℓ(c)) .

To prove this theorem, we consider every Pl,u, separately. Recall that κ̊l,u,z cor-

responds to k̊l,z,u via the restriction of βb : (Ml)
2
b → M2

l to the interiors. Thus

we are going to study the asymptotic behaviour of k̊l,z,u as u ↓ 0. The identities

M̊l ≡ M1
l , F̊l ≡ F1

l and T̊l,ϵ′ ≡ T 1
l,ϵ′ (0 < ϵ′ ≤ ϵ) will be used without further com-

ment. With the notation of Sections 4.3.4 and 4.3.5, and adapting the notation of

Section 3.4.7, let Gl = HolF1
l and G̃l = Hol F̃1

l , with source and target projections,

s, r : Gl →M1
l and s, r : G̃l → M̃1

l . The pairs (r, s) define identities Gl ≡ Rl := RF1
l

and G̃l ≡ R̃l := RF̃1
l
. Let ∆l ⊂ Rl denote the diagonal. Consider also the vector

bundles

Sl = s∗ΛF1
l ⊗ r∗(ΛF1∗

l ⊗ ΩF1
l ) , S̃l = s∗ΛF̃1

l ⊗ r∗
(
ΛF̃1∗

l ⊗ ΩF̃1
l

)
,

over Gl and G̃l, and the leafwise Schwartz kernel k̃l,z,u defined by the Schwartz kernels

of the operators e−u∆L̃′,z on the leaves L̃′ of F̃1
l , for z ∈ C (Section 3.4.7). By (3.4.21)

and since ω̃b,l = D∗
l dx (Section 4.3.4), for p̃ ∈ M̃1

l and p = [p̃] ∈M1
l ,

(7.3.1) k̊l,z,u(p, p) ≡
∑
γ∈Γl

ϕ̃
−hl(γ)∗
l,z T ∗

γ k̃l,z,u
(
Tγ ϕ̃

−hl(γ)
l (p̃), p̃

)
f(−hl(γ)) |ωb,l|(p) ,

using that S̃(γ·p̃,p̃) ≡ S(p,p). This defines a convergent series in C∞
ub(∆l;Sl).

Any leaf of F̃1
l is of the form L̃′ = {x} × Ll ≡ Ll for some x ∈ R. Then the

restriction of g̃b,l to L̃′ is identified with a metric g̃l,x on Ll, ∆L̃′,z is identified with

the twisted Laplacian ∆l,x,z on (Ll, g̃l,x) defined by the restriction of η̃0, and k̃l,z,u on

L̃′ 2 is identified with the Schwartz kernel k̃l,x,u,z of e−u∆l,x,z , defined on L2
l .

Theorem 7.3.1 follows from the following result.

Proposition 7.3.2. — Let I ⊂ R be a compact interval with supp f ⊂ I. Then the

following properties hold:

(i) If I ⊂ R× and I ∩ Pl = ∅, then

lim
u↓0

bStr(Pl,u) = 0 .

(ii) If I ⊂ R× and I ∩ Pl = {t0}, then

lim
u↓0

bStr(Pl,u) = f(t0)
∑

c∈Cl,t0

ℓ(c) ϵc(t0/ℓ(c)) ,

where Cl,t0 consists of the orbits c ∈ Cl with period t0.

(iii) If 0 ∈ I and I ∩ Pl = ∅, then

lim
u↓0

bStr(Pl,u) = f(0) bχ|ωb,l|(Fl) .
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Proof. — Choose some 0 < ϵ′ < ϵ satisfying the statements of Corollaries 7.2.8

and 7.2.9, and take some 0 < ϵ′′ < ϵ′. Take some C3 ≥ 1 satisfying (4.3.5). Since

ϕ̃l is of R-local bounded geometry (Section 2.4.7), there is some R ≥ 0 such that

d̃l(ϕ̃
t
l(p̃), p̃) ≤ R for all p̃ ∈ M̃1

l and t ∈ I. So, by (4.3.5) and the triangle inequality,

for all p̃ ∈ M̃1
l,ϵ′′ and γ ∈ Γl with −hl(γ) ∈ I, we get

(7.3.2) C−1
3 |γ| −R ≤ d̃l

(
γ · ϕ̃−hl(γ)l (p̃), p̃

)
≤ C3|γ|+R ,

using also that γ · ϕ̃−hl(γ)l (p̃) = ϕ̃
−hl(γ)
l (γ · p̃) with γ · p̃ ∈ M̃1

l,ϵ′′ .

By the R-local bounded geometry of ϕ̃l and the compactness of I, there are C4, C5 >

0 such that, for all t ∈ I,

(7.3.3)
∣∣ϕ̃t∗l,z∣∣ ≤ C4 , |f(t)| ≤ C5 .

Assume I ⊂ R× and I ∩ Pl = ∅ to prove (i). Thus

{ (p, ϕtl(p)) | p ∈M1
l,ϵ′′ , t ∈ I }

is a compact subset of (M1
l )2 \∆l. By Lemma 3.1.1 (ii), there is some C6 > 0 such

that dF1
l
(ϕtl(p), p) ≥ C6 for all p ∈ M1

l,ϵ′′ and t ∈ I. So, for all p̃ ∈ M̃1
l,ϵ′′ and γ ∈ Γl

with −hl(γ) ∈ I,

(7.3.4) dF̃1
l

(
γ · ϕ̃−hl(γ)l (p̃), p̃

)
≥ C6 .

Take some C7 > 0 such that, for all γ ∈ Γl with −hl(γ) ∈ I,

C7|γ| ≤

{
C−1

3 |γ| −R if |γ| > C3R

C6 if |γ| ≤ C3R .

Since d̃l ≤ dF̃1
l

(Section 3.1.6), it follows from (7.3.2) and (7.3.4) that, for all p̃ ∈ M̃1
l,ϵ′′

and γ ∈ Γl with −hl(γ) ∈ I,

(7.3.5) dF̃1
l

(
γ · ϕ̃−hl(γ)l (p̃), p̃

)
≥ C7|γ| .

By (2.9.14) and (7.3.5), and since the leaves of F̃1
l are of equi-bounded geometry,

there are C1, C2, u0 > 0 such that, for all 0 < u ≤ u0, p̃ ∈ M̃1
l,ϵ′′ and γ ∈ Γl with

−hl(γ) ∈ I,

(7.3.6)
∣∣k̃l,z,u(γ · ϕ̃−hl(γ)l (p̃), p̃

)∣∣ ≤ C1u
(n−1)/2e−C2C

2
7 |γ|

2/u .

Hence, by (7.3.1) and (7.3.3), for all 0 < u ≤ u0 and p ∈M1
l,ϵ′′ ,

(7.3.7)
∣∣̊kl,z,u(p, p)

∣∣ ≤ C4C5C1u
(n−1)/2

∑
γ∈Γl

e−C2C
2
7 |γ|

2/u ,

which converges to zero as u ↓ 0 because Γl is of polynomial growth. Since M1
l,ϵ′′ is

compact, we get

lim
u↓0

ˆ
p∈M1

l,ϵ′′

str k̊l,z,u(p, p) = 0 ,

and therefore (i) follows by Corollaries 7.2.8 and 2.5.10.
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Now assume I ⊂ R× and I ∩ P = {t0} to prove (ii), and let Cl,t0 = {c1, . . . , cm}.
Then the following properties hold (Section 4.3.4):

(N) There is a unique γ0 ∈ Γl such that t0 = −hl(γ0).

(O) We have kj := t0/ℓ(cj) ∈ Z (j = 1, . . . ,m).

(P) There is some yj ∈ Ll such that πl : R× {yj} → cj is a C∞ covering map with

fundamental domain [0, ℓ(cj)]× {yj}.
(Q) For all p̃ ∈ R× {yj}, we have γ0 · ϕ̃t0l (p̃) = p̃.

(R) For all x ∈ R, every yj is a simple fixed point of the diffeomorphism Tγ0 ϕ̃
t0
l,x of

Ll with ϵyj (Tγ0 ϕ̃
t0
l,x) = ϵcj (kj , ϕ) = ϵcj (kj).

In particular, there are no other fixed points of Tγ0 ϕ̃
t0
l,xj

in some open neighborhood

Wj of yj in Ll. Then πl([0, ℓ(cj)] ×Wj) is a neighborhood of cj , whose interior is

denoted by Vj , which does not intersect other closed orbits with period in I. Note that

πl : (0, ℓ(cj))×Wj → Vj is a C∞ embedding and Vj\πl((0, ℓ(cj))×Wj) = πl({0}×Wj)

is of measure zero. For every p ∈ Vj , let p̃ be the unique point in [0, ℓ(cj))×Wj with

πl(p̃) = p. We have

ˆ
Vj

str
(
ϕ̃t0∗l,z T

∗
γ0 k̃l,z,u

(
Tγ0 ϕ̃

t0
l (p̃), p̃

))
f(t0) |ωb,l|(p)

=

ˆ
[0,ℓ(cj)]×Wj

str
(
ϕ̃t0∗l,z T

∗
γ0 k̃l,z,u

(
Tγ0 ϕ̃

t0
l (p̃), p̃

))
f(t0)

∣∣ω̃b,l

∣∣(p̃)
= f(t0)

ˆ ℓ(cj)

0

ˆ
Wj

str
(
ϕ̃t0∗l,z T

∗
γ0 k̃l,z,u

((
x, Tγ0 ϕ̃

t0
l,x(y)

)
, (x, y)

)
|dx|

= f(t0)

ˆ ℓ(cj)

0

ˆ
Wj

str
(
ϕ̃t0∗l,x,z T

∗
γ0 k̃l,x,u,z

(
Tγ0 ϕ̃

t0
l,x(y), y

)
|dx| .

But, by Proposition 2.9.6,

lim
u↓0

ˆ
Wj

str
(
ϕ̃t0∗l,x,z T

∗
γ0 k̃l,x,u,z

(
Tγ0 ϕ̃

t0
l,x(y), y

))
= ϵyj

(
Tγ0 ϕ̃

t0
l,x

)
= ϵcj (kj) .

So

(7.3.8) lim
u↓0

ˆ
Vj

str
(
ϕ̃t0∗l,z T

∗
γ0 k̃l,z,u

(
Tγ0 ϕ̃

t0
l (p̃), p̃

))
f(t0) |ωb,l|(p)

= f(t0)ℓ(cj)ϵcj (kj) .

By (i), we can assume the length of I is as small as desired. By the R-local bounded

geometry of ϕ̃l, if the length of I is small enough, there is some 0 < r < C−1
3 /2 such

that dl(ϕ
t
l(p̃), ϕ

s
l (p̃)) ≤ r for all p̃ ∈ M̃1

l and t, s ∈ I. So, by (4.3.5), (N) and (Q), for
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all p ∈ cj and γ ∈ Γl \ {γ0} with −hl(γ) ∈ I,

dl
(
γ · ϕ̃−hl(γ)l (p̃), p̃

)
≥ dl

(
γ · ϕ̃−hl(γ)l (p̃), γ0 · ϕ̃−hl(γ)l (p̃)

)
− dl

(
γ0 · ϕ̃−hl(γ)l (p̃), γ0 · ϕ̃−hl(γ0)l (p̃)

)
− dl

(
γ0 · ϕ̃−hl(γ0)l (p̃), p̃

)
= dl

(
ϕ̃
−hl(γ)
l (p̃), γ−1γ0 · ϕ̃−hl(γ)l (p̃)

)
− dl

(
ϕ̃
−hl(γ)
l (p̃), ϕ̃

−hl(γ0)
l (p̃)

)
≥ C−1

3 |γ−1γ0| − r .

Thus, by continuity, the neighborhood Wj of every yj can be chosen so small that,

for all p ∈ Vj and γ ∈ Γl \ {γ0} with −hl(γ) ∈ I,

dl
(
γ · ϕ̃−hl(γ)l (p̃), p̃

)
≥ C−1

3 |γ−1γ0| − 2r ≥ C−1
3 − 2r > 0 .

Hence, by (2.9.14) and since the leaves of F̃1
l are of equi-bounded geometry, there are

C1, C2, u0 > 0 such that, for all 0 < u ≤ u0, p ∈ Vj and γ ∈ Γl \{γ0} with −hl(γ) ∈ I,∣∣k̃l,z,u(γ · ϕ̃−hl(γ)l (p̃), p̃
)∣∣ ≤ C1u

(n−1)/2e−C2(C
−1
3 |γ−1γ0|−2r)2/u .

Then, by (7.3.3), for all 0 < u ≤ u0 and p ∈ Vj ,∣∣∣∣ ∑
γ∈Γl\{γ0}

ϕ̃
−hl(γ)∗
l,z T ∗

γ k̃l,z,u
(
Tγ ϕ̃

−hl(γ)
l (p̃), p̃

)
f(−hl(γ)) |ωb,l|(p)

∣∣∣∣
≤ C4C5C1u

(n−1)/2
∑

γ∈Γl\{γ0}

e−C2(C
−1
3 |γ−1γ0|−2r)2/u ,

which converges to zero as u ↓ 0 because Γl is of polynomial growth. So, by (7.3.1)

and (7.3.8),

(7.3.9) lim
u↓0

ˆ
p∈Vj

str k̊l,z,u(p, p) = f(t0)ℓ(cj)ϵcj (kj) .

On the other hand, since ϕ has no closed orbits in T 1
l,ϵ (Section 4.3.3), we can

assume Vj ⊂ M1
l,ϵ′′ . Let Ṽj = π−1

l (Vj) ⊂ M̃1
l,ϵ′′ . If p ∈ M1

l,ϵ′′ \ (V1 ∪ · · · ∪ Vm) and

t ∈ I, then ϕt(p) ̸= p. Hence, like in the proof of (i), there are C7, C1, C2, u0 > 0

such that (7.3.5) and (7.3.6) hold for all 0 < u ≤ u0, p̃ ∈ M̃1
l,ϵ′′ \ (Ṽ1 ∪ · · · ∪ Ṽm)

and γ ∈ Γl with −hl(γ) ∈ I. Thus (7.3.7) holds for all p in the compact space

M1
l,ϵ′′ \ (V1 ∪ · · · ∪ Vm), yielding

lim
u↓0

ˆ
p∈M1

l,ϵ′′\(V1∪···∪Vm)

str k̊l,z,u(p, p) = 0 .

So (ii) is true by (7.3.9) and Corollaries 2.5.10 and 7.2.8.

Finally, assume 0 ∈ I and I ∩ Pl = ∅ to prove (iii). By (i), we can suppose again

that the length of I is as small as desired. By (7.3.2), there are finitely many elements
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γ ∈ Γl such that −hl(γ) ∈ I and, for all p̃ ∈ M̃1
l ,

(7.3.10) dF̃1
l

(
γ · ϕ̃−hl(γ)l (p̃), p̃

)
> 1 .

Thus, if I is small enough, we can assume (7.3.10) is true for all p̃ ∈ M̃1
l and γ ∈ Γl\{e}

with −hl(γ) ∈ I. Then, like in the proof of (i), there are C7, C1, C2, u0 > 0 such

that (7.3.5) and (7.3.6) hold for all 0 < u ≤ u0, p̃ ∈ M̃1
l,ϵ′′ and γ ∈ Γl \ {e} with

−hl(γ) ∈ I. Hence, by (7.3.3), for all 0 < u ≤ u0 and p ∈M1
l,ϵ′′ ,∣∣∣∣ ∑

γ∈Γl\{e}

ϕ̃
−hl(γ)∗
l,z T ∗

γ k̃l,z,u
(
Tγ ϕ̃

−hl(γ)
l (p̃), p̃

)
f(−hl(γ)) |ωb,l|(p)

∣∣∣∣
≤ C4C5C1u

(n−1)/2
∑
γ∈Γl

e−C2C
2
7 |γ|

2/u ,

which converges to zero as u ↓ 0 because Γl is of polynomial growth. On the other

hand, by (2.9.22) and Theorem 2.9.4,

lim
u↓0

str k̃l,z,u(p̃, p̃) =

{
e(F̃l, gF̃l)(p̃) ≡ e(Fl, gFl)([p̃]) if n− 1 is even

0 if n− 1 is odd ,

uniformly on p̃ ∈ M̃1
l,ϵ′′ . So, by (7.3.1),

lim
u↓0

strκl,u = f(0) e(Fl, gFl) |ωb,l|

uniformly on ∆b,l∩β−1
b (M2

l,ϵ′′) ≡Ml,ϵ′′ . Therefore (iii) follows using Corollaries 2.5.10

and 7.2.9 and Remark 2.5.11.

Remark 7.3.3. — The simpler argument given in [ÁLK02, ÁLK08] for the case of

Theorem 7.3.1 with no preserved leaves cannot be applied here because now bStr(P u)

depends on u.

Theorem 1.3.8 is a restatement of Theorem 7.3.1.

7.4. The limit of bStr(P µ,u) as u ↑ +∞ and µ→ ±∞

7.4.1. An expression of bTr([dF ,µ,P µw]). — From now on, we will only consider

P z for z = µ ∈ R; written P µ. We keep the notation z = µ+ iλ for any other λ ∈ R
(i =

√
−1). In the following, L runs in π0M

0. Recall that η0 = η around M0. For

ψ ∈ A, µ ∈ R and f ∈ C∞
c (R), let

SL,µ = − 1

2π

ˆ +∞

−∞
ηL∧ψ(DL,z)f̂(−κLλ) dλ

= − 1

2π|κL|

ˆ +∞

−∞
ηL∧ψ(DL,z)f̂L(λ) dλ ,(7.4.1)



7.4. THE LIMIT OF bStr(Pµ,u) AS u ↑ +∞ AND µ → ±∞ 183

where fL(λ) = f(−λ/κL). Again, we may also add the subscript “ψ” or “f” to the

notation SL,µ if needed. Recall also that w denotes the degree involution. Observe

that wdF ,z = −dF ,zw and Iν(P µw, λ) = Iν(P µ, λ)w by (2.5.63).

Lemma 7.4.1. — We have

bTr([dF ,µ,P µw]) = 2
∑
L

Str(SL,µ) .

Proof. — By the version of (2.5.65) with a b-differential operator and a b-

pseudodifferential operator of order −∞, Corollary 7.2.6 and Proposition 7.2.10,

bTr([dF ,µ,P µw]) = − 1

2πi

ˆ +∞

−∞
Tr(∂λIν(dF ,µ, λ) Iν(P µ, λ)w) dλ

= − 1

π

∑
L

ˆ +∞

−∞

ˆ +∞

−∞
Tr(ηL∧ψ(DL,z)w) eiλκLtf(t) dt dλ

= 2
∑
L

Str(SL,µ) .

7.4.2. Variation of bStr(P µ,u) with respect to u. — For any ψ ∈ A and u > 0,

let ψu ∈ A be defined by ψu(x) = ψ(
√
ux), and consider the corresponding operator

P µ,u. Recall that P µ,u is the operator P µ,u,f of Section 1.3.4 if ψ(x) = e−x
2

.

Proposition 7.4.2. — If ψ ∈ A is even, then

d

du
bStr(P µ,u) = − 1√

u

∑
L

Str(SL,(ψ′)u,µ) .

Proof. — This result follows like in the heat equation proof of the usual Lefschetz

trace formula [AB67, Gil95, Roe98], but the stated derivative does not vanish

because the b-trace of commutators may not be zero. To simplify the arguments,

consider the change of variables v =
√
u, and let ψv(x) = ψu(x) = ψ(vx) and P v

µ =

P ψv,µ,f . By Lemma 7.4.1 and since ψ′ is odd,

bStr

(ˆ +∞

−∞
ϕt∗µ dF ,µ ψ

′(vDF ,µ) f(t) dt

)
= bTr

(ˆ +∞

−∞
ϕt∗µ dF ,µ ψ

′(vDF ,µ)w f(t) dt

)
= bTr

(ˆ +∞

−∞
ϕt∗µ ψ

′(vDF ,µ)w dF ,µf(t) dt

)
+ 2

∑
L

Str(SL,(ψ′)v,µ)

= −bTr

(ˆ +∞

−∞
ϕt∗µ δF ,µ ψ

′(vDF ,µ)w f(t) dt

)
+ 2

∑
L

Str(SL,(ψ′)v,µ)

= −bStr

(ˆ +∞

−∞
ϕt∗µ δF ,µ ψ

′(vDF ,µ) f(t) dt

)
+ 2

∑
L

Str(SL,(ψ′)v,µ) .
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So

d

dv
bTrs P v

µ = bStr

(ˆ +∞

−∞
ϕt∗µ DF ,µψ

′(vDF ,µ)f(t) dt

)
= bStr

(ˆ +∞

−∞
ϕt∗µ dF ,µψ

′(vDF ,µ)f(t) dt

)
+ bStr

(ˆ +∞

−∞
ϕt∗µ δF ,µψ

′(vDF ,µ)f(t) dt

)
= 2

∑
L

Str(SL,(ψ′)v,µ) .

Now apply the chain rule.

7.4.3. The limit of bStr(P µ,u) as u ↑ +∞ and µ → ±∞. — Now take ψ(x) =

e−x
2

. Hence ψu(x) = e−ux
2

and (ψ′)u(x) = −2
√
uxe−ux

2

. Thus, by (7.4.1),

(7.4.2) Str(SL,(ψ′)u,µ) = − 1

π|κL|

ˆ +∞

−∞
Str

(
ηL∧ δze−u∆L,z

)
f̂L(λ) dλ .

Theorem 7.4.3. — For all τ ≫ 0, we can choose every ηL and gL (L ∈ π0M0) so

that

lim
µ↑+∞

(
lim

u1↑+∞
P µ,u1

− lim
u0↓0

P µ,u0

)
= τf(0) .

If n− 1 is even, this is true for all τ ∈ R and as µ→ ±∞.

Proof. — By Theorem 2.9.7, if τ ≫ 0, we can choose every ηL and gL so that (2.9.25)

defines a tempered distribution ZL,µ := Z(L, gL, ηL) ∈ S ′ for |µ| ≫ 0, and ZL,µ → τδ0
in S ′ as µ → ∞. If n − 1 = dimL is even, then this is true for all τ ∈ R and as

µ→ ±∞. Then the result follows because, by (2.9.25), (7.4.2) and Proposition 7.4.2,

lim
u1↑+∞

P µ,u1
− lim
u0↓0

P µ,u0
= − 1√

u

∑
L

ˆ ∞

0

Str(SL,(ψ′)u,µ) du

= − 1

π

∑
L

1

|κL|
⟨ZL,µ, fL⟩ .

Corollary 7.4.4 gives Theorem 1.3.9 by taking τ = 0 when n− 1 is even.

Corollary 7.4.4. — For all τ ≫ 0, we can choose every ηL and gL (L ∈ π0M0) so

that

lim
µ↑+∞

lim
u↑+∞

bStr(P µ,u) =
(
bχ|ωb|(F̊) + τ

)
f(0) +

∑
c∈C

ℓ(c)
∑
k∈Z×

ϵc(k) f(kℓ(c)) .

If n is even, this is true for all τ ∈ R and as µ→ ±∞.

Proof. — Apply Theorem 7.3.1 and Corollary 7.4.4.
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Theorem 1.3.9 follows taking τ = 0 in Corollary 7.4.4.

Like in[ÁLK02, ÁLKL20], by (5.4.6) and (6.4.6), the distributions

f 7→ lim
u↑+∞

bStr
(
Pm+ 1

2 ,u,f

)
, f 7→ lim

u↑+∞
bStr

(
Pm− 1

2 ,u,f

)
can be considered as a distributional supertraces of the action ϕ∗ of R on H̄•Jm(F)

and H̄•J ′m(F). So, by the analogs of (5.1.2) and (6.1.2) for J(F) and J ′(F), and

using (5.4.6) and (6.4.6), the distributions

f 7→ lim
m↓−∞

lim
u↑+∞

bStr
(
Pm+ 1

2 ,u,f

)
, f 7→ lim

m↓∞
lim
u↑+∞

bStr
(
Pm− 1

2 ,u,f

)
can be considered as a distributional supertraces of the action ϕ∗ of R on H̄•J(F)

and H̄•J ′(F), as indicated in Section 1.3.6.
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[ÁLKL14] J.A. Álvarez López, Y.A. Kordyukov, and E. Leichtnam, Riemannian fo-
liations of bounded geometry, Math. Nachr. 287 (2014), no. 14-15, 1589–
1608. MR 3266125
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[Hör71] L. Hörmander, Fourier integral operators. I, Acta Math. 127 (1971), no. 1-
2, 79–183. MR 388463

[Hör83] , The analysis of linear partial differential operators. I. Distribu-
tion theory and Fourier analysis, Grundlehren der Mathematischen Wis-
senschaften, vol. 256, Springer-Verlag, Berlin, 1983. MR 717035

[Hör85] , The analysis of linear partial differential operators. III. Pseudodif-
ferential operators, Grundlehren der Mathematischen Wissenschaften, vol.
274, Springer-Verlag, Berlin, 1985.

[Kim17] J. Kim, On the leafwise cohomology and dynamical zeta functions for fiber
bundles over the circle, arXiv:1712.04181, 2017.

[KN65] J.J. Kohn and L. Nirenberg, An algebra of pseudo-differential operators,
Commun. Pure Appl. Math. 18 (1965), 269–305. MR 0176362

[Kom67] H. Komatsu, Projective and injective limits of weakly compact sequences of
locally convex spaces, J. Math. Soc. Japan 19 (1967), 366–383. MR 217557

[Kop06] F. Kopei, A remark on a relation between foliations and number theory,
Foliations 2005. Proceedings of the international conference, University
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(Nantes, 1991). MR 1205177

[Sim90] S.R. Simanca, Pseudo-differential operators, Pitman Research Notes in
Mathematics Series, vol. 236, Longman Scientific & Technical, Harlow;
copublished in the United States with John Wiley & Sons, Inc., New York,
1990. MR 1075017

[Tay81] M.E. Taylor, Pseudodifferential operators, Princeton Mathematical Series,
vol. 34, Princeton University Press, Princeton, N.J., 1981. MR 618463



194 BIBLIOGRAPHY

[Val89] M. Valdivia, A characterization of totally reflexive Fréchet spaces, Math.
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Ť , 56

π̌, 56

σ̌, 56

δ-section, 24

δuL, 23

δF , 84

δ−i,i−1, 83

δF,z , 89

δz,i,i−1, 88
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