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Correlation of Fréchet Audio Distance With Human
Perception of Environmental Audio Is Embedding

Dependent
1st Modan Tailleur
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Abstract—This paper explores whether considering alternative
domain-specific embeddings to calculate the Fréchet Audio Dis-
tance (FAD) metric can help the FAD to correlate better with
perceptual ratings of environmental sounds. We used embeddings
from VGGish, PANNs, MS-CLAP, L-CLAP, and MERT, which
are tailored for either music or environmental sound evaluation.
The FAD scores were calculated for sounds from the DCASE
2023 Task 7 dataset. Using perceptual data from the same task,
we find that PANNs-WGM-LogMel produces the best correlation
between FAD scores and perceptual ratings of both audio quality
and perceived fit with a Spearman correlation higher than 0.5. We
also find that music-specific embeddings resulted in significantly
lower results. Interestingly, VGGish, the embedding used for
the original Fréchet calculation, yielded a correlation below 0.1.
These results underscore the critical importance of the choice of
embedding for the FAD metric design.

Index Terms—Environmental Sound Synthesis, Objective Au-
dio Quality, Neural Audio Embeddings, Evaluation Metrics

I. INTRODUCTION

Generative audio synthesis has become a popular research
topic in which deep neural nets are typically driven by textual
prompts [1]–[5]. Those systems must be evaluated on high-
level perceptual features such as audio quality and alignment
with categories for meaningful comparisons. However, evalu-
ating synthetic audio through perceptual evaluation remains a
cumbersome process, despite its validity.

To address this challenge, various metrics have been devel-
oped for use in prototyping and large-scale quality assessment
[2], [6], [7]. Among these metrics, the Fréchet Audio Distance
(FAD) [8] is widely used. FAD compares the distribution of
a reference set with that of synthetic audio using VGGish
embeddings [9].

Recent work [10] demonstrates that considering alternative
embeddings that have been trained on music data is beneficial
for assessing the quality of music generation systems.

Similarly, in this paper, we investigate whether changing
the embeddings can lead to an increased correlation of the

FAD with human perceptual ratings of both audio quality
and perceived fit to categories of environmental sounds (i.e.,
general audio excluding speech and music). Given the fact
that VGGish embeddings have been trained on environmental
audio, we expected that VGGish embeddings would perform
well, but our findings show the opposite. VGGish embeddings
report low correlations, as do the embeddings trained on
music data. Fortunately, we find that more recent embeddings
specifically trained on environmental audio are quite effective,
suggesting that the choice of the embedding is a crucial part
of FAD metric design.

The rest of the paper is organized as follows. Section II
delves into related works, followed by the presentation of
the selected embeddings in Section III. Section IV presents
the experiments and Section V the correlation results between
the FAD scores when considering several state-of-the-art neu-
ral audio embeddings and perceptual evaluations using the
DCASE Task 7 2023 dataset [11]. The code corresponding
to this study is made publicly available.1

II. RELATED WORK

The Fréchet Audio Distance (FAD) [8] has been proposed
as an adaptation of the Fréchet Inception Distance (FID)
[12] for audio quality assessment. FID and FAD compare
the distribution of two datasets in a given embedding space.
VGGish [13] was originally proposed as the feature extractor
for FAD. To evaluate a synthesis model, a set of desired audio
serves as the reference. Firstly, two multivariate Gaussian
distributions, which have the same means and covariances as
the embedding sets, are considered. Then, the Fréchet distance
between the two distributions r and t is calculated as follows:

FAD(r, t) = ∥µr − µt∥2 + tr
(
Σr +Σt − 2

√
ΣrΣt

)
(1)

1Code repository: https://github.com/mathieulagrange/dcaseFadEmbedding

https://github.com/mathieulagrange/dcaseFadEmbedding 


where µx and Σx are respectively the mean and covari-
ance matrix of a given distribution x. The FAD calculation
compares the two datasets in terms of fit to domain with
the comparison of means, but also in terms of diversity by
including a form of covariance comparison in the equation.
A low FAD score thus indicates that the two datasets contain
similar sound sources, and a similar diversity. If the reference
dataset can be considered of high audio quality, it is generally
assumed that a low FAD distance implies that the evaluated
dataset is also of good audio quality.

Whether it be for audio or image evaluation, using Fréchet
distance has a few drawbacks. Trying to match an embedding
space can lead to models of very different quality having
similar Fréchet distance scores, as one could be fitting the
embedding space more accurately without improving the per-
ceptual quality [14]. The majority of embeddings used are
trained representations, implying a potentially strong depen-
dency on the dataset and task used for training. Consequently,
for accurate evaluation using Fréchet Distance, the dataset
under assessment must exhibit similarity to the training set
of the embedding. This emphasizes the potentially significant
influence of the embedding choice on the Fréchet Distance
calculation process.

For image generation evaluation, Kynkäänniemi, Tuomas, et
al. [14] showed that simply matching the top-N classifications
histogram between the reference and generated set improved
the FID score without further improvement in the generative
model. This indicates the high dependency of FID on Ima-
geNet [15], which is used to train the Inception embedding.
The high dependency on the choice of embedding may be
much worse in audio domain. ImageNet dataset has carefully
tailored 1k classes to cover the wide range of in-the-wild
images. Conversely, VGGish was trained to classify only 3k
labels, that are not even necessarily relevant to sound. This
may limit the generalizability of audio embeddings, depending
on the training data size and task.

Gui et al. [10] explored the limitations of FAD in music
generation, as VGGish-based FAD struggles to accurately
predict the perceptual features of generated musical audio.
The authors investigated different embeddings and found
that VGGish yields notably poor FAD scores compared to
alternative representations. Although they have shown that
embeddings such as CLAP [6], [16] are more suitable for
music generation, their effectiveness in improving the FAD
metric for Environmental audio generation remains to be
evaluated.

III. EMBEDDINGS

Experimental details on all embeddings examined are pre-
sented in Table I. Our objective with this selection is to
investigate whether domain-specific embeddings significantly
influence the relevance of the Fréchet Audio Distance (FAD)
metric. We consider VGGish [17] as our baseline, as it has a
proven record of use for FAD calculation. Next, we consider
MERT [18] as a recent embedding primarily trained on music
data, as well as a CLAP model trained specifically on voice
and music. Given that those latter embeddings are not trained
on environmental audio, we hypothesize that they should

TABLE I
DESCRIPTION OF EMBEDDING MODELS. THE SIZE OF THE RECEPTIVE

FIELD (RF) IS THE MAXIMAL DURATION OF AUDIO CONSIDERED BY THE
MODEL TO COMPUTE THE EMBEDDING.

Model Audio Embedding RF
Size Rate Size / Rate Size

VGGish [17] 72M 16 kHz 128 / 1 Hz 1 s
MERT [18] 72M 24 kHz 768 / 76 Hz 5 s
MS-CLAP [20] 158M 44 kHz 1024 / 1 Hz 7 s
L-CLAP [16] 158M 48 kHz 512 / 1 Hz 10 s
PANNs-CNN14-16k [19] 80M 16 kHz 2048 / .1 Hz 10 s
PANNs-CNN14-32k [19] 80M 32 kHz 2048 / .1 Hz 10 s
PANNs-WGM-Logmel [19] 80M 32 kHz 2048 / .1 Hz 10 s

perform poorly. Other CLAP models and PANNs [19] models,
on the other hand, are trained using environmental audio. As
CLAP models are trained using partly PANN architectures, or
at least have considered PANNs in their framework in their
evaluation protocol, they are expected to outperform PANNs.

A. VGGish

VGGish [17] is an audio classifier trained on a subset of
a large audio dataset extracted from YouTube videos called
YouTube-100M, which contains 350,000h of audio data with
video-level class labels. YouTube-100M covers a wide range
of audio content, spanning everyday sounds, sound effects,
and music, captured in diverse real-world scenarios. It’s worth
noting that within this dataset the video-level classes may
not necessarily be directly related to the audio content, as a
source can be present in a video without generating any sound.
VGGish uses log-mel spectrograms with 64 frequency bins
and 10-ms hops as input, and it has about 70M parameters.
Following the methodology outlined by Gui et al. [10], we
employ the VGGish model to process 1-second audio segments
with 50% overlap.

B. MERT

The Music undERstanding model with large-scale self-
supervised Training (MERT) [18] generates embeddings
learned with teacher-student methods, using a combination of
teachers including an acoustic teacher based on Residual Vec-
tor Quantization - Variational AutoEncoder (RVQ-VAE) and
a musical teacher based on the Constant-Q Transform (CQT).
The student model is a BERT-style transformer encoder. The
MERT models are specialized in music, being trained on an
in-house private music dataset comprising 160k hours of audio
data. Among the several available models, we chose the one
with 95M parameters (MERT-95M).

C. PANNs

PANNs [19] are classifiers trained on AudioSet [21].
The dataset originated from YouTube videos and is around
5,000h long, with 527 different general sound classes. Unlike
YouTube-100M, AudioSet employs automatic labeling with
human verification at the audio level. The majority of these
models leverage log-Mel spectrograms featuring 64 mel bins
and 10-ms hops as input. Released in various sizes and trained
at different sample rates, these models offer versatility in
application. Among them, the CNN14 model emerges as the



most commonly utilized variant, with 16kHz (PANN-CNN14-
16kHz) or 32kHz (PANN-CNN14-32kHz) sampling rates.
However, according to their paper, the model that leads to the
best accuracy is the Wavegram-Logmel-CNN (PANN-WGM-
LogMel). This model uses the audio waveform as input, which
is transformed into a learned spectro-temporal representation
along with a Mel-spectrogram. Subsequently, both representa-
tions are fed into the rest of the network. PANN-CNN14 and
PANN-WGM-LogMel models contain 80M parameters.

D. MS-CLAP

The embedding Contrastive Language-Audio Pretraining
(CLAP) [6] is trained to learn multimodal representations,
using both an audio and a text encoder. Symmetric cross-
entropy loss was exploited for language and audio cross-modal
contrastive learning. It uses PANN-CNN14-32kHz for audio
encoding and BERT for text encoding. It is trained on 128,000
audio/caption of FSD50k, ClothoV2, AudioCaps and MACS,
representing about 250h of audio. For this study, we use the
CLAP model released in September 2023 called “sep 23”.

E. L-CLAP

LAION has also trained a CLAP architecture [16] similar
to the one used for MS-CLAP. They trained their best model
using HTS-AT [22] as the audio encoder and RoBERTa [23]
as the text encoder. They proved that training their model on
LAION-Audio-630k and AudioSet with keyword-to-caption
augmentation significantly improves the performances of their
CLAP model. LAION-Audio-630k comprises a diverse range
of 4,000 hours of audio recordings depicting human activities,
natural sounds, and audio effects, sourced from eight publicly
available websites. In total, their model for environmental
audio called “630k-audioset-best” (L-CLAP-audio) is reported
to be trained on about 10,000h of audio. They also released
models specialized in music, which are trained on music and
speech from their data collection. We chose the model “music
audioset epoch 15 esc 90.14” (L-CLAP-mus) for comparison.

IV. EXPERIMENTS

A. Data

In this study, we leverage the DCASE 2023 Challenge Task
7 dataset [11], encompassing 700 sound excerpts of 7 different
categories: dog bark, footstep, gunshot, keyboard, moving
motor vehicle, rain, and sneeze/cough. Each sound excerpt is
a mono 16-bit 22,050 Hz 4-second audio sourced from three
distinct datasets: UrbanSound8K [24], FSD50K [25], and BBC
Sound Effects2. To ensure high relevance, diversity, and clarity,
the challenge organizers manually selected and validated the
excerpts.

Supplementary to this dataset are the audio generated using
the baseline and 8 submitted algorithms, with each contribut-
ing an additional set of 700 sound excerpts synthesized by
their respective systems. The duration of the whole dataset
(recorded and synthesized) is about 8h. The 8 systems from the
participants were top-ranked in terms of FAD score. Twenty
sounds from each system underwent perceptual evaluation for

2https://sound-effects.bbcrewind.co.uk/
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Fig. 1. Spearman correlation coefficient (n = 63) between FAD−1.
and perceptual evaluation of audio quality and category fit for different
embeddings. Error bars display standard deviation.

both audio quality and category fit by 91 raters (47 hrs). Each
category within each system has been evaluated, resulting in
a total of 63 evaluations for each criterion. The correlations
shown in section V are thus based on those 20 evaluated audios
per category and per system.

B. Uncertainty estimation

To assess the uncertainty associated with each Spearman
correlation calculation, we introduce Gaussian noise with a
standard deviation of 1 to the perceptual evaluation scores.
Subsequently, we repeat this process 100 times to generate 100
different noisy sets, each containing 63 perceptual evaluations
for both category fit and audio quality.

By computing the mean and standard deviation of the
Spearman correlation coefficients across these 100 noisy sets,
we obtain estimates of the variability and uncertainty inherent
in the correlation calculations.

V. RESULTS

Given the FAD definition given in Eq. 1, lower FAD scores
indicate a high similarity between datasets. Consequently, a
reliable FAD metric should demonstrate an inverse correla-
tion with high perceptual quality when computed between
a reference set and various generated sets. To simplify the
presentation of results, we use the inverse of the FAD (FAD−1)
so that a high quality FAD−1 metric should achieve a high
positive correlation with perceptual attributes that are higher
when better.

A. Overall Correlation

As shown in Figure 1, the PANNs-WGM-LogMel FAD
and the MS-CLAP FAD demonstrate strong correlations with
both category fit and audio quality, with PANN-WGM-LogMel

https://sound-effects.bbcrewind.co.uk/


being significantly higher than MS-CLAP FAD. In contrast,
both the MERT-95M FAD and the VGGish FAD demonstrate
very weak correlation with perceptual evaluation. Additionally,
the L-CLAP models perform less effectively than MS-CLAP
and PANN-WGM-LogMel, with L-CLAP-audio showing a
better correlation score than L-CLAP-mus.

B. Per-category Correlation

In Figure 2, we present the per-category correlation re-
sults. Interestingly, substantial variability in correlation is
observed across different categories. PANNs-WGM-LogMel
displays greater stability across categories, while perform-
ing better than the other embeddings in half of the cate-
gories. VGGish demonstrates good performance in categories
such as sneeze/cough and gunshot, but performs extremely
poorly in every other category. Similarly, CLAP exhibits
low correlations in categories such as moving motor vehicle,
sneeze/cough, and gunshot, while demonstrating better per-
formance in other categories, competing or beating PANNs-
WGM-LogMel in some of them. Overall, MS-CLAP and
PANN-WGM-LogMel lead to higher correlations than VG-
Gish across nearly all categories. These results should be
treated cautiously because the Spearman correlation coeffi-
cients are calculated with only 9 data points per category.

C. Influence of Dimensionality

As shown in Table I, each embedding model varies in size.
Considering the findings presented in Figure 1, we want to
investigate if the dimensionality of the embedding may bias the
performance of the FAD metric. To refute the hypothesis that a
higher dimensional embedding may gain an unfair advantage,
we conduct a dimensionality reduction of every embedding to
match that of VGGish (n=128). The dimensionality reduction
is performed by projecting the set of embeddings on the
128 Eigenvectors of the highest Eigenvalues using Principal
Component Analysis (PCA).

We observed that diminishing the size of the embeddings
had minimal impact on the correlations with FAD−1, decreas-
ing them by approximately 0.01 for each embedding. Thus,
the size of the embedding does not significantly influence the
performance of the FAD metric.

D. FAD-based Category Mapping

Little is known about how the FAD may relate to the
similarity of sound categories. To examine this, we grouped
the 7 sound categories of the 700 audios of the evaluation set
of DCASE Task 7 2023 dataset into 3 meta-categories: Impact
(Footsteps, Gunshot, Keyboard), Vocalizations (Dog Bark,
Sneeze/Cough), and Texture (Moving Motor Vehicle, Rain).
A satisfactory embedding should result in the FAD grouping
similar categories together while separating highly dissimilar
categories. Given that the 7 sound classes themselves are
highly distinct, they should also be quite separated from each
other in the projection.

Figure 3 shows a 2D mapping of the similarities of every
pair of categories from the DCASE Task 7 2023 dataset, calcu-
lated with Multidimensional Scaling (MDS) with FAD using
three different embeddings as input. We find that the three

-0.5

0.0

0.5

1.0
Dog Bark

-0.5

0.0

0.5

1.0
Footstep

-0.5

0.0

0.5

1.0
Gunshot

-0.5

0.0

0.5

1.0
Keyboard

-0.5

0.0

0.5

1.0
Moving Motor Vehicle

V
G

G
ish

(2
01

7)

PA
N

N
-W

G
M

Lo
gM

el
 (2

01
9)

M
S-

CL
A

P
(2

02
3)

-0.5

0.0

0.5

1.0
Rain

V
G

G
ish

(2
01

7)

PA
N

N
-W

G
M

Lo
gM

el
 (2

01
9)

M
S-

CL
A

P
(2

02
3)

-0.5

0.0

0.5

1.0
Sneeze / Cough

Audio Quality
Category Fit
p-value > 0.05

Fig. 2. Spearman correlation coefficient (n = 9) between FAD−1. and
perceptual evaluation of audio quality and category fit for VGGish, PANNs
CNN14 Wavegram Logmel and CLAP.

embeddings successfully group similar categories together, as
evidenced by the Voronoi separation diagram. Additionally,
the split between the different groups is somewhat more
pronounced for MS-CLAP and PANN-WGM-LogMel than
for VGGish. Furthermore, for MS-CLAP and PANN-WGM-
LogMel, all 7 sound sources are further apart from each
other, which indicates that these two embeddings are better
at separating the different categories than VGG.

VI. CONCLUSION

In this paper, we explored the use of alternative embeddings
to assess audio quality and alignment with categories in
environmental audio, aiming to improve the validity of the
Fréchet Audio Distance (FAD) metric. We compared several
embeddings, including VGGish, PANNs, MS-CLAP, L-CLAP,
and MERT, using the DCASE Task 7 2023 dataset.

We find that there is a strong dependency of the embedding
in the FAD metric, which appears to be closely linked to
the domain of the embedding training dataset. In fact, music-
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Fig. 3. 2D Projection of inter-category FAD similarity matrix using Multi-dimensional scaling (MDS) on DCASE Task 7 2023 dataset.

trained embeddings, such as MERT-95M and CLAP Laion
Music, perform less effectively than those trained on environ-
mental audio. Furthermore, while VGGish was trained to clas-
sify 3k video-level labels, these labels might not necessarily
be relevant to sound, potentially limiting its generalizability
for tasks like DCASE TASK 7 2023 systems evaluation. This
observation also aligns with findings reported by Gui et al.
[10].

CLAP and PANN-WGM-LogMel clearly outperform VGG
in correlating with the perception of environmental audio.
Although there is variation in performance across categories,
overall the PANN-WGM-Logmel slightly but significantly out-
performs CLAP. However, because CLAP outperforms PANNs
in sound event classification tasks when both use the PANN-
CNN14-32kHz model, [6] we believe future CLAP models
trained with the more advanced PANN-WGM-Logmel model
[19] may show superior performance.

We investigated the influence of deep audio embeddings
in the formation of a metric space that reflects the high-
level organization of sound events. The preliminary experi-
ments presented here demonstrate the advantages of recent
embeddings and specialized embeddings tailored to specific
tasks. Further investigation is recommended, for example, by
considering a more diverse number of categories for which
perceptual ratings are available.
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