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We study two models of overdamped self-propelled disks in two dimensions, with and without
aligning interactions. Active mesoscale flows leading to chaotic advection emerge in both models in
the homogeneous dense fluid away from dynamical arrest, forming streams and vortices reminiscent
of multiscale flow patterns in turbulence. We show that the characteristics of these flows do not
depend on the specific details of the active fluids, and result from the competition between crowding
effects and persistent propulsions. Our results suggest that dense active fluids present a type of
‘active turbulence’ distinct from collective flows reported in other types of active systems.

Active matter has emerged as an important class of
nonequilibrium systems, in which the injection of energy
at the level of individual particles can produce emerging
collective phenomena at large scales [1]. Among these,
collective motion [2] has attracted much interest because
of its biological and social interest, e.g. for wound heal-
ing [3] or crowd management [4]. Collective motion can
be ordered, as in flocking [5, 6] where local interactions
between individuals can lead to global motion along a
given direction, or be more irregular or even chaotic, as
in bacterial swarms [7] or active nematics [8] which dis-
play intermittent swirling motion.

The term ‘active turbulence’ [9] recently became popu-
lar to describe chaotic mesoscale flows in various systems,
from dense epithelial tissues [10] to suspensions of micro-
tubules and kinesin motors [11]. Unlike classical turbu-
lence, active turbulence is observable in the absence of
inertia. Moreover, the energy injection is not externally
imposed but self-generated at small scales [9]. A recent
classification [9] organises active turbulent models into
four classes, depending on their symmetries: A model’s
order parameter can be either polar or nematic; in addi-
tion, it is called “wet” if it conserves momentum, for ex-
ample if hydrodynamic interactions dominate, and “dry”
if it does not.

In nematic systems [12–14] flow derives in wet and
dry conditions from an instability in the dynamics of
the nematic director field, with an emerging length scale
determined by the balance between active and nematic
stresses [12, 14]. Long-range velocity correlations in
these flows are universal [14]. Most studies of polar ac-
tive turbulence have either considered wet systems of
swimmers [15], or the Toner-Tu-Swift-Hohenberg equa-
tion [16, 17], which describes incompressible flows in

*These authors contributed equally to the work

dry systems. In this latter description, the polarisation
and the velocity are assumed to be aligned: this is ap-
propriate in the absence of steric interactions. Diverse
particle-based models have also been shown to display
some type of active turbulence: extensions of the Vicsek
model [18, 19], self-propelled rods [13, 16, 20, 21] and
dumbbells [22], microswimmers with hydrodynamic in-
teractions [23, 24]. All these models comply with the
existing classification [14].

Here, we establish that the simplest class of active
matter models – overdamped self-propelled disks – also
develops mesoscale chaotic flows qualitatively similar to
active turbulence, see Fig. 1. In two distinct models, we
find that the homogeneous dense active fluid develops ex-
tended spatial velocity correlations [25–30] which advect
particles along a disordered array of streams and vor-
tices, accompanied by hallmarks of active turbulence, in-
cluding advective mixing. Within the existing symmetry
classification [9], the natural comparison is polar turbu-
lence with dry friction [16] but our results show different
scaling behaviour. We attribute this to effects of parti-
cle crowding, which is absent from previous descriptions.
Based on these observations we argue for a new class
of active turbulent behaviour, which should encompass
diverse models such as vibrated disks [31], self-aligning
self-propelled particles [32, 33], or self-propelled Voronoi
models of confluent tissues [34].

We study N overdamped athermal self-propelled parti-
cles in a square box of linear size L with periodic bound-
ary conditions that follow the overdamped dynamics

ṙi = −µ
∑

j ̸=i

∇iU(rij) + µpi, (1)

where ri is the position of particle i, pi the self-propulsion
force, µ the particle mobility, rij = |ri−rj |, and particles
interact via a repulsive Weeks-Chandler-Andersen poten-
tial U = 4ε[(σij/rij)

12−(σij/rij)
6+1/4] for rij < 21/6σij
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FIG. 1. (a) Configuration snapshot at ϕ = 0.8425 of N = 16384 AOUPs with velocity field (arrows) and corresponding
velocity amplitude (color) showing fast and slow regions of collective motion for τp = 104. The corresponding vorticity field
with streamlines in (b) highlights the presence of streams and vortices in the velocity field. (c,d) are for N = 12800 aligning
ABPs, that show a comparable phenomenology at ϕ = 0.97 and γ = 2.5.

and U = 0 otherwise, where σij = (σi + σj)/2 with σi

the diameter of particle i.
The dynamics of the self-propulsion forces pi defines

the active model [35]. We considered two distinct dynam-
ics, active Ornstein-Uhlenbeck particles (AOUPs) [36, 37]
and aligning active Brownian particles (ABPs) [38–41].
To frustrate positional order, we introduce size polydis-
persity. The diameters of the AOUPs are drawn from
a uniform distribution of mean σ = σi and polydisper-
sity 20% [37, 42]. The ABPs are a 50:50 bidisperse mix-
ture with diameters σ and 1.4σ. The packing fraction
is ϕ = 21/3πNσ2

i /(4L
2). The unit length is σ, the unit

energy is ε, and the unit time is µσ2/ε. We measure ve-
locities vi = ṙi−N−1

∑
j ṙj in the center-of-mass frame.

For AOUPs, the self-propulsion forces obey:

τpṗi = −pi +
√
2D0ηi, (2)

where τp is the persistence time,D0 the diffusion constant
of a free particle, and ηi is a Gaussian white noise of
zero mean and unit variance, ⟨ηi(t)ηj(0)⟩ = 1δijδ(t).
From Eq. (2), it follows that the amplitude of the self-
propulsion force fluctuates around

√
⟨|pi|2⟩ =

√
2D0/τp.

We use D0 = 1, and vary τp towards large values. We
use system sizes up to N = 262144 (depending on the
state point), to ensure that results are not significantly
affected by finite size effects.

For aligning ABPs, pi = v0ui with a constant ampli-
tude v0 and orientations ui = (cos θi, sin θi) evolving as

θ̇i =
γ

ni

∑

j

f(rij) sin(θj − θi) +
√

2Drξi, (3)

with γ the alignment strength, f(rij) = 1 if rij/σij < 2
and zero otherwise, ni =

∑
j f(rij) the number of par-

ticles interacting with particle i, and Dr the rotational
diffusivity which controls the single-particle persistence
time τ = D−1

r . We fix v0 and Dr to 1, and use modest

γ values, which are well below the onset of polar order.
We use system sizes up to N = 51200.

Fig. 1 illustrates the emergent flows that are the main
subject of this work (see [43] for corresponding movies):
it displays velocity (v) and vorticity (∇ × v, coarse-
grained over a length 4) fields, as well as streamlines. For
suitable parameters, both models support states where
the density is homogeneous with clear signatures of active
turbulence with non-trivial space and time fluctuations of
the velocity field leading to mesoscale chaotic flows. The
patterns in Fig. 1 are highly dynamical and constantly
form new networks of streams and vortices. Extended ve-
locity correlations appear in a broad range of conditions
(phase-separated [44], glassy [26, 29], jammed [25, 45],
crystalline [28]), but the active turbulent phenomenol-
ogy discussed here is more complicated to observe.

The emergence of active turbulence in AOUPs is sur-
prising because there are no interactions favouring align-
ment of the self-propulsion forces, neither explicitly nor
via shape anisotropy. Instead, the flows emerge because
extended velocity correlations are produced by the cou-
pling between persistent self-propulsion and density fluc-
tuations [28–30]. The relevant densities are large enough
to avoid motility induced phase separation [46] and small
enough to avoid dynamic arrest [37]. For AOUPs under
these conditions, advective flows develop gradually as τp
increases [30] [τp = 104 in Figs. 1(a,b)]. This observa-
tion motivates our second model with weak alignment, in
which similarly persistent self-propulsion arises from the
aligning interactions, even if isolated particles decorrelate
quickly (τ = 1). This drives aligning ABPs towards the
same turbulent behaviour as highly-persistent AOUPs.

Despite differences in microscopic details, Fig. 1 shows
that the velocity correlations are almost indistinguish-
able in both models, as confirmed below. These simi-
larities support our identification of a new class of ac-
tive turbulent systems, whose origin is the interplay of
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FIG. 2. (a,b) Velocity autocorrelations in time and (c,d)
kinetic energy spectra defined in Eq. (4) for (a,c) AOUPs
at various persistence times τp and (b,d) aligning ABPs for
a range of alignment strengths γ. For AOUPs, ϕ = 0.84
for τp = 102, 103 and ϕ = 0.8425 for τp = 104. For ABPs,
ϕ = 0.97.

self-propulsion and crowding. In all cases, velocity cor-
relations are much longer-ranged than the correlations
of the self-propulsion forces pi which are either absent
(AOUPs) or weak (aligning APBs): velocity correlations
are an emerging property. This situation is in contrast
to the mechanism of correlated propulsions described by
existing continuum theories [16], and supports our claim
that these observations are not included in the current
classification of active turbulent systems [9].

We now provide quantitative measurements support-
ing these conclusions. Figs. 2(a,b) show velocity auto-
correlation functions, ⟨vi(0) · vi(t)⟩ /

〈
|v|2

〉
, which reveal

the temporal behaviour of the flows. Unlike the expo-
nential decay of simple fluids [47], we observe a two-step
decay in both models becoming more pronounced with
more turbulent flows. These two time scales respectively
correspond to the short collision time, and the increas-
ing decorrelation time of the self-propulsion forces. In
AOUPs, this longer correlation time corresponds to the
imposed persistence time τp; in ABPs, it is controlled by
the alignment strength γ (recall that τ = 1 throughout).

We quantify spatial velocity correlations using the ana-
log of the kinetic energy spectrum [16]

E(k) =
2π

L2
k
〈
|ṽ(k)|2

〉
, (4)

with k = |k| and ṽ(k) =
∫
d2r v(r) exp (−ik · r) the

Fourier transform of the velocity field v(r) =
∑

i viδ(r−
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FIG. 3. Real-space velocity correlations C∥(r) and C⊥(r) de-
fined in Eq. (5), for AOUPs and ABPs, as shown. persistence
times τp and alignment strength γ respectively as indicated in
the legend. The correlation length in C∥(r) (a,c) and the am-
plitude of negative correlations in C⊥(r) (b,d) can be tuned
by increasing τp or γ respectively. Volume fractions ϕ are as
in Fig. 2.

ri), see Figs. 2(c,d). Clearly, E(k) is directly related to
velocity correlations in real space. For all parameters,
E(k) ∼ k for small enough k, which implies the existence
of a maximum length scale ξ beyond which velocities are
uncorrelated, so that ⟨|ṽ(k)|2⟩ = const for kξ ≪ 1. This
ξ is the correlation length of the velocities.
For wave vectors k intermediate between 2π/ξ and

2π/σ, we report a decay of the energy spectrum E(k) ∝
k−α with α ≃ 1/2. This corresponds to a scale-free
decay ∼ rα−1 of velocity correlations for length scales
between the particle size σ and the correlation length
ξ [48]. The established classes [9] of active turbulent
behaviour involve significantly larger exponents (for ex-
ample α = 8/3 [16]). Physically, α quantifies the obser-
vation that the velocity fields in Figs. 1(a,c) display self-
similar structure up to the (parameter-dependent) corre-
lation length ξ. For systems of non-aligning self-propelled
particles, previous studies [29, 30, 49] reported results
qualitatively similar to those of Fig. 2 but suggested a
value α = 1, consistent with hydrodynamic models of
self-propulsion coupled to density fluctuations.

To further understand and characterise these flow pat-
terns, we decompose the real-space velocity correlations
into longitudinal (α =∥) and transverse (α =⊥) compo-
nents:

Cα(r) =

〈∑
i,j v

α
i v

α
j δ(rij − r)

〉

〈∑
i,j δ(rij − r)

〉 , (5)

where vαi is the velocity component in the direction paral-
lel or transverse to the unit vector (ri−rj)/rij . The total
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FIG. 4. (a-d) Time series of configurations for aligning ABPs at γ = 2.5, ϕ = 0.97. Particles are coloured according to
their x position at some time in the steady state denoted t0 = 0. (e,f) Mean-squared displacement ∆2(t) (full symbols) and
mean-squared displacement difference of initially close by particles D2(t) (open symbols) for (e) AOUPs and (f) aligning ABPs.
The indicated times in (f) correspond to the snapshots in (b-d). Volume fractions ϕ are as in Fig. 2.

velocity correlation function is C(r) = C∥(r)+C⊥(r), but
this decomposition is distinct from the Fourier analysis
of [29, 30], where v is instead resolved parallel and per-
pendicular to the wave vector k. Fig. 3 shows results in
both models, for a range of state points. The decomposi-
tion separates the long-ranged positive correlations along
streams [in C∥(r)], and the anti-correlations characteris-
tic of vortices [in C⊥(r)] [50]. The data confirm a similar
structure for both models, and show quantitatively that
velocities are correlated over tens of particle diameters
for the more persistent systems, in agreement with the
peak position in E(k) and the snapshots in Fig. 1. The
characteristic size ξ of the velocity patterns can be tuned
via the persistence time τp of AOUPs, or the alignment
strength γ of aligning ABPs. This leads in both cases to
more extended streams and vortices.

These emerging velocity correlations dramatically im-
pact particle transport. This is revealed in Fig. 4 by ‘dye-
ing’ particles according to their position at some initial
time t0 in the steady state, and watching them spread
over time. Transport is dominated at initial times by
rapid advection along extended streams, as revealed by
the initial distortion of the pattern with mutually invad-
ing branches that stretch and fold over a range of length
scales, resembling chaotic advection (see times t1 and t2).
Only at large times do particles diffuse into regions of dif-
ferent colours which eventually blends the dyes. We also
highlight three tracer particles which are initially very
close, showing that particle pairs can be either advected
large distances together or be separated almost immedi-
ately. These time-dependent patterns are qualitatively
similar to the chaotic advection created for instance by
time periodic flows [51].

We quantify these observations using the mean-
squared displacement ∆2(t) = ⟨|∆ri(t)|2⟩ and the mean-

squared distance between initially close-by particles (as
studied in inertial turbulence [52–54]),D2(t) = ⟨|∆ri(t)−
∆rj(t)|2⟩, where ∆ri(t) = ri(t) − ri(0) and the average
is restricted to nearby pairs of particles with |ri(0) −
rj(0)| < 1.15σij [55]. By construction, both quantities
vanish at t = 0, whileD2 ∼ 2∆2 ∼ t holds in the diffusive
regime at large times (for which particles i, j eventually
decorrelate), see Fig. 4(e,f).

Self-propulsion causes ballistic motion ∆2 ∼ t2 at small
times. The corresponding velocity decreases significantly
for AOUPs as τp is increased at constant D0, mirroring
the reduction in strength of pi. In contrast, the velocity
increases slightly with γ for ABPs. This ballistic regime
is quickly interrupted by interparticle collisions at a cor-
responding very small length scale. At very large times,
memory of the self-propulsion forces is lost and particles
diffuse, ∆2 ∼ t. Between these two limits, we observe an
intermediate advective (super-diffusive) regime, which is
demarcated by the two well-separated time scales found
in the velocity auto-correlation function (recall Fig. 2).

The advection is also apparent in D2 which is similarly
ballistic at very short times. At intermediate times, D2

grows significantly slower than ∆2 showing that pairs of
particles can be advected together over extremely large
distances, leading to D2 ≪ ∆2. Eventually, particles’
memory of their initial conditions is lost: this leads to
super-diffusive scaling, as D2 ‘catches up’ with the long-
time diffusive scaling D2 ∼ 2∆2 ∼ t.

In conclusion, we have established that a novel form of
active turbulence generically emerges in two well-studied
models of dry, isotropic, self-propelled particles. The ob-
served mesoscale flows should be observable in a broad
range of systems; they resemble other active chaotic
flows, displaying scale-free behaviour from the particle
size up to a correlation length scale that is easily tuned
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by the model parameters. However, these flows emerge
here under the competition of highly persistent forcing
and crowding in an otherwise homogeneous dense fluid.
As previously developed theoretical descriptions of ac-
tive turbulence rely on either polar or nematic interac-
tions [9], new approaches are needed that take into con-
sideration the effect of steric crowding. Unusual trans-
port properties emerge from the correlated velocity fields,
including chaotic advection over large distances, which
directly impacts mixing dynamics. Such properties may
be useful when energy sources for the active particles
are localised [56], or in active matter with open bound-
aries [3], or for mixtures of active particles [57]: all these
cases deserve further studies.
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