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Abstract—With the ever-rising quality of deep generative mod-
els, it is increasingly important to be able to discern whether the
audio data at hand have been recorded or synthesized. Although
the detection of fake speech signals has been studied extensively,
this is not the case for the detection of fake environmental audio.
We propose a simple and efficient pipeline for detecting fake
environmental sounds based on the CLAP audio embedding. We
evaluate this detector using audio data from the 2023 DCASE
challenge task on Foley sound synthesis.

Our experiments show that fake sounds generated by 44 state-
of-the-art synthesizers can be detected on average with 98% accu-
racy. We show that using an audio embedding trained specifically
on environmental audio is beneficial over a standard VGGish
one as it provides a 10% increase in detection performance. The
sounds misclassified by the detector were tested in an experiment
on human listeners who showed modest accuracy with nonfake
sounds, suggesting there may be unexploited audible features.

Index Terms—Fake detection, Environmental sound, Deep
learning, Classification, Deepfake audio

I. INTRODUCTION

The rapid evolution of generative models, such as those based
on Diffusion models, ushers in an era where the boundaries
between reality and synthetic content tend to blur more and
more. In audio synthesis, there exists a sizable literature dedi-
cated to the detection of deep fakes in speech, aiming to detect
adversarial attacks ranging from misinformation dissemination
to identity theft [1].

As generative models become more sophisticated, partic-
ularly those rooted in deep learning architectures, their ca-
pacity to produce eerily realistic audio forgeries has grown
exponentially. Innovations such as Variational Autoencoders
(VAEs) and Generative Adversarial Networks (GANs) have
empowered malicious actors to craft audio content that is vir-
tually indistinguishable from genuine recordings. Furthermore,
deepfake audio is often used in conjunction with deepfake
video to create more realistic and convincing fake movies.
In light of these trends, the design of effective fake audio
detection systems is important.

Deepfake audio refers to audio that has been generated
or augmented using deep learning techniques [2]. There are
different types of Deepfake Audio: Text-to-Speech [3], Voice
conversion [4], emotion fakes [5], scene fakes [6], and partial
fakes [7].

While deepfake detection for speech is well studied, there
appears to be little research on the detection of fake content
for environmental sounds. This paper aims to fill this gap with
respect to Foley sound synthesis, i.e., sound categories such
as hand clap, rain, etc.

We propose a simple and effective fake detection pipeline
based on CLAP embeddings [8]. Experiments are based on a
publicly available audio dataset developed during Task 7 of the
IEEE AASP DCASE 2023 Challenge [9]. This is a dataset of
more than 6 hours of recorded audio and 28 hours of generated
audio.

The paper is organized as follows. Section II gives a brief
review of the relevant state of the art on deepfake detection
in audio. Section III introduces the proposed deepfake de-
tector which is benchmarked using an experimental protocol
described in Section IV. Performance is discussed in Section
V and Section VI discusses the outcome of listening tests
on detection mistakes of the proposed detector and directions
for improvement. Code, supplementary material, and audio
examples are available on the companion page.1

II. RELATED WORK

This section discusses machine-learning techniques for Deep-
fake Audio detection. In [10], the authors use linear regression
to detect fake voices. The features are extracted using a
signal’s entropy calculated based on Shannon’s equation for
each second of the signal and for the whole signal. The model
reaches 98% accuracy, with all fake audio being correctly
detected. In [11], the authors adopt a combination of Bispectral
analysis and MFCC (Mel Frequency Cepstral Coefficients) for
speech detection and feature extractions. The former helps to
identify components in generated audio that are not present
in human speech and the latter is used to detect the features
in human speech tied to the vocal tract that are absent in
the AI-generated speech. The features are then fed into seven
different ML algorithms. The results show that the Quadratic
SVM model gives the highest accuracy of 96.1%. In [12], the
feature vector is extracted by filtering the signal under analysis
and extracting different statistics with short-term and long-
term prediction order. The features are then fed to a Linear
SVM and Random Forest model. The results show that the

1Companion page: https://mathieulagrange.github.io/audioFoleyDeepFake
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Fig. 1: Overview of the pipeline used in the experiments for the Deepfake detection, with a representation of the MLP’s
network architecture. The value of dim depends on the embedding method used.

SVM outperforms the RF in different conditions.
Traditional machine-learning models require manual feature
extraction. Consequently, research was directed towards more
sophisticated feature extraction algorithms based on deep
learning models.
In [13], they employed both CNNs (Convolutional Neural
Net), using local dependencies, and LSTMs (Long Short-Term
Memory), using both local and sequential dependencies, to
classify audio based on MFCCs. The former model helps
achieve an accuracy of 80%. A CNN has been used with a
similar strategy in [14], which compares different approaches
(MFCC, STFT, FTT of the signal) to deduce that MFCC gives
the best results and also that CNNs are beneficial in such tasks
because they can learn to detect important features. In [15], a
shallow CNN architecture, Deep2Net, was used. The authors
transformed the audio classification task into a computer vision
problem by using a histogram of the audio. The model reached
a global accuracy of 0.985.

III. PROPOSED APPROACH

The detection of fake sounds is treated as a binary clas-
sification task. As can be seen in Figure 1, the proposed
architecture for solving this task leverages the power of pre-
trained audio embeddings. This allows us to simplify the
learning process by requiring less training data and using less
power as the learnable part of the detector consists of three
dense layers, as shown in Section 1. Each layer is followed by
1) ReLU activation functions to reduce the backpropagation
errors and accelerate the learning process, and 2) dropout
layers for regularization to avoid overfitting. The final dense
layer is followed by a sigmoid function as the output activation
function.

To provide input to the decision module, we tested 3
embeddings produced by deep learning architectures, namely:
VGG, CLAP, and PANN.

The VGG embedding is produced by the VGGish network,

a convolutional neural network pre-trained for audio clas-
sification tasks, and is adapted from the VGG [16] image
classification architecture. This method adapts the VGG image
classification network to the audio domain by converting
audio signals into log-mel spectrograms, which are visual
representations of the frequency and amplitude of the sound.
The spectrograms are then fed into the network, which was
pre-trained on a large-scale YouTube dataset with diverse
audio categories, such as music, speech, or animal sounds.
The CLAP embedding is produced by the Contrastive
Language-Audio Pretraining (Clap) model [17]. By leveraging
a contrastive learning approach, CLAP enables models to learn
representations that encode the semantic content of language
and the acoustic characteristics of audio simultaneously. Dur-
ing pre-training, these models are trained using contrastive
learning objectives to project both language and audio inputs
into a shared embedding space. The model learns to encode
similar language-audio pairs closely together while pushing
dissimilar pairs apart. This process enables the extraction of
rich embeddings that capture semantic and acoustic similarities
between inputs.
The PANN embedding is produced by Pretrained Audio Neural
Networks (PANNs) [18], which are yet another class of mod-
els. These networks are trained on spectrogram representations
of audio signals that capture both the frequency and temporal
characteristics of sound. The pre-trained models are usually
initialized with weights from models pre-trained on large-
scale audio datasets, such as AudioSet or UrbanSound, which
contain diverse audio categories ranging from musical genres
to environmental sounds.

IV. EXPERIMENTS

A. DATASET

The DCASE2023 Challenge [19] aimed to produce fake
environmental sounds by training on nonfake sounds. It con-
sisted of two tracks: Track A, with 10 generation systems



from participating teams using varied Foley sound synthesis
methods and permitting limited use of external resources; and
Track B, with 28 generation systems based on provided code,
prohibiting external resources. Both tracks accepted rule-based
and ensemble systems, provided they utilized sounds only
from the development set.

The resulting dataset consists of both nonfake and fake
sounds across seven distinct sound classes (dog bark, foot-
step, gunshot, keyboard, moving motor vehicle, rain, and
sneeze cough). Specifically, the dataset comprises 5,550 non-
fake sounds alongside 25,200 fake sounds, the latter of which
were generated by challenge participants. These sounds are
analyzed through the lens of four different embeddings, de-
tailed in section II.B, each with its specific dimensionality:
VGGish embeddings at (4,128), Microsoft CLAP (MS-Clap)
embeddings at (4,1024), and two PANNs embeddings at
(4,2048), where ’4’ refers to the four-second duration of the
audio clips. For training and evaluation purposes, we separate
the dataset into a training set (70%), a validation set (10%),
and an evaluation set (20%) 2.

B. TRAINING PROCEDURE

Figure 1 shows the pipeline used in the experiment protocol.
As we have four different input embeddings, the procedure
yielded four models to use and compare: VGGish, MS-Clap,
PANN Wavegram, and PANNcnn14-32k. Note that we take
the time average of each embedding to avoid the temporal
sequence aspect (four-second duration) affecting the deepfake
detection.

These models were trained using the Adam optimizer, con-
figured with a learning rate of 7e-4. The training protocol was
standardized across models, with a batch size of 128 samples,
a decision threshold of 0.5 on both training and validation
predictions, and training over 100 epochs. Throughout this
process, the Binary Cross-Entropy (BCE) loss function given
in Equation 1 is used to optimize the weights parameters in
the backpropagation process:

J(y, ŷ) = − (y · log(ŷ) + (1− y) · log(1− ŷ)) (1)

Where y is the true label (0 or 1) and ŷ is the predicted
probability.

During training, we implement a checkpointing mechanism
that saves the state of the model every 10 epochs of training.
Following the best-accuracy selection criterion [20], the final
model is chosen based on the checkpoint demonstrating the
highest validation accuracy. For each implementation of the
detector, 10 training runs are performed and statistics are
reported. We carry out all the experiments on a machine
with 4 physical cores and 8 threads, 16GB of RAM, and an
NVIDIA GeForce RTX 3060 graphic card with 6GB of RAM.
To address the imbalance between fake and nonfake samples,
we employ a balancing technique on the training set.

2Dataset of recorded and generated audio: https://zenodo.org/records/
8091972

V. RESULTS

A. INFERENCE TIME

To evaluate the computational efficiency of each model, we
assessed the time required for the embedding process and the
model’s inference for each embedding on one random audio
sample across 100 runs. The inference time (in seconds) is then
computed by averaging over the 100 inference times. In Table
II, the averaged inference time is expressed as a percentage
of the real-time duration of the audio sample. This metric
provides a clear understanding of the model’s speed relative
to the actual audio duration.

B. OVERALL ACCURACY

We calculate both the relative overall validation and evaluation
accuracy, along with the time per epoch in seconds (s), and
generate a Confusion Matrix for the evaluation dataset. As
presented in Table II, statistics such as Overall Evaluation
Accuracy and Training Time per Epoch are detailed for each
model. Among the experiments conducted under the same
conditions, the MS-Clap model outperformed others with
the highest Evaluation Accuracy of 98.02%, surpassing both
PANN models by 5% and the VGGish model by 10%.

Among the 40 identical runs, we pick the best-performing
run for each model (i.e., the highest evaluation accuracy).
The confusion matrices resulting from the four chosen models
demonstrate a varied performance across the different archi-
tectures. The VGGish model shows difficulty with correctly
classifying nonfake sounds, as it produces 9% false positive
judgements. The MS-Clap model shows the best proficiency
in identifying the nonfake category of sounds, with the lowest
false prediction rate (2% of the dataset). On the other hand,
the PANN-Wavegram and the PANN 32k models behave
approximately the same by having a high evaluation accuracy
and also a low false prediction rate, yet they do not perform
as well overall as the Clap model.

C. STATISTICAL ANALYSIS

We test the four models in the same configurations as shown in
Table II. We train the models under each configuration for 10
iterations. We then perform the Mann-Whitney U-test to assess
the similarity of accuracy distribution. The U-test is adopted
instead of the t-test since it doesn’t impose the assumption of
normal distribution. In our case, the Null hypothesis assumes
that run A is similar to run B. If the p-value < 0.05, we can
confirm that the alternative hypothesis is true (run A is similar
to run B) with a confidence interval of 95%.
The accuracy of MS-Clap is higher than that of Pann-
Wavegram with 5.02%, and that of PANN 32k with 5.11%, and
that of VGGish with 10.23%. In all cases, the U-test confirms
that those differences are significant, as for all pairs the Null
hypothesis is rejected.

D. CLASS-WISE ACCURACY

As the MS-Clap model is the best-performing model among
the four trained models, we chose to carry out our next analysis

https://zenodo.org/records/8091972
https://zenodo.org/records/8091972


VGGish MS-Clap PANN Wavegram logmel PANN 32k
Predicted Nonfake (%) Fake (%) Nonfake (%) Fake (%) Nonfake (%) Fake (%) Nonfake (%) Fake (%)
Nonfake 15 3 17 1 14 3 14 5

Fake 9 73 1 81 4 79 3 77

TABLE I: Confusion Matrix Evaluation for the three embeddings

TABLE II: Statistics on Overall Accuracy and the Inference
Time expressed as a real-time percentage.

Model x Embeddings Accuracy (%) Inference Time (%)

Mean Averaged percentage

VGGish 88.11 ± 0.73 0.423
MS-Clap 98.02 ± 0.18 1.82
PANN-Wavegram 93.15 ± 0.34 0.318
PANNcnn14 32k 93.04 ± 0.32 0.234

with this model. To have a better understanding of the behavior
of the model’s performance, we look closely at the model’s
accuracy for each class (Table III). This closer look helps
us understand how the model performed with different types
of data. We find that the model was consistently good at
identifying all classes (98% approximately for each class),
with dog bark being the class where the model performs the
best, and it performs slightly worse than the others when it
has to predict on keyboard and sneeze cough classes.

E. ACCURACY VS. GENERATOR QUALITY

We now compare our classifier’s performance against the out-
comes of the DCASE2023 challenge task 7. For this purpose,
we conduct a comparison and analysis between the scores of
our predicted likelihoods by using the BCE as a score function
(the higher, the better), and the Fréchet Audio Distance (FAD)
scores [19] used for the official rankings of the challenge (the
lower, the better).

We observe a significant difference in correlation across the
two tracks. While Track A demonstrated a strong negative
correlation of -0.86, indicating a general agreement between
the two scoring methods, Track B showed a notably lower
correlation of -0.27. This discrepancy may be due to two
major differences between the two tracks: Track B imposed
restrictions on external resources, whereas Track A had none,
and Track B had more systems than Track A (28 versus 10).
Furthermore, the low correlation in Track B could be due to the
diversity, complexity, and originality of the features used in the
generating systems. For instance, feature extraction methods
such as log-mel spectrogram and log-magnitude spectrogram
were used by Track B’s systems, while in Track A the majority
used Gaussian latent variables and a spectrogram for feature
extraction; additionally, some data augmentation strategies
such as time masking, tanh distortion, and sound wrapping
were used in Track B while being unused in Track A.

VI. LISTENING TEST

Human listening suggests opportunities for improvement in the
detection of distortion, realistic echoes and temporal structure,
and patterns of noise and repetition which may be noticeable

to humans but not to a frame-based detector such as the one
considered in this study.

A. DATA

Incorrect Positives

Erroneously classifying a nonfake sound as a fake is an
”Incorrect Positive” whereas classifying a fake sound as a fake
is a ”Correct Positive”. We examined 38 Incorrect Positive
sounds, spanning all 7 categories, based on the erroneous
high likelihood of the MS-Clap model. These sounds are
from the DCASE development and evaluation dataset that
were presumed to be real recordings; however, although these
sounds were aurally screened by the organizers, the datasets
may have nonetheless contained a few Foley or processed
sounds. To detect this possibility and also to detect other
reasons the system incorrectly classified a sound as fake,
all authors carefully listened to these sounds. We noted two
recordings that had very strong echoes. We suspected that
two recordings were Foley-simulated footsteps rather than
recordings of real footsteps. Some recordings included non-
target sounds (e.g. footsteps during rain, or a snore after
a sneeze). Many sounds had significant background noise.
We verbally characterized five sound features that may have
triggered an incorrect fake detection and used them to create
a menu of ”reasons” for a person suspecting that an audio is
fake.

Incorrect Negatives

The 43 fake sounds that were erroneously classified as nonfake
by the MS-Clap detector are referred to as ”Incorrect Nega-
tives”. There were sounds from all 7 categories. We noted a
couple of recordings that contained very little sound (perhaps
a brief thud) and so there was not much available acoustic
information. Many sounds had significant background noise,
and often the noise sounded more like static than the typical
noise heard in real recordings, such as environmental noise
or distortion from overloading a microphone (clipping/satu-
ration). Sometimes the onset of the target sound contained a
burst of noise. One sound had audible repetition; evidence of
splicing/editing was confirmed via a spectrogram.

B. METHODS

Twenty CMU undergraduates participated for academic credit
(Mean age=19.8; 9 female, 10 male, 1 nonbinary) who re-
ported normal hearing and passed a binaural screening survey
to ensure careful listening over headphones. They used an
online platform (gorilla.sc) and gave online consent approved
by CMU’s IRB. Each sound was accompanied by its category
name on the screen (e.g. “dog bark”), and each sound was
played once before a judgement was made. All 7 sound



Sound Class dog bark footstep gunshot keyboard moving motor vehicule rain sneeze cough
Accuracy (%) 99 98.1 98.3 97.7 98.1 98.5 97.7

TABLE III: Per Class Accuracy of the MS-Clap deepfake predictor.

categories from the System’s test set were represented in
the set of 43 fake and 38 real sounds on which the ML
system made errors. Participants were instructed to respond
“real” if the sound seemed like a real recording of an event,
and to respond “fake” if it seemed like it was generated by
a computer program. They were told that the existence of
background noise was not an indicator of fakeness and that
cues could be present in either the sound from the category
or the background noises.

C. OUTCOMES

When a fake (model-generated) sound was missed by the ML
system (a system incorrect negative), the percent of sounds that
listeners judged as fake (listener correct positives, M=49%)
was not significantly greater than chance, z=-0.07, p=0.6.
When a nonfake (recorded) sound was judged as fake by
the ML system (system incorrect positive), the percent of
sounds that listeners judged as real (listener correct negatives,
M=71%) was greater than chance, z=1.34, p < 0.0001. This
human sensitivity advantage implies that some acoustic fea-
tures which indicated fakeness to the ML system did not seem
artificial to human listeners. When a sound was judged as fake
by a participant, they indicated one of six possible reasons in
the following proportions: The audio of the target sound is
distorted (underwater, wobbly): 34.2% The sound does not
sound like an example of the target category. 32.2% I hear
suspicious artifacts in the background (whining, etc.): 12.9%.
The sound is too brief or quiet to be able to give a reason.
10.0% The sound is too repetitive. 6.8% Other: 4%.

VII. CONCLUSION

We documented the first study of deep fake detection for
environmental audio generation. The experiments reported
considered a public dataset of sounds generated by 10 state
of the art systems and another public dataset of environmental
audio recordings.

The excellent results of the proposed deep fake detector
demonstrate that, to this day, generated sounds can be detected
rather easily. The listening test provide some interesting cues
that can suggest research directions for the improvement of
the generators.
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