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ABSTRACT
This paper present new U–Pb geochronological data (LA-ICP MS on zircon) of granitoids from 

the Moroccan Meseta Variscan belt. Zircons from the Oulad Ouaslam granodiorite in the Jebilet 

massif in the Western Meseta highlight a peak of magmatic activity at 335.2 ± 0.8 Ma. In the 

Eastern Meseta, the ages obtained from several granitoids facies from the High Moulouya 

magmatic complex restrained its magmatic activity to the early Visean: 339.6 ± 1.9 Ma for the 

Perdreaux granite, 337 ± 1.6 Ma for the calc-alkaline «grey» granite and 343.1 ± 1.2 Ma for the 

El Hassir granodiorite. Similar late Tournaisian – early Visean ages were obtained for the 

Zekarra granodiorite (348.1 ± 2.3 Ma) and the Merguechoum granite (345.2 ± 2.8 Ma) in the 

Horsts belt. This pre-orogenic Eovariscan magmatic activity is contemporaneous with the 

opening of early Carboniferous intracontinental basins in the whole Northwest Africa but its 

relationship with Eovariscan deformation typifying the Eastern Meseta remains temporally 
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unclear. Then, the late Carboniferous ages of 308.2 ± 2.7 Ma obtained for the Beni Snassen 

monzogranite, 303.5 ± 1.7 for the Tanncherfi granodiorite and 305.2 ± 1.4 for the Boudoufoud 

granite in the Horsts belt show that they all are synchronous with the main late Carboniferous 

convergent Variscan event in Northwest Africa. This tectonic and magmatic tempos contrast 

with the one described in the European Variscan belt, where the syn-collisional magmatism 

forms coevally with the Northwest African Eovariscan event, re-interpreted as a possible 

extensional event. We proposed that the early Carboniferous intracontinental basins and 

magmatism in Northwest Africa are due to the propagation of the Paleotethys ocean within the 

Gondwana continent. In contrary, the late Carboniferous – early Permian tectono-magmatic 

activity could reflect the docking of the east Gondwana margin with the Iberian branch of the 

European Variscan belt.
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1. INTRODUCTION

The southwest tract of the Palaeozoic Variscan belt remains difficult to follow since it was split 

between North America and Northwest Africa during the opening of the Central Atlantic Ocean 

(Martínez-Catalán et al., 2021; Fig. 1). In Northwest Africa, several West African Craton 

(WAC) derived crustal units constituted the northern Gondwana margin during pre-late 

Carboniferous times (Michard et al., 2010). These units were in Morocco and Algeria affected 

by Variscan Paleozoic deformation. Regardless of the Paleozoic basement of the allochthonous 

internal zones of the Cenozoic Rif-Tell belt, the Morocco Variscan belt is made up of three 

major fault-bounded crustal units, the Anti-Atlas domain to the south, the Meseta domain in the 

centre divided into the Western and Eastern Meseta and the Sehoul Block in the north (Fig. 1). 

The southerly Anti-Atlas domain represents a classical fold-and-thrust belt, the Meseta domain 

further north corresponds to an internal part of the Northwest African Variscan orogen with 

unclear affinity to the main European Variscan belt (Hoepffner et al., 2005, 2006; Simancas et 

al., 2005, 2009; Michard et al., 2010; Martínez-Catalán et al., 2021). In its northernmost part, 

the exotic Sehoul Block records pre-Upper Devonian orogenic event (e.g. Tahiri et al., 2010).

The geodynamic evolution of the two Meseta sub-domains is contrasted from Upper 

Devonian to late Carboniferous. In the Eastern Meseta and in the southeastern part of the 

Morocco Massif Central (MMC) in the Western Meseta, the main compressional deformation 

(the earliest Variscan phase in the Moroccan Meseta, see Allary et al., 1976) is thought to 

happen as soon as the Tournaisian-Visean (360–330 Ma) during the so called Eovariscan phase 

(Hoepffner et al., 2005; Michard et al. 2010; Accotto et al., 2020) while in the major part of the 

Western Meseta the main compressive event began later, possibly during late Bashkirian-

Moscovian (320–305 Ma) (Chopin et al., 2014; Wernert et al., 2016; Delchini et al., 2018; 

Essaifi et al. 2021). This second event also affected the Eastern Meseta. In the Meseta, the 

heterogeneous development in space and time of a network of sedimentary basins occurred 
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from Upper Devonian to early Pennsylvanian, generally related to an extensional deformation 

(Piqué, 1979; Bouabdelli, 1989; Beauchamps et al., 1991; Tahiri, 1992; Berkhli et al.,1993, 

2000; Michard et al., 2008; Becker & El Hassani, 2020; Becker et al., 2021). 

Late Paleozoic magmatism is almost absent in the Anti-Atlas, which only shows the 

controversial presence of dykes, sills and laccoliths (either Devonian or Permian in age, see 

Pouclet et al. [2017] and Najih et al. [2019], respectively). In contrary, the tectono-thermal 

evolution of the Moroccan Meseta is characterized by abundant intrusion of granitoids. They 

outcrop mainly in the Western Meseta in the MMC, the Rehamna, the Jebilet, and the Western 

High Atlas (WHA) massifs (Fig. 1). In the Eastern Meseta, the granitoid intrusions outcrop 

mainly in the High Moulouya (Aouli-Mibladen and Boumia inliers in the literature), Tazekka, 

Debdou-Mekkam and the Horsts belt up to the Tiffrit-Saïda massif (e.g. Gasquet et al., 1996; 

Amenzou et al., 2001; El Hadi et al., 2003; Remaci-Benaouda, 2005). The Meseta shows 

dominantly plutonic felsic magmatism with more prominent gabbroic sills, basaltic, andesitic 

and felsic lavas in the Western Meseta (Michard et al., 2010). Their ages, obtained with various 

methods (Rb–Sr isochron on whole rocks and minerals, K–Ar, 40Ar/39Ar, U–Pb), are spreading 

over 100 Ma covering almost the entire Carboniferous and the early Permian (Tisserant, 1977; 

Clauer et al. 1980; Mrini et al., 1992; Gasquet et al., 1996; Oukemeni et al., 1995; Ajaji et al., 

1998; Baudin et al., 2001, 2003; Cailleux et al., 2001; Essaifi et al., 2003; Chopin et al., 2014; 

Cheilletz et al, 2015; Rossi et al., 2016, 2017; Aït Lahna et al., 2018; Ettachfini et al., 2018; 

Delchini et al., 2018; Fekkak et al., 2018; Domeier et al., 2021; Hadimi et al., 2021). So far 

only one Upper Devonian age was reported from granitoids intruding deformed Cambrian rocks 

from the Sehoul Block (LA–ICP–MS U–Pb on zircon, Tahiri et al., 2010).

Since the work of El Hadi et al. (2003, 2006) four magmatic periods are traditionally 

distinguished in the Meseta at ca. 330, 320–300, 290–270 and 270–260 Ma. However, Ikenne 

et al. (2017) recently proposed that only two major’s magmatic periods exited: a late Devonian 
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– Mississippian and a Pennsylvanian to Permian events. In the Western Meseta, continuous 

effusive magmatism is known from the Upper Devonian to the end of Serpukhovian (Namurian) 

with largely documented plutonic activity in the Jebilet and Rehamna massifs (Hoepffner, 1982; 

Kharbouch, 1994; Essaifi et al., 2014; Delchini et al., 2018; Aït Lahna et al., 2018). This early 

magmatic activity, contemporaneous with the formation of Upper Devonian – early 

Carboniferous basins is well established. In contrast, in the Eastern Meseta and south-eastern 

MMC, the spatiotemporal relationship between this activity and (1) the Upper Devonian – early 

Carboniferous Eovariscan phase (the earliest Variscan phase of the Meseta) and (2) the 

development of the late Visean – early Westphalian basins of the Eastern Meseta is highly 

controversial (Allary et al., 1976; Bouabdelli, 1989; Diot & Bouchez, 1991; Huvelin, 1992; El 

Mouraouah, 1993; Filali et al., 1999; Hoepffner, 1987; Oukemini et al. 1995; Ajaji et al., 1998; 

Ben Abbou et al., 2001; El Hadi et al. 2003, 2006; Hoepffner et al., 2005; Michard et al., 2010; 

Accotto et al., 2020; Lahfid et al., 2019; Leprêtre et al., 2020). Then, the second magmatic 

activity seems prominent in all places for example in the Western High Atlas (Gasquet et al. 

1992, Fekkak et al., 2018) in the Rehamna (Chopin et al, 2014) and the Jebilet massifs (Mrini 

et al., 1992), in the Morocco Massif Central (Chèvremont et al., 2001; Baudin et al., 2001; 

Marcoux et al., 2015; Rossi et al., 2016, 2017) or in the Eastern Meseta (Mrini et al., 1992; 

Oukemeni et al., 1995; Remaci-Benaouda, 2005).

The integration of these two magmatic pulses within the tectonic evolution of the whole 

Meseta domain is based on the correct determination of the geochronological ages and the 

significance of the successive tectonic events. However, the existing geochronological dataset 

represents a first order pitfall for any interpretation of the Meseta geodynamic evolution. This 

is because most of the magmatic rocks were dated using Rb–Sr method (whole rock or 

minerals), which may provide false younger ages compared to other more robust methods such 

as U–Pb geochronology on zircon.
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In order to obtain robust data for the age of granitic massifs of the Moroccan Meseta, 

we provide new LA–ICP–MS U–Pb in-situ zircon ages obtained on granitic samples from the 

High Moulouya massif and the Horsts belt in the Eastern Meseta and from the Jebilet massif in 

the Western Meseta. These new ages combined with existing robust U–Pb ages and 40Ar/39Ar 

cooling ages, are used to revise the magmatic history of this domain. Our results from the 

Western Meseta support the pre-existing data. Those from the eastern Meseta allow for the first 

time to formally characterize, apart from the Permian age activity, the existence of an important 

Tournaisian to early-mid Viséan plutonic activity previously identified only in one massif of 

the High Moulouya magmatic complex (333± 2 Ma, U–Pb, Oukemeni et al. [1995]) and at 

Tanncherfi (344 ± 6 Ma, Rb–Sr, Ajaji et al. [1998]). This activity would then be synchronous 

with that of the Western Meseta, but it is within the range accepted for the early Eovariscan so-

called compressive phase, and the minimum age of initiation and development of the 

Carboniferous basins in the Eastern Meseta. Altogether it enables us to discuss geodynamic 

implications of the magmatic pulses at the scale of the Meseta. Finally, the new tectono-

magmatic scheme is correlated with magmatic pulses and related tectonic events affecting the 

Iberian and southern French parts of the non-cylindrical Variscan belt. This correlation allows 

proposing a new model of geodynamical evolution of southern branch of the Variscan belt.

2. GEOLOGICAL SETTING

In the Meseta, the Upper Devonian – early Carboniferous Eovariscan tectonic and 

magmatic activity is generally interpreted as an early expression of suprasubduction event (e.g. 

Kharbouch et al., 1985; Boulin et al., 1988; Roddaz et al., 2002; Michard et al., 2010; Essaifi 

et al., 2014) despite the fact that corresponding oceanic suture was not found (Hoepffner et al., 

2005). Deformation associated with this event was observed mainly in the Eastern Meseta. It is 

characterized by low-angle greenschist facies sub-horizontal foliation and sometimes 

recumbent folds affecting pre-Carboniferous sequences unconformably covered by mostly 
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Visean intracontinental sediments. These sediments alternate with intraformational bimodal 

volcanic sills and lava flows which are generally sub-alkali basaltic in the Western Meseta and 

more andesitic to rhyolitic in the Eastern Meseta (e.g. Kharbouch, 1994). The basins and their 

basement are sometimes intruded by carboniferous granitic plutons, e.g. in the Jebilet (Essaifi 

et al., 2014; Delchini et al., 2018) and in the High Moulouya (Oukemeni et al., 1995) massifs. 

In the Western Meseta, the main compressive Variscan phase is restricted to late Carboniferous 

(Westphalian in Michard et al., 2010). It is characterized by low grade metamorphism locally 

reaching the staurolite zone in the Rehamna and Jebilet massifs (Wernert et al., 2016; Delchini 

et al., 2018). This event is associated with the emplacement of numerous calc-alkaline 

granitoids in both Meseta (e.g. Ikenne et al., 2017). Finally, early Permian deformation and 

low-grade metamorphism (e.g. Michard et al., 2010; Chopin et al., 2014; Delchini et al., 2018; 

Essaifi et al., 2021) are associated with the emplacement of late to post Variscan alkaline 

magmatism together with the formation of Permian basins (Domeier et al., 2021; Hadimi et al., 

2021). Geochemical studies suggest that all these granitoids correspond to mantle derived 

magmas assimilating continental crust (El Hadi et al., 2006).

Below are synthetized geological and geochronological data from three specific regions 

which represent the two contrasting tectonic domains in the frame of Morocco Variscides: the 

Jebilet massif in the Western Meseta, and the High Moulouya massif and the Horsts belt in the 

Eastern Meseta.

2.1. Jebilet massif 

The Jebilet massif in the Western Meseta (e.g. Huvelin, 1977; Bordonaro et al., 1979; 

Izart et al., 1997; Essaifi et al., 2014) exposes an Upper Devonian – early Carboniferous basin 

(Huvelin, 1977; Bordonaro et al., 1979) filled by sedimentary and volcanic deposits, which are 

intruded by several granitoid bodies. The basin is then deformed during late Carboniferous – 

early Permian (Fig. 2a, Delchini et al., 2018). It is divided into the western Sarhlef and the 
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eastern Kharrouba series (Huvelin, 1977). Bordonaro et al. (1979) and Beauchamp (1984) 

proposed that these two formations are laterally equivalent. The Sarhlef serie comprises mainly 

black shales and sandstones intercalated with volcanoclastics and bimodal sills. 

Palynostratigraphic age of the black shales has been bracketed at late Visean (Asbian) (Moreno 

et al., 2008; Playford et al., 2008), but Bordonaro et al. (1979) do not exclude that the serie 

might be as old as the Tournaisian. Recently, older biostratigraphic ages up to the Frasnian to 

late Famennian have been proposed from metamorphosed conodonts of the Sarhlef serie 

(Lazreq et al., 2021). The Kharrouba serie is made of middle to late Visean black shales 

evolving to turbidites (Izart et al., 1997, revised by Cózar et al., 2020; Becker et al., 2021).

Bimodal magmatism is common within the Sarhlef formation. Mafic sills and dykes 

(dolerites, gabbros) and rare basaltic lavas have tholeiitic to transitional affinity of mantle 

origin, whereas felsic ones (rhyolites, granitoids) are alkaline (e.g. Essaifi et al., 2014). 

Volcanism and associated hydrothermal alteration have been dated at ca. 330.8 ± 1.1 Ma and 

331.7 ± 7.9 Ma (40Ar/39Ar on sericite; Marcoux et al., 2008). The small Koudiat Bouzlaf, 

Koudiat Hamra and Koudiat Kettara felsic plutons have been dated at 330.5 +0.68
-0.83 Ma (U–Pb 

ID-TIMS on zircon; Essaifi et al., 2003), 345 ± 2 Ma (LA-ICP-MS on zircon, Delchini et al., 

2018) and 346.1 ± 2.7 Ma (SHRIMP on zircon, Aït Lahna et al. 2018), respectively. Similarly, 

mafic (gabbroic) intrusions have been dated at 348.5 ± 2.6 Ma (Gour es Safra), 343.6 ± 2.6 Ma 

(Koudiat Kettara) and 336.4 ± 2.9 Ma (Koudiat Arhil) by Aït Lahna et al. (2018) (SHRIMP on 

zircon). Then, a plutonic complex formed by the Oulad Ouaslam, Tabouchent-Bamega and the 

smaller Bramram granitoids intrudes both the Sarhlef and Kharrouba formations. The main 

intrusions were first dated at 319 ± 10 Ma (Tisserant, 1977) and 327 ± 4 Ma (Mrini et al., 1992) 

using Rb-Sr isochrones, whereas the small late orogenic leucogranites (Bramram intrusion) 

were dated at ca. 295 Ma (Tisserant, 1977; Mrini et al., 1992). More recently, individual 

intrusions were dated by Delchini et al. (2018) giving ages of 337 ± 5 Ma, 343 ± 7 Ma, 344 ± 
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3 Ma and 348 ± 8 Ma for the Oulad Ouaslam, 346±10 Ma and 336 ± 4 Ma for Tabouchent, and 

337 ± 4 Ma and 358 ± 7 Ma for the Bamega intrusions (LA-ICP-MS on zircon, Table 1). Based 

on a structural analysis of intrusions and host rocks, Boummane & Olivier (2007) proposed that 

the main Oulad Ouaslam intrusion was emplaced as a laccolith during the Late Carboniferous 

orogenic contraction. The HT–LP conditions of andalusite-cordierite mica schists developed in 

the aureole of those intrusions (Fig. 2a) have been bracketed between 613 ± 12 °C and 625 ± 

25 °C at 2–4 kbar (Delchini et al., 2016). Roof pendants of the intrusion are represented by 

sillimanite mica schists for which P-T estimates were not estimated (Chemsseddoha, 1986), 

whereas cordierite-bearing metapelitic xenoliths were equilibrated at ca. 750°C and 3.5 kbar 

(Bouloton et al., 1991; Bouloton, 1992; Bouloton & Gasquet, 1995). Post orogenic quartz-

monzodiorite dykes (Bouloton et al., 2019) dated at ca. 240 Ma (Youbi et al., 2001; Dostal et 

al., 2005) contain various crustal xenoliths with igneous zircons showing concordant ages at 

280–328 Ma, ca. 540–615 Ma, 700 Ma and ca. 2000 Ma together with metamorphic rims at ca. 

288–300 Ma (U–Pb, Dostal et al., 2005). This was interpreted as synchronous high-grade 

metamorphism and formation of S-type granitic magmatism during late Carboniferous – early 

Permian whereas inherited older ages are compatible with the presence of a West African 

Craton basement bellow the Paleozoic cover (Dostal et al., 2005).

2.2. High Moulouya massif

The High Moulouya massif (Aouli-Mibladen and Boumia Paleozoic inliers) in the 

Eastern Meseta (Emberger, 1965; Hoepffner, 1987, El Mouraouah, 1993; Diot & Bouchez, 

1989, 1991; Oukemeni & Bourne, 1993; Oukemeni et al, 1995; Filali et al., 1999; Elabouyi et 

al., 2019) is made of large felsic plutonic bodies intruding metasandstone, metapelite and 

volcanic sequence affected by contact metamorphism (Fig. 2b, Filali et al., 1999; Elabouyi et 

al., 2019). The age of the country rocks is attributed to the Cambro–Ordovician (Hoepffner, 

1978), but Michard et al. (2008) do not preclude a younger Upper Devonian age.
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Four magmatic units (Fig. 2b) were described in the Aouli-Mibladen inlier (Emberger, 

1965; Rosé, 1987; Oukemeni & Bourne, 1993; El Mouraouah, 1993; Elabouyi et al., 2019): (1) 

the mafic to intermediate calc-alkaline to sub-alkaline El Hassir granodiorite; (2) the calc-

alkaline metaluminous “grey” granite also called “main” granite; (3) the alkaline peraluminous 

“pink” granite; and (4) the cordierite-garnet bearing anatectic granites (Fig. 2b). The massif 

shows two other types of intrusive rocks: (1) isolated peraluminous two-mica “Perdreaux” and 

“Poulet” granites (Fig. 2b); (2) small gabbro-diorite intrusions NE of the El Hassir granodiorite 

(Elabouyi et al., 2019). The former type corresponds to leucocratic cordierite±garnet bearing 

granite containing various xenoliths. Finally, all the intrusions and their country rocks are cut 

by several meter-scale aplitic and cordierite-muscovite bearing microgranitic dykes.

Available geochronological ages from the intrusions are from Clauer et al. (1980) and 

Oukemeni et al. (1995) who used Rb–Sr isochrones and U–Pb ID–TIMS technique on zircon, 

respectively (Table 1): the El Hassir granodiorite was dated at 347 ± 17 Ma (Rb–Sr) and 333 ± 

2 Ma (U–Pb), the “pink” granite at 329 ± 6 Ma (Rb–Sr), the “grey” granite at 319 ± 6 Ma (Rb–

Sr) and 319 ± 1.5 Ma (U–Pb), and finally, late pegmatites were dated at ca. 310 Ma (Rb–Sr) 

and microgranites and aplites at 302 ± 3 Ma (Rb–Sr). Clauer et al. (1980) obtained also an age 

of 368 Ma (Rb–Sr) for the surrounding metamorphosed schists but its signification remains 

unclear (Filali et al., 1999).

Recumbent asymmetric folds of the country rocks are associated with a sub-horizontal 

metamorphic foliation S1, E–W stretching lineation and kinematic indicators compatible with 

a top-to-the-west sense of shear (Hoepffner, 1987, 1994) although Vauchez (1976) favour an 

opposite sense of shear as in the adjacent Debdou-Mekkam inliers (Accotto et al.,2020). This 

deformation shows an evolution from oblate to prolate strain in a ductile shear continuum and 

was interpreted as a result of contractional or extensional deformation related to the 

synchronous emplacement of the granitoids (Hoepffner, 1987, 1994; Diot & Bouchez, 1989; 

metamorphic foliation S1, E–W stretching lineation and kinematic indicators compatible with 
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1991; El Mouraouah, et al., 1993; Houari, 2003). A second episode was responsible for the 

development of open, roughly E–W striking upright folds with S2 axial planar cleavage and 

formation of two structural domes (Emberger, 1965; Hoepffner, 1987). In contrary, Filali et al. 

(1999) proposed that all the deformation and metamorphism are only caused by the 

emplacement of the granitoid bodies. The HT–LP metamorphism associated with the 

development of the S1 and S2 foliations varies from the muscovite zone to the sillimanite zone 

(Fig. 2b) when approaching the intrusions (450–650° C and 2–4 kbars; El Mouraouah et al., 

1993; Filali et al., 1999). Recent petrological analysis from cordierite-garnet bearing anatectic 

granites permits to estimate the condition of the dehydration melting at 830–870 °C and 6 kbars, 

with the chemistry of some garnet inner cores suggesting an inherited metamorphism event 

prior to the partial melting processes (Elabouyi et al., 2019).

2.3. Horsts belt

North-east of the High Moulouya massif, numerous Palaeozoic inliers outcrop below the 

Mesozoic-Cenozoic sedimentary cover (Lucas, 1952; Guardia, 1975; Hoepffner, 1987), namely 

the Debdou-Mekkam massif, and the Horsts belt up to the Oujda Mountains and the Algerian 

High plateaus (Traras, Tiffrit-Saïda) (Fig. 1 and Fig. 2c).

The Ordovician to Carboniferous sedimentary succession shows the occurrence of a 

regional late Visean unconformity as in the nearby Tazekka massif (Hoepffner, 1987). Based 

on biostratigraphy, the youngest sediments below the unconformity are mid to Upper Devonian 

(possibly earliest Tournaisian) in the Debdou-Mekkam massif (Marhoumi et al., 1983; 

Marhoumi & Rauscher, 1984), Devonian in the Jerada-Oujda area (Torbi, 1996) and early to 

mid (?) Devonian in Tiffrit-Saïda and Ghar Rouban (Lucas, 1952; Bougara, 2013; Bougara et 

al., 2017). This is confirmed by the maximum deposit ages (ca. 370 Ma) given by detrital 

zircons in the Debdou-Mekkam massif (Accotto et al., 2020). In some massifs, volcano-clastic 

series have been described on top of the unconformity, (Owodenko, 1976; Médioni, 1980) and 
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dated to the late Visean based on biostratigraphy (Chalot-Prat & Vachard, 1989; Huvelin & 

Mamet, 1989; Berkhli et al., 1993; Aretz et al., 2010). In the Jerada inlier, the sedimentation 

continued up to the Moscovian-Kasimovian (Wespthalian C in Desteucq et al. [1988]).

A synschistose deformation below the unconformity has been attributed to an early 

tectonic phase generally suggested to represent an Eovariscan event (Hoepffner, 1987; 

Hoepffner et al., 2005, 2006). The metamorphism related to this phase does not exceed 

greenschist facies (Hoepffner, 1987; Chegham, 1985). Later, the Variscan event s.s., developed 

during the late Carboniferous up to the early Permian (Michard, 1976; Hoepffner, 1987; 

Michard et al., 2008, 2010). It is evidenced by ENE–WSW striking upright folds visible in the 

Horsts belt (Torbi, 1996; Lucas, 1952), in the Debdou-Mekkam massif (Desteucq & Hoepffner, 

1980; Accotto et al., 2020), in the Jerada inlier (Owodenko, 1976; Er-Raji, 1997) and below the 

Mesozoic-Cenozoic cover between the Horsts belt and the Eastern High Atlas (seismic image 

in Er-Raji, 1997; Taki, 2012). The age of this deformation, mostly inferred from the age of the 

younger deposit it affects is (syn-) to post-Moscovian (Owodenko, 1946; Desteucq & 

Hoepffner, 1980; Torbi, 1996; Er-Raji, 1997).
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at 259 ± 11 Ma (Mrini et al., 1992). The Alouana (Debdou-Mekkam massif), Jerada and 

Soulouina granite intrusions are giving a whole-rock isochron at 284 ± 7 Ma (Tisserant, 1977).

3. LA-ICPMS U–Pb zircon geochronology

3.1. Samples 

A medium-grained two-mica granodiorite showing poorly sericitized feldspars from the Oulad 

Ouslam intrusion has been sampled in the Jebilet massif (J13A, Fig.2). The petrology and 

geochemistry of this peraluminous, calc-alkaline intrusion are presented in Essaifi et al. (2014). 

Then, three intrusives rocks were sampled in the High Moulouya massif (Fig. 2): the calc-

alkaline “grey” granite (M14), the El Hassir granodiorite (M13A) and the Perdreaux two-mica 

granite (M11) as defined by Emberger (1965). The sample M14 is a medium-grained biotite 

granite with Kfs and quartz phenocryst, the sample M13A is a medium-grained mesocratic 

hornblende granodiorite and the sample M11 is a fine to medium grained two-mica granite. 

Detailed petrological and geochemical data from these calc-alkaline intrusions can be found in 

Oukemeni and Bourne (1993). The El Hassir granodiorite and “grey” granite are metaluminous, 

whereas the Perdreaux two-mica granite is peraluminous (Oukemeni and Bourne, 1993). 

Finally, five plutonic bodies were sampled in the Horsts belt (Fig. 2): the monzogranite of Beni 

Snassen (J6-1, after Ruíz Reig [2001] in Berkane geological map and Chaïeb [2004] in Ahfir 

geological map), the amphibole-bearing granodiorite of Zekkara, NE to the Jerada inlier (J4-1, 

Andriès & Benjamin, [1994] in Beni-Oukil geological map), the main biotite-granodiorite 

facies of Tanncherfi (J4-7, Ajaji et al., 1998), the enclave-bearing amphibole granite of 

Merguechoum (J5-2, Muratet, [1994] in Taourirt geological map) and a biotite-granite facies in 

the Boudoufoud massif (J5-1, Mrini et al., 1992; Rosé 1987). These intrusions from the Horsts 

belt are calc-alkaline (El Hadi et al., 2000, 2006), and either peraluminous (Boudoufoud, Beni 

Snassen) or metaluminous (Merguechoum, Tanncherfi). The composition of the Zekkara 

intrusion is meta- to peraluminous (El Hadi et al., 2006). All the samples from this study show 
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isotropic texture at macro and microscopic scale. More details on the samples and lithologies 

can be found in Supplementary material 1.

3.2. Analytical Procedure and Material

U–Pb geochronological measurements on zircon from the Jebilet and High Moulouya massif 

were performed at the Czech Geological Survey, Prague, on an Analyte Excite 193 nm excimer 

laser-ablation system (LA; Photon Machines), equipped with a two-volume HelEx ablation cell, 

in tandem with an Agilent 7900x ICPMS (Agilent Technologies Inc., Santa Clara, USA). 

Samples were ablated in He atmosphere (0.8 l min-1), and the laser was operated at 8 Hz using 

a spot size of 25 μm and laser fluence of 7.59 J cm-2. Each measurement consisted of 20 s of 

blank acquisition followed by ablation of the sample for a further 40 s. Multiple analyses were 

collected in a single mass spectrometer file with runs of the 91500 reference zircon interspersed 

between each set of 15 unknowns. Data were collected for masses 202, 204, 206, 207, 208, 232 

and 238 using the SEM detector, with one point per mass peak and respective dwell times of 

10, 10, 15, 30, 20, 10 and 15 ms per mass (total sweep time of 0.134 s). Data deconvolution 

using Iolite© followed the method described by Paton et al. (2010), which involves subtraction 

of an ‘on peak’ gas blank followed by correction for laser-induced elemental fractionation 

(LIEF) by comparison with the behaviour of the 91500-reference zircon (Wiedenbeck et al., 

1995). No common Pb correction was applied. Zircon reference samples GJ-1 (~609 Ma; 

Jackson et al., 2004) and Plešovice (338 ± 1 Ma; Sláma et al., 2008) analysed periodically 

during this study yielded concordia ages of 609.0 ± 1.7 Ma and 338.3 ± 1.1 Ma (2σ),

respectively.

U–Pb geochronological measurements on zircon from the Horsts belt were done at the 

Géosciences Paris-Saclay (GEOPS) laboratory (Paris Saclay) using LA–HR–ICP–MS. It uses 

a High Resolution ICP–MS ELEMENT XR (Thermo-Fisher Scientific) coupled with a 193 nm 

ArF Photon Machines (Teledyne) laser. The laser beam diameter was set at 40 µm for standards 
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and samples. Ablation conditions are a fluence of 2.5 J.cm-2 and a frequency of 10 Hz. Glass 

standards (NIST612 and NIST610) were analysed simultaneously. Each analysis consists of 30 

seconds background acquisition followed by 30 s of sample acquisition and 30 s of washout. 

The laser-induced aerosol was carried by helium (large volume at 0. 5 l.min-1 and inner cup at 

0. 375 l.min-1) from the sample cell to a mixing funnel in which the sample and He are mixed 

with 0.950 to 1 l.min-1 argon to stabilize the aerosol input to the plasma. Signal strength of the 

ICP-MS was tuned for maximum sensitivity while keeping Th/U between 0.97 and 1.03 and 

ThO/Th below 0.3 on NIST612. Isotopes 202Hg, 204(Pb+Hg), 206Pb, 207Pb, 208Pb, 232Th and 238U 

were acquired with integration time per peak (ms) of 10 ms by 70 runs for all isotopes except 

207Pb with 20 ms. Analyses were standardized with zircon 91500 (1065 Ma; Wiedenbeck et al., 

1995) interspersed every 10 samples and controlled with the Plešovice standard (338 ± 1 Ma; 

Sláma et al., 2008) interspersed every 20 samples which yielded concordia ages of 338 ± 2 Ma 

(2σ). Data reduction was processed using Iolite©. No common Pb correction was applied.

U–Pb data can be found in Supplementary material 2, 3 and 4.

3.3. Data processing

The analytical data has been processed using the IsoplotR toolbox (Vermeesch, 2018). Data 

reduction follows the recommendation of Spencer et al. (2016) whereby data is treated as 

concordant if the 2-σ ellipse overlaps with the concordia, and the preferred ages are single 

zircon concordia ages following the recommendations of Nemchin and Cawood (2005) and 

Zimmermann et al. (2018). We kept U–Pb zircon ages with a concordance level of 97–103% 

(defined as [206Pb/238U age]/[ 207Pb/235U age]*100 or as [207Pb/206Pb age]/[ 207Pb/235U age]*100 

for ages older than 1200 Ma).
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3. Results

3.2.1. Jebilet massif

Zircons from the Oulad Ouaslam granodiorite (J13A) in the Jebilet massif are elongated, mostly 

prismatic to sub-rounded grains (generally 100–400 μm in length) with a well-developed 

oscillatory zoning (Fig. 3). From the 171 spots realized on 101 zircons, 111 of the obtained data 

are concordant and show a spread from 370 to 318 Ma. A single concordant outlier gives an 

age of ca. 730 Ma. Based on spot locations, three main populations can be deciphered at ca. 346 

Ma (n = 13), ca. 335 Ma (n = 63) mainly from zircon cores and ca. 322 Ma (n = 25) generally 

obtained from zircon rims (Fig. 3). The zircon grains from the main population (ca. 335 Ma) 

are generally small (~50–300 μm in length), darker and exhibit a well-developed prismatic 

shape. The longest and larger (up to 500 μm in length) zircon grains show generally cores at ca. 

335 Ma and rims at ca. 322 Ma. All zircon grains from these populations have U contents 

mainly < 500 ppm. The Th/U ratio in zircon are generally < 1 (only a single outlier at 1.09, Fig. 

3) and show similar variations between populations (0.17–0.9, Fig. 3).

3.2.2. High Moulouya massif 

El Hassir granodiorite (M13A)

Zircons grains from the El Hassir granodiorite (M13A) are mostly prismatic to sub-rounded 

(generally 100–200 μm in length). Under CL, most of the grains exhibit concentric oscillatory 

zoning characteristic of igneous zircon. Few grains show CL-grey to dark zircon cores often 

overgrown by oscillatory zoning domains. Some grains show oscillatory zoning internal texture 

partially replaced by CL-bright patterns (Fig. 4a). A total of 91 concordant analyses from the 

107 spots on 66 grains were measured for sample M13A and display a continuous array of ages 

between 318 and 388 Ma with a single outlier at ca. 580 Ma (Fig. 4a). A weighted mean age of 

343.1 ± 1.2 Ma (MSWD = 0.82, n = 19) or an intercept age of 342.8 ± 1.6 Ma (MSWD = 0.95) 

can be calculated from CL-grey to dark zircon cores (Fig. 4a). Oscillatory zoned domain 

zoning characteristic of igneous zircon. Few grains show CL-grey to dark zircon cores often 
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analyses define a cluster (Fig. 4a) with a weighted mean age of 329.7 ± 0.8 Ma (MSWD = 0.78, 

n = 45) or an intercept age of 328.9 ± 1.1 Ma (MSWD = 0.86). Analyses from CL-bright zircon 

grains give a weighted mean age of 321.1 ± 1.3 Ma (MSWD = 0.19, n = 17) or an intercept age 

of 320.1 ± 1.7 Ma (MSWD = 0.21). All zircon grains have U contents mainly < 430 ppm. The 

Th/U ratio in zircon are generally < 1 (0.6 – 0.9) and show similar to slightly higher mean 

values (Fig. 4a) between the populations at 343 Ma (mean = 0.69), 330 Ma (mean = 0.75) and 

320 Ma (mean = 0.8). 

Calc-alkaline “grey” granite (M14)

Zircon grains from the Calc-alkaline “grey” granite (M14) are similar to those of El Hassir 

granodiorite (M13A). Most of the grains are prismatic (generally 50–150 μm in length) and 

show clear CL-dark to grey oscillatory zoned cores which are sometimes overgrown by 

homogeneous CL-dark to grey rims (Fig. 4b). Only 35 of a total of 98 analyses on 58 grains 

produced concordant ages. Most of the concordant data from oscillatory zoned cores show a 

spread of ages from 390 to 330 Ma. Two older concordant ellipses are noted at ca. 460–470 Ma 

and a single one at ca. 630 Ma (Fig. 4b). Concordant zircon analyses obtained from CL-dark 

oscillatory zoned cores give a weighted mean age of 353.1 ± 3.2 Ma (MSWD = 0.40, n = 6) or 

an intercept age of 342.8 ± 12 Ma (MSWD = 0.75). Analyses from CL-grey oscillatory zoned 

domains yield a younger weighted mean age of 337.0 ± 1.6 Ma (MSWD = 1.08, n = 15) or an 

intercept age of 328.9 ± 7.4 Ma (MSWD = 0.30). The homogeneous CL-grey to dark rim 

analyses define a cluster with a weighted mean age of 327.1 ± 2.4 Ma (MSWD = 0.37, n = 8) 

or an intercept age of 322.1 ± 10 Ma (MSWD = 0.36). All zircon grains have U contents mainly 

< 600 ppm. The older core population (ca. 353–343 Ma) shows consistent Th/U ratios (0.56–

0.74; mean value = 0.65) while the large population at ca. 337–329 Ma exhibits significant 

variations between 0.16 and 1.15 (Fig. 4b). The younger rim population (ca. 327–322 Ma) 

shows less variations than the large population (Th/U = 0.4–0.86; mean value = 0.64). 
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Perdreaux two-mica granite (M11)

Zircons from the Perdreaux two-mica granite (M11) are mostly prismatic grains (generally 50–

100 μm in length) and show well-developed oscillatory zoning. CL-grey internal textures that 

are overgrown by homogeneous CL-dark rims are observed for few grains (Fig. 4c). Sample 

M11 shows a high degree of discordance with only 20 concordant analyses from a total of 59 

analyses on 38 grains. A small old population, obtained on homogeneous CL-grey cores (n = 

3), give a poorly defined age at around 2000 Ma. Few core analyses (n = 6), characterized by 

mainly higher Th/U ratios (0.22 – 1.91), show a scattered range of concordant ages between 

630 and 555 Ma (Fig. 4c). The main part of the dataset displays a restricted array of ages 

between 325 and 360 Ma. The well-developed oscillatory zoned zircon domains define a small 

cluster (Fig. 4c) with a weighted mean age of 339.6 ± 1.9 Ma (MSWD = 1.04, n = 4) or an 

intercept age of 337.8 ± 4.4 Ma (MSWD = 3.2). A weighted mean age of 326.8 ± 1.6 Ma 

(MSWD = 0.86, n = 5) or an intercept age of 319.6 ± 4.4 Ma (MSWD = 3.7) can be calculated 

from homogeneous CL-dark rims. All zircon grains have U contents mainly < 700 ppm. The 

Th/U ratio in zircon are generally < 1 and show similar variations between populations (0.17–

0.54, Fig. 4c). 
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31 grains, 16 of the obtained data are concordant and show a limited spread from 330 to 290 

Ma. Three core analyses obtained on smaller and CL-dark zircon grains characterized by higher 

U contents (~600 ppm), give a poorly defined age at around 320 Ma (Fig. 5a). Based on spot 

locations, two populations can be deciphered at ca. 308 Ma (n = 9) for oscillatory zoned cores 
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U contents mainly < 600 ppm. The Th/U ratios in zircon are generally < 1 and show similar 

variations between populations (0.31–0.84).

Merguechoum massif (J5-2)

Zircons from the enclave-bearing amphibole granite of Merguechoum massif are prismatic to 

sub-rounded grains (100–300 µm in length) with oscillatory cores (Fig. 5b). Only 12 concordant 

analyses from the 24 were measured for sample J5-2. The main part of the dataset displays a 

restricted array of ages between 330 and 365 Ma (Fig. 5b) and yield a weighted mean age of 

345.24 ± 2.8 Ma (MSWD = 0.68, n = 10) or an intercept age of 343.8 ± 4 Ma (MSWD = 1.1). 

All zircon grains have high U contents mainly between 500 and 700 ppm and high Th/U ratios 

(0.60–1.14).

Boudoufoud massf (J5-1)

Zircon grains from the biotite-granite of Boudoufoud massif show an elongated prismatic shape 

(often > 300 µm in length). Some grains show clear CL-dark to grey oscillatory zoned patterns 

(Fig. 5c). Only a few grains are sub-rounded. A total of 38 concordant analyses from the 49 

spots on 49 grains were measured and display a continuous array of ages between 280 and 320 

Ma with a younger outlier at ca. 230 Ma and an older one at ca. 345 (Fig. 5c). Four analyses, 

obtained on homogeneous zircons cores, give a poorly defined age at around 320 Ma (Fig. 5c). 

Concordant zircon analyses obtained from CL-dark oscillatory zoned domains define a 

weighted mean age of 305.2 ± 1.4 Ma (MSWD = 0.37, n = 14) or an intercept age of 306.1 ± 

3.6 Ma (MSWD = 2.5). Analyses from CL-grey to bright or blurred oscillatory zoned domains 

yield a younger weighted mean age of 290.9 Ma ± 2.1 Ma (MSWD = 0.50, n = 17) or an 

intercept age of 291.3 ± 3.4 Ma (MSWD = 1.5). All zircon grains have high U contents mainly 

between 350 and 1100 ppm. The Th/U ratio in zircon are generally < 1 and show similar 

variations between populations (0.35–0.85).
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Zircons from the biotite-granodiorite facies in the Tanncherfi massif are mostly prismatic grains 

(100–300 µm in length) and show clear oscillatory zoned patterns, sometimes overgrown by 

homogeneous CL-grey rims. Few grains show CL-grey or blurred oscillatory zoned internal 

texture (Fig. 5d). 32 concordant analyses were recorded from 49 total analyses on 49 zircon 

grains and show a spread of dates from 325 to 285 Ma (Fig. 5d). A weighted mean age of 317.1 

± 3.2 Ma (MSWD = 0.48, n = 7) or an intercept age of 316.1 ± 4.9 Ma (MSWD = 0.25) can be 

calculated from homogeneous CL-grey cores of small grains (~100 µm) (Fig. 5d). The 

oscillatory zoned domains define a cluster (Fig. 5d) with a weighted mean age of 303.5 ± 1.7 

Ma (MSWD = 0.87, n = 19) or an intercept age of 303.3 ± 3.4 Ma (MSWD = 0.74). Analyses 

from CL-grey or blurred oscillatory zoned domains yield a younger weighted mean age of 292.4 

± 3.7 Ma (MSWD = 0.58, n = 7) or an intercept age of 287.1 ± 6.2 Ma (MSWD = 0.53). All 

zircon grains from these populations have quite low U contents mainly < 380 ppm. The Th/U 

ratio in zircon are high (0.66–1.35, mean value = 0.93) and show similar variations between 

populations (Fig. 5d).

Zekkara massif (J4-1)

Zircons from the amphibole-bearing granodiorite of the Zekkara massif are small prismatic to 

sub-rounded grains (< 200 µm in length) and show a well-developed oscillatory zoning under 

CL (Fig. 5e). Thirty-three of a total of 42 analyses on 42 grains produced concordant ages and 

display a continuous array of dates between 330 and 365 Ma. A single concordant outlier gives 

a slightly older age of ca. 400 Ma and another one yields a Paleoproterozoic age (ca. 1845 Ma, 

Fig. 5e). The main part of the dataset gives a weighted mean age of 348.0 ± 2.3 Ma (MSWD = 

1.18; n = 27) or an intercept age of 342.8 ± 12 Ma (MSWD = 0.75). All zircon grains have U 

contents < 450 ppm and high Th/U ratios (0.65–1.21, mean value = 0.84).

4. Discussion
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We first interpret the acquired U–Pb ages and discuss the significance of individual zircon 

populations. Subsequently regional tectonic implications of Meseta granitoid ages are discussed 

in terms of two major pulses. Finally, the magmatic activity and associated tectonic events of 

the Moroccan Meseta are compared to that in the European Variscan belt and some possible 

relations are discussed. 

4.1. Interpretation of the U–Pb ages

4.1.1. Jebilet massif

Delchini et al. (2018) dated 4 samples (LA–ICP–MS on zircon) from different outcrops of the 

same intrusion which gave ages of 337 ± 4 (MSWD = 0.94, n = 24), 344 ± 3 (MSWD = 0.32, 

n = 15), 343 ± 7 (MSWD = 0.90, n = 19), and 348 ± 8 Ma (MSWD = 0.51, n = 12). They also 

obtained similar ages (LA–ICP–MS on zircon) from the nearby smaller Tabouchent-Bamega 

granodiorite intrusions (336 ± 4 Ma; 337± 4 Ma; 346 ± 10 Ma; 358 ± 7 Ma) and the westward 

Koudiat Hamra felsic intrusion (345 ± 2 Ma), i.e. older than the Koudiat Bouzlaf microgranite 

dated at 330.5+0,68
−0,83 Ma (U–Pb ID–TIMS on zircon) by Essaifi et al. (2003). Delchini et al. 

(2018) interpreted the ages as reflecting crystallization ages related to granitoid emplacement 

whereas some younger analyses were interpreted as a result of late Pb loss. However, Delchini 

et al. (2018) question the validity of the oldest age at ca. 358 Ma (i.e at the Devonian-

Carboniferous limit) due to the dispersion of the analytical points. The existence of a Famenian–

Tournaisian effusive activity was proposed by Kharbouch (1994) further North in the Sidi 

Bettache basin (Fig. 1), but without robust chronostratigraphic ages. In our study, the analyses 

of different CL domains of single zircon grains (core versus rim, dark versus bright) permit to 

define more precisely the magmatic activity related to the Oulad Ouaslam pluton emplacement. 

In sample J13A, the oldest age population at ca. 346 Ma (n = 13) obtained on CL-grey zircon 

cores (Fig. 3), may correspond to the onset of partial melting of deeper crustal source. The peak 

of magmatic activity is shown by the main population characterized by clear oscillatory zoned 
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domains dated at ca. 335.2 ± 0.8 Ma (n = 60) whereas the younger population of ages at ca. 323 

Ma (n = 26), mostly calculated from zircon rims (Fig. 3), could reflect late to post-magmatic 

zircon crystallization. Based on a geochemical and Sr–Nd isotopic study, Essaifi et al. (2014) 

proposed that the felsic intrusions in the Jebilet massif originated from the partial melting of 

pelitic sediments due to mafic injection. The TDM model ages (1.76–0.85 Ga) from the same 

study highlight a Proterozoic source. It is compatible with a single grain concordant age at 735 

Ma (this study) or ca. 700 and 800 Ma inherited ages reported by Delchini et al. (2018). A 

similar age at ca. 699 Ma from a zircon core was also obtained from one granitic xenolith in 

Triassic lamprophyre (Dostal et al., 2005). We can therefore postulate the presence of a 

Cryogenian (Neoproterozoic) basement in the Jebilet Massif. Indeed, in the Meseta, the 

occurrence of Precambrian basement has been documented in the Western High Atlas (Eddif et 

al., 2007; Ouanaimi et al., 2018; Berrada et al., 2022), in the Rehamna massif (Baudin et al., 

2003; Pereira et al., 2015b), in the Central massif (Tahiri et al., 2010; Pereira et al., 2014; 

Ouabid et al., 2017, 2020; Letsch et al., 2018) and in the Coastal Block and offschore in the 

Mazagan escarpment (El Houicha et al., 2018; El Haibi et al., 2020; Kuiper et al., 2021).

4.1.2. High Moulouya massif

The main U–Pb age populations obtained from oscillatory zoned cores define a very short time 

interval defined by ages at 339.6 ± 1.9 Ma (n = 5) for the Perdreaux granite (M11), 337.0 ± 1.6 

(n = 15) Ma for calc-alkaline “grey” granite (M14), and 329.7 ± 0.8 Ma (n = 45) for El Hassir 

granodiorite (M13A) (Fig. 4). These new ages contrast with the younger ages obtained for the 

grey granite (ca. 319 Ma) and Perdreaux granite (ca. 281 Ma) measured from previous studies 

(Rb-Sr, Clauer, 1980; U–Pb zircon, ID-TIMS, Oukemeni et al., 1995). Only the age of the El 

Hassir granodiorite overlaps within uncertainty at 2σ the age of 333 ± 2 Ma (U–Pb zircon, ID-

TIMS) obtained by Oukemeni et al. (1995). We suggest that the pink granite should have a 
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similar age because previous petrological studies demonstrated the cogenesis of the pink and 

grey granites (Oukemeni & Bourne, 1993).

Our data indicates that the magmatic activity at the High Moulouya massif was not long-

lived, as proposed in previous multiple injection model (Oukemeni et al., 1995) but restricted 

to the late Visean interval. However, the thermal activity and partial melting of deeper crustal 

source may have started before, as shown by the oldest age populations found in the El Hassir 

granodiorite and grey granite as indicated by 343 ± 1 (n = 19) and 353 ± 3 Ma (n = 6) age 

populations. The younger populations (ca. 321–327 Ma) obtained on CL-bright zircon grains 

or on zircon rims in both the Perdreaux granite (M11) and the El Hassir granitoid (M13A) could 

reflect either late to post magmatic recrystallization or post-crystallization disturbance by late 

fluid activity leading to U loss (Schaltegger et al. 1999; Corfu et al. 2003 and reference therein). 

Structural data agree with a syntectonic emplacement within a sub-horizontal ductile shear zone 

(Diot & Bouchez, 1989; 1991; El Mouraouah, et al., 1993). This main sub-horizontal 

metamorphic foliation from the High Moulouya massif is interpreted to reflect the Eovariscan 

event described in the Meseta (Hoepffner, 1987). Therefore, our data permit to refine the timing 

of this event to the Visean, or even down to the Tournaisian if we consider the oldest zircon 

353 Ma population, even though the tectonic signification of this event, i.e. compressional 

(Allary et al., 1976; Hoepffner, 1987; Bouabdelli, 1989; Lahfid et al., 2019; Accotto et al., 
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and localized recumbent folds observed in the High Moulouya massif could be compatible with 

a general extension as already suggested by Diot and Bouchez (1989). The beginning of HT 

event can be deduced from the petrological study of Elabouyi et al. (2019). These authors 

attributed the chemistry of garnet core and biotite, sillimanite and quartz inclusions in the garnet 

preserved in the anatectic granite to the partial melting event preceding the final emplacement 

and crystallization of the granitoids. The onset of this HT event was probably dated by the 

oldest zircon populations (ca. 343–353 Ma) from this study implying that the extension has 

started already in the Tournaisian and culminated at the mid-late Visean. The progressive 

crustal stretching probably enhanced the partial melting of the subcontinental mantle and the 

crust leading to the production of the High Moulouya granitoid complex. Late injection of 

pegmatite veins might be responsible for the rejuvenation of some zircons at ca. 321–327 Ma. 

U–Pb data on zircon from the pegmatite, microgranite or aplite dykes are not available, but it 

is likely that Rb–Sr ages from Clauer et al. (1980) at ca. 300–310 Ma underestimate the final 

age of the magmatic activity in the region.

The presence of a Precambrian basement below the High Moulouya massif has been 

proposed by Oukemeni et al. (1995) based on U–Pb zircon discordia at 1520 Ma for the 

granodiorite and 1245 and 1804 Ma for the grey granite. Inherited zircons from this study 

provide further information about the nature of the basement. Several analysed samples are 

supplemented by a few Paleoproterozoic (1960–2025 Ma, sample M11, Perdreaux granite) and 

Neoproterozoic ages (550–650 Ma, samples M11 and M13A). Previous geochronological and 

geochemical studies proposed different sources for the magmatism in the High Moulouya 

massif (Oukemeni & Bourne, 1993; Gasquet et al., 1996; Elabouyi et a., 2019). The later 

suggested that the per-aluminous S-Type Perdreaux granite resulted from the anatexis of a 

Proterozoic middle crustal metapelite protolith. This agrees with the presence of inherited 

Proterozoic zircons which may correspond to detrital zircon grains in the sedimentary source. 
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The 550 Ma inherited zircons could indicate the maximum depositional age of metapelite. The 

Neo and Paleoproterozoic zircon populations are well known in the sediments of the north 

Gondwana margin and reflect the sedimentary recycling of the Eburnean and Pan-African 

orogenies (e.g. Ghienne et al., 2018).

In contrary, a more juvenile source has been proposed for the El Hassir granodiorite 

based on Lu–Hf in zircon isotopic data (El Mouraouah, 1994). As proposed by Elabouyi et al. 

(2019), the intrusion of juvenile and mafic magmas in the middle crust could have triggered its 

partial melting and the formation of felsic S-type magmas. In this model, the El Hassir 

granodiorite represents the less evolved juvenile magma whereas the grey and pink granites 

represent more fractionated felsic magmas. Nevertheless, the presence of Neoproterozoic 

inherited zircons (both in the El Hassir granodiorite and grey granite) may indicate a crustal 

contamination/assimilation or a mixed crustal and mantle origin as proposed for the grey granite 

based on Sr isotopes (Mrini et al., 1992).

4.1.3. Horsts belt

Apart from the Tanncherfi massif, all determined ages are older than the previously published 

data, by ca. 50 to 15 Ma. The new U–Pb ages (Fig. 5) measured in granitoids of the Horsts belt 

are ranging from 350 to 290 Ma, compared to the ca. 330–250 Ma range obtained by the Rb–

Sr method (Mrini et al., 1992; Ajaji et al., 1998). From our data, we distinguished one group of 

early Carboniferous ages (ca. 350–340 Ma) and another one of late Carboniferous ages (ca. 

310–300 Ma).

In the first group, two samples, one from Zekkara (J4-1) and another one from the 

Merguechoum (J5-2) massifs provide main populations from oscillatory zoned cores at 348.1 

± 2.3 Ma (n = 27) and 345.2 ± 2.8 Ma (n = 10), respectively (Fig. 5 e,b). We interpret these 

ages to reflect the first main early Carboniferous magmatic episode. Indeed, those late 

Tournaisian – early Visean ages are slightly older than the mid to late Visean volcanic activity 

early Carboniferous ages (ca. 350–340 Ma) and another one of late Carboniferous ages (ca. 

310–300 Ma).
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in the area, as shown by the intermediate to felsic lavas intercalated with Visean sediments in 

the Horsts belt (e.g. in the Tanncherfi massif) or in the nearby Jerada basin (Kharbouch, 1982, 

1994). The Rb–Sr ages from whole-rock isochrones obtained at 287 ± 8 Ma (i.e. early Permian) 

and 321 ± 15 Ma by Mrini et al. (1992) for the Zekkara and Merguechoum intrusions, 

respectively, cannot thus correspond to intrusion or crystallization ages. Only one inherited 

zircon of Paleoproterozoic age dated at ca. 1846 Ma reflects detrital zircon ages typically found 

in sediments derived from the West African Craton.

The next younger group of samples provided populations of late Carboniferous – early 

Permian ages. In Tanncherfi, an age of 303.5 ± 1.7 Ma (n = 19) was obtained on oscillatory 

zoned zircons from the biotite-granodiorite (J4-7) and is interpreted as the emplacement age 

(Fig. 5d). The Tanncherfi massif was previously dated at 286 Ma ± 10 Ma by Mrini et al. (1992) 

using Rb–Sr isochrones on several facies (monzogranite, monzodiorite, granodiorite and 

aplite). In contrary, Ajaji et al. (1998) divided the magmatic complex into two series: a K series 

and a Na series which includes the granodiorite sample from this study. They obtained for the 

K series an age of 344 ± 6 Ma (Rb–Sr whole-rock isochron) whereas the younger age of 325 ± 

10 Ma for the Na series was discarded because of its high MSWD (3.89). Therefore, in the light 

of our new result, we can speculate that the Na series mainly emplaced at ca. 303 Ma, i.e. at the 

end of the Carboniferous and that the K series could be as old as Visean (344 ± 6 Ma, Rb-Sr 

whole rock isochron) as shown by Ajaji et al. (1998).

In the Boudoufoud massif, the age of 305.2 ± 1.4 Ma (n = 14) obtained on oscillatory 

zircons is interpreted as reflecting the emplacement age of the magmatic complex (Fig. 5c). 

This Late Carboniferous age is much older compared to ages obtained by Tisserant (1977) at 

266 ± 9 Ma or by Mrini et al. (1992) at 259 ± 11 Ma with the Rb–Sr whole-rock isochron. The 

second zircon age population gives an age of 290.9 ± 2.1 Ma (n = 17) which may be also related 

to late to post magmatic recrystallization or late fluid circulation possibly responsible for the 

In the Boudoufoud massif, the age of 305.2 ± 1.4 Ma (n = 14) obtained on oscillatory 

zircons is interpreted as reflecting the emplacement age of the magmatic complex (Fig. 5c). 
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rejuvenation of Rb–Sr ages. Finally, the four oldest concordant analyses of zircon cores 

defining an age of 318 Ma might correspond to the age of the onset of anatexis preceding granite 

crystallization.

In the Beni Snassen granite, the main age population at 308.2 ± 2.7 Ma (n = 9) obtained 

from oscillatory zoned zircon crystals probably reflects the main magmatic event (Fig. 5a). The 

older age population at 323.4 ± 6.9 Ma (n = 3) obtained on small and dark luminescent zircon 

grains may represent crystals that grew during the early stage of crustal anatexis, similarly to 

the Boudoufoud magmatic complex. Therefore, based on our new data, the magmatism in the 

Beni Snassen massif is late Carboniferous and not early Triassic as previously suggested by a 

Rb–Sr whole-rock isochron (Mrini et al., 1992).

4.2. Regional implications

The last compilations by El Hadi et al. (2003, 2006), defined four magmatic pulses at 

ca. 330, 320–300, 290–270 and 270–260 Ma mostly based on Rb-Sr ages from the literature. 

Available U–Pb data obtained on zircon crystals from this study and from published data 

indicated that these periods of magmatism should be re-evaluated. In the following, based on 

our new results and some published robust geochronological data, two different magmatic 

episodes with contrasted geodynamic significance are proposed.

4.2.1. Late Devonian – Visean magmatic episode

Our data highlight a magmatic episode restricted to the Tournaisian – Visean interval in 

the Jebilet and High Moulouya massifs and in the Horsts belt (Zekkara, Merguechoum)(Fig. 6). 

Similar ages of intrusions where already reported for the potasic magmatic series in the 

Tanncherfi massif (Rb-Sr, Ajaji et al. [1998]), the Lalla Tittaf rhyolite in the Rehamna massif 

(U–Pb zircon age, Aït Lahna et al., 2018), and intrusive rocks (U–Pb zircon ages, Essaifi et al. 

[2003], Delchini et al. [2018] and Aït Lahna et al. [2018]) and rhyolitic lavas (40Ar/39Ar on 

sericite, Marcoux et al. [2005]) from the Jebilet massif (Fig. 6). Similar ages were also proposed 

the Jebilet and High Moulouya massifs and in the Horsts belt (Zekkara, Merguechoum)(Fig. 6). 
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but without isotopic dating for intrusions in the Tazekka (Huvelin, 1992), the Mekkam 

(Huvelin, 1983) or Merguechoum massifs (Muratet, 1994). Our new results indicate that the 

main pulse of this first magmatic period occurred between 350 and 330 Ma at the scale of the 

whole Meseta (Figs. 6, 7, 8), contributing to the early heating of the Carboniferous basins and 

their basement as shown by the widespread HT–LP metamorphism in early Carboniferous 

basins in the Jebilet massif (Dostal et al., 2005; Delchini et al., 2016), or by the presence of 

early andalusite porphyroblasts in the Lalla Tittaf schists in the Rehamna massif (Wernert et 

al., 2016) and in xenoliths’ metasedimentary protoliths from the Moroccan Massif Central in 

the area of Mrirt (Duchêne et al., 2022). Obviously, this does not preclude the possibility that 

this magmatic pulse may have started earlier in some part of the belt, since slightly older zircons 

in Jebilet, High Moulouya, Zekkara and Merguechoum massifs are measured with late 

Devonian to Tournaisian concordant ages. The partial melting of crustal source preceding the 

main intrusive phase may be triggered by the emplacement of mafic magmatic rocks in the deep 

crust as reflected by mafic enclaves in slightly younger granitoids (Essaifi et al., 2014). 

Together with our new datings from Jebilet massif, other U–Pb ages suggested the possible late 

Devonian – Tournaisian contribution to the earliest magmatic activity also in Western Meseta 

(Delchini et al., 2018). Importantly, this magmatic episode ended at around 330 Ma (Figs. 6, 

7).

The geodynamic context explaining this early magmatic activity is still debated 

(Hoepffner et al., 2005). Although we suggest a major episode of magmatism during Visean, 

earlier studies envisaged that the Eovariscan deformation phase was associated with a volcanic 

arc activity restricted to the Eastern Meseta. Piqué & Michard (1989) then Michard et al. (2010) 

emphasize the occurrence of unconformable, arc-type Upper Visean andesitic-felsic lava flows 

on top of the folded Ordovician-Devonian series of Eastern Meseta, in a supra-subduction 

setting. Accotto et al. (2020) consider the hypothesis of an Avalonian arc that would have 
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impinged the Eastern Meseta crust and then retreated. The senses of subduction are opposite, 

south-eastward for Michard et al. (2010), north-westward for Accotto et al. (2020). However, 

the presence of a major magmatic centre in the Jebilet indicates that the magmatism affected 

the whole Meseta domain. Furthermore, the witnesses of a subduction zone in the Meseta (either 

of the Rheic or Paleothetys ocean) is mainly based on the presence of early Carboniferous arc-

like volcanism (Kharbouch et al., 1985, Kharbouch, 1994). However, this chemical signature 

could reflect the inherited metasomatized nature of the mantle source (Chalot-Prat, 1995; 

Driouch et al. 2010; Ajaji et al. 1998) or crustal contamination (e.g. Xia and Li, 2019). We 

argue that the geodynamic context of the formation of the basins in the Meseta could be an 

intracontinental context not implying back-arc extension. In this context, the Eovariscan 

schistosity, HT-LP metamorphism and associated sub-horizontal shearing in the Meseta could 

be formed during an extensional phase at the north-western edge of Gondwana since the Upper 

Devonian (Frizon de Lamotte et al., 2013). Finally, this extension could culminate with the 

intrusion of granitoids at ca. 350–330 Ma in the whole Meseta (Fig. 7, 8).
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Our data agree with a second magmatic stage restricted to the very late Carboniferous – 
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are known in the Western Meseta in the 305–275 Ma period: e.g. 276 ± 3, 279 ± 2 and 295 ± 3 

Ma for the Azegour, Bouzouga and Tawrirt granites in the Western High Atlas (U–Pb, 
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Dostal et al., 2005) or 291 +16/-7 Ma for the Zaër (U–Pb TIMS on zircon, Cailleux et al., 2001) 

and 297 +16/-7 Ma for the Oulmès (U–Pb TIMS on zircon, Baudin et al., 2001) intrusions in the 

Moroccan Central Massif (Fig. 6). Studies by Marcoux et al. (2015) or Domeier et al. (2021) 

also showed the importance of volcanism in the easternmost Massif Central, with new U–Pb 

datings on zircon, ranging from 305 to 277 Ma. Some late/post-orogenic intrusions could be 

considered as a last magmatic pulse, e.g. at ca. 276 Ma for the Sebt Brikiine granite intrusion 

in the Rehamna (40Ar/39Ar on biotite, Chopin et al., 2014). As a whole, this second magmatic 

period is thus consistently synchronous with the main late Carboniferous – Cisuralian 

contractional events (Chopin et al, 2014) affecting both Meseta. Indeed, similar ages have been 

obtained from metamorphic rocks in the Rehamna (from 310 to 280 Ma, 40Ar/39Ar on micas, 

Chopin et al. [2014]; ca. 298 & 276 Ma, U–Pb on monazites in Wernert et al. [2016]) or Jebilet 

(306 ± 1 Ma,40Ar/39Ar on sericite in Essaifi et al. [2021]) massifs. Those ages have been 

interpreted as resulting from the formation of the intracontinental variscan belt in the Meseta 

(Hoepffner et al., 2005) into two major convergent steps reflecting global reorganization during 

the formation of Pangea (Chopin et al., 2014; Wernert et al., 2016)(Fig. 7).

4.3. Comparison with the magmatic activity in the European Variscan belt

The tempos of magmatic activity in the European Variscan belt are contrasted to those 

of Northwest Africa (Figs. 7, 8). Syn-orogenic magmatism related to subduction and further 

collision is widespread in the Variscan Iberian massif at ca. 360–330 Ma (Figs. 7b, 8; see 

Martínez Catalán et al. 2021 for a review). It mainly consists of (1) per- to meta-aluminous 

biotite-rich granitoids derived from partial melting of the upper mantle and the thickened 

orogenic lower crust and (2) per-aluminous two-mica granitoids derived from partial melting 

of the middle crust. This syn-orogenic early Carboniferous magmatism was followed by a late 

Visean extensional event represented by the development of large extensional core complexes 

and main intrusive phase (Figs. 7b, 8) ranging from 325 to 310 Ma (Figs. 7b, 8; Martínez-
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Catalán et al., 2014; Edel et al., 2018). Then, Gutiérrez‐Alonso et al. (2011), proposed the 

following two-step evolution for late- to post-Variscan orogenic intrusions, which both give 

birth to first (hot) mafic and then (cold) felsic magmas. The first one at 310–300 Ma (Figs. 7b, 

8) is supposed to be synchronous with the formation of the Cantabrian orocline (Gutiérrez-

Alonso et al., 2004; Weil et al., 2012). It is associated with initial partial melting of the sub-

continental lithosphere furtherly followed by progressive partial melting of the lower- to middle 

crust. The second one, at 300–285 Ma (Figs. 7b, 8), is interpreted as the consequence of the late 

orogenic delamination of the thickened lithosphere (Gutiérrez-Alonso et al. 2004; Fig. 7a). It 

results again in partial melting of the mantle and the orogenic crust due to asthenosphere 

upwelling, associated with minor extension and formation of post-orogenic basins (e.g. Ziegler 

and Dèzes, 2006). Alternatively, Pereira et al. (2015a) consider the ca. 315–280 Ma old calc-

alkaline batholiths of the Iberia arc to be formed during the subduction of the Paleotethys 

oceanic plate. 

A compilation of the magmatic evolution in the French Variscan Massif Central has 

been carried out by Rolin et al. (2009) and Vanderhaege et al. (2020). There, the first Upper 

Devonian tonalites and volcanites are interpreted as a supra-subduction arc type magmatism 

(Figs. 7a, 8; Pin and Paquette, 2002; Lardeaux et al., 2014). The early Carboniferous intrusive 

event was recognized and interpreted in terms of syncollisional magmatism where mantle- and 

crustal-derived magmatic rocks are formed in a thickened, mature orogenic plateau above a 

subducting plate (Vanderhaeghe et al., 2020). The subsequent magmatic event is associated 

with major NW-SE crustal extension crustal melting and activity of dextral and sinistral strike-

slip faults and is bracketed between 330 and 310 Ma (Figs. 7a, 8, Faure et al., 2009, Rollin et 

al., 2009). It is associated with HT–LP metamorphism that affected mostly the western part of 

the French Massif Central (e.g. Faure et al., 2002, 2009 and references therein), interpreted in 

terms of syn-collisional extension or lateral spreading of the partially molten lower crust (Faure 
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et al., 2002). In the eastern French Massif Central, Laurent et al., (2017) and Vanderhaeghe et 

al., (2020) proposed a southward decrease of the age of granitoids from ca. 345 Ma to ca. 310 

Ma which was interpreted in terms of a southward retreat of a northward subducting slab. The 

final magmatic stage (Figs. 7a, 8) was associated with the formation of the HT–LP migmatite 

Velay (Malavieille et al., 1990; Vanderhaeghe et al., 1999, Ledru et al., 2000; Gardien et al., 

2022) and Montagne Noire dome (Poilvet et al., 2011; Poujol et al., 2017) during late 

Carboniferous – early Permian (300–295 Ma), both interpreted as a result of late orogenic 

gravitational collapse (Malavieille, 1993) of the partially molten orogenic root due to 

delamination of the oceanic slab. 

However, for Franke et al. (2011), this late Carboniferous – early Permian HT event is 

not related to post-orogenic extension, but rather could be produced by a long-lasting plume 

system enhancing the westward propagation the Paleotethys ocean along a mega-shear zone 

within the European Variscan belt (e.g., Franke, 2014; Franke et al., 2017). The plume theory 

is based on spatial overlap of European Variscan belt with western margin of the Tuzo plume 

from ca 330 Ma, with maximum overlap of the Variscan belt with the central part of the plume 

at 290 Ma (Torsvik et al., 2014). Even if the plume theory was proposed already by Simancas 

et al., (2003, 2006) and Carbonell and Simancas (2004) based in 140 km long mid-crustal 

reflector in the IBERSEIS seismic profile, the geological evidences from Iberia are not 

convincing. Instead, most of authors consider Carboniferous gabbroic and basaltic magmatism 

to be linked to slab break-off following main phase of oceanic subduction (Pin et al., 2008) 

while Carboniferous HT event in Iberia and French Massif Central is considered to reflect post-

orogenic collapse (Martínez-Catalán et al., 2014 for review; Costa and Rey, 1995; Faure et al., 

2009). 
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4.4. Magmatic evolution in the variscan belt in a geodynamic context

Our results combined with a compilation of robust U–Pb or 40Ar/39Ar ages from the 

Meseta highlight two main magmatic events with contrasting tectonic settings compared to the 

European branch of the Variscan belt (Fig. 7c). The first one, early Carboniferous, group of 

magmas were emplaced at ca. 350–330 Ma (i.e. Tournaisian to Visean), i.e. synchronous with 

the formation of intracontinental, extensional basin in the whole Meseta. This magmatism 

forming both mafic mantle-derived magma (e.g. gabbro in the Jebilet and Rehamna massifs) 

and metaluminous granitoids (e.g. Oulad Ouaslam intrusion in the Jebilet, High Moulouya 

magmatic complex, or Zekkara and Merguechoum granitoids) operated synchronously with arc 

magmatism and further partial melting of the thickened orogenic root in Iberia and in the French 

Massif Central (e.g. Chelle-Michou et al., 2017; Fréville et al., 2022; Pereira et al., 2023) (Fig. 

9a). We interpreted the early Carboniferous extensional event affecting Moroccan Meseta to be 

due to the fragmentation of Gondwana associated with the opening of the Paleotethys (Fig. 9a; 

Stampfli et al., 2003; 2013; Martínez-Catalán et al., 2021; Edel et al., 2018). Such a 

fragmentation may have started as soon as the Upper Devonian (Frizon de Lamotte et al., 2013). 

A similar bimodal association in Iberia (e.g. Beja magmatic complex, Jesus et al., 2007) have 

in contrary been interpreted as a magmatic activity in a suprasubduction setting, during the 

closure of either the Rheic or the Rhenohercynian ocean (see discussion in Martínez Catalán, 

2021). Here, we propose that there can be a causal link between the two contrasting tectonic 

and magmatic Variscan provinces as shown in the simplified plate reconstructions in the Figure 

9a (modified after Martínez Catalán et al., 2021): i.e. (1) propagation of the Paleotethys ocean’s 

tip within the Meseta and (2) simultaneous closure of the Rheic ocean and further collision of 

Mid-Variscan allochthon (Avalonia) with the Mid-Variscan autochton (European variscan 

belt). However, the existence of the Paleotethys ocean before the Permian in this area is disputed 

(see Franke, 2014; Franke et al., 2017). Our model is also supported by detrital zircon studies 

and magmatic Variscan provinces as shown in the simplified plate reconstructions in the Figure 
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indicating major modification of detrital zircon spectra from Upper Devonian and early 

Carboniferous extensional basins, compatible with the erosion of orogenic topography further 

North (Jouhari et al., 2022). However, this modification is interpreted by Accotto et al. (2020) 

as reflecting the contractional, Eovariscan, southern propagation of the Avalonian promontory 

(Sehoul Block) towards the Meseta.

In contrast to early Carboniferous collision in the European Variscides, the 

(intracontinental) Variscan collisional event in the Meseta took place in two steps during late 

Carboniferous – early Permian (Fig. 9b and c; Chopin et al., 2014). The few oldest syn-orogenic 

magmatic intrusions in the Meseta are late Carboniferous (ca. 305 Ma, this study) and are 

synchronous with the oldest age from metamorphic rocks from the Rehamna massif (310 Ma, 

40Ar/39Ar ages in Chopin et al. [2014]). This first tectonometamorphic event is interpreted as 

reflecting the onset of the collision of Gondwana with the European Varisan belt. Indeed, at 

that time (Fig. 9b,c), magmatism developed (1) in Iberia during the formation of the cantabrian 

orocline (Gutiérrez‐Alonso et al., 2011), (2) in the Massif central during syn-orogenic extension 

(Faure et al., 2002) (Fig. 7, Fig. 8b). Therefore, the synorogenic magmatism and generalized 

shortening of northern Gondwana (Meseta) coincides with syn-compressional deformation of 

Iberian orocline and extension in the French Massif Central (Fig. 9b). Therefore, we propose 

that the restrained late Carboniferous magmatic activity in the Meseta is contemporaneous with 

the closure of intracontinental basins at the north Gondwana margin and the Paleotethys Ocean 

further East (see also Pereira et al., 2015b). This event is then followed by an early Permian 

head-on collision between Gondwana and Laurussia (Fig. 9c)(Chopin et al., 2014, Edel et al., 

2015, 2018). In the Meseta, it enhanced the formation of late/post orogenic magmatism whereas 

in the European Variscan belt, the magmatism result from major late/post orogenic extension, 

maybe enhanced by a continuous retreat of northward subducting Paleotethys plate (Fig. 9c; 
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reflecting the onset of the collision of Gondwana with the European Varisan belt. Indeed, at 

that time (Fig. 9b,c), magmatism developed (1) in Iberia during the formation of the cantabrian 

reflecting the onset of the collision of Gondwana with the European Varisan belt. Indeed, at 

Ar ages in Chopin et al. [2014]). This first tectonometamorphic event is interpreted as 

synchronous with the oldest age from metamorphic rocks from the Rehamna massif (310 Ma, 

Ar ages in Chopin et al. [2014]). This first tectonometamorphic event is interpreted as 

magmatic intrusions in the Meseta are late Carboniferous (ca. 305 Ma, this study) and are 

synchronous with the oldest age from metamorphic rocks from the Rehamna massif (310 Ma, 

Carboniferous – early Permian (Fig. 9b and c; Chopin et al., 2014). The few oldest syn-orogenic 

magmatic intrusions in the Meseta are late Carboniferous (ca. 305 Ma, this study) and are 

(intracontinental) Variscan collisional event in the Meseta took place in two steps during late 

Carboniferous – early Permian (Fig. 9b and c; Chopin et al., 2014). The few oldest syn-orogenic 

contrast to early Carboniferous collision in the European Variscides, the 

(intracontinental) Variscan collisional event in the Meseta took place in two steps during late 

contrast to early Carboniferous collision in the European Variscides, the 

(intracontinental) Variscan collisional event in the Meseta took place in two steps during late 



35

Gutiérrez-Alonso et al., 2008, Pereira et al., 2014; Laurent et al., 2017, Vanderhaeghe et al., 

2020).

5. Conclusion

• New LA-ICP-MS U–Pb zircon data of intrusive rocks show the existence of two distinct 

early Carboniferous and late Carboniferous – early Permian magmatic pulses in the 

whole Meseta domain, and not three, as advocated in previous papers.

• Our new data outline for the first time a widespread intrusive, early Carboniferous (348-

337 Ma) magmatic event in the Eastern Meseta.

• The first pulse of magmatism in the Meseta at ca. 350–330 Ma is synchronous with the 

Eovariscan phase and the development of intracontinental (?) basins in all the Meseta. 

We propose that it might be related to a generalized extension of the north Gondwana 

margin associated with the propagation of the Paleotethys ocean.

• After a gap of ca. 25–30 Myr, the second pulse of magmatism at 305–275 Ma is 

synchronous with the main variscan convergent event(s) in the Meseta, in a context of 

intracontinental orogeny. It is interpreted to result from collision of Gondwana with the 

Europena Variscan belt (closure of the Paleotethys Ocean propagator tip) followed by head-

on collision with Laurussia. 

• The two events are compared to magmatic events in main European Variscan branch, 

which leads to an updated tectonic model of Pangea formation.

• Our data are giving new clues on the age and nature of the basement bellow the 

Paleozoic cover.
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Figures

Figure 1. Geological map of the Northwest African Variscides in NW Algeria and Morocco 

(adapted from Hollard et al., 1985- Geol. Map of Morocco). Abbreviations: AB: Azrou Basin; 

Bdf : Boudoufoud; DB: Debdou-Mekkam; FB: Fourhal Basin; GR: Ghar Roubbane; Gsa: 

Guemassa; KB: Khenifra-Azrou Basin; Mr: Merguechoum ; SAF: South Atlas Front; SB: Sidi 

Bettache Basin; SMF: South Meseta Fault Zone; SMFr: South Meseta Front; SMZ: South 

Meseta Zone; SVDF: South Variscan Deformation Front; TBBFZ: Tazekka-Bsabbis-Berkit 

Fault Zone; Tn: Tanncherfi ; WHA: Western High Atlas; WMSZ: West Meseta Shear Zone; 

Za: Zaian Massif; Zek: Zekkara.

Figure 2. Geological map of (a) the Jebilet massif (modified after from Huvelin, 1977; Delchini 

et al., 2018), (b) the High Moulouya massif (modified after Emberger, 1965) and the Palaeozoic 

inliers from the Horsts belt in Eastern Meseta (modified after Hollard et al., 1985).

Figure 3. Kernel density plots, Th/U values, probability density plots of concordant 206Pb/238U 

dates (from 250 to 500 Ma), Tera-Wasserburg diagrams and selection of CL images of zircons 

from the Oulad Ouaslam granodiorite (Jebilet massif).

Figure 4. Kernel density plots, Th/U values, probability density plots of concordant 206Pb/238U 

dates (from 250 to 500 Ma), Tera-Wasserburg diagrams and selection of CL images of zircons 

from the High Moulouya massif.

Figure 5. Kernel density plots, Th/U values, probability density plots of concordant 206Pb/238U 

dates (from 250 to 500 Ma), Tera-Wasserburg diagrams and selection of CL images of zircons 

from the Beni Snassen massif and the Horsts belt.

Figure 6. Compilation of available U–Pb and 40Ar/39Ar geochronological ages from magmatic 

rocks in the Meseta, see Table 1. References: 1. Aït Lahna et al. (2018); 2. Baudin et al. (2001), 

3. Baudin et al. (2003); 4. Chevrement et al. (2001); 5. Chopin et al. (2014); 6. Delchini et al. 

(2018); 7. Domeier et al. (2021); 8. Essaifi et al. (2003); 9. Ettachfini et al. (2018); 10. Fekkak 

et al. (2018); 11. Hadimi et al. (2018) in Domeier et al. (2021); 12 Hadimi et al. (2021); 13. 

Marcoux et al. (2008); 14. Oukemini et al. (1995); 15. Remaci-Benaouda (2005); 16. Tahiri et 

al. (2010); 17. Watanabe (2002); 18. Youbi et al. (2018) in Domeier et al. (2021).

Figure 7. Probability density plots of available U–Pb geochronological ages from the French 

Massif Central (FMC), Iberia and Meseta. Data from the French Massif Central have been 

extracted from Vanderhaeghe et al. (2020). Data from Iberia have been extracted from Jesus et 

al. (2007), Martínez-Catalán et al. (2014), Pereira et al. (2018) and Ribeiro et al. (2019). Data 

(2018); 7. Domeier et al. (2021); 8. Essaifi et al. (2003); 9. Ettachfini et al. (2018); 10. Fekkak 

et al. (2018); 11. Hadimi et al. (2018) in Domeier et al. (2021); 12 Hadimi et al. (2021); 13. 

Marcoux et al. (2008); 14. Oukemini et al. (1995); 15. Remaci-Benaouda (2005); 16. Tahiri et 

Baudin et al. (2003); 4. Chevrement et al. (2001); 5. Chopin et al. (2014); 6. Delchini et al. 

(2018); 7. Domeier et al. (2021); 8. Essaifi et al. (2003); 9. Ettachfini et al. (2018); 10. Fekkak 

et al. (2018); 11. Hadimi et al. (2018) in Domeier et al. (2021); 12 Hadimi et al. (2021); 13. 
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from the FMC and Iberia can be found in Supplementary material 5. Data from the Meseta can 

be found in Table 1.

Figure 8. Magmatism (early arc magmatism and granitoids) in the Northwest African and 

Western European Variscan belt. Modified after Martínez-Catalán et al. (2021) and Schulmann 

et al, (2022). Lithotectonic zones: Central Iberian zone (CIZ); Ossa-Morena zone (OMZ), South 

Portuguese zone (SPZ); Galicia-Trás-os-Montes zone (GTMZ); West Asturian-Leonese Zone 

(WALTZ); Cantabrian Zone (CZ). Granitoïds complex from the Meseta: Western High Atlas 

(WHA); Sebt Brikiine granites (Sbr.); Jebilet intrusions (Jeb.); Oulmès (Oul); Zaër (Zar); 

Boudoufoud (Bdf); Merguechoum (Mr); Zekkara (Zek); Tiffrit-Saïda (TS). Main shear zones 

in the Meseta: South Meseta Front (SMFr); West Meseta Shear Zone (WMSZ); Tazekka-

Bsabbis-Berkit Fault Zone (TBBFZ).

Figure 9. Paleogeographic reconstruction showing the contrasting tectonic context of the 

development of the variscan magmatism. Early Carboniferous reconstruction modified after 

after Martínez-Catalán et al. (2021). Late Carboniferous and early Permian reconstructions 

modified after Chopin et al. (2014) and Edel et al. (2018).modified after Chopin et al. (2014) and Edel et al. (2018).

after Martínez-Catalán et al. (2021). Late Carboniferous and early Permian reconstructions 

modified after Chopin et al. (2014) and Edel et al. (2018).

development of the variscan magmatism. Early Carboniferous reconstruction modified after 

after Martínez-Catalán et al. (2021). Late Carboniferous and early Permian reconstructions 

Paleogeographic reconstruction showing the contrasting tectonic context of the 

development of the variscan magmatism. Early Carboniferous reconstruction modified after 

Paleogeographic reconstruction showing the contrasting tectonic context of the 

 Merguechoum (Mr); Zekkara (Zek); Tiffrit-Saïda (TS). Main shear zones 

in the Meseta: South Meseta Front (SMFr); West Meseta Shear Zone (WMSZ); Tazekka-

(WHA); Sebt Brikiine granites (Sbr.); Jebilet intrusions (Jeb.); Oulmès (Oul); Zaër (Zar); 

 Merguechoum (Mr); Zekkara (Zek); Tiffrit-Saïda (TS). Main shear zones 

(WALTZ); Cantabrian Zone (CZ). Granitoïds complex from the Meseta: Western High Atlas 

(WHA); Sebt Brikiine granites (Sbr.); Jebilet intrusions (Jeb.); Oulmès (Oul); Zaër (Zar); 

 Merguechoum (Mr); Zekkara (Zek); Tiffrit-Saïda (TS). Main shear zones 
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Table
Table 1. Available geochronological ages from magmatic rocks of the Meseta.

Auxilliary material
Auxilliary material 1. Description of the samples/lithologies

Auxilliary material 2. U–Pb isotopic data on zircon for the Jebilet massif.

Auxilliary material 3. U–Pb isotopic data on zircon for the High Moulouya massif.

Auxilliary material 4. U–Pb isotopic data on zircon for the Horsts belt.

Auxiliary material 5. Compilation of U–Pb and 40Ar/39Ar ages of igneous rocks from the 

French Massif central (extracted and modified after Vanderhaege et al. [2020]) and Iberia 

(extracted and modified after Jesus et al. [2007], Martínez Catalán et al. [2014], Pereira et al. 

[2018] and Ribeiro et al. [2019]).

(extracted and modified after Jesus et al. [2007], Martínez Catalán et al. [2014], Pereira et al. (extracted and modified after Jesus et al. [2007], Martínez Catalán et al. [2014], Pereira et al. 

Ar ages of igneous rocks from the 

French Massif central (extracted and modified after Vanderhaege et al. [2020]) and Iberia 

(extracted and modified after Jesus et al. [2007], Martínez Catalán et al. [2014], Pereira et al. 

U–Pb isotopic data on zircon for the Horsts belt.

Ar ages of igneous rocks from the 

U–Pb isotopic data on zircon for the High Moulouya massif.

U–Pb isotopic data on zircon for the Horsts belt.

U–Pb isotopic data on zircon for the Jebilet massif.

U–Pb isotopic data on zircon for the High Moulouya massif.
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