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Abstract
We develop automated methods for fault detection utilizing static stress and
deformation fields at the onset of failure derived from numerical analysis. We
calculate combinations and normalization of the distance from the Mohr circle
to the Coulomb envelope, and of the second deviatoric strain invariant. A vari-
ation of the Cauchy distribution of these fields allows us to focus on the low
values indicating rupture, with the help of the scale parameter 𝛿. A threshold is
then applied to decide at each spatial node of the mesh whether the material has
reached failure or not. We then determine fault lines and planes from these iso-
lated failure zones using image processing techniques, such as the Hough and
the Radon transforms, or through a combined approach involving automated
sorting of the nodes reaching failure through the k-means clustering technique
followed by polynomial fitting to retrieve analytic expressions of the fault curves
(in 2D) or fault surfaces (in 3D). The methods are efficient except when the
stress field results in diffuse rupture zones that do not localize onto fault sur-
faces despite tuning 𝛿. We also highlight the advantages of using the combined
clustering/poly-fitting approach for 3D models compared to the image process-
ing techniques. These automated fault detection methods should be useful in
the interpretation of diverse failure mechanisms obtained through parametric
sensitivity analyses requiring hundreds of simulations. The stress and strain
fields used were derived from a numerical implementation of limit analysis, but
classical finite-difference or finite-element techniques could have been used.

KEYWORDS
automatedmethods, fault detection, geomechanical models, numerical simulations, stress and
deformation analysis, underground exploration

1 INTRODUCTION

When rock experiences stress that surpasses its resistance, it undergoes rupture, a phenomenon that can occur due to
a range of factors, including tectonic plate movements, volcanic activity, or human-induced activities such as mining,
excavation, fluid injection, etc. Upon further loading, fractures coalesce into fault surfaces such that the rock on one side
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of the fault shifts relative to the other side. Fault surfaces can be oriented vertically, horizontally, or obliquely at a specific
angle, depending on the type and direction of the stress that caused the rupture.1,2 Accurate detection and prediction of
these fault planes are crucial for seismic and ground motion evaluations,3–6 and geologic hazard assessment.7,8
With the recent advancements in computing technologies, whether applied in geotechnical engineering or earth sci-

ence, numerical models have become indispensable for studying crustal and lithospheric deformations. These models
have seen an increasing utilization in various areas, ranging from predicting the intricate behavior of complex structures
and identifying potential instabilities in boreholes or caverns9–12 to conducting fault analysis,13 studying rock deformation
and fracturing,14 assessing groundwater resources, fluid pressure and analyzing fluid migration.15,16
In addition, be it for mineral mining17–19 or simulation of geological evolution,20–23 it is essential to accurately identify

and incorporate faults into the model. But simulating geological growth and fault sliding are always considered a chal-
lenge for numerical applications due the discontinuous nature of the displacements, and to their dependency on both
material weakening and the erosion/sedimentation process.24–27 In general, numerical approaches can be divided into
continuous and discontinuous methods. As their name suggests, continuous methods such as the Finite Element Method
(FEM) are used to model materials that exhibit continuous behavior, while discontinuous methods such as Discrete Ele-
ments Methods (DEM) are used for fragmented behavior where interfaces and contacts are defined between the discrete
elements. Both approaches have their own advantages and limitations, and the choice of the method depends on the
specific application and the properties of the material being modeled.28,29 For example, while Castro et al.30 investigated
fault-slip using 2D FEM and Hofmann and Scheepers31 simulated fault slips by applying a cohesive strength change of
theMohr-Coulomb failure criterion using the continuous boundary element method (BEM), Garcia and Bray32,33 showed
that DEM analysis are suited for capturing the behavior of granular materials subjected to faulting.
In this paper, we are interested in developing a method that allows us to automatically detect faults when the material

is at the onset of failure. For simplicity, we use stress and strain fields derived from the theory of limit analysis (LA).34,35
LA aims to determine the maximum load that a structure can withstand before failure. The solution lies between an
upper bound corresponding to an optimized virtual velocity field at failure (the kinematic approach) and a lower bound
corresponding to an optimized balanced stress field that respects a failure criterion (the static approach). Since both strain
and stress are determined independently by the respective approaches, there is no need for a stress-strain relationship. This
means that, LA has the benefit of requiring less parameters than FEM or DEM to describe material behavior. Despite its
simplicity, LA remains a highly robust approach that can handle complex geometries and loading conditions. Its use in the
geological fieldwas strongly highlighted byMaillot and Leroy36 to assess the development of folds, then extended byCubas
et al.37, verified by Souloumiac et al.38 and later implemented in the SLAMTec software for sequential developments.27,39
Afterwards, this same concept was adopted by Caër et al.40 in a 2D parametric study over the Jura region.
Paper content is as follows: in the following section, we present the geological 2D and 3D models inspired from

compressive fold-and-thrust structures and briefly present Limit Analysis before analyzing the stress and strain fields
obtained from LA in order to detect incipient faults. This analysis involves the distance from the Mohr Circle to the
Coulomb envelope and the second deviatoric strain invariant. They are combined, transformed and binarized to yield
binary fields of ruptured/non ruptured states. The analysis continues with the detection of alignment (2D) or surfaces
(3D) of broken points through image processing techniques (Hough and Radon transforms) and alternatively through
clustering and polynomial fitting. Afterwards, we compare the results of fault detection using the different methods on
each of the geological models and conclude on the general efficiency of the methods in 2D, and on the superiority of the
clustering/polynomial fitting technique in complex 3D models.

2 MODELING STRESS AND STRAIN FIELDS IN GEOLOGICALMODELS

2.1 Geological models

The geological prototypes adopted (Figure 1) represent the frontal part of an accretionary wedge with a 3◦ dipping topo-
graphic slope, leading to a decrease in thickness from 3.71 km at the back to 2.5 km at the front of the relief which is
prolonged by a flat layer. They extend 32.5 km in length and are formed by Coulomb materials (Table 1). The specific
density for all materials is set to 25.5 kN/m2.
Mechanically speaking, these reliefs are explained by the critical Coulomb wedge (CCW) theory,41 where the wedge

shape results from the balance between the strength of the wedge material, considered as a uniform Coulomb material,
and the basal friction angle.42,43 In 2D, the above described geometry is divided into a single layer model made of material
A (Figure 1A) and a multiple layer model with materials A and B, the latter being weaker (Figure 1B). The bulk material
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ADWAN et al. 609

F IGURE 1 Models overview. (A) 2D model representing an accretionary wedge with a length of 32.5 km. It is formed by a single layer
Coulomb material(mat.A) overlaying a basement. At the back-wall, an unknown load is applied as shown by the red arrows. (B) The model is
divided into two layers (mat.A and mat.B) separated by an upper décollement level (déc.1). (C) The model is extended into 3D with a width of
17.5 km overlaying a heterogeneous double décollement (déc.1 and déc.2). While in (D), the model is transformed into a multiple layer model
also formed by mat.A and mat.B separated by a 200 m thick heterogeneous décollement level. At the back-wall a rigid plate is defined and
represented in yellow while the plates BC are represented in blue.

TABLE 1 Table presenting the properties of the materials used in the numerical applications.

Friction angle Cohesion Specific density
(◦) (MPa) (kN/m𝟐)

Material A (mat.A) 𝜙mat.A = 30 𝑐mat.A = 1 25.5
Material B (mat.B) 𝜙mat.B = 20 𝑐mat.B = 1 25.5
Basement 5 ≤ 𝜙basement ≤ 10 0 25.5
Décollement 1a (déc.1) 3 ≤ 𝜙déc.1 ≤ 20 0 25.5
Décollement 2b (déc.2) 5 ≤ 𝜙déc.2 ≤ 22 0 25.5

aOnly for the 3D models and the 2D multiple layers.
bOnly for the 3D models.

in both cases overlay a rigid basement with a cohesionless surface and a varying friction angle. The 3D simulations also
involve a single layer model (Figure 1C) and a multiple layer model (Figure 1D). The single layer model is merely a lateral
prolongation of the 2D single layer model. It extends 17.5 km in width and overlays a rigid basement divided into two
distinct parts (déc.1 and déc.2) respectively spreading laterally over 7.5 and 10 kmwith potentially different friction angles
and without cohesion. The multiple layer 3D model is formed by an upper material B layer with a minimum thickness of
2.3 km, separated from the 1 km thickmaterial A layer by a 200m thick heterogeneous cohesionless décollement.Material
A rests on a homogeneous rigid basement with friction angle 𝜙𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡 and no cohesion.

2.2 Practical implementation of limit analysis

Determining collapse loads in soil mechanics, requires the assumption that the materials exhibit a rigid, perfectly plastic
behavior. Yet, some analytic methods used to solve stability problems such as Fellenius circles do not verify the governing
mechanical equations. LA helps explain this discrepancy and offers a foundation for rational methods that lead to precise
solutions for these problems.44 By considering perfectly plastic solids, LA does not require any elastic parameter and
only follows the principal of maximal work and the convex yield criterion chosen. In this paper, we adopt the calculation
algorithm of the commercial software OPTUM G2-G345 and we use Coulomb materials, so that LA follows the Mohr-
Coulomb criterion. We define the boundary conditions as follow:

- Normal supports (i.e., blocking any movement normal to the edges) on both west and east edges of the 3D models
(assuming that North is the compression direction).
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610 ADWAN et al.

- Normal supports at the front (northern) wall.
- Fixed support (i.e., blocking any normal or tangential movements) at the base of the model.
- Defining basements and 2D décollements as shear planes having the appropriate Coulomb parameters. This feature is
used to model internal discontinuities and to define interfaces between different solid layers.

- Constructing the back-wall with a rigid plate supported by two plate BCs (feature in OPTUM G2 and G3 similar to a
hinge). This allows us to restrict unwanted displacements and rotations. On the intersection surface between the plate
and the bulkmaterials, we also consider an interface having the same frictional properties as the bulkmaterial in contact.

- Defining a distributed unknown compressive load 𝛼*1 kN/m2. 𝛼 being the load multiplier.

LA aims to understand how structures behave when they are solicited up to their mechanical resistance. It consists of
two independent so called upper and lower bound analyses (also called “kinematic” and “static” approaches, or “external”
and “internal” approaches). The lower bound is the maximum force that the structure can withstand without permanent
deformation. It is obtained by optimizing the stress field in the structure so that its integral on the back-wall is maximum.
Of course the stress fieldmust be inmechanical equilibriumandmust verify theCoulomb criterion.On the other hand, the
upper bound is the minimum force that can cause permanent deformation in the structure. It is obtained by optimizing
a virtual velocity field and calculating the associated force using the maximum strength theorem (e.g., ref. [36]). For
2D models we follow these approaches and we perform separate calculations for both bounds. However, for 3D models
we adopt a more efficient optimization procedure following the mixed principles.46–48 Rather than calculating precise
bounds, these principles consider both stress and velocities as primary variables and offer compromise solutions that are
often closer to the exact solution than the upper and lower bounds.
In order to balance time and precision, we adopt uniform meshing with a 40,000 tetrahedron discretization for 3D

models and 10,000 triangular meshing for 2D models. The calculation method is element-based, which means that a
distinction is made between stress nodes and geometric nodes, although they have the same coordinates. Stress nodes
are specific nodes associated with each discretized element, making them unique on an element-wise basis. As a result, a
geometric node has as many stress values as the number of surrounding elements. Final stress values at geometric nodes
are derived by averaging the values of stress nodes with the same coordinates weighted by the surface (or volume in 3D) of
the element towhich they belong. There are two possibilities for reassembling the results obtained over the final geometric
nodes. First, taking into consideration independent domains defined following the geometric and structure features of the
model. Second doing a full reassembly and thus averaging the values obtained even through the discontinuous features.
It is true that the first assembly is highly advantageous for fault analysis since it allows the construction of discontinuous
stress and strain fields. But, the models studied in this paper do not present inherent faults thus we adopted the second
reassembly procedure.

3 RUPTURE DETECTION

3.1 Distance to the Coulomb failure criterion

Let c be the cohesion of a frictional Coulomb material and 𝜙 its friction angle. The aim is to calculate the value of the
distance 𝑑 between a generic Mohr circle and the Coulomb failure envelope (Figure 2A). From simple trigonometry,

𝑠𝑖𝑛(𝜙) =
𝑑 + 𝑅

𝐷
(1)

where the radius of the Mohr circle is

𝑅 =
|𝜎1 − 𝜎3|

2
, (2)

and

𝐷 =
|𝜎1 + 𝜎3|

2
+

𝑐

𝑡𝑎𝑛(𝜙)
, (3)

therefore

𝑑 =
|𝜎1 + 𝜎3|

2
𝑠𝑖𝑛(𝜙) + 𝑐 ∗ 𝑐𝑜𝑠(𝜙) −

|𝜎1 − 𝜎3|
2

. (4)
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ADWAN et al. 611

F IGURE 2 Example of a 2D single layer model with a 𝜙𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡 of 5◦. (A) Representation of the Mohr-Coulomb diagram: 𝜎1 and 𝜎3 are
the two extreme principal stresses, d is the distance between the Mohr circle and the envelope also considered as the yield criterion. f is the
material related dimension used in the calculation of 𝑑𝑛. (B) Presents the histograms showing the variations of d over the stress nodes with a
focus on the values lower than 0.01 and 10−4. (C) 𝑑𝑛 representation is shown with the histogram re-partition of the nodal values lower than
0.01. (D) Representation of the 𝐽𝑣𝑀 values obtained with histograms showing the variation of these values over all the stress nodes and a focus
on the values higher that 0.1 while in (E), the histograms show the value of 𝑅𝑐𝑟𝑖𝑡 with a focus on the values smaller than 0.1. For the
representations, the color-bars show the high values of the variables in red while the low values are in dark blue.

Since we are using the geotechnical software OPTUM CE, the engineering convention consider negative stress values for
a compression regime (as in Figure 2A), but the definition (4) is valid regardless of the sign convention.
Wherever d is equal to zero, the linearly assumed failure envelope is tangent to the Mohr-Coulomb circle and the

given node attains rupture. However, the stress field determined by LA may only rigorously reach failure on a very small
number of nodes that would be insufficient to determine a full fault surface. This suggests the need to determine a rupture
threshold, that is a value of 𝑑 below which the nodes are considered as ruptured. Before determining this threshold, let
us examine the simple example of the single layer 2D model with a basement friction angle of 5◦. Figure 2B, shows the
distribution of the d values obtained over all the stress nodes (there are more than 25,000 stress nodes for the 10,000
triangular elements). At first glance, the majority of the nodes (10,200) have values between 0 and 2 MPa highlighting a
high concentration towards the lower values. Consequently, simply choosing low values as being close to zero is an invalid
assumption. By focusing on the values of d lower than 0.01 MPa, the number of stress nodes drastically decreases to 1,439.
In the last histogram, only three nodes have d values less than 10−5 MPa. It becomes evident that in order to perform fault
extraction, three stress nodes are insufficient and thus it is essential to define a personalized rupture threshold allowing
the determination of a zone portraying an incipient fault.
More generally, for heterogeneous models for example, differences in the material strengths may lead to strong stress

field variations, and a single threshold value may not be sufficient to detect ruptures in all regions. For this reason, we
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612 ADWAN et al.

propose a value normalized by the local material resistance defined as a combination of the Coulomb parameters that is
graphically similar to 𝑑 (Figure 2A):

𝑓 =
𝑐

𝑐𝑜𝑠(𝜙)
, (5)

so that

𝑑𝑛 =
𝑑

𝑓
. (6)

By adopting 𝑑𝑛 we measure the distance to rupture relatively to the material strength (Figure 2C). Of course, the yield
tendencies are not affected by this normalization, in this example, because the material is uniform. Note that the material
cannot be considered cohesionless with this choice of normalization (if 𝑐 = 0 then 𝑑𝑛 tends to infinity). This is coherent
with the existence of a free surface in our geological models: to avoid rupture at the surface we must give some cohesion
to the materials.

3.2 Second strain invariant

Understanding failure in rock mechanics also implies characterizing the displacement of every point constituting a
rock mass when subjected to specified boundary conditions.49 Since we are interested in fault detection, that is rupture
involving shear of the material, we calculate the second invariant of the deviatoric part �̃� of the strain tensor as follows:

𝐽2 =
1

2
(𝑡𝑟𝑎𝑐𝑒(�̃�2) − 𝑡𝑟𝑎𝑐𝑒(�̃�)2)

=
1

6
[(𝜀𝑥𝑥 − 𝜀𝑦𝑦)

2 + (𝜀𝑥𝑥 − 𝜀𝑧𝑧)
2 + (𝜀𝑦𝑦 − 𝜀𝑧𝑧)

2] + 𝜀2𝑥𝑦 + 𝜀2𝑦𝑧 + 𝜀2𝑥𝑧.

(7)

Although not necessary, here we express 𝐽2 following an equivalent form of the von Mises stress50 but for strains,
henceforth named von Mises strain (𝐽𝑣𝑀), which can be expressed as:

𝐽𝑣𝑀 =
√
3𝐽2 (8)

Some of the common failure criteria based on strains resolve around defining an ultimate allowable strain level above
which the model is considered to have failed. Typically, this limit is determined through experimental testing and
theoretical models.51–54
Analysis of Figure 2D indicates that values of 𝐽𝑣𝑀 greater than 0.1 represent failure zones corresponding to the develop-

ment of conjugate reverse faults. While this observation is expected for LA, where virtual stress and strains are optimized
at the onset of rupture, it is not valid for general FEM or DEM simulations. In fact, it is true that a high 𝐽𝑣𝑀 indicates that
a material is under a significant amount of stress, leading to higher deformation, but it does not necessarily imply that
rupture has occurred unless it is higher than some predefined critical strain value.

3.3 Ratio of distance to strain

We also propose the use of the ratio:

𝑅𝑐𝑟𝑖𝑡 =
𝑑𝑛

𝐽𝑣𝑀
(9)

that provides a more general criterion accounting for both the deformation and the material strength properties while
respecting the same tendencies as 𝑑𝑛 (Figure 2E). In the following sections, we present the methodology for evaluating
failure using these three different criteria: 𝑑𝑛, 𝐽𝑣𝑀 , and 𝑅𝑐𝑟𝑖𝑡.
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ADWAN et al. 613

F IGURE 3 Effect of the scale parameter 𝛿 used in the Cauchy mathematical transformation of all three criteria: (A) 𝑑𝑛, (B) 𝐽𝑣𝑀 , and (C)
𝑅𝑐𝑟𝑖𝑡 . An extreme value of delta, too high or too low, leads to either very thin or very large rupture zones. The color bar used in these
representation shows the high values of each transformation in red, while the low values are in dark blue.

3.4 Mathematical transformation and binarization

Following what was previously presented, we need to focus on the low, positive values of 𝑑𝑛, 𝑅𝑐𝑟𝑖𝑡, and 1∕𝐽𝑣𝑀 . In order
to do so, we apply a variation of the probability density function (PDF) of the Cauchy distribution.55 While the initial
equation is:

𝐹(𝑥) =
1

𝜋𝛿

𝛿2

(𝑥 − 𝑥0)2 + 𝛿2
, (10)

the simplified variation adopted in this paper is given as follows:

𝐶(𝑥) =
𝛿2

(𝑥 − 𝑥0)2 + 𝛿2
, (11)

where x is the randomvariable, 𝑥0 is the location parameter (representing themedian of the distribution), and 𝛿 is the scale
parameter. A larger value of 𝛿 leads to a wider distribution, while a smaller value of 𝛿 leads to a narrower distribution.
The scaled version of this distribution (Equation 11) is generally used in signal and image processing. It maintains the
symmetry around 𝑥0 but is not normalized to a have a total area of one under the representing Gaussian curve. Taking
𝑥0 = 0, and dividing by 𝛿2 the simplified Cauchy distribution becomes:

𝐶(𝑥) =
1

1 +
(
𝑥

𝛿

)2
(12)

and by applying this form over our criteria, their transformed forms are written as:

𝑇𝑟𝑑𝑛 =
1

1 +
(
𝑑𝑛

𝛿

)2
(13)

𝑇𝑟𝑅𝑐𝑟𝑖𝑡 =
1

1 +
(
𝑅𝑐𝑟𝑖𝑡

𝛿

)2
(14)

and

𝑇𝑟𝐽𝑣𝑀 =
1

1 +
(

1

𝐽𝑣𝑀∗𝛿

)2
(15)

in this case, 𝛿 represents the rupture scale coefficient responsible for adequately determining a rupture zone. Figure 3
shows the above three transforms of the same single layer 2D model for different values of 𝛿. For 𝑇𝑟𝑑𝑛 , 𝑇𝑟𝐽𝑣𝑀 , and 𝑇𝑟𝑅𝑐𝑟𝑖𝑡
if 𝛿 is set to a very small value (respectively 10−4, 10, and 10−3), the detected rupture zone is thin and discontinuous (for
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614 ADWAN et al.

𝑇𝑟𝑑𝑛 and 𝑇𝑟𝑅𝑐𝑟𝑖𝑡 ) since fewer nodes are considered at rupture. Conversely, a large 𝛿 leads to a wider failure zone, as shown
for 𝛿 = 0.1, 10,000 and 1,000 respectively. It is worth noting that the representation obtained using 𝑇𝑟𝑅𝑐𝑟𝑖𝑡 is smoother and
clearer than both 𝑇𝑟𝑑𝑛 and 𝑇𝑟𝐽𝑣𝑀 since it fuses both representations (for comparison purpose, 𝛿 used for 𝑇𝑟𝑅𝑐𝑟𝑖𝑡 is taken as
equal to the multiplication of the respective 𝛿 values used for 𝑇𝑟𝑑𝑛 and 𝑇𝑟𝐽𝑣𝑀 ).
The next step is to decide, for each node, whether it has reached failure or not: we call this binarization. In order to better

compare the various numerical outcomes, we first redistribute the computed criterion values across a predefined regular
grid using natural interpolation based on Voronoi tessellation.56 The choice of the grid is arbitrary and has no direct effect
on the detection process. In this paper, to simplify the process we decide to consider a grid with a scale close to the initial
model dimensions and so we chose a grid of 1000 × 100. The values obtained through equation 12 vary between zero and
one. For a chosen 𝛿, the higher the value of x, the closer the transform is to zero. Our aim is to focus on the low values of
x implying the focus on the high values of the transformed criteria, thus the values closer to one. Therefore, after several
essays to prevent excessive filtering, we consider that each node has reached failure if its criterion value (𝑇𝑟𝑑𝑛 , 𝑇𝑟𝐽𝑣𝑀 , or
𝑇𝑟𝑅𝑐𝑟𝑖𝑡 ) is higher than 0.7 of its maximum value in the grid. Following this choice the rupture condition can be expressed
as follows:

1

1 +
(
𝑥

𝛿

)2
≥ 0.7

1

1 +
(
𝑥𝑚𝑖𝑛

𝛿

)2
(16)

and since 𝑥𝑚𝑖𝑛 tends to zero:

𝛿 ≥
√

7

3
𝑥. (17)

For a chosen criterion threshold (x), we calculate a corresponding 𝛿. Any criterion value that satisfies the condition given
by Equation 17 for this 𝛿 is considered to be at rupture. Conversely, by selecting a specific 𝛿, we can derive the criterion
values that are considered at rupture without the need to define an initial threshold. As an example, when studying 𝑇𝑟𝑅𝑐𝑟𝑖𝑡
with 𝛿 values of 0.001, 1, and 1000, as shown in Figure 3, the corresponding 𝑅𝑐𝑟𝑖𝑡 values considered at rupture are smaller
than 0.00065, 0.65, and 654, respectively. These values align with the observed tendencies in the histograms presented in
Figure 2E. To illustrate the results of binarization on a regular grid obtained for 𝑇𝑟𝑅𝑐𝑟𝑖𝑡 in the same 2D example under a 𝛿
value of one, refer to Figure 4A.

4 FAULT DETECTION

Once the rupture zones are cast as a binary field on a regular grid, variousmethods can be employed to extract fault curves
in 2D or fault surfaces in 3D. We introduce three methods drawn from the fields of image processing and mathematical
poly-fitting using examples in 2D. Through these techniques, we can delineate fault geometries and determine the best
fitting analytic expressions.

4.1 Hough transform

Detecting simple shapes such as straight lines is a basic goal of image processing. One of the common methods is the
Hough transform. The original aim of Hough’s patent57 was the same as ours here: to detect alignments of points in binary
images. The idea behind this method is that the equation of a straight line 𝑦 = 𝑎𝑥 + 𝑏 can also be written as 𝑏 = −𝑥𝑎 + 𝑦.
Consequently, points which are colinear in the image space intersect at a same point P(a,b) in the parameter space and
vice versa.58 In this article the Hough line detection algorithm adopted converts the binary image from the Cartesian
coordinate system (Figure 4B1) to a Hough domain using the parameters (𝜃, 𝜌) proposed by Duda and Hart.59 The line
equation becomes:

𝜌 = 𝑐𝑜𝑠(𝜃) 𝑥 + 𝑠𝑖𝑛(𝜃) 𝑦 (18)

where |𝜌| is the distance from the line to the origin, considered at the top left side of the image (Figure 4B2). The parameter
space is divided into a uniform grid, following the precision required for the parameter estimation, and each grid cell
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ADWAN et al. 615

F IGURE 4 Results obtained from applying all three line detection algorithms (Hough (B), Radon (C) and Poly-fitting (D)) over the
single layer example under the 𝑇𝑟𝑅𝑐𝑟𝑖𝑡

criterion. The detection is applied over a 1000 × 100 binarized grid where the rupture zone is
represented in white (A). The intersection of different sinusoidal curves in the Hough (B1) or Radon domain (C1) yield peak zones in which
the highest value represents a line in the initial image (B2,C2). The origin of the Hough transform is at the top left of the image (B2) while the
origin of the Radon transform is located at the middle of the image (C2). 𝜃 and 𝜌 are the line parameter used in the Hesse normal line
equation form. The detected lines are represented in green and the segmentation limit for the Hough transform is marked in small red
crosses. For the poly-fitting method, the nodes verifying ruptures are represented in small blue voided circles. The first fitting attempt is
shown in D1 while D2 shows the final lines obtained after clustering. The two distinct clusters are represented in blue and red.

contains a counter. For each white pixel in the initial image (i.e., a point that has reached rupture), we identify all grid
cells (𝜃, 𝜌) corresponding to a line passing through that pixel, and we increment their counter by one. Therefore, colinear
white pixels of the image correspond to grid cells of the parameter spacewith higher counters (see Peak zones, Figure 4B1).
The corresponding parameters (𝜃, 𝜌) of each local maximum represent alignments of white pixels in the image that we
interpret as faults (the green lines in Figure 4B2).
The steps explained previously are valid for 2D image processing. The extension to plane detection in 3D is

straightforward.60 However, we expect that fault surfaces in 3D are more curved than fault lines in 2D implying that
“plane-stitching” may be necessary. In addition, the 3D Hough transform is computationally inefficient and it is highly
dependent on the mesh precision. Consequently, extending the algorithm to 3D is not efficient in our case. Nonetheless,
we present an alternative 2.5D approach that involves line-detection over a series of cross-sections, leading to the definition
of a 3D fault surface.

4.2 Radon transform

The Radon transform61 is a mathematical technique that transforms an image or a 3D block of data into a set of line
integrals in a projection domain. This technique is commonly used inmedical imaging, specially in computed tomography
(CT) scans. In seismic applications, this method is also adapted for hyperbola detection in seismograms. It is more general
than the Hough transform as it can be applied to images with real values and not only binary, although we use it here on
binary images. We use the same parametrization (𝜌, 𝜃) for the lines, but this time with the origin located at the center of
the image (Figure 4C2). The image is considered as a function f(x,y) defined over 𝑥 ∈ [−𝑖, 𝑖] and 𝑦 ∈ [−𝑗, 𝑗] (Figure 4A).
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616 ADWAN et al.

The Radon transform is written as62:

𝑅(𝜌, 𝜃) = ∫
𝑖

−𝑖
∫

𝑗

−𝑗

𝑓(𝑥, 𝑦)𝛿𝐷(𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃 − 𝜌)𝑑𝑥𝑑𝑦 (19)

where 𝑅(𝜌, 𝜃) is the Radon transform of f(x,y) and 𝛿𝐷 is the Dirac delta function. By applying this to the binary image of
Figure 4A, we obtain the Radon transform of Figure 4C1. Just like in the Hough space, we can detect peak zones with a
peak-finding algorithm. Each peak represents a line detected in the initial image (green lines in Figure 4C2). Finally, we
note that for the same reasons stated above, we will not be extending this approach to full 3D since it can also be used in
a 2.5D implementation just like the Hough transform. Note that since we are considering the highest peak, the resultant
line may present a small slope error compared to the original fault dip angle (Figure 4C2).
The Hough transform and the Radon transform look similar, yet they are different methods. By accumulating votes

for potential lines through a binning process, the Hough transform identifies lines in a binary image while the Radon
transform operates on images with continuous real values and calculates all possible line integrals generating a Radon
projection that is reversible. The output of both these methods can be subjected to post treatment in order to obtain
line segments depending on the purpose of the study. Since the Hough transform is frequently used with binary
images, straightforward algorithms exist, enabling segmentation by checking the edges of the white pixels forming the
detected lines.

4.3 Polynomial fitting

We also opt to use polynomial fitting to approximate a curve function that fits the failure data cloud. The degree of the
polynomial controls the number of curves that can be determined by the defined equation. For instance, a first degree
polynomial represents a plane, while a third degree polynomial can have two curves. When applying this technique to
geological data, several verification steps are necessary before obtaining the final result. The example of Figure 4 contains
two conjugate reverse faults, as visible in its binary version. Since they appear rather linear, we use first degree polynomials
to fit the distribution of ruptured nodes in Figure 4D1. However, the challenge is to determine automatically the number
of faults to be fitted. To separate the white pixels in clusters that correspond to individual faults, we employ the well-
known k-means algorithm63 along with the Davies-Bouldin index.64 By doing so we are considering both the inter-cluster
similarity and the intra-cluster dissimilarity to automatically choose the adequate number of clusters. The steps are as
follows:

1- A fitting with a linear polynomial is calculated over all the white (or broken) pixels, using the polynomial fitting
function developed by D’Errico.65

2- If the regression coefficient 𝑅2 is below 80%, a clustering step is applied to divide the data into several clusters over
which polynomial fitting is performed (Figure 4D2).

3- A secondary 𝑅2 check is applied on each obtained cluster following the same 80% regression coefficient in order to
obtain the best fit possible.

4- If the secondary 𝑅2 check is not verified, each cluster is then divided into-sub-clusters over which polynomial fitting
is applied.

5 APPLICATION TO COMPLEX GEOLOGICALMODELS

5.1 Multiple layer 2D

In this section, we assessed the applicability of our approach to a double-layered 2Dmodel, where 𝜙𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡 was set to 10◦
and𝜙déc.1 to 5◦ (Figure 1B).We observe that déc.1 is activated and a pop-up (fault/back-thrust) system appears clearly at the
end of the surface slope inmat.B. This means that the wedge formed of mat.B above déc.1 is stable in the sense of the CCW
theory.42 The bottom layer made of mat.A, being more resistant, but lying on a basement with higher frictional strength
than déc.1, undergoes large deformations near the back-wall but with rather dispersed failure zones that are transferred
in mat.B layer where they generate a pop-up V-shaped structure of diffuse deformations nearing rupture (Figure 5A).

 10969853, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nag.3652 by C

ochrane France, W
iley O

nline L
ibrary on [12/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ADWAN et al. 617

F IGURE 5 Results obtained from applying the Radon transform and polynomial fitting to the 2D multiple layer model (Figure 1B). (A)
shows a 30 times exaggerated extruded velocity field. The 1000 × 100 binarized grid obtained for 𝑇𝑟𝑅𝑐𝑟𝑖𝑡

with a 𝛿 value of 0.0001 is given in (B).
The single node attaining rupture is in white and highlighted with a red circle. In (C), (D) and (E1) the results obtained from applying the
Radon transform are shown respectively for 𝛿 values 0.001, 0.01 and 0.1. The detected lines are colored in green. (E2) shows the two main
clusters obtained after the first fitting attempt, while (E3) presents the final sub-clusters with their respective fitting results. Lastly, in (F), the
binarized grid under a 𝛿 = 1 displays large and dispersed rupture zones depicted in white.

Following the same process as previously described, we tested the Radon and the poly-fitting criteria since both Hough
and Radon yield similar results. To do so, we first had to choose an adequate 𝛿. But, we remind that our objective is to
automate fault detection, so manually checking our criterion values each time to define 𝛿 is not a valid option. This is why
we suggest the following procedure. The detection algorithm starts with a low value of 𝛿 and tries to extract a fault. In
the eventuality that this process is not possible, 𝛿 is augmented and extraction is reattempted. We applied this approach
over the double-layered 2D model. Starting with a 𝛿 = 10−4 a single ruptured node was detected and fault extraction was
impossible (Figure 5B). We then defined a 𝛿 factor of 10 for each iteration. The second attempt was able to detect a single
line representing the reverse fault created at the end of the surface slope (Figure 5C). If our goal was to simply detect the
dominant fault curve, we could have stopped the algorithm at this step. But here, the intention is to present the full fault
detection approach while testing its limits so we continued the iterations. For 𝛿 = 0.01, the frontal pop-up was adequately
detected in addition to a line indicating the start of the rupture zone in mat.A near the back-wall (Figure 5D). The case
with a 𝛿 = 0.1 clearly shows the creation of two pop-ups, one at the front and one at the back in mat.B. In addition, two
other lines were also detected, one following the slope surface and the other signaling the rupture in mat.A (Figure 5E1).
The algorithms used in this paper follow the general line detection steps, thus no prior knowledge is implemented in
order to eliminate the unwanted lines. The last iteration performed was for a 𝛿 = 1. In this step, rupture is more diffused
at the back for both mat.A and mat.B and fault detection was unable to retrieve adequate fault surfaces in this location
(Figure 5F).
As for the polynomial fitting, we present the results obtained for the more complex case of 𝛿 = 0.1. Figure 5E2 shows

that the first 𝑅2 validation was not met. The ruptured data cloud was divided into two distinct clusters over which a
secondary fitting was applied. From cluster 1, the polynomial fitting was able to extract two clear lines representing the
conjugate fault system at the end of the surface slope. While, the dispersion of the data in the back of the model yielded
eight different sub-clusters each represented with a given color (Figure 5E3). The ones that interest us were clusters 1.1,
1.2, 2.1 and 2.2 representing the double pop-ups.

 10969853, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nag.3652 by C

ochrane France, W
iley O

nline L
ibrary on [12/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



618 ADWAN et al.

F IGURE 6 Representation of the single layer 3D model, showing the rupture zones obtained after applying the Cauchy transformations
and the binarization step. Each row considers a different combination of 𝜙déc.1 and 𝜙déc.2 (𝜙déc.1 = 𝜙déc.2 = 20◦ (A), 𝜙déc.1 = 𝜙déc.2 = 5◦ (B),
𝜙déc.1 = 3◦ and 𝜙déc.2 = 22◦ (C) and 𝜙déc.1 = 10◦ and 𝜙déc.2 = 5◦ (D)). The first column shows 𝑇𝑟𝑑𝑛 , the second column 𝑇𝑟𝐽𝑣𝑀 , the third column
𝑇𝑟𝑅𝑐𝑟𝑖𝑡

while the last column portrays a 30 times exaggerated extruded virtual velocity field. The values of the nodes verifying the rupture
criteria are represented in blue and the mesh is transparent. The grid dimension is in hectometer and the vertical scale is exaggerated for a
better view.

From Equation 17, The threshold values were all less than 0.65 (calculated for 𝛿 = 1). For 𝑅𝑐𝑟𝑖𝑡, these values are all
considered adequate for a constrained rupture detection. Yet the higher the 𝛿 the more the rupture zones detected and the
more the dispersion. To understand this tendency, we need to recall that the onset of failure is not necessarily localized
onto fault planes. Initial failure may occur over wide regions, but it is only after some damaged has been accumulated
and increase weakening that localization can develop on fault surfaces (e.g., ref. [39]). So the main difficulty faced in this
application was not numeric but related to the wedge being in a diffuse ruptured state.

5.2 Single layer 3D

5.2.1 Rupture zone definition

We examine a single layer 3Dmodel with a lateral variation of the basement friction value (Figure 1C). Figure 6 illustrates
the isolated rupture zones after binarization with different values of 𝛿, for four different combinations of 𝜙déc.1 and 𝜙déc.2
(the critical basement friction angle value is 8.9◦).
For 𝜙déc.1 = 𝜙déc.2 = 20◦ (A) and 𝜙déc.1 = 𝜙déc.2 = 5◦ (B), we obtain the fundamental cases of sub-critical, or unstable,

and stable wedges, respectively. In (A) for a 𝛿 value of 0.3, 33 and 10 respectively for 𝑇𝑟𝑑𝑛 , 𝑇𝑟𝐽𝑣𝑀 and 𝑇𝑟𝑅𝑐𝑟𝑖𝑡 , we obtained
practically identical rupture zones with a more spread rupture zone for 𝑇𝑟𝑑𝑛 . Similar results were observed for (B) under
𝛿 values of 0.1, 4 and 0.4, respectively for 𝑇𝑟𝑑𝑛 , 𝑇𝑟𝐽𝑣𝑀 and 𝑇𝑟𝑅𝑐𝑟𝑖𝑡 .
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ADWAN et al. 619

For 𝜙déc.1 = 3◦ and 𝜙déc.2 = 22◦ (C), the model is divided into an unstable part overlaying déc.2 and a stable part with
a small sliding over déc.1. Due to the smaller lateral spread of déc.1 in comparison to déc.2, the bulk volume impacted by
these décollements is not uniform. In this case, we observed that the should-be stable part of the model started sliding
over déc.1 but was retained and made unstable by the unstable part which is restricted by the high friction angle of déc.2.
The rupture zone obtained demonstrated a forward deviation over déc.1, with thrusting very near the back-wall over déc.2.
This was confirmed by the 30-fold exaggerated extruded virtual velocity field representation. The appropriate values of 𝛿
selected were 0.15, 33 and 5 respectively for 𝑇𝑟𝑑𝑛 , 𝑇𝑟𝐽𝑣𝑀 and 𝑇𝑟𝑅𝑐𝑟𝑖𝑡 .
In the case of 𝜙déc.1 = 10◦ and 𝜙déc.2 = 5◦ (D), the stable part of the wedge spans over the wider décollement (déc.2)

which has a value smaller than 8.9◦, while the unstable wedge overlays déc.1 with a friction value higher than the critical
basement value. The results obtained from this case showed a complex distribution of rupture zones. Both décollements
are activated, indicating the capacity of thewedge to inducemovement in the unstable portion. The failure zone is localized
at the end of the surface slope, with the initiation of a strike-slip fault starting from the limit between the two décollement
parts. This is also illustrated by the 30-fold exaggerated representation. In order to perform fault detection it is important
to portray all aspects of this failure pattern. The smaller the 𝛿 values the more the representation focuses on the dominant
faults as previously stated. By using 𝛿 values of 0.06, 33 and 1.5 respectively, for 𝑇𝑟𝑑𝑛 , 𝑇𝑟𝐽𝑣𝑀 and 𝑇𝑟𝑅𝑐𝑟𝑖𝑡 we were able to
adequately represent this failure pattern.
Finally, by closely observing both cases (A) and (B), it seems that for a weaker basement, a smaller 𝛿 value was more

suited for all three criteria. In fact taking the same 𝛿 values for (B) as in (A) would have resulted in amuchwider andmore
dispersed failure zone as was seen in Figure 2. The same observation can be done for the cases (C) and (D) presenting a
heterogeneous basement. Despite it not being as evident as the previous cases, the zones overlaying décollements with
higher friction angles present less dispersion in the rupture cloud and thus a thinner data concentration. This means that
the optimal 𝛿 is dependent on the amount of stresses exerted over the materials. This is verified by looking at the external
stress obtained at rupture (calculated from the load multiplier) for both cases (A) and (B) where the external pressure
required to attain rupture in (A)was at 208MPawhile themodel in (B) verified failure for a value of 119MPa. Consequently,
the less external pressure required to attain rupture the lower the 𝛿 value needed to define the ruptured zones.

5.2.2 2.5D fault detection approach

The aim of this section is to introduce a 2.5D extension of the previously described 2D fault detection techniques using
either theHough or Radon transforms. The proposed approach involves applying either theHough or Radon algorithms to
a set of cross-sectional slices taken at regular intervals within the same model. These lines are then combined to generate
a single surface that represents the 3D fault surface. The outcomes of the transform applied to all four cases of the single
layer 3D model are presented in Figure 7. We show the results obtained for 20 distinct cross-sectional slices using the
Hough transform, where segmentation was already implemented, of the 𝑇𝑟𝑅𝑐𝑟𝑖𝑡 criterion.
The results achieved for (A), (B) and (C) were promising. For (A) and (B), we were able to detect both unstable and

stable failure patterns, respectively. Further, by merging the lines detected, we could accurately identify both faults and
back-thrusts, as evident from the 3D and top planar views. The intersection of the detected faults with the basement
allowed us to determine the curvature of these faults. Nonetheless, In case (B), near the lateral borders a small distortion
was detected due to the thickness of the rupture zone. In (C), despite the heterogeneous nature of the basement, the
rupture nodal cloud remained well-defined, making the application of this approach straightforward. In this instance,
we anticipated a fault/back-thrust system with a curved geometry, and this was validated by the basement intersection
exhibited in the top planar view. Notably, we observed some distortion near the change of décollement, which can be
attributed to the difference in friction angle.
Regarding case (D), it was apparent that applying the 2.5D detection algorithmwould pose a significant challenge due to

the complexity of the rupture zones. We show two instances of the Hough line detection algorithm employed over diverse
cross-sectional representations after interpolating the data over a 1000× 100 grid and employing appropriate binarization.
Observing the width of the failure zone, it becomes evident that constraining these zones with simple lines is arduous and
necessitates considerable post-processing with prior knowledge of the anticipated outcome. But again we remind that in
this casewe deliberately considered awider rupture zone in order to represent the full failure pattern. This is possible since
we are at the onset of rupture, meaning that the model is completely near failure and complete localization over weaker
surfaces has not been completed yet. In order to accommodate these large rupture areas, edge detection can be utilized as
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620 ADWAN et al.

F IGURE 7 Representation of the faults detected through applying the 2.5D Hough transform approach. The four cases (A), (B), (C) and
(D) represent different basement friction values (see Figure 6). The results are shown through a 3D global view of the surfaces created by
joining the different lines detected. A top planar view shows the full rupture zone with the basement intersection of the faults. Case (D) shows
the application of the Hough line detection over two cross-sections taken at different locations in the model, labeled 1 and 2 in red.

shown previously in the 2D multiple layer analysis. We opt for a more general approach and we decide on adopting the
poly-fitting approach.

5.2.3 3D poly-fitting approach

We selected polynomials of degree three and followed the procedure described in Section 4.3. For (A), (B) and (C) the
outcomes were satisfactory. As evident in Figure 8A-B-C, the k-means clustering managed to segregate the rupture zone
between a reversed fault and a back-thrust and the fitting algorithm was able to fit each cluster with a single surface.
The complex case (D) was also investigated using the proposed algorithm. The results show that following the first 𝑅2

check, the initial data (Figure 6D) was partitioned into three principal clusters, each represented with a different color
in Figure 8D1. Each cluster was further partitioned into multiple sub-clusters, with the aim of verifying the secondary 𝑅2

verification check. For a low secondary 𝑅2 (lower than 50%), Figure 8D2 shows three fitted surfaces with respect to each
defined cluster. These surfaces accurately show the dominant fault/back-thrust system but fail to clearly represent the
failure pattern observed at the back. For the defined secondary𝑅2 value of 0.8, the clusters are further divided intomultiple
sub-clusters. Cluster 1 representing the frontal reverse fault was divided into six sub-clusters over which polynomial fitting
was applied and verified the 𝑅2 check (Figure 8D3). The same can be observed for Cluster 2 representing the back-thrust
of the previously defined fault (Figure 8D4). As for Cluster 3 (Figure 8D5), it was divided into three sub-clusters each being
represented by a given fitted surface. In this case, the strike-slip tendency was not detected using this method since the
rupture nodes weremore localized at the surface and a clear strike-slip plane has yet to be formed. Finally, we remind that
in this paper, we are adopting the basic k-means clustering algorithm without prior knowledge and without additional
machine learning improvements. This means that some of the discrepancies faced in extracting the faults in this case are
directly related to the fact that the clustering algorithm was unable to adequately organize the diffused rupture zones.

5.3 Multiple layer 3D

Based on the previous results, we decided to assess the effectiveness of the poly-fitting method in modeling complex
geological structures. To this end, we utilized a multiple layer 3D model and set the parameters 𝜙𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡 to 8◦, 𝜙déc.1 to
15◦, 𝜙déc.2 to 3◦ and 𝛿 = 0.01 for 𝑇𝑟𝑅𝑐𝑟𝑖𝑡 . Our analysis revealed that déc.2 was activated, producing a failure zone at the
end of the surface slope. Although déc.1 was stimulated by the material sliding over déc.2, it remained generally inactive.
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ADWAN et al. 621

F IGURE 8 Representation of the faults detected through applying the 3D variation of the poly-fitting algorithm. The four variation of
the 3D single model are represented through four different cases (A, B, C and D). The results for (A), (B) and (C) are presented by a 3D global
view of the main clusters detected (in red and blue) and the surfaces fitted. For Case (D), the main clusters are shown in blue, red and green
(D1), the surfaces fitted for a low secondary 𝑅2 verification coefficient are represented in (D2) while (D3), (D4) and (D5) each show the sub
clusters obtained for the three main clusters under an 𝑅2 of 80% in addition to their respective fitted surfaces.

Moreover, the model was globally unable to slide over the defined basement, as indicated by the fault back-thrust system
(Figure 9A-B) and from the 30 times exaggerated virtual velocity field (Figure 9C).
Applying the poly-fitting algorithm, the failure zone was divided into five main clusters, defining the major fault

and back-thrust systems created near the back-wall and at the frontal end of the sediment layer (Figure 9D). To further
refine the results, the algorithm divided these clusters into sub-clusters based on the secondary 𝑅2 verification criterion.
Consequently, a series of successive surfaces were defined to represent the identified rupture zones (Figure 9E). It is
certain that by adopting a strict 𝑅2 verification, representing a wide rupture zone yields multiple successive somewhat
parallel surfaces. Nonetheless, the overall failure pattern is viably represented (Figure 9F) and the transition from the
activated basement to the upper heterogeneous décollement in addition to their respective activation can also be detected
through both a side and top view (Figure 9G). Finally, it goes without saying that reducing the secondary 𝑅2 verification
below 50% will result in the reduction of the number of surfaces detected as can be seen in Figure 9H, where each cluster
was fitted by a single polynomial surface.

6 DISCUSSION AND CONCLUSION

The objective of this study is to present various techniques for extracting incipient faults from a given stress field on a 2D
or 3D mesh and a rupture criterion. We have established three distinct criteria based on either the stress tensor (distance
𝑑𝑛 of the Mohr circle to the Coulomb envelope), the strain tensor (second invariant of deviatoric strain 𝐽𝑣𝑀), or both
(𝑅𝑐𝑟𝑖𝑡 = 𝑑𝑛∕𝐽𝑣𝑀). Before applying fault detection it was essential to localize rupture. For this purpose, we focused on the
values of these criteria that indicate rupture using a simplified variation of the Cauchy distribution function. The scale
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622 ADWAN et al.

F IGURE 9 This figure shows the results obtained for the 3D multiple layer model. (A) and (B) display two representations of the
ruptured data cloud from two different 3D views. The 30 times exaggerated velocity field is represented in (C), while the main clusters
obtained are shown in (D). The fitted surfaces of each sub-clusters are given in (E) and the final fitted graph is portrayed in (F). The lines and
dashed-lines in red explain the rupture tendency observed for each pop-up. In (G), two 2D views of the full model fitted surfaces are shown
(one from the side and the other from the top). Finally in (H), the surfaces obtained through the polynomial fitting for a low secondary 𝑅2

coefficient are shown from a side view.

parameter 𝛿 adopted in the Cauchy distribution governs the spatial distribution of the rupture zone. As for the criteria
defined, 𝑑𝑛 and 𝑅𝑐𝑟𝑖𝑡, are the ones that verify the failure criteria and so, they can directly be used in fault detection. 𝐽𝑣𝑀
on the other hand is not a well established rupture criterion, so we simply consider that the highest deformation values
are certainly occurring over the incipient faults. Although this assumption stands true for LA, since it is a rupture driven
approach, the same is not valid for other types of analysis. In fact, LA is based on an independent optimization of velocity
and stress fields with respect to the external load applied while accounting for themechanical parameters of thematerials.
This is done at constant geometry, and the optimized external load obtained is an outcome of the calculation. On the other
hand, a typical elasto-plastic calculation, for example, requires the definition of either a fixed external load or shortening,
based on which it proceeds to calculate the corresponding stress and displacement fields. This means that LA and elasto-
plastic calculations are of a different nature. For verification purpose, we decide to apply our approach over the single layer
2D model using an elasto-plastic finite element calculation. We conserved the same physical, mechanical and meshing
parameters as in the LA example with a basement friction angle of 5◦. We defined an elastic modulus at 30 GPa, a Poisson
ratio of 0.25 and applied the associated flow rule. We set a shortening of 6% (to ensure reaching the plastic limit) over
the rigid plate, defined at the back-wall, and we performed a long term analysis to study the model behavior over an
extended period. Figure 10 shows the results obtained for all three criteria adopted using the Radon transform. The 𝛿

values chosen were 0.002, 1.3 and 0.0015 respectively for 𝑇𝑟𝑑𝑛 , 𝑇𝑟𝐽𝑣𝑀 and 𝑇𝑟𝑅𝑐𝑟𝑖𝑡 . For both 𝑇𝑟𝑑𝑛 and 𝑇𝑟𝑅𝑐𝑟𝑖𝑡 , the reverse fault
and back-thrust show practically the same thickness, yet for 𝑇𝑟𝐽𝑣𝑀 , the failure zone of the frontal reverse fault is thicker
(Figure 10B). Nonetheless for all three criteria, we were able to extract the same fault/back-thrust system despite the small
slope deviation observed in the case of 𝑇𝑟𝐽𝑣𝑀 .
The main challenge faced in this approach was the adequate choice of 𝛿. In this paper, we used mostly LA to produce

stress and strain fields, and since LA focuses on the onset of rupture, the calculation stops when at least one node fulfills
the failure criterion. By closely looking at the histograms of Figure 2 we could immediately notice that the full model is in
a state of failure and the majority of nodes present near zero criterion values. This was also proven by Mary et al.39 where
they showed that the onset of rupture is not necessarily localized over fault planes since at this stage, there is neither
weakening nor erosion. This means that defining the rupture zone is highly dependent on the purpose of the study. For
example if the aim of using this approach is to perform geological evolution, a low value of 𝛿 helps represent the dominant
failure pattern. On the other hand if the aim is to detect potential failure zones in a given area, it is better to relax 𝛿 in
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ADWAN et al. 623

F IGURE 10 Elasto-plastic FEM calculation of the 2D single layer model subjected to 6% horizontal shortening. All three criteria were
studied (𝑇𝑟𝑑𝑛 (A), 𝑇𝑟𝐽𝑣𝑀 (B) and 𝑇𝑟𝑅𝑐𝑟𝑖𝑡

(C)), and faults were extracted using the Radon transform. The lines detected are in green.

order to also consider the high deformation zones where rupture is imminent. In both scenarios, we must be certain not
to hinder fault detection by either defining a very limited number of ruptured nodes or a significantly broad rupture zone.
Following the same context, employing relatively simple structural models with homogeneous materials can also explain
the lack of weak elements. In general, fractures occur and propagate through weaker portions of the material, leading
to more localized rupture zones. In the present study, the homogeneity of the material can also be considered as a main
reason for hindering failure convergence, resulting in amore diffuse rupture zone. Thismeans, that the primary limitation
difficulty faced in this paper is inherent to themechanical behavior of themodels more than to our method. Bothmaterial
homogeneity and CCW theory explain the existence of diffused ruptured area. It is only after damage accumulation and
material weakening, that failure convergence over a given surface is possible. At the onset of rupture and for homogeneous
materials, these conditions are not met. In addition, based on the conducted tests and results, it was observed that 𝛿
is closely associated with the stresses applied to the model. As pressure at the back-wall increases, more nodes can be
stimulated, and become more likely to attain rupture in the weaker materials. Consequently, in this case, the number of
nodes that satisfy a relaxed 𝛿 is also higher.
The detection methods utilized in this study could benefit from further improvement. For instance, starting with either

Hough or Radon transforms, additional image filtering techniques may be advantageous in some cases. Regarding the
poly-fitting approach, despite it being more adapted for fault extraction and surface fitting in 3D, the initial clustering
step is crucial. In this paper, we utilized the basic k-means clustering algorithm, which provided satisfactory results for
our application. However, developing a machine learning geological application might be a better alternative since it
could provide the poly-fitting method with clear examples of rupture zones and fault surfaces. In addition, we show the
influence of the secondary 𝑅2 verification criterion. For a high threshold (80%) the clusters are further divided into a series
of sub-clusters each fitted into a given surface. The results obtained in this case are more accurate but somewhat excessive
for simple fault extraction thus requiring post processing in order to unify the similar surfaces into a single fault. On the
other hand relaxing this threshold allows for a more subtle fitting and a simpler fault surface extraction as was seen in
Figure 8D2 and Figure 9H.
Finally, in numerical analysis, the slightest uncertainty in the input parameters can lead to biased results and inaccu-

rate evaluations. In geomechanics, for example, the selection of appropriate material properties and boundary conditions
has a direct impact on the deformation mechanism leading to a certain level of uncertainty in the final results obtained.
This is considered quite a problem for site inspection and risk mitigation. Therefore, sensitivity analysis using numeri-
cal simulations is often considered a more reliable approach.66–68 And thus, we hope that the presented approach helps
in detecting faults through the thousands of simulations required by these sensitivity analyses.
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