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Abstract—With the ever-rising quality of deep generative mod-
els, it is increasingly important to be able to discern whether the
audio data at hand have been recorded or synthesized. Although
the detection of fake speech signals has been studied extensively,
this is not the case for the detection of fake environmental audio.

We propose a simple and efficient pipeline for detecting fake
environmental sounds based on the CLAP audio embedding. We
evaluate this detector using audio data from the 2023 DCASE
challenge task on Foley sound synthesis.

Our experiments show that fake sounds generated by 44 state-
of-the-art synthesizers can be detected on average with 98%
accuracy. We show that using an audio embedding learned on
environmental audio is beneficial over a standard VGGish one as
it provides a 10% increase in detection performance. Informal
listening to Incorrect Negative examples demonstrates audible
features of fake sounds missed by the detector such as distortion
and implausible background noise.

Index Terms—Fake detection, Environmental sound, Deep
learning, Classification, Deepfake audio

I. INTRODUCTION

The rapid evolution of generative models, such as those based
on Diffusion models, ushers in an era where the boundaries
between reality and synthetic content tend to blur more and
more. In audio synthesis, there exists a sizable literature dedi-
cated to the detection of deep fakes in speech, aiming to detect
adversarial attacks ranging from misinformation dissemination
to identity theft [1].

As generative models become more sophisticated, partic-
ularly those rooted in deep learning architectures, their ca-
pacity to produce eerily realistic audio forgeries has grown
exponentially. Innovations such as Variational Autoencoders
(VAEs) and Generative Adversarial Networks (GANs) have
empowered malicious actors to craft audio content that is vir-
tually indistinguishable from genuine recordings. Furthermore,
deepfake audio is often used in conjunction with deepfake
video to create more realistic and convincing fake movies.
In light of these trends, the design of effective fake audio
detection systems is important.

Deepfake Audio refers to audio that has been generated
or augmented using deep learning techniques [2]. There are
different types of Deepfake Audio: Text-to-Speech [3], Voice
conversion [4], emotion fakes [5], scene fakes [6], and partial
fakes [7].

While deepfake detection for speech is well studied, there
appears to be little research, to our knowledge, on the detection

of fake content for environmental sounds. This paper aims to
fill this gap with respect to Foley sound synthesis, i.e., sound
categories such as hand clap, rain, etc.

We propose a simple and effective fake detection pipeline
based on CLAP embeddings [8]. Experiments are based on a
publicly available audio dataset developed during Task 7 of the
IEEE AASP DCASE 2023 Challenge [9]. This is a dataset of
more than 6 hours of recorded audio and 28 hours of generated
audio.

The paper is organized as follows. Section II gives a brief
review of the relevant state of the art on deepfake detection
in audio. Section III introduces the proposed deepfake de-
tector which is benchmarked using an experimental protocol
described in Section IV. Performance is discussed in Section V
and Section VI discusses the outcomes of informal listening
of detection mistakes of the proposed detector that suggest
directions for improvement. Code, supplementary material,
and audio examples are available on the companion page 1.

II. RELATED WORK

This section discusses machine-learning techniques for Deep-
fake Audio detection. In [10], the authors use linear regression
to detect fake voices. The features are extracted using a
signal’s entropy calculated based on Shannon’s equation for
each second of the signal and for the whole signal. The model
reaches 98% accuracy, with all fake audio being correctly
detected. In [11], the authors adopt a combination of Bispectral
analysis and MFCC (Mel Frequency Cepstral Coefficients) for
speech detection and feature extractions. The former helps to
identify components in generated audio that are not present
in human speech and the latter is used to detect the features
in human speech tied to the vocal tract that are absent in
the AI-generated speech. The features are then fed into seven
different ML algorithms. The results show that the Quadratic
SVM model gives the highest accuracy of 96.1%. In [12], the
feature vector is extracted by filtering the signal under analysis
and extracting different statistics with short-term and long-
term prediction order. The features are then fed to a Linear
SVM and Random Forest model. The results show that the
SVM outperforms the RF in different conditions.
Traditional machine-learning models require manual feature

1Companion page: https://mathieulagrange.github.io/audioFoleyDeepFake
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Fig. 1: Overview of the pipeline used in the experiments for the Deepfake detection, with a representation of the MLP’s
network architecture. The value of dim depends on the embedding method used.

extraction. Consequently, research was directed towards more
sophisticated feature extraction algorithms based on deep
learning models.
In [13], they employed both CNNs (Convolutional Neural
Net), using local dependencies, and LSTMs (Long Short-Term
Memory), using both local and sequential dependencies, to
classify audio based on MFCCs. The former model helps
achieve an accuracy of 80%. A CNN has been used with a
similar strategy in [14], which compares different approaches
(MFCC, STFT, FTT of the signal) to deduce that MFCC gives
the best results and also that CNNs are beneficial in such tasks
because they can learn to detect important features. In [15], a
shallow CNN architecture, Deep2Net, was used. The authors
transformed the audio classification task into a computer vision
problem by using a histogram of the audio. The model reached
a global accuracy of 0.985.

III. PROPOSED APPROACH

The detection of fake sounds is treated as a binary classifica-
tion task. As can be seen in Figure 1, the proposed architecture
for solving this task leverages the power of pre-trained audio
embeddings. This allows us to simplify the learning process
by requiring less training data and using less power as the
learnable part of the detector consists of only a few Multilayer
Perceptron (MLP) layers.

This model is structured, as shown in Section 1, with
three dense layers. Each linear layer is followed by 1) ReLU
activation functions to reduce the backpropagation errors and
accelerate the learning process, and 2) dropout layers for
regularization to avoid overfitting. A final dense layer with
a sigmoid function as the output activation function.

To provide input to the decision module, we tested 3
embeddings produced by deep learning architectures, namely:
VGG, CLAP, and PANN.

The VGG embedding is produced by the VGGish network,
a convolutional neural network pre-trained for audio clas-
sification tasks, and is adapted from the VGG [16] image

classification architecture. This method adapts the VGG image
classification network to the audio domain by converting
audio signals into log-mel spectrograms, which are visual
representations of the frequency and amplitude of the sound.
The spectrograms are then fed into the network, which was
pre-trained on a large-scale YouTube dataset with diverse
audio categories, such as music, speech, or animal sounds.
The CLAP embedding is produced by the Contrastive
Language-Audio Pretraining (Clap) model [17]. By leveraging
a contrastive learning approach, CLAP enables models to learn
representations that encode the semantic content of language
and the acoustic characteristics of audio simultaneously. Dur-
ing pre-training, these models are trained using contrastive
learning objectives to project both language and audio inputs
into a shared embedding space. The model learns to encode
similar language-audio pairs closely together while pushing
dissimilar pairs apart. This process enables the extraction of
rich embeddings that capture semantic and acoustic similarities
between inputs.
The PANN embedding is produced by Pretrained Audio Neural
Networks (PANNs) [18], which are yet another class of mod-
els. These networks are trained on spectrogram representations
of audio signals that capture both the frequency and temporal
characteristics of sound. The pre-trained models are usually
initialized with weights from models pre-trained on large-
scale audio datasets, such as AudioSet or UrbanSound, which
contain diverse audio categories ranging from musical genres
to environmental sounds.

IV. EXPERIMENTS

A. DATASET

The DCASE2023 Challenge [19] aimed to produce fake
environmental sounds by training on nonfake sounds. It con-
sisted of two tracks: Track A, with 10 generation systems
from participating teams using varied Foley sound synthesis
methods and permitting limited use of external resources; and



Track B, with 28 generation systems based on provided code,
prohibiting external resources. Both tracks accepted rule-based
and ensemble systems, provided they utilized sounds only
from the development set.

The resulting dataset consists of both nonfake and fake
sounds across seven distinct sound classes (dog bark, foot-
step, gunshot, keyboard, moving motor vehicle, rain, and
sneeze cough). Specifically, the dataset comprises 5,550 non-
fake sounds alongside 25,200 fake sounds, the latter of which
were generated by challenge participants. These sounds are
analyzed through the lens of four different embeddings, de-
tailed in section II.B, each with its unique dimensionality:
VGGish embeddings at (4,128), Microsoft CLAP (MS-Clap)
embeddings at (4,1024), and two PANNs embeddings at
(4,2048), where ’4’ refers to the four-second duration of the
audio clips. For training and evaluation purposes, we separate
the dataset into a training set (70%), a validation set (10%),
and an evaluation set (20%) 2.

B. TRAINING PROCEDURE

We first take the time average of each embedding . Figure 1
shows the pipeline used in the experiment protocol. As we
have four different input embeddings, the procedure yielded
four models to use and compare: MLP VGGish, MLP MS-
Clap, MLP PANN Wavegram, and MLP PANNcnn14-32k.
These models were trained using the Adam optimizer, con-
figured with a learning rate of 7e-4. The training protocol was
standardized across models, with a batch size of 128 samples,
a decision threshold of 0.5 on both training and validation
predictions, and training over 100 epochs. Throughout this
process, the Binary Cross-Entropy (BCE) loss function given
in Equation 1 is used to optimize the weights parameters in
the backpropagation process:

J(y, ŷ) = − (y · log(ŷ) + (1− y) · log(1− ŷ)) (1)

Where y is the true label (0 or 1) and ŷ is the predicted
probability.

During training, we implement a checkpointing mechanism
that saves the state of the model every 10 epochs of training.
Following the best-accuracy selection criterion [20], the final
model is chosen based on the checkpoint demonstrating the
highest validation accuracy. For each implementation of the
detector, 10 training runs are performed and statistics are
reported. We carry out all the experiments on a machine
with 4 physical cores and 8 threads, 16GB of RAM, and an
NVIDIA GeForce RTX 3060 graphic card with 6GB of RAM.
To address the imbalance between fake and nonfake samples,
we employ a balancing technique on the training set.

V. RESULTS

A. INFERENCE TIME

To evaluate the computational efficiency of each model, we
assessed the time required for the embedding process and the

2Dataset of recorded and generated audio: https://zenodo.org/records/
8091972

MLP model’s inference for each embedding on one random
audio sample across 100 runs. The inference time (in seconds)
is then computed by averaging over the 100 inference times.
In Table II, the averaged inference time is expressed as a
percentage of the real-time duration of the audio sample. This
metric provides a clear understanding of the model’s speed
relative to the actual audio duration.

B. OVERALL ACCURACY

We calculate both the relative overall validation and evaluation
accuracy, along with the time per epoch in seconds (s), and
generate a Confusion Matrix for the evaluation dataset. As
presented in Table II, statistics such as Overall Evaluation
Accuracy and Training Time per Epoch are detailed for each
model. Among the experiments conducted under the same
conditions, the MLP MS-Clap model outperformed others with
the highest Evaluation Accuracy of 98.02%, surpassing both
MLP PANN models by 5% and the MLP VGGish model by
10%.

Among the 40 identical runs, we pick the best-performing
run for each model (i.e., the highest evaluation accuracy).
The confusion matrices resulting from the four chosen MLP
models demonstrate a varied performance across the different
architectures. The MLP VGGish model shows difficulty with
correctly classifying nonfake sounds, as it produces 9% false
positive judgements. The MLP MS-Clap model shows the
best proficiency in identifying the nonfake category of sounds,
with the lowest false prediction rate (2% of the dataset). On
the other hand, the MLP PANN-Wavegram and the MLP
PANN 32k models behave approximately the same by having
a high evaluation accuracy and also a low false prediction
rate, yet they do not perform as well overall as the MLP Clap
model.

C. STATISTICAL ANALYSIS

We test the four models in the same configurations as shown in
Table II. We train the models under each configuration for 10
iterations. We then perform the Mann-Whitney U-test to assess
the similarity of accuracy distribution. The U-test is adopted
instead of the t-test since it doesn’t impose the assumption of
normal distribution. In our case, the Null hypothesis assumes
that run A is similar to run B. If the p-value < 0.05, we can
confirm that the alternative hypothesis is true (run A is similar
to run B) with a confidence interval of 95%.
The accuracy of MLP MS-Clap is higher than that of MLP
Pann-Wavegram with 5.02%, and that of MLP PANN 32k with
5.11%, and that of MLP VGGish with 10.23%. In all cases,
the U-test confirms that those differences are significant, as
for all pairs the Null hypothesis is rejected.

D. CLASS-WISE ACCURACY

As the MLP MS-Clap model is the best-performing model
among the four trained models, we chose to carry out our
analysis with this model. To have a better understanding of the
behavior of the model’s performance, we look closely at the
model’s accuracy for each class (Table III). This closer look

https://zenodo.org/records/8091972
https://zenodo.org/records/8091972


MLP VGGish MLP MS-Clap MLP PANN Wavegram logmel MLP PANN 32k
Predicted Nonfake (%) Fake (%) Nonfake (%) Fake (%) Nonfake (%) Fake (%) Nonfake (%) Fake (%)
Nonfake 15 3 17 1 14 3 14 5

Fake 9 73 1 81 4 79 3 77

TABLE I: Confusion Matrix Evaluation for MLP models

TABLE II: Statistics on Overall Accuracy and the Inference
Time expressed as a real-time percentage.

Model x Embeddings Accuracy (%) Inference Time (%)

Mean Averaged percentage

MLP VGGish 88.11 ± 0.73 0.423
MLP MS-Clap 98.02 ± 0.18 1.82
MLP PANN-Wavegram 93.15 ± 0.34 0.318
MLP PANNcnn14 32k 93.04 ± 0.32 0.234

helps us understand how the model performed with different
types of data. We find that the model was consistently good
at identifying all classes (98% approximately for each class),
with dog bark being the class where the model performs the
best, and it performs slightly worse than the others when it
has to predict on keyboard and sneeze cough classes.3

E. ACCURACY VS. GENERATOR QUALITY

We now compare our classifier’s performance against the out-
comes of the DCASE2023 challenge task 7. For this purpose,
we conduct a comparison and analysis between the scores of
our predicted likelihoods by using the BCE as a score function
(the higher, the better), and the Fréchet Audio Distance (FAD)
scores [19] used for the official rankings of the challenge (the
lower, the better).

We observe a significant difference in correlation across the
two tracks. While Track A demonstrated a strong negative
correlation of -0.86, indicating a general agreement between
the two scoring methods, Track B showed a notably lower
correlation of -0.27. This discrepancy may be due to two
major differences between the two tracks: Track B imposed
restrictions on external resources, whereas Track A had none,
and Track B had more systems than Track A (28 versus 10).
Furthermore, the low correlation in Track B could be due to the
diversity, complexity, and originality of the features used in the
generating systems. For instance, feature extraction methods
such as log-mel spectrogram and log-magnitude spectrogram
were used by Track B’s systems, while in Track A the majority
used Gaussian latent variables and a spectrogram for feature
extraction; additionally, some data augmentation strategies
such as time masking, tanh distortion, and sound wrapping
were used in Track B while being unused in Track A.

VI. LISTENING TEST

Human listening suggests opportunities for improvement in the
detection of distortion, realistic echoes and temporal structure,

3On the companion website a confusion matrix is shown for each evaluated
embedding. Entries of those matrices are per system generator and sound class.
This matrix shows that it is challenging to detect some fake sounds that are
generated by some specific systems on specific classes.

and patterns of noise and repetition which may be noticeable
to humans but not to a frame-based detector such as the one
considered in this study.

A. DATA

Incorrect Positives

Erroneously classifying a nonfake sound as a fake is an
”Incorrect Positive” (or ”False alarm”) whereas classifying a
fake sound as a fake is a ”Correct Positive” (or ”Hit”). We ex-
amined 38 Incorrect Positive sounds, spanning all 7 categories,
based on the erroneous high likelihood of the MLP MS-Clap
model. These sounds are from the DCASE development and
evaluation dataset that were presumed to be real recordings;
however, although these sounds were aurally screened by the
organizers, the datasets may have nonetheless contained a few
Foley or processed sounds. To detect this possibility and also
to detect other reasons the system incorrectly classified a sound
as fake, all authors carefully listened to these sounds. We noted
two recordings that had very strong echoes. We suspected
that two recordings were Foley-simulated footsteps rather than
recordings of real footsteps. Some recordings included non-
target sounds (e.g. footsteps during rain, or a snore after
a sneeze). Many sounds had significant background noise.
We verbally characterized five sound features that may have
triggered an incorrect fake detection and used them to create
a menu of ”reasons” for a person suspecting that an audio is
fake.

Incorrect Negatives

The 43 fake sounds that were erroneously classified as nonfake
by the MLP MS-Clap detector are referred to as ”Incorrect
Negatives”. There were sounds from all 7 categories. We noted
a couple of recordings that contained very little sound (perhaps
a brief thud) and so there was not much available acoustic
information. Many sounds had significant background noise,
and often the noise sounded more like static than the typical
noise heard in real recordings, such as environmental noise
or distortion from overloading a microphone (clipping/satu-
ration). Sometimes the onset of the target sound contained a
burst of noise. One sound had audible repetition; evidence of
splicing/editing was confirmed via a spectrogram.

B. METHODS

Twenty CMU undergraduates participated for academic credit
(Mean age=19.8; 9 female, 10 male, 1 nonbinary) who re-
ported normal hearing and passed a binaural screening survey
to ensure careful listening over headphones. They used an
online platform (gorilla.sc) and gave online consent approved
by CMU’s IRB. Each sound was accompanied by its category
name on the screen (e.g. “dog bark”), and each sound was



Sound Class dog bark footstep gunshot keyboard moving motor vehicule rain sneeze cough
Accuracy (%) 99 98.1 98.3 97.7 98.1 98.5 97.7

TABLE III: Per Class Accuracy of the MLP MS-Clap deepfake predictor.

played once before a judgement was made. All 7 sound
categories from the System’s test set were represented in
the set of 43 fake and 38 real sounds on which the ML
system made errors. Participants were instructed to respond
“real” if the sound seemed like a real recording of an event,
and to respond “fake” if it seemed like it was generated by
a computer program. They were told that the existence of
background noise was not an indicator of fakeness and that
cues could be present in either the sound from the category
or the background noises.

C. OUTCOMES

When a fake (model-generated) sound was missed by the
ML system (a system false/incorrect negative), the percent of
sounds that listeners judged as fake (listener correct positives,
M=49%) was not significantly greater than chance, z=-0.07,
p=0.6. When a real (recorded) sound was judged as fake by
the ML system (system false/incorrect positive), the percent
of sounds that listeners judged as real (listener correct neg-
atives, M=71%) was greater than chance, z=1.34, p¡.0001.
This human sensitivity advantage implies that some acoustic
features which indicated fakeness to the ML system did not
seem artificial to human listeners. When a sound was judged
as fake by a participant, they indicated one of six possible
reasons in the following proportions: The audio of the target
sound is distorted (underwater, wobbly): 34.2% The sound
does not sound like an example of the target category. 32.2%
I hear suspicious artifacts in the background (whining, etc.):
12.9%. The sound is too brief or quiet to be able to give a
reason. 10.0% The sound is too repetitive. 6.8% Other: 4%.

VII. CONCLUSION

We documented the first study of deep fake detection for
environmental audio generation. The experiments reported
considered a public dataset of sounds generated by 10 state
of the art systems and another public dataset of environmental
audio recordings.

The excellent results of the proposed deep fake detector
demonstrate that, to this day, generated sounds can be detected
rather easily. The listening test provide some interesting cues
that can suggest research directions for the improvement of
the generators.
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