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Zepon1,2,*

1Federal University of São Carlos, Graduate Program of Materials Science and

Engineering, São Carlos-SP, Brazil
2Federal University of São Carlos, Department of Materials Engineering, São

Carlos-SP, Brazil
3Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMaP, 38000 Grenoble, France

*corresponding author: zepon@ufscar.br

Abstract

Interstitial solid solutions, such as carbon in steels or hydrogen in metal and alloys, are important

materials for many applications. Thermodynamic models that accurately predict the behavior of inter-

stitial solid solution are essential for designing new materials and to improve computational materials

tools. In this work, we revisited the problem of calculating the configurational entropy of interstitial

solid solutions when site blocking effect occurs. Using an unprecedented approach, we propose a new

site blocking model that uses the Johson-Mehl-Avrami-Kolmogorov (JMAK) equation to calculate the

fraction of blocked sites. Since the occupation of intersistial sites in solid solutions is random, the

blocking of neighbor sites can also be assumed to be random. Thus, the blocking site effect can be

described as a Poisson process and the JMAK equation can derived from Poisson statistics. The pro-

posed model (to be called JMAK model) allows to estimate the number of blocked sites considering the

site blocking overlapping phenomenon in a simple and direct way. The JMAK model was validated

by comparing the calculated values of configurational entropy with both numerical simulation and

experimental data.

Keywords: interstitial solid solution, configurational entropy, site blocking effect, Johnson-Mehl-

Avrami-Kolmogorov model.
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1 Introduction

Interstitial atoms play important roles in different areas of materials science and engineering. Many

properties are governed and/or affected by the the formation of interstitial solid solution. Carbon in

steel is the typical example of how interstitial atoms can affect the mechanical properties of metals and

alloys. Hydrogen storage in metals and metal hydrides is another example of interstitial atoms playing

a central role in the materials properties. In the era of computational materials science, thermodynamic

models that can accurately describe the behavior of interstitial solid solution is paramount to boost

the design of new materials.

The configurational entropy of interstitial solid solutions often deviates from the ideal entropy of

mixing because of short-range repulsion of two interstitial atoms. In this case, when an atom occupies

a random interstitial site, some of its interstitial site neighbors will become unavailable for receiving

another interstitial atom because of the repulsive forces. Therefore, these unavailable (or blocked) sites

can no longer participate in the mixing process, affecting the number of possible atomic configurations.

This phenomenon is called site blocking effect (SBE) and has been discussed in literature for more than

60 years and many authors reported theoretical or empirical models to calculate the configurational

entropy of interstitial solid solution when SBE occurs [1–6].

In this work, we revisited this problem and derived a general expression to calculate the config-

urational entropy for interstitial solid solutions with SBE, which is only function of the fraction of

occupied and blocked sites. Moreover, we propose a new model to describe the fraction of blocked

sites, which uses the well-known Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation and that we

called JMAK model. It is worth mentioning that the JMAK equation has already been applied to de-

scribe different physical phenomena in materials science and beyond, such as in biochemical processes,

genetics studies, ecology, epidemiology, social studies, product market analysis, and others [7, 8].

Since the interstitial occupation occurs as a random and independent process, we supposed that the

distribution of blocked sites is also a random and independent process. Therefore, the Poisson process

with the phantom nuclei and extended volume concepts should be suitable for describing the site

blocking phenomena and obtain the JMAK equation [9].Furthermore, we demonstrated that the JMAK

equation is a simple and straightforward way to account for the site blocking overlapping, i.e., when

one site can be simultaneously blocked by the previous occupation of two or more neighbor sites. The

JMAK model proposed here was confronted with both numerical simulation and experimental data,

as well as with other site blocking models reported in literature. The SBE effect of tetrahedral sites

in body-centered cubic (BCC) lattice with different levels of blocking was simulated using open code

written in Python language. Furthermore, experimental pressure-composition-temperature (PCT)

diagrams of the V-H, Nb-H, and Ta-H systems reported in [10] were used to extract the partial molar

configurational entropy for the hydrogen interstitial solid solution for the three metals. The JMAK

model presented here describes well both the simulated and experimental results, accurately predicting

the fraction of blocked sites for different levels of blocking in interstitial solid solutions.
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2 Theory

2.1 Configurational entropy of interstital solid solution with site blocking

effect

In this session, we will derive the general expression for configurational entropy of an interstitial

solid solution when SBE occurs.

Let N be the total number of interstitial sites in a metal lattice. Then:

N = ni + nv + nb (1)

where ni is the number of sites occupied by an interstitial specie i, nv is the number of vacant sites,

and nb is the number of blocked sites. Therefore,

ni

N
+

nv

N
+

nb

N
= fi + fv + fb = 1 (2)

where fi is the fraction of sites occupied by an interstitial specie i, fv is the fraction of vacant sites,

and fb is the fraction of blocked sites.

The configurational entropy of an interstitial solid solution can be described by considering only

the interstitial species and vacancies, which are the only “species” that can mix between them. In

other words, the blocked sites do not participate in the mixing process. Therefore:

Sc

k
= −N ′ [Pi lnPi + Pv lnPv] (3)

where N ′ is the quantity of sites that can mix and need to be accounted for the different possible

configurations, i.e., the quantity of sites excluding the blocked sites (N(1 − fb)). Pi and PV are,

respectively, the probability of finding an occupied and an available site among the N ′ sites. Then:

Sc

k
= −N(1− fb)

[
fi

1− fb
ln

(
fi

1− fb

)
+

1− fb − fi
1− fb

ln

(
1− fb − fi

1− fb

)]
(4)

For convenience, we can describe the quantity of interstiatial sites (N) in terms the number of

interstitial sites per metal atom (θ), as follow:

N = nM · θ (5)

where nM is the the number of moles of metal atoms in the lattice. Then, the configurational

entropy for the solid solution per mol of metal atom is given by:

Sc

R
= −θ · (1− fb) ·

[
fi

1− fb
ln

(
fi

1− fb

)
+

1− fb − fi
1− fb

ln

(
1− fb − fi

1− fb

)]
(6)

It is worth noting that the concentration of interstitial atoms (ci) is given by:

ci =
ni

nM
= fi · θ (7)
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Finally, we can derive the general expression of the partial molar configurational entropy (Sc), as

follow:

Sc =
∂Sc

∂ci
=

1

θ

∂Sc

∂fi
= −R ln

 fi(1− fb)
∂fb
∂fi

(1− fi − fb)
1+

∂fb
∂fi

 (8)

2.2 Site blocking models: Introduction of the JMAK model for SBE

Given the general expression for the configurational entropy of interstitial solid solutions with SBE,

equation 6, one need to know how the fraction of blocked sites varies with fi.

J. Garcés [5] reported a model to describe the confirgurational entropy of interstitial solid solutions

with SBE following the same general expression described above. In his work, it was considered that

the fraction of blocked sites varies linearly with the fraction of occupied sites as follow:

fb = Nb · fi (9)

where Nb is the number of neighbor interstitial sites that are blocked by the previous occupation

of an interstitial site.

The problem concerning Garcés model is that it does not consider the overlapping of blocked sites.

This scenario is depicted in Figure 1 for a 2D square lattice with one interstitial site in the center

of the lattice, and with blocking of the first and second near neighbor (NN) interstitial sites. Figure

1 (a) shows that when two random sites far apart from each other are occupied, all the first and

second NN sites are blocked. However, Figure 1 (b) shows that when a random site near to the

already blocked site is occupied, the blocked sites are overlapped. For the Garcés model, the number

of blocked sites in Figure 1 (b) would be 16, while in reality the number of blocked sites is only 14.

One can imagine that when the fraction of occupied sites increases, the number of overlapped sites also

becomes more important. As a result of not considering the site blocking overlapping, the maximum

fraction of interstitial species allowed for the solid solution is reduced, since the blocked sites will be

overestimated. In this case, the maximum solubility of an interstitial specie would be underestimated.
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(a) (b)

Figure 1: 2D square lattice with one interstitial site in the center of the unit cell with SBE taking place
by blocking the first and second NN interstitial sites. (a) Occupation of two interstitial sites far apart
from each other, resulting in a total number of blocked sites of 16. (b) Occupation of two interstitial
sites near from each other, resulting in a total number of 14 blocked sites because of the overlapping.

The idea behind the site block overlapping is not new, and has been discussed in 1967 by McLellan

et al. [2], who proposed an empirical expression to include the overlap of blocked sites. In his model,

the partial molar configurational entropy is given by:

Sc = − ln
θ

1− Z ′θ +Xθ2
(10)

where Z’ and X are empirically determined constants. This site blocking model was further modified

by Gallagher, Lambert, and Oates [3] who introduced a composition-dependent Z’.

In 1980, G. Bureau proposed a simple method to calculate the configurational entropy of intersti-

tial solid solution when SBE occurs [4]. The author states that the Sc may be calculated from the

relationship:

Sc = ln
g(ci)

ci
(11)

Through statistical analyses, G. Bureau derived the g(ci) equations for the tetrahedral sites in

BCC interstitial solutions when the first, first and second, first, second and third near interstitial site

neighbors are blocked, yielding equations 12, 13, and 14: respectively:

g(ci) =
z(ci + z)

6
; z =

(6− 2ci)(72− 36ci + 5c2i )

2(6− ci)2
(12)
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g(ci) =
(6− 4ci)

2

6− ci
(13)

g(ci) =
(6− 5ci)

4(6− 4ci)

(6− 2ci)3(6− 3ci)
(14)

In this work, we present a completely new approach of how to describe the SBE in interstitial

solid solutions. We analyzed this problem by making an analogy to the total extended volume of

transformed phase (V ∗) from the well-known Johnson-Mehl-Avrami-Kolmogorov (JMAK) model [7],

typically used to describe phase transformation phenomena in metallurgy. V ∗ represents the total

relative volume of transformed phase (related to a unit volume of the starting parent phase) that all

the crystals taken together might have occupied, if they had had the chance to grow free, and if their

overlapping with the neighboring grains in the space and blocking of each other had been neglected.

In the JMAK model, the actual volume of transformed phase (V ) relates to V ∗ by:

V = 1− exp(−V ∗) (15)

V ∗ can be described generally by V ∗ = K(T )(t − t0)
n, where K(T ) is a nucleation and growth

dependent prefactor in function of the temperature T , t is the observation time, t0 is the initial

nucleation time, and n is the Avrami exponent related to the kinds of phenomena of nucleation and

growth. The Avrami exponent can be described as n = nnucleation+d·ngrowth [7], where nnucleation = 1

for constant nucleation and nnucleation = 0 for no nucleation, d is the dimension of growth, and

ngrowth = 1 for interface controlled and ngrowth = 0.5 for diffusion controlled growth. Then, different

exponents can be found depending on the phenomena and boundary conditions of the system during

the phase transformation, such as n = 1 when there is a constant nucleation rate with no growth, and

n = 2 for constant nucleation rate and diffusion controlled in 2 dimensional growth. More detailed

derivations and examples of the JMAK model can be found in [7].

Although the SBE phenomenon discussed here is very different from the phase transformation

kinetic phenomenon described by the JMAK model, we propose that the same idea behind the V ∗ can

be used to describe the fraction of blocked sites of random interstitial solid solutions. We define here

the concept of extended fraction of blocked sites (f∗
b ), which represents the total number of blocked

sites if the overlapping of blocked sites is neglected. Analogously, the actual fraction of blocked sites

is given by the JMAK equation, as follow:

fb = 1− exp(−f∗
b ) (16)

As proposed, f∗
b can be seen as an analogue of V ∗, i.e., should follow the same kind of equation.

However, different from the extended volume, the extended fraction of occupied sites should not be

time dependent, but composition dependent, which is directly related to the fraction of occupied sites

fi, as f
∗
b = K(fi, T )(fi)

n, where the prefactor K should depend in the composition and temperature.

In this way, we assume that the blocking site effect is an analogue process of a phase transformation

with a constant nucleation rate without growth. Since there is no growth, K(fi, T ) ≡ K(fi) ∝ Nb.

Thus, we propose that Nb · fi, which is the Gárces model, actually describes f∗
b instead of fb. Thus:
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fb = 1− exp(−Nb · fi) (17)

It is important mentioning that the JMAK equation was initially derived from a statistical analysis

of the phase transformation problem assuming the random nucleation of the new phase in a Poisson

process. In the next section, we will show that equation 17 can also be derived from the Poisson

distribution statistics.

3 Site blocking effect as Poisson Process and its Relationship

with JMAK Model

The distribution of interstitial species in N interstitial sites in an interstitial solid solution is a

random process. If each interstitial specie blocks Nb near site neighbors, the distribution of the

blocked sites is also random. Therefore, the distribution of blocked sites can be regarded as a Poison

process, i.e., a process where certain events occur at a constant rate, but at random and independently

of each other.

Typically, the Poisson process is a time dependent statistic. However, for our problem we have a

spatial Poisson process which is described by the equation:

P (X(S) = k) =
(λA(S))ke−λA(S)

k!
(18)

where S is a delimited region, λ is the average number of events per volume, A(S) is the volume

of the region S, and X(S) is the number of events inside S. In our problem, we can look each site a

time since all interstitial sites are equal, so we can delimit a region S that contains one interstitial

site, where for each occupation fraction fi there is an intensity parameter of λ = Nb · fi to the site be

blocked, which is related to the quantity of blocked sites per quantity of interstitial species. Then, to

determine the probability of a site be blocked, we need to calculate the probability of do not find the

interstitial site blocked, k = 0. Through equation 19, one can obtain:

P (X(S) = 0) ≡ P0 = e−Nb·fi (19)

Finally, the probability to find a site blocked is:

Pb(fi) = 1− P0(fi) = 1− exp(−Nbfi) (20)

which is the JMAK equation for SBE. Remarking the occupation and the blocking effect occurs

randomly and independently for all sites, the probability to find a site blocked is equivalent to the

fraction of blocked sites.

To demonstrate the validity of the JMAK model for SBE, we will present in the next section a

numerical simulation that allowed to determine the fraction of blocked sites when SBE is taking place

in tetrahedral sites of BCC interstitial solid solutions.
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4 Numerical simulation of SBE

Using Python language, we carried out a numerical simulation for a BCC lattice with 12 tetrahedral

interstitial sites per unit cell considering three blocking conditions:

i) blocking of the 1st NN sites (Nb = 4);

ii) blocking of 1st and 2nd NN sites (Nb = 6);

iii) blocking of the 1st, 2nd, and 3rd NN sites (Nb = 14).

For each of theses three scenarios, the numerical simulation was carried out as follow:

1) A BCC lattice with approximately 250.000 interstitial sites was generated (27x27x28 unit cells).

2) Then, a random interstitial site was picked to be filled with an interstitial specie using the

NumPy random.randint function.

3) A new lattice is generated by removing both the occupied site and the NN blocked sites from

the original lattice, resulting in a new lattice of “available sites”. In addition, lattices of “occupied

sites” and of “blocked sites” are also generated. Then, the fraction of occupied, vacant, and blocked

sites is count.

4) Next, another random interstitial site is picked from this new lattice of “available sites” and the

whole process is repeated until no more available sites exist.

The code for these numerical simulations is available in github.com/oapedroso/JMAK model.

Figures 2 (a), (c), and (e) presents the simulated values of fb for Nb = 4, 6, and 14, respectively,

compared to those calculated by the Garcés and JMAK models. One can see that for very low values

of fi, i.e., for very diluted solid solutions, the Garcés model accuretaly predicts the fraction of blocked

sites, since for diluted solid solutions blocking overlapping is a less important event. However, when fi

increases, the simulated values of fb considerably deviates from the Garcés model because site blocking

overlapping becomes more likely. Thus, for non-diluted solid solutions, the Garcés model strongly

overestimates the fraction of blocked sites. The JMAK model proposed here takes the site blocking

overlapping into account, resulting in a behavior of fb in function of fi very close to the simulated

ones, regardless the value of Nb. Although the calculated values of fb using the JMAK model were

not identical to the simulated ones, the JMAK model could reasonably predict the fraction of blocked

sites when blocking overlapping occurs. This results in a better description of the configurational

entropy of the interstitial solid solutions with SBE, as can be seen in Figures 2 (b), (d), and (f).

Whereas the Garcés model underestimates the maximum solubility of the solid solutions (because of

the overestimation of blocked sites) and leads to maximum configurational entropies lower than the

simulated ones, the JMAK model could better describe both the maximum solubility and the maximum

configurational entropy for the different levels of blocking for the BCC solid solutions.

Thus, we believe that the JMAK model presented here is a simple and direct model to describe

configurational entropy of interstitial solid solutions when SBE occurs. In the next section, the ex-

perimental data of PCT diagrams of different metal-hydrogen systems will be analyzed and compared

with the different site blocking models.

8



(a) (b)

(c) (d)

(e) (f)

Figure 2: Comparison of fb and Sc obtained by numerical simulation, Garcés Model, and JMAK model
for (a) and (b) Nb = 4; (c) and (d) Nb = 6; and (e) and (f) Nb = 14. Numerical Simulation of a BCC
lattice with approximately 250.000 tetrahedral interstitial sites.
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5 Comparison with Experimental Data: Hydrogen in BCC

Metals

Many BCC metals and alloys can absorb large amounts of hydrogen by interstitial solid solution.

V, Nb, and Ta are typical examples of BCC metals studied for hydrogen storage applications. For

V, Nb, and Ta, at low hydrogen pressure, the interstitial solid solution (α phase) is the only phase

in thermodynamic equilibrium with the hydrogen gas. For each metal, the hydrogen concentration in

the α phase depends on both H2 pressure and temperature. Careful studies performed in the 1960s’

by neutron diffraction and reported in [11], showed the hydrogen occupies the tetrahedral sites in the

BCC lattice of the α phase for the three metals. It is well established and accepted the rule that states

that H atoms do not come closer that 2.1 Å, due to the short-range repulsion between two hydrogen

atoms [12]. For the tetrahedral sites in a BCC lattice, the distances of the first, second, and third

neighbors in respective to one interstitial site are a
√
2/4, a/2, and a

√
6/4, respectively, where a is the

lattice parameter. Figure 3 shows how these distances vary with the lattice parameter. The lattice

parameters of V, Nb, and Ta are 3.031Å [13], 3.301Å [13], and 3.302Å [13], respectively. Therefore, by

analyzing Figure 3 and considering the minimum distance between two hydrogen atoms, we conclude

that for V, Nb, and Ta Nb must be equal to 14.

Figure 3: Distance between first, second, and third neighbor sites of the tetrahedral sites in a BCC
lattice as function of lattice parameter.

E. Veleckis and R. K. Edwards [10] reported the experimental PCT diagrams for low hydrogen

pressures for V, Nb, and Ta, whose data are presented in Figure 4.
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(a)

(b)

(c)

Figure 4: Experimental Pressure-Composition-Temperature diagrams for V, Nb, and Ta. Data ex-
tracted from [10].
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From the PCT diagrams, we can extract the experimental values of the partial molar configurational

entropy of the V-H, Nb-H, Ta-H solid solutions as follow.

For the hydrogen gas and the α phase to be in equilibrium, their hydrogen chemical potential must

be the same:

µg
H = µα

H (21)

The chemical potential of the hydrogen gas per mol of H atom is given by:

µg
H = RT

1

2
ln

(
PH2

P0

)
(22)

where R is the universal gas constant, T is the absolute temperature, and P0 = 1 atm is the

standard hydrogen pressure.

The hydrogen chemical potential of the α phase is defined as:

µα(cH) =
∂∆Gα(cH)

∂cH
= ∆Hα(cH)− T∆Sα(cH) (23)

where ∆Gα(cH) is the variation of the Gibbs free energy between the α phase with hydrogen concentra-

tion cH and the standard state, i.e., the pure metal and hydrogen gas at P0. ∆Hα(cH) = ∂∆Hα(cH)
∂cH

and

∆Sα(cH) = ∂∆Sα(cH)
∂cH

are the hydrogen partial molar enthalpy and entropy of the α phase, respectively,

Therefore, under equilibrium conditions:

1

2
ln

(
PH2

P0

)
=

∆Hα(cH)

RT
− ∆Sα(cH)

R
(24)

∆Hα(cH) can be found by the linearization of 1
2 ln

(
PH2

P0

)
versus 1/T for the different values of cH ,

as presented in Figures 5 (a), (b), and (c), for V, Nb, and Ta, respectively. Figure 5 also shows that

∆Hα varies almost linearly with cH . By linear regression, we found the following equations for ∆Hα

for V, Nb, and Ta:

V : ∆Hα(cH) = −29.401 · cH − 28.347 (25)

Nb : ∆Hα(cH) = −27.062 · cH − 35.865 (26)

Ta : ∆Hα(cH) = −22.639 · cH − 33.630 (27)
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(a)

(b)

(c)

Figure 5: Linearization of 1
2 ln

(
PH2

P0

)
versus 1/T for the different values of cH for (a) V, (b) Nb, and

(c) Ta.
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∆Sα(cH) is the entropy variation between the α phase with hydrogen concentration cH and the

standard state, therefore:

∆Sα(cH) = Sα(cH)− SM (cH)− cH
2
S0
H2

(28)

where Sα(cH) is the entropy of the α phase with cH composition, SM is the entropy of the pure metal,

and S0
H2

is the standard entropy of hydrogen gas given by equation 29 according to [14] .

S0(H2) = A ln (t) +Bt+
Ct2

2
+

Dt3

3
+

Et−2

2
+G (29)

where t = T [K]/1000, A = 33.066178, B = -11.363417 , C = 11.432816 , D = -2.772874 , E =

-0.158558 , and G = 172.707974. This equation is only valid between 298 K and 1000 K [14].

If we consider that the difference between the non-configurational entropy of the α phase and the

pure metal is very small and, therefore, can be neglected, then:

∆Sα(cH) = Sα
c (cH)− cH

2
S0
H2

(30)

and,

∆Sα(cH) = Sα
c (cH)− 1

2
S0
H2

(31)

Substituting equation 31 into equation 24, the partial molar configurational entropy of the α phase

can be determined by:

Sα
c =

∆Hα(cH)

T
− R

2
ln

(
Peq

P0

)
+

1

2
S0
H2

(32)

Figure 6 presents Sα
c for V, Nb, and Ta derived from the experimental data using equation 32. It is

worth noting that data from all measured temperatures is presented in these curves. The experimental

values of Sα
c is compared to those calculated using the Gárces, Boureau, and JMAK models. As

already reported by J. Gárces [5] in his work, the partial molar configurational entropy of V, Nb, and

Ta solid solutions is better describe by his model when Nb = 6 is considered. However, as previous

discussed here, Nb = 6 does not respect the minimum distance of 2.1 Å between two hydrogen atoms.

For the Garcés model, when Nb = 14 is considered, the maximum solubility of H in V, Nb, and Ta is

underestimated because the fraction of blocked sites is overestimated, resulting in a deviation between

the experimental and calculated Sα
c . The Boureau model can reasonably describe the values of Sα

c

when bothNb = 6 andNb = 14 is considered. However, in both cases, the maximum hydrogen solubility

in the α phase seems to be overestimated. The JMAK model presented here accurately describe the

values of Sα
c when Nb = 14 is considered, resulting in a maximum hydrogen solubility in V, Nb, and

Ta of about cH = 0.84. Interestingly, this value agrees with the number of sites available for hydrogen

occupation in V, Nb, and Ta experimentally determined by E. Veleckis and R.K. Edwards [10], which

were 0.779, 0.904, and 0.702, respectively.
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Figure 6: Comparison between experimental values of partial molar configurational entropy for V,
Nb, and Ta, and those calculated by the JMAK model (Nb= 14), Gárces model (Nb = 6 and 14) and
Boureau model (Nb = 6 and 14).

6 Conclusions

In this work, we derived a general expression for calculating the configurational entropy of inter-

stitial solid solutions with site blocking effect. In addition, we proposed a new site blocking model

(JMAK), in which the Johnson-Mehl-Avrami-Kolmogorov equation is applied to describe the fraction

of blocked sites as function of the fraction of occupied sites. The JMAK equation is a simple and

straightforward way to take into account the site blocking overlapping. Using numerical simulation,

we demonstrate that the JMAK model is the best description so far of the fraction of blocked sites

for different levels of blocking in tetrahedral sites in BCC lattice. Experimental pressure-composition-

temperature diagrams of the V-H, Nb-H, Ta-H systems were used to extract experimental values of

the partial molar configurational entropy of the interstitial solid solutions for the three metals. There

was a good agreement between the experimental and calculated values using the JMAK. Moreover, the

JMAK model accurately predicted the maximum number of sites available for hydrogen occupation
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for V, Nb, and Ta, which was experimentally determined by E. Veleckis and R.K. Edwards [10]. The

JMAK model is a simple and effective model to describe the configurational entropy of interstitial solid

solution when SBE occurs and can be applied to many materials science related problems.
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