
HAL Id: hal-04603827
https://hal.science/hal-04603827

Submitted on 6 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decision Tree Variations and Online Tuning for
Real-Time Control of a Building in a Two-Stage

Management Strategy
Rémy Rigo-Mariani, Alim Yakub

To cite this version:
Rémy Rigo-Mariani, Alim Yakub. Decision Tree Variations and Online Tuning for Real-Time
Control of a Building in a Two-Stage Management Strategy. Energies, 2024, 17 (11), pp.2730.
�10.3390/en17112730�. �hal-04603827�

https://hal.science/hal-04603827
https://hal.archives-ouvertes.fr


Citation: Rigo-Mariani, R.; Yakub, A.

Decision Tree Variations and Online

Tuning for Real-Time Control of a

Building in a Two-Stage Management

Strategy. Energies 2024, 17, 2730.

https://doi.org/10.3390/en17112730

Academic Editors: Paulo Coelho and

Mario Gomes

Received: 7 May 2024

Revised: 27 May 2024

Accepted: 29 May 2024

Published: 4 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Decision Tree Variations and Online Tuning for Real-Time
Control of a Building in a Two-Stage Management Strategy
Rémy Rigo-Mariani 1,2,* and Alim Yakub 2

1 Univ. Grenoble Alpes, CNRS, Grenoble INP, G2Elab, 21 Avenue des Martyrs, 38000 Grenoble, France
2 CNRS@CREATE, 1 Create Way, Singapore 138602, Singapore; alim.yakub@cnrsatcreate.sg
* Correspondence: remy.rigo-mariani@grenoble-inp.fr

Abstract: This study examines the use of data-driven controllers for near real-time control of an
HVAC and storage system in a residential building. The work is based on a two-stage management
with, first, a day-ahead optimal scheduling, and second, a near real-time adaptive control to remain
close to the commitments made in the first stage. A Model Predictive Control (MPC) is adopted from
previous works from the authors. The aim of this paper is then to explore lightweight controllers
for the real-time stage as alternatives to MPC, which relies on computational-intensive modeling
and optimization. Decision Trees (DTs) are considered for this purpose, offering understandable
solutions by processing input data through explicit tests of the inputs with predefined thresholds.
Various DT variations, including regular, regressors, and linear DTs, are studied. Linear DTs, with a
minimal number of leaves, exhibit superior performance, especially when trained on historical MPC
data, outperforming the reference MPC in terms of energy exchange efficiency. However, due to
impracticalities, an offline training approach for the DTs is proposed, which sacrifices performance.
An online tuning strategy is then introduced, updating the DT coefficients based on real-time
observations, significantly enhancing performance in terms of energy deviation reduction during
real-time operation.

Keywords: building control; energy management; model predictive control; decision trees; uncertainties
mitigation

1. Introduction

In recent decades, the push to address limited fossil fuel resources and reduce carbon
emissions has driven the increased use of renewable energy sources in power systems [1].
This translates in the integration of distributed energy resources (DERs) in legacy elec-
tricity networks, systems, offering advantages such as lower system losses or peak load
reduction [2]. At the end-users scale, DERs are installed “behind the meter”, in the build-
ing premises, and typically allow energy bill reduction and/or better energy usage with
greater ratios of self-consumption/sufficiency [3]. Flexible assets such as energy storage,
controllable loads, and adjustable HVAC systems further enhance performance [4]. Those
improved energy usages are enabled thanks to Energy Management Systems (EMS) to
control the assets [5]. EMS, especially in smart homes, often employed is Model Predictive
Control (MPC) based on the predictions of system conditions and models. These strategies
typically target the reduction of cost, carbon emissions, or other technical criteria [6,7] with
a wide range of optimization techniques.

In many studies in the literature, performance assessments of EMS are oftentimes
performed in an offline mode with deterministic inputs. However, in actual operations,
inaccurate forecasts for load/renewable profiles significantly degrade the controller perfor-
mances. Those can be mitigated with adaptive approaches within two-stage management
strategies within which look-ahead scheduling is followed by a real-time dispatching
based on updated prediction or measurements [8]. Prominent examples of such method-
ologies involve fine-tuning controls to maintain grid power profiles closely aligned with
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predetermined values set in the initial planning stage [9]. Furthermore, MPC approaches
also encounter inaccuracies stemming from simplified model equations necessitated by
computational constraints and the systems do not behave as predicted once the controls
are actually applied. In order to mitigate those uncertainties, model-free methods have
gained interest in the recent years with the rise of Artificial Intelligence (AI). In particular,
Reinforcement Learning (RL) is oftentimes employed to replace the entire EMS for cost
reduction purposes [10], peak load reduction [11], and consumption/comfort tradeoffs [12]
at the level of a single building. RL algorithms have also proved efficient to optimize the
energy usage of wider system such as the management of several islands over multi-energy
carries in [13]. In short, this family of methods proceeds in successive exchanges of infor-
mation between a control agent and the system until the best set of actions (i.e., a policy) is
established in response to measurements (i.e., a state). The main advantages of AI-based
controllers is that they are quickly executed once trained, and unlike MPC, they do not
require heavy computation (forecast + optimization) for near real-time control. However,
one noticeable drawback of such approaches is that they may require great numbers of
iterations before convergence, and in the course of the exploration, a potentially unrealistic
or dangerous control may be sent to the system [14]. To tackle those challenges, practical
implementations consist of an offline training of the RL agent before it is applied to the
controlled system and is fine-tuned online [15,16]. Other drawbacks lie in the somewhat
blackbox architecture, and models developed with such AI techniques are often unex-
plainable [17] and require training and guidelines for practitioners to produce and use
them [18].

In order to simultaneously preserve the explainability and the physical relevance from
MPC, and to take advantage of fast AI computation in real-time controls, this paper pro-
poses a two-stage building management strategy with (i) a day-ahead optimal scheduling
based on model and optimization and (ii) a real-time AI-based control to fulfill the com-
mitment from the first stage. The methodology follows the study in [19] that investigates
different strategies for the real-time stage in microgrid operations. There is a focus here
on the implementation of Decision Tress (DT) as they are deemed easier to understand
than other data-driven techniques and have the capacity to quickly produce interpretable
results [20,21]. The main contributions of the paper are, then:

• The replacement of a real-time MPC stage with an interpretable, lightweight, real-time
controller based on Decision Trees.

• The investigation of different Decision Trees’ implementations depending on architec-
tures and input training data.

• The online tuning of a Decision Tree following an offline training based on a model of
the controlled system.

The remainder of the paper is organized as follows. Section 2 describes the considered
case study and reminds us of the main motivations of the work. Section 3 presents the
different types of DTs and their implementation, along with the online tuning strategy. The
results are discussed in Section 4 before conclusions are drawn in Section 5.

2. Case Study

The study presented in this paper builds upon previous works that considered the
implementation of a Home Energy Management Strategy (HEMS) for a single household
(or building) in a two -stage fashion [22]. The household includes photovoltaic panels
and an energy storage system “behind-the-meter”. It is connected to the distribution grid
and its thermal behavior is considered with the consumption of a Heating, Ventilation, &
Air-conditioning (HVAC) system in addition to the building electrical loads. Figure 1 gives
the layout of the system behind-the-meter. At any point in time t, with given electrical
load (pl

t), and generation (ppv
t ), the degrees of freedom of the system are the charge and

discharge power for the battery (pbat
t ) and the temperature setpoint (Ts

t ) for the HVAC.
Based on instantaneous weather conditions (solar radiation and ambient temperature),
a thermal model of the house is employed to compute the heating/cooling power (phc

t )
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of the HVAC. The model accounts for building parameters (area, windows, orientation,
insulation, etc.) as well as a PID controller to follow the temperature setpoint with regard to
the estimated room temperature (Tz

t ). In the remainder of the article, that reference model
is assumed to represent the actual behavior of the building and is denoted as f hc

re f . More
details can be found in [23]. Note that if the heating/cooling power can then be adjusted,
the electrical appliances are supposed to be uncontrollable—i.e., pl

t is an input parameter.
From the control perspective, specific attention is attached to the grid power profile (pg

t )
exchanged with the upstream distribution network.

Energies 2024, 17, x FOR PEER REVIEW 3 of 18 
 

 

discharge power for the battery (pt
bat) and the temperature setpoint (Tt

s) for the HVAC. 
Based on instantaneous weather conditions (solar radiation and ambient temperature), a 
thermal model of the house is employed to compute the heating/cooling power (pt

hc) of the 
HVAC. The model accounts for building parameters (area, windows, orientation, insula-
tion, etc.) as well as a PID controller to follow the temperature setpoint with regard to the 
estimated room temperature (Tt

z). In the remainder of the article, that reference model is 
assumed to represent the actual behavior of the building and is denoted as fref

hc . More de-
tails can be found in [23]. Note that if the heating/cooling power can then be adjusted, the 
electrical appliances are supposed to be uncontrollable—i.e., pt

l   is an input parameter. 
From the control perspective, specific attention is attached to the grid power profile (pt

g) 
exchanged with the upstream distribution network. 

 
Figure 1. Controlled Residential Building (derived from [22]). 

2.1. Day-Ahead Optimal Scheduling 
In the original work on which this paper is based, a two-stage MPC management 

strategy is proposed. The first phase consists of a look-ahead optimization based on load, 
solar generation, and ambient temperature forecast. The aim is to smoothen the grid 
power profiles over a 24-h window at 30 min resolution (dt). The objective function, out-
lined in (1), prioritizes convexity mathematically. From the user�s perspective, this ap-
proach helps cut down on both imported energy and peak power, impacting electricity 
bills positively. Moreover, in power system applications, this objective function mirrors 
efforts to minimize losses from power flow along lines, and also aligns with typical cost-
driven optimization strategies that assume increasing marginal cost of generation [24]. 
More importantly, that MPC stage accounts for a typical model for the storage in order to 
estimate the state of charge (soct) based on the charge/discharge powers pt

bat+, pt
bat- , the 

storage capacity b a te , and its efficiency η. Also, a typical binary variable ut
bat+ is intro-

duced to denote that the storage operates in charging modes and to correctly apply the 

power limit batp . Finally, this soc level shall remain within specified bounds and returns 
to its initial values soc0 at the end of the day (typical cyclic constraint). Also, to ensure 
convergence, the optimization considers an approximation of the reference building 
model to estimate the HVAC power. This approximation relies on a linearization of the 
original model equations at a 30 min resolution. The model estimates the cooling/heating 
power (pt

c, pt
h-) based on the temperature setpoint (Tt

s) and ambient temperature (Tt
a). Two 

set of equations are then considered for cooling and heating modes with dedicated line-
arization coefficient (a30 and b30) and a binary variable ut

c+ to denote that the HVAC oper-
ates in heating mode—i.e., if the temperature setpoint is greater than the ambient 

Figure 1. Controlled Residential Building (derived from [22]).

2.1. Day-Ahead Optimal Scheduling

In the original work on which this paper is based, a two-stage MPC management
strategy is proposed. The first phase consists of a look-ahead optimization based on load,
solar generation, and ambient temperature forecast. The aim is to smoothen the grid power
profiles over a 24-h window at 30 min resolution (dt). The objective function, outlined in
(1), prioritizes convexity mathematically. From the user’s perspective, this approach helps
cut down on both imported energy and peak power, impacting electricity bills positively.
Moreover, in power system applications, this objective function mirrors efforts to minimize
losses from power flow along lines, and also aligns with typical cost-driven optimization
strategies that assume increasing marginal cost of generation [24]. More importantly, that
MPC stage accounts for a typical model for the storage in order to estimate the state
of charge (soct) based on the charge/discharge powers pbat+

t , pbat−
t , the storage capacity

ebat, and its efficiency η. Also, a typical binary variable ubat+
t is introduced to denote

that the storage operates in charging modes and to correctly apply the power limit pbat.
Finally, this soc level shall remain within specified bounds and returns to its initial values
soc0 at the end of the day (typical cyclic constraint). Also, to ensure convergence, the
optimization considers an approximation of the reference building model to estimate the
HVAC power. This approximation relies on a linearization of the original model equations
at a 30 min resolution. The model estimates the cooling/heating power (pc

t , ph−
t ) based on

the temperature setpoint (Ts
t ) and ambient temperature (Ta

t ). Two set of equations are then
considered for cooling and heating modes with dedicated linearization coefficient (a30 and
b30) and a binary variable uc+

t to denote that the HVAC operates in heating mode—i.e., if
the temperature setpoint is greater than the ambient temperature, the cooling power is set
to 0 kW and the heating power computed according to the linear model. This is ensured
with the use of the Big-M method with an arbitrary value (λ = 106). Ultimately, similarly
to most energy management problems, the power balance between supply and demand
shall be fulfilled at every time step and this allows to estimate the grid power (with pbat

t
positive in case of battery discharge). More information on the mathematical constraints
are given in [22]. Ultimately, this MPC stage results in prescription profiles for the next day.
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The output predicted profiles (upperscript “*”) are then the grid power (pgd∗
t ), the battery

state of charge (soc∗t ), and the scheduled temperature setpoints (Ts∗
t ).

obj : min
pbat

t ,Ts
t

∑
t∈T

(
pgd

t × dt
)2

s.t.

0 ≤ pbat+
t ≤ ubat+

t × pbat ∀t ∈ T
0 ≤ pbat−

t ≤
(

1 − ubat+
t

)
× pbat ∀t ∈ T

pbat
t = pbat−

t − pbat+
t ∀t ∈ T

0 ≤ soct ≤ 100 ∀t ∈ T
soct+1 = soct +

(
pbat+

t × η − pbat−
t /η

)
× dt/ebat × 100 ∀t ∈ T

soct=1 = soct=||T||+1 = soc0

pc
t ≤ aTa

c30 × Ta
t + aTs

c30 × Ts
t + bc30 + (1 − uc

t )× λ ∀t ∈ T

pc
t ≥ aTa

c30 × Ta
t + aTs

c30 × Ts
t + bc30 − (1 − uc

t )× λ ∀t ∈ T

ph
t ≤ aTa

h30 × Ta
t + aTs

h30 × Ts
t + bh + uc

t × λ ∀t ∈ T

ph
t ≥ aTa

h30 × Ta
t + aTs

h30 × Ts
t + bh − uc

t × λ ∀t ∈ T

0 ≤ pc
t ≤ uc

t × λ ∀t ∈ T

0 ≤ ph
t ≤ (1 − uc

t )× λ ∀t ∈ T

Ta
t − Ts

t ≤ uc
t × λ ∀t ∈ T

Ts
t − Ta

t ≤
(

1 − uh
t

)
× λ ∀t ∈ T

pgd
t + pbat

t + ppv
t = pl

t + ph
t + pc

t︸ ︷︷ ︸
phc

t

∀t ∈ T

(1)

2.2. Near Real-Time Control

In near real-time, actual value for load, solar generation, and ambient temperature,
obviously differ from the forecasts. Thus, at every time step, the controls pbat

t and Ts
t need

to be adapted in order to remain as close to the day-ahead commitments as possible with
a tolerance bandwidth ∆pgd introduced. At first, an MPC is proposed at every 5 min
time step and it optimizes based on measurements with the problem formulation in (2).
The constraints to account for the storage model (power/energy limits and soc update)
are summarized within the function fbat. Similar to the previous look ahead phase, the
HVAC operating mode and power limits require the use of the Big-M method with a set of
constraint summarized here within the function fhc. Regarding the constraint equations, the
main difference with the first stage MPC lies in the model for the HVAC cooling/heating
power computed with the temperature setpoint (Ts

t ), the ambient temperature ( Ta
t ) and the

current zone temperature (Tz
t ) along dedicated linearization coefficient (a5 and b5). More

details on the implementation can be found in [20]. The objective of the near real time MPC
is to penalize deviations of the grid power above (pgd+

t ) and below (pgd−
t ) the tolerance.

Deviations concerning battery state of charge and temperature setpoints are also factored.
The objective function relies on a unnormalized weighted sum of errors to minimize de
deviations with the reference for (i) the grid power (ii) the temperature setpoints and
(iii) the state of charge of the storage. No sensitivity analysis was performed to choose the
weights. Indeed, values of different order of magnitudes were arbitrarily chosen in order to
prioritize the grid power correction (α set to 106), then the temperature setpoints (β set to
103) and, lastly, the soc deviations (γ set to 1). The key concept is to leverage the flexibility
provided by the tolerance range on grid power to adjust other variables—for instance, if
the battery was excessively discharged in prior time steps due to past uncertainties, its
state of charge can be corrected if the need arises to mitigate a predicted peak load in the
upcoming minutes/hours.



Energies 2024, 17, 2730 5 of 17

obj : min
pbat

t ,Ts
t

α ×
(

pgd
t − pgd∗

t

)2
+ β × (Ts

t − Ts∗
t )2 + γ × (soct − soc∗t )

2

s.t.

f bat
(

pbat
t , soct

)
= 0

f hc
(

phc
t , Ta

t , Ts
t

)
= 0

pc
t ≤ aTa

c5 × Ta
t + aTs

c5 × Ts
t + aTz

c5 × Tz
t + bc5 + (1 − uc

t )× λ ∀t ∈ T

pc
t ≥ aTa

c5 × Ta
t + aTs

c5 × Ts
t + aTz

c5 × Tz
t + bc5 − (1 − uc

t )× λ ∀t ∈ T

ph
t ≤ aTa

h5 × Ta
t + aTs

h5 × Ts
t + aTz

h5 × Tz
t + bh5 + uc

t × λ ∀t ∈ T

ph
t ≥ aTa

h5 × Ta
t + aTs

h5 × Ts
t + aTz

h5 × Tz
t + bh5 − uc

t × λ ∀t ∈ T

pgd
t + pbat

t + ppv
t = pl

t + phc
t ∀t ∈ T

(2)

3. Motivation for a Lightweight Real-Time Controller

Figure 2 summarizes the work flow of the two-stage MPC previously implemented.
Especially, in addition to the mitigation of forecast uncertainties with the real time stage,
an online tuning of the 5 min scale thermal model f hc

5 reduces the impact of equations
inaccuracies. That tuning relies on a feedback loop that measures the deviations between
the predicted HVAC power and the measured value—more details can be found in [22].
As depicted in (3), that feedback estimates the error between (i) the HVAC power value
predicted (~) by the MPC equations in the near-real time stage and (ii) the actual value
measured once the near real-time controls are applied to the reference building model
(i.e., accurate equations). This error et in integrated along time and used to adapt the
model equations for the HVAC cooling (4) and heating (5) powers considered in the MPC
problem (2).

et = et−1 + pht
t − p̃ht

t (3){
pc

t ≤ aTa

c5 × Ta
t + aTs

c5 × Ts
t + aTz

c5 × Tz
t + bc5 + et + (1 − uc

t )× λ

pc
t ≥ aTa

c5 × Ta
t + aTs

c5 × Ts
t + aTz

c5 × Tz
t + bc5 + et − (1 − uc

t )× λ ∀t ∈ T (4)

{
ph

t ≤ aTa

h5 × Ta
t + aTs

h5 × Ts
t + aTz

h5 × Tz
t + bh5 + et + uc

t × λ

ph
t ≥ aTa

h5 × Ta
t + aTs

h5 × Ts
t + aTz

h5 × Tz
t + bh5 + et − uc

t × λ ∀t ∈ T (5)
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Actual controls – for next 5 mn :
• battery charge/discharge :
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Accurate building model : every 5 mn at 1 mn sampling
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Measures : load, solar, 
ambient and zone 

temperature

Feedback loop to 
correct the thermal 
model based on 

measured deviations

To be replaced by 
the implemented

Decision Trees

Figure 2. Flowchart of the baseline two-stage MPC (derived from [22]).
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The implementation has proven to be effective to minimize the grid exchanges and
maintaining minimal deviations from the commitment in real time. However, as already
mentioned in the introduction, a more simple, compact, and lightweight controller is
needed to reduce the cost of the hardware and the computational burden in real time.
Proposing such a simple controller is the scope of this paper and data driven approaches
are envisioned, as they require few computational capabilities once the training is done. As
discussed, RL techniques require many interactions with the controlled environments and
have shown to lack transparency and deterministic conclusions, hence they are generally
unexplainable. In this paper, for explainability and acceptance purposes, simple regression
controllers based on Decision Trees are considered and their performances are assessed in
terms of precisions against the original MPC performances.

4. Decision Trees’ Implementations, Training, and Tuning
4.1. Investigated Decision Trees (DTs)
4.1.1. Regular DTs

A Decision Tree (DT) is a type of supervised machine learning technique typically
used for classification and regression tasks. It works by recursively partitioning the data
into subsets based on features that best separate the target y = f (x) [25]. The goal is to create
a model that predicts the target variable by learning simple decision rules inferred from the
data features x. In the context of power and energy systems, DTs are conventionally used
to predict load profile [26] or renewable generation [27]. However, implementations for
control applications of microgrid and/or storage systems are gaining interest [28,29]. In
such cases, setpoints for controllable assets are computed in real time based on measured
values of load and/or generation. Figure 3 illustrates the decision-making process in the
case of regular DTs from a multivariate input x (xi in dimension i ∈ I) with successive tests
along N decision nodes. The explainability of the DT lies in the simple test performed from
the input values with lower/upper threshold values (xi,n, xi,n) along the input features.
Ultimately, the output of the regular DT derives from a termination leave, with a single yl
value active at a time following the decisions nodes. As such, in its simplest implementation,
the DT procedure can then be seen as a piecewise constant approximation. From a training
data set; the fitting process, then, consists of finding the best leaves values and node test
conditions in order to better approximate the target function.
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Figure 3. Regular DT architecture.

4.1.2. Regressor DTs

An extreme gradient-boosting regressor is an ensemble method that combines the
result of multiple Decision Trees [30]—d ∈ D. Each tree of the ensemble is iteratively
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trained, and each iteration uses the error residuals of the precious tree to feed the next one.
The final output is a weighted sum of the results of all the trees noted yd in the ensemble
(weights wd in (6)). The benefit from this is that each tree is shallow and may display small
numbers of leaves that an overall single DT performs for the same task, which can allow
reduced computational time. The impact of the training process and number of leaves will
be discussed in the Results Section.

y = ∑
d∈D

wd × yd (6)

4.1.3. Linear Functional DTs

The last type of DTs that will be investigated in this paper for near real-time control
relies on functional trees [31]. Those DTs proceed in a very similar way as do regular
Decision Trees. However, each leaf or decision node, or both the leaves and the nodes, can
embed a function of the inputs. Here, functional DTs will be considered with each leaf
displaying a linear function with the input values as in (7). The linear coefficient ai,l and bl
for each of the leaves are computed in the course of the training.

yl = ∑
i∈I

ai,l × xi + bl (7)

4.2. Investigated Implementations
4.2.1. Inputs/Outputs

The previous subsection discussed the DTs variations that will be investigated. As
mentioned and illustrated on Figure 2, the objective is to replace the near real-time MPC
with a solution based on DTs. Thus, the target function from the tree perspective is to
estimate the setpoints values to send to the battery and HVAC system, as in (8).

y =
[

pbat
t , Ts

t

]
(8)

As for the inputs to consider for the real-time controller, it is important to note that
theoretically, there could be infinite possibilities to test with different combinations of
current and past measurements values, predictions, and control settings. Preliminary
studies have been carried out with a wide range of settings; thus, this paper investigates
only three inputs for the sake of clarity. Then, (9) displays a first input vector x0 that is
considered with predicted values from the first stage MPC (upperscript “*”), instantaneous
measurements (load, generation and temperature) and previous values for the soc, one,
and setpoint temperatures. A second set of input is tested x1 in (10) that identifies the time
index with a sinus wave at any time step the real time controller is run. The third input test
x2 in (11) considers the time through a sinus along with more information on the reference
values for the temperature setpoints and state of charge (coming from the first stage MPC).
The overall objective here is then to properly choose the best input to consider in terms of
relevant information for the real time control. This will be discussed while assessing the
performances of different implementations of the decision tree controllers—i.e., different
inputs, DT parameters, and training sets.

x0 =
[

pgd∗
t soc∗t Ts∗

t pl
t ppv

t Ta
t soct−1 Tz

t−1 Ts
t−1

]
(9)

x1 =
[
sin(wt) pgd∗

t pl
t − ppv

t Ta
t soct−1 Tz

t−1

]
(10)

x2 =
[
sin(wt) pgd∗

t soc∗t Ts∗
t pl

t ppv
t Ta

t soct−1 Tz
t−1 Ts

t−1

]
(11)

4.2.2. Training Based on MPC Historical Results

From the previous discussions, DTs can, then, be roughly seen as a mapping between
inputs and outputs. Training datasets for both input/outputs are then needed in the
training process. A first implementation makes uses of the stage MPC to generate the
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datasets. The MPC is simulated along one year—i.e., along 365 successive days with both
look-ahead and near real-time stages—and the obtained data are partitioned as follows:

• Training Set A: 1 month (Jan)
• Training Set B: 5 months (Jan–May)
• Testing Set: 7 months (Jun–Dec)

Two training sets A and B will be investigated in order to assess the impact of the
amount of input information.

4.2.3. Training Based on Model and Online Tuning

The implementation method previously mentioned implies that we will run the
original MPC on the actual system in order to generate the training data set. However, this
is not deemed an ideal scenario. If the actual deployment of the original MPC is required
to train the DT, the need for a faster lightweight real-time controller is arguable. Thus, a
more realistic setup includes training the DTs in an offline mode with the two stage MPC
run with historical forecast and measurements (load, solar, and ambient temperature) but
with the coarse thermal model only ( f hc

30 and f hc
5 ). Specifically, the near real-time stage MPC

does not benefit from the online adaptation of the model equations, thanks to feedback
measurements as in Figure 2.

In addition to that offline tuning, to improve the expected performances of the con-
troller, an online strategy is proposed to tune the pre-trained DT once it is deployed on the
building. Figure 4 details the flowchart of the proposed tuning. It adjusts the leaf output
values yl = [pbat

l , Ts
l ] based on the observations after the controls are sent to the actual

system—i.e., the reference thermal model f hc
re f . Once the controls are applied to the system,

the actual grid power value pgd∗
t is measured. If it is beyond the tolerance bandwidth ∆pgd

there are then successive tests to identify if controls could have been improved and the
output of the operating DT leaf are updated accordingly. The tests account for the up-
per/lower bounds for the state of charge (soc, soc) and zone temperature setpoints (Ts, Ts).
For instance, if the grid power is above the tolerance after the leaf control are applied,
and the battery is not fully discharged, its power can then be increased with an increment
parameter ∆pbat. To further bring the grid power closer to the commitment when needed,
if the HVAC operated in cooling mode (resp. heating mode), the temperature setpoints
for the operating leaf can be increased (resp. decreased) with an increment parameter ∆Ts.
Similarly, the leaf output values are updated to increase the grid power profile if it is below
the tolerance bandwidth. As such, the proposed tuning of the leaf output values can be
seen as an integral corrector based on the deviations along time. It is also important to note
that only one leaf at a time (i.e., the operating leaf) is updated if any further improvement
can be made within the operating limits of the equipment. The impact of the increment
parameters of the tuning (i.e., ∆ppat and ∆Ts) will be discussed in the Discussions Section
of the paper.
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5. Results and Discussions
5.1. Input Data and Performance Metrics

In addition to the system and algorithm parameters (e.g., storage/HVAC characteris-
tics, room layout, algorithm settings), the case study simulation relies on open data sets.
The household electrical load profiles are taken from the REFIT data set (https://pureportal.
strath.ac.uk/en/datasets/refit-electrical-load-measurements-cleaned%E2%80%94URL ac-
cessed on 21 April 2024) [32] and weather data from NOAA website (https://www.ncei.
noaa.gov/access/crn/%E2%80%94URL accessed on 21 April 2024) [33] We are reminded
that the weather data consist in solar radiation and outdoor temperature profiles to further
compute the photovoltaic generation and HVAC consumption.

The two metrics considered to assess the performances of the proposed controllers
(original MPC and DT implementations) follow the objectives targeted by the overall
control scheme. At first, E2 in kWh2 denotes the energy exchanges with the upstream grid
following the objective of the first MPC stage (12). It is important to note that the real-time
stage impacts that objective once the system is actually controlled, and due to forecast
errors and mitigation actions, the ultimate E2 values differ from the first stage prediction.
The second performance metric quantifies the errors with the commitment on the grid
power profile with Edev (in kWh) that accounts for the deviations beyond the tolerance
bandwidth (13). Note that both metrics can be computed along different temporal horizons,
days, months, and years, depending on the granularity of the result analysis.

E2 = ∑
t∈T

(
pgd

t

)2
× dt (12)

Edev = ∑
t∈T

(
δ+ + δ−

)
× dt with

 δ+ = pgd
t −

(
pgd∗

t + ∆pgd
)

if pgd
t >

(
pgd∗

t + ∆pgd
)

δ− =
(

pgd∗
t − ∆pgd

)
− pgd

t if pgd
t <

(
pgd∗

t − ∆pgd
) (13)

https://pureportal.strath.ac.uk/en/datasets/refit-electrical-load-measurements-cleaned%E2%80%94URL
https://pureportal.strath.ac.uk/en/datasets/refit-electrical-load-measurements-cleaned%E2%80%94URL
https://www.ncei.noaa.gov/access/crn/%E2%80%94URL
https://www.ncei.noaa.gov/access/crn/%E2%80%94URL


Energies 2024, 17, 2730 10 of 17

5.2. Training on Historical MPC
This subsection presents the results obtained with the different DT implementations and while

training based on the original MPC deployed on the actual building. The impact of the training
period, input type, and DT architectures will be discussed.

5.2.1. Regular DTs
Figures 5 and 6 display the results obtained with the second stage of the control run using regular

DTs. Overall, the performances improve significantly with the number of leaves with decreasing
performances metrics. However, it is important to note that both E2 and Edev values remain higher
than the ones obtained with the original real-time MPC (considered as a reference here). From
200 leaves onwards, there is no significant improvement of the two metrics. Also, the impact of both
the training set duration and input types is marginal compared to the number of leaves. The results
obtained with the sets of inputs x0 and x2 are very close (if not identical), which suggests that the
consideration of the time index as input is not very important for the application considered. Training
along five months slightly improves the performance obtained over the seven-months test period.
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Figure 5. Regular DTs with different input types and number of leaves with 1-month training—
(a) E2—(b) Edev.
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Figure 6. Regular DTs with different input types and number of leaves with 5-months of training—
(a) E2—(b) Edev.

5.2.2. Regressor DTs
Figures 7 and 8 display the results obtained from the second stage of the control run using

regressor DTs. Results shall be analyzed regarding the total number of leaves—i.e., the number of
trees multiplied by the number of leaves in every tree. Similar to the previous regular DT, increasing
the number of leaves significantly improves the performance up to a certain point—in this case,
150 leaves, which is in the same range as the one observed in the previous regular case. More
importantly, the overall performances of regressor DT appears much better than the results of regular
DTs with smaller values for both E2 and Edev. The metric on the energy exchanges is even better
than the reference performance obtained with the original two-stage MPC. As before, the difference
between results with inputs x0 and x2 is not significant (if not null). The increased training set
duration allows marginal improvement of the Edev metric at the cost of greater E2 values. Also,
training along five months slightly improves the performance on the energy deviation.
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Figure 7. Regressor DTs with different input types and number of leaves with 1-month of training—
(a) E2—(b) Edev.
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Figure 8. Regressor DTs with different input types and number of leaves with 5-month training—
(a) E2—(b) Edev.

5.2.3. Linear DTs
Figures 9 and 10 display the results obtained when implementing linear DTs. Compared to

the results from the regular and regressor DTs, the first noticeable outcome is that the performances
depicted are obtained with very small numbers of leaves in comparison to the previous implementa-
tions with 10 leaves only or less. Again, results for inputs x0 and x2 are identical, and training along
five months slightly improve the performances. The most noticeable outcome is that the best values
obtained over all the tests performed in this section for all DTs implementations are obtained with
the linear DT controller with four leaves. This configuration will then be further considered for the
training on model-only, followed by the online tuning of the controller.
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Figure 9. Linear DTs with different input types and number of leaves with 1-month of training—
(a) E2—(b) Edev.
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5.3. Training on Model MPC and Online Tuning
5.3.1. Controller Performances

From the previous results, Linear DTs significantly outperform the other implementations
for the considered application. However, the previous results were obtained while training the
controllers from outputs of the overall two-stage MPC. This then requires the actual operation of the
reference MPC along a given period (one- or five-month training periods being investigated). In such
a case, the interest in a lightweight real-time controller would then be arguable in replacement of a
second stage MPC that would have to be implemented. Thus, and as already been mentioned, this
paper investigates a more realistic setup, in which the DT based controller (linear DT) is trained on a
model of the actual system only. In practice, as illustrated on Figure 2, this bypasses the feedback
loops that allow refining of the models in the original two-stage MPC. However, training on a coarse
model obviously degrades the performances of the Linear DT once applied to the actual building,
as depicted in Figure 11. Both performance metrics significantly increase when training on models
only, instead of training with the historical values obtained from the operation of the original MPC.
Results are obtained while considering the input set x2 as it displays the best performance.
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Figure 11. Linear DT performances while training with (historical) and without (model) feedback
loop in the MPC—(a) E2—(b) Edev.

In order to improve the performance of the Linear DT-based controller trained on model only,
the paper proposes the online tuning strategy of Section 4.2.3. The proposed methodology consists of
adjusting the weightages in the output leaves from the observations once the controls are applied
to the actual building controlled. In this section, a Linear DT with four leaves using the input set
x2 trained along five months on models is considered as a starting point before being improved
online. Table 1 displays the average daily performances for the two metrics considered and with
different implementations of the near real-time control. As previously observed, the training of a
Linear DT, based on model-only, significantly degrades the performance compared to a training on
historical MPC (5 months of training), with both the E2 (+21%) and the Edev (+26%) values being
greater. With the online tuning proposed, both metrics greatly improve but without meeting the
best values obtained with the original MPC. However, the lightweight DT tuned online displays a
deviation metric even better than that of the version trained on historical data from the MPC.

Table 1. Average daily performances for different near real-time controllers.

E2 (kWh2) Edev (kWh)

Reference MPC and online tuning 30.50 1.63
Linear DT based on historical MPC data 30.18 2.34

Linear DT based on model MPC data 36.65 2.94
Linear DT based on model MPC and online tuning 33.82 2.19

All the results previously discussed considered daily average values of the performance metrics
over the 7-month test period. However, the results vary along the test period depending on the
forecast accuracy in the day-ahead phase and the volatility of daily profiles in real time. Figure 12,
then, illustrates the daily values of both E2 and Edev in terms of errors with the original MPC
performances. As such, positive values in some cases identify days in which the proposed controller
performs even better than the original MPC. Overall, the figure highlights that in most days, tuning
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the Linear DT online significantly improves the Edev metric compared to a controller trained offline
only. However, the results towards the end of the test period show that in most cases, the E2 criteria
is significantly degraded with the Linear DT tuned online, which illustrates the increase of the daily
average value observed in Table 1.
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5.3.2. Discussions
To further illustrate the control results and the impact of the Linear DT online tuning, Figure 13

displays time series profiles along a single autumn day. For the grid power profile, Figure 13a
shows that the online tuning strategy allows to decrease the deviation with the commitment—
deviations beyond the tolerance bandwidth highlighted in grey. Compared to a DT trained offline only,
downward deviations are strongly reduced in the middle of the day (points A). From Figure 13b,c, it
appears that most differences between the DT trained offline only, and the implementation tuned
online, lie on the modification of the temperature setpoints. Indeed, variations in state of charge
are marginal, with charge/discharge rates slightly increased (points B). Differences in temperature
setpoints are much more significant. Especially in the middle of the day, the setpoint reduction leads
to greater HVAC consumption in order to bring the grid power closer to the day-ahead commitments
(points C).

Ultimately, the performance of the online tuning proposed depends on the increment parameters.
Before displaying the results discussed previously, a sensitivity analysis was performed in order to
find the most appropriate values for the increment parameters in the tuning process (i.e., ∆ppat and
∆Ts). Figure 14 displays the results obtained for the two performance metrics along the test period
with different sets of tuning parameters. This highlights the solutions considered for the results
discussed in the previous subsection. However, it is worth noting that deviation from this best setting
significantly degrades the performances. In the worst cases (e.g., ∆ppat = 0.05 kW and ∆Ts = 0.05 ◦C),
the metrics values could even be worse than the Linear DT trained on model only without tuning.
Also, following the obtained results for all the values investigated, no instability of the controller, as
noticed in terms of unrealistic controls (storage and HVAC), was detected. The continuous update
of the controller relies on increments that are significantly lower than the rated storage power and
bounds for temperature setpoints. Also, the controls, ultimately sent to the systems, are limited, with
dedicated saturation blocks. Further immediate studies shall, then, focus on the conservativeness of
the tuning parameters for other use cases and/or longer periods of time, which is beyond the scope
of this paper.
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Based on the results obtained, it is possible to qualitatively discuss the pros and cons of the
different DT implementation and MPC investigated in the paper (Table 2). As already mentioned,
a single run of the MPC last around 1–2 s where the DT commutations is almost instantaneous.
The DT training never exceeds 5 s, as it consists in simple models. Indeed, that simplicity and
explainability drove our research to investigate DT first, before considering other AI techniques such
as supervised learning with neural networks. Indeed, DTs distinguish themselves with very few
training parameters and the outputs can be easily interpreted form the inputs—as an example, linear
DTs proved to reach good performances with four leaves only, i.e., four linear combinations with
the input features. Overall, in terms of “coding”, the DTs variations are very easy to implement.
However, the versions that require a training with actual output from the original MPC are, then, not
helpful in practice. That motivated the approach that was trained on a model of the system, without
the need to send controls to the actual building.
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Table 2. Comparative study of near real-time control implementations.

Historical Training Model Training
MPCRegular

DTs
Regular

DTs
Linear

DTs
Linear

DTs
Linear DTs
+ Tuning

Performances Metric E2 + + + + − + + +
Performances Metric Edev + + + + − + + +

Implementation − − − + + + +
Running Time + + ++ + + + + + + −
Explainability − − + + + + + + + +
Training Time + + ++ + + + + + + N.A.

6. Conclusions
This paper investigates the implementations of data-driven controllers for the near real-time

control of a HVAC and storage system in a residential building. The article builds upon previous
work from the authors that implemented a two stage MPC with (i) a day-ahead optimal scheduling
based on model and optimization and (ii) a real-time AI-based control to fulfill the commitment
from the first stage. The objective is to investigate lightweight controllers for the real-time stage to
replace the MPC that relies on model and optimization (i.e., non-negligible computational effort).
To do so, Decisions Trees (DTs) are considered, as they provide explainable solutions with outputs
computed from a sequence of explicit tests on input data with thresholds. Several variations are
investigated with regular, regressor and linear DTs. The last proved to lead to the best performances
with a very low degree of complexity—i.e., with a small number of leaves. When trained on historical
MPC, linear DTs show even greater performances in term of energy exchanges than the reference
MPC do. However, with such implementation being unrealistic, an offline training of the DT is
proposed. This avoids the need for the actual deployment of the original MPC at the cost of reduced
performance. An online tuning strategy is then implemented and relies on an online update of the
leaves coefficients, based on observations. This allows the linear DT to significantly improve the
performances, regarding the energy deviation in real time with the look-ahead commitment (−25%
less deviations). The work was carried out in the framework of a project dealing with the coordinated
control of multiple buildings. Further works will, then, propose DT-based control in the scope of
multi-player environments. Also, a research area seems promising, while investigating the impact
of the original model accuracy in the context of offline training. In other words, a question remains
open on which model precisions are needed for offline training in order to guarantee acceptable
performances. In some cases, no accurate models may be available, and it is deemed important to
assess the impact on the training performances.
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