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Abstract
Today, 60 countries suffer from landmines and other unexploded ordnance, and more than 4,700 people
were killed or injured by these explosives in 2022. At the same time, mine clearance is a lengthy and
resource-intensive process. The areas to be searched for mines usually cover large regions, and skilled
deminers, hardware, and funding are limited. Machine learning (ML) researchers have proposed several
solutions to increase the efficiency and effectiveness of mine clearance.
This brief review of the current research aims to provide an overview of findings on the use of machine
learning to support ERW detection in clearance operations. In particular, it aims to answer which input
features are used in research to train ML algorithms (RQ1), which ML algorithms are used to predict the
presence of ERW (RQ2), and which gaps in research exist on this topic (RQ3).
The review shows that studies on object detection, especially based on GPR and metal detector data,
dominate the research while less than 10% of the research studies ML for ERW risk prediction. It also
highlights the wide variety of input features used for ERW risk prediction algorithms. Furthermore, the
review finds that SVMs and neural networks are the most studied ML algorithms to support ERW
clearance. However, it also points out significant differences in ML techniques between the individual
lines of research. Finally, the review highlights areas for future research. Most importantly, future
research should focus on landmine risk prediction, work with real-world data and investigate performance
improvements through input data fusion and incorporation of prior knowledge such as ERW patterns.

Introduction
Today, 60 countries suffer from landmines and other explosive remnants of war (ERW), and more than
4,700 people were killed or injured by these explosives in 2022 [1]. At the same time, clearance of ERW
is a lengthy and resource-intensive process. The areas to be searched usually cover large regions, and
skilled deminers, hardware, and funding are limited [2]. Machine learning (ML) researchers have
proposed several solutions to increase the efficiency and effectiveness of ERW clearance. This literature
review analyzes 100 eligible publications on AI systems to support ERW clearance which have been
published between 1997 and 2024. In particular, the review answers three research questions:
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RQ1: Which input features are used in research on ML models that support the detection of ERW in
clearance operations?
RQ2: Which ML algorithms are analyzed in research on ML models that support the detection of ERW in
clearance operations?
RQ3: What are the gaps in research on ML models that support the detection of ERW in clearance
operations?

Method
The three research questions are answered based on an analysis of 100 eligible publications on the topic
of ML for ERW detection in clearance operations. These studies are the result of a comprehensive
literature search. The search follows a multi-step process that includes several screening steps to identify
eligible studies (see Figure 1). It starts with a keyword search in seven databases, balancing sources
focused on AI-related research and sources focused on peace/policy-related research. The keywords
combine terms from the groups “explosive remnants” and “artificial intelligence” (see Table 1,
Appendix). Both groups of keywords are linked with an “AND” operator to form a search string. All
terms/synonyms within each group are combined with an “OR” operator. The search returns 1,558 results.
All publications are then screened on the basis of their title and abstract and, in a second stage, on the
basis of their full text. Each screening selects eligible studies based on the inclusion and exclusion criteria
defined for the review (see Table 2, Appendix). Finally, the screening results in 100 eligible studies.

Figure 1: Flowchart of literature search and selection process
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Results
The 100 eligible studies are analyzed in detail to answer the research questions of this review (see Table
3, Appendix).

RQ1: Input features. Research on AI systems for clearance operations can be grouped into two main
streams (see Figure 2). A majority of the research focuses on object detection. This includes research on
AI systems to detect ERW during clearance operations. In contrast, a minority of the research focuses on
ERW risk prediction for a region of interest. Both streams use different input data for the predictions.

Figure 2: Research streams on AI systems to support ERW clearance

The first research stream focuses on object detection and includes 93 publications. These cover a wide
range of input data types which can be grouped into sensor data, including data from ground penetrating
radar (GPR), metal detectors and other sensors, and image data, including thermal and hyperspectral
image data. Most of the research (59 publications) using sensor data focuses on GPR data. However,
research on GPR only started in 2001 when Agarwal et al. published their paper on sensor fusion of GPR
and metal detector data [3]. There is less research on ML techniques with metal detector data (27
publications). These authors analyze different types of metal detectors such as magnetometers or
electromagnetic induction sensors (EMI). Also, Plett et al. leverage data from a microwave sensor which
is a cheaper alternative to a GPR sensor [4]. Further, Ali et al. analyze ML techniques with input data
from a contact pressure sensor [5]. In contrast to sensor data, only 16 studies use image data. 13 authors
use hyperspectral image data, such as Bolton and Gader who work with   airborne image data with 70
spectral responses [6]. However, other publications only use RGB image data such as Baur et al. who use
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RGB image data acquired by drones [7]. Another 10 researchers use infrared or thermal image data to
detect ERW. The thermal image data is used to detect both buried landmines and surface UXO [8], [9].
In addition, sensor fusion for ERW object detection with ML is analyzed by 14 authors. Most of them (10
publications) combine GPR and metal detector data to improve ERW object detection results, for example
[3]. However, two publications combine EMI and magnetometer data to improve detection performance
[10], [11]. Also, two further publications focus on sensor fusion of different image sensors such as RGB
and thermal image data [12], [13].
The second stream of research focuses on ERW risk prediction for a region of interest and includes 7
publications. These authors use input data that can be divided into ERW-related and non-ERW-related
data. The ERW-related data includes information from ERW records as well as data from ERW incidents
in the region of interest. For example, Alegria et al. use only landmine incident data to train their model
[14]. Riese et al. also use several ERW-related features, such as the distance to the nearest minefield, the
distance to the confrontation line and the distance to the nearest recorded mine accident to train their
model [15]. The non-ERW-related data includes various information on the topology and infrastructure of
the region of interest. Topological features contain information on elevation, incline, land use, forests,
rivers, animal density, soil texture, temperature, rainfall and visibility [15], [16], [17], [18], [19]. In
addition, infrastructure features contain information about roads, railways, airfields, seaports, bridges,
cities, buildings, financial institutions, schools, borders, telecommunication lines, power lines, oil lines,
orchards, bunkers, trenches, and shelters [15], [16], [17], [18], [19]. Interestingly, most publications on
ERW risk prediction use a combination of ERW-related and non-ERW-related data.
Finally, the analysis of other training data and study characteristics reveals significant qualitative
differences between the publications (see Table 3, Appendix). Only eight publications use real-world data
collected from ERW clearance operations, for example Rafique et al. who use data from a demining
operation in Colombia [16]. However, 92 publications use test field data to train and test the ML models.
Further, 87 publications focus on predictions for landmine detection, of which 44 include anti-tank (AT)
landmines, 36 include anti-personnel (AP) landmines and 32 do not specify the type of landmine used. 13
publications focus on predictions for other UXO such as unexploded ammunition. Also, two publications
focus on predictions for improvised explosive devices (IED) [20], [21]. Of the ERW analyzed, 58
publications include metallic ERW, while minimal-metallic (30) and plastic (28) ERW are less frequently
analyzed. Furthermore, 64 publications include buried objects in the analysis and 41 publications test their
ML system for different soil types.

RQ2: ML algorithms. Based on these input features, a variety of ML models are developed and
evaluated in the eligible studies. In total, 30 different types of ML algorithms are used (see Figure 3). A
majority of these algorithms can be categorized into five groups which are analyzed in at least ten
publications. These groups are (convolutional) neural networks (39 publications), support vector
machines (27 publications), linear or logistic regression (twelve publications), hidden markov models
(HMM) (eleven publications), and tree-based algorithms (10 publications). However, a detailed analysis
of ML techniques and performance requires an analysis of each research stream to ensure comparability.
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Figure 3: ML algorithms studied in research on AI systems for ERW clearance

The research stream on object detection from GPR data mostly uses SVMs (19 publications), neural
networks (16 publications) and hidden markov models (ten publications) to detect ERW (see Figure 4,
Appendix). These studies find that SVMs perform well in detecting different types of ERW from GPR
data [22], [23], [24]. Also, they show that this technique can be applied for real-time detection [25]. In
addition, some authors find that the performance can be improved with feature extraction [26]. In
addition, 16 studies analyze the use of neural networks for ERW detection from GPR data. They find that
neural networks outperform simpler techniques such as linear regressions [27]. Among them, two authors
work with autoencoders to reconstruct the surface response and detect ERWs as anomalies [28], [29].
Also, seven authors use convolutional neural networks (CNN) to detect landmines from GPR data, for
example [30]. Research also finds that hidden markov models perform well for ERW detection from GPR
data and can generalize between sites [31], [32]. In particular, four publications find that an ensemble of
HMMs performs better than a single HMM [33], [34], [35], [36].
In contrast, the research stream on object detection from metal detector data mainly analyzes neural
networks (14 publications) (see Figure 5, Appendix). These authors find that neural networks perform
well for ERW detection from metal detector data and can generalize between different test sites [37], [38],
[39]. Also, researchers find that a neural network outperforms an SVM for ERW detection from metal
detector data [40], [41]. Yet, Bray and Link show that a random forest model can outperform a neural
network for this task [40].
Most publications of the research stream on object detection from image data use CNN models (6
publications) (see Figure 6, Appendix). The authors report high performance with detection rates of up to
90% [7], [42]. Also, pre-trained CNNs are found to perform well in this task [9], [43]. Yet, Silva et al.
find that a simpler SVM can outperform a CNN for landmine detection from image data [44]. In addition,
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Thomas and Cathcart propose an extension to image-based algorithms by incorporating pattern
information from ERW to reduce the false alarm rate of predictions [45].
The research stream on landmine risk prediction mainly focuses on fundamental ML techniques such as
SVMs, tree-based and nearest neighbors models (see Figure 7, Appendix). For example, Rafique et al.
compare a logistic regression model with an SVM. They find that the SVM outperforms the logistic
regression and generalizes better across different regions [16]. Further, Saliba et al. compare an SVM with
a random forest and a XGBoost model and find that the random forest model performs best [18]. The
other publications in this research stream analyze neural networks, tree-based models, nearest neighbors
models, PCA and naive bayes approaches. However, they all focus on a single ML technique and
therefore cannot provide a meaningful performance comparison [14], [15], [17], [19], [46].

RQ3: Research gaps. Finally, the analysis of the eligible publications reveals several gaps in current
research and suggests three main areas for future research. First, the underrepresentation of publications
on ERW risk prediction highlights the need for further research in this area. This research should aim to
identify the most relevant input features for ERW risk prediction. It should also continue to compare
different ML techniques for the prediction, as this has only been done by two publications [16], [18].
Second, future research should extend the work with real-world data from ERW clearance missions. In
particular, research on ERW object detection rarely uses real-world data. The current dominance of test
field data may be a reason for conflicting results and a lack of generalization. Third, future research
should explore novel approaches to improve performance. In particular, future research should analyze
the combination of different input data types, such as sensor-generated GPR and airborne image data. It
should also analyze the use of landmine risk predictions as prior knowledge for object detection
algorithms. In addition, future research should investigate the extension of algorithms with ERW pattern
information for object detection and risk prediction, as introduced by Thomas and Cathcart [45].

Conclusions
The literature review analyzes input features, ML algorithms and gaps in current research on AI systems
to support ERW clearance operations. It highlights the dominance of research on object detection,
particularly based on GPR and metal detector data. It also highlights the wide variety of input features
used for ERW risk prediction algorithms. Furthermore, the review finds that SVMs and neural networks
are the most studied ML algorithms to support ERW clearance. However, it also points to significant
differences in ML techniques between the individual lines of research. Finally, the review highlights areas
for future research. Most importantly, future research should focus on landmine risk prediction, work with
real-world data and investigate performance improvements through input data fusion and incorporation of
prior knowledge such as ERW patterns.
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Appendix

Group Synonymous of groups of keywords

Explosive
remnants

● Landmine, land mine, acoustic mine, antipersonnel, claymore mine, ground mine, magnetic
mine, pressure mine, booby trap

● Explosive remnants, unexploded ordnance, UXO, ERW, EO
● Demining, de-mining, Mine clearance, mine detection, mine action

Artificial
intelligence

● AI, artificial intelligence
● ML, machine learning
● Deep learning, neural network, ANN, DNN
● RL, reinforcement learning
● Advanced analytics
● Supervised learning, Unsupervised learning
● Prediction
● Pattern recognition
● Probability, probabilistic, Bayes, Bayesian
● SVM, Support Vector Machine, Logistic Regression, Decision Tree, Random Forest

Table 1: Search terms and synonyms for literature search

Type Criteria

Inclusion Studies aiming to improve detection of land mines or explosives in post-conflict territories

Studies aiming to predict the location of such land mines or explosives

Studies using supervised machine learning or advanced analytics technologies to achieve its goals

Studies that use real-world data sets

Studies published in peer-reviewed journals

Studies written in English language

Exclusion Studies aiming to detect other items which are not explosive remnants in post-conflict territories or naval
mines

Studies not predicting location but focusing on other tasks, e.g., segmentation

Studies focusing on non-ML technology, e.g., robotics or rule-based systems

Studies using unsupervised learning techniques only

Studies not been peer-reviewed or published in scientific journals

Studies written in other languages than English

Table 2: Selection criteria for literature search
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Figure 4: ML algorithms studied in research on ERW object detection from GPR data

Figure 5: ML algorithms studied in research on ERW object detection from metal detector data
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Figure 6: ML algorithms studied in research on ERW object detection from image data

Figure 7: ML algorithms studied in research on ERW risk prediction
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Year Source Study aim Data
acquisition

Acquisition
device

Specific field
conditions ERW types ERW material Input features AI algorithm Result metrics Key findinigs for literature review

1999

 in Proceedings of the Sixteenth
National Radio Science Conference. NRSC’99 (IEEE
Cat. No.99EX249), IEEE, 1999, pp. C43/1–C4310.

object detection test field handheld device different soil
types

landmine not specified metal detector, electro magnetic
induction

neural network,
delta-technique

ROC, detection rate,
false alarm rate

NN filter for landmine detection from EMI works well in
testing

2001

 in PROCEEDINGS
OF THE SOCIETY OF PHOTO-OPTICAL
INSTRUMENTATION ENGINEERS (SPIE), vol. 4394.
2001, pp. 991–1002.

object detection,
sensor fusion

test field handheld device different soil
types

AP landmine, AT
landmine,
landmine

metal, plastic ground penetrating radar, metal
detector

neural network,
dempster-shafer
algorithm

ROC, detection rate,
false alarm rate

Feature level fusion performs best for fusion of GPR and
metal detector data

2011
 in

IEEE International Conference on Spatial Data Mining
and Geographical Knowledge Services, ICSDM 2011,
Fuzhou, China, June 29 - July 1, 2011, IEEE, Jun. 2011,
pp. 223–228.

risk predicition real-world not specified landmine not specified ERW incident data nearest neighbors,
kernel density
estimation

Landmine risk map based on only mine incidents performs
well

2017

Neural Comput.
Appl., vol. 28, no. 7, pp. 1801–1815, 2017.

object detection test field vehicle mounted buried AP landmine, AT
landmine,
landmine

not specified contact pressure distribution neural network detection rate, false
alarm rate

Landmine detection via Contact pressure distribution can
be improved with NN

2000

in PROCEEDINGS OF THE
SOCIETY OF PHOTO-OPTICAL
INSTRUMENTATION ENGINEERS (SPIE), vol. 4038.
2000, pp. 168–178.

object detection test field not specified AT landmine,
landmine

metal,
minimal-metal,
plastic

image data , thermal images neural network, wavelet
packet decomposition

ROC, detection rate,
false alarm rate

Wavelet-based NN performs well for landmine detection
in thermal IR imagery

2010

 The Journal of Conventional Weapons
Destruction, vol. 14, no. 3, p. 28, 2010.

risk predicition real-world helicopter,
satellite

landmine not specified image data , hyperspectral
images, ERW incident data, ERW
records, infrastructure data,
topology data

principal component
analysis, other algorithm

land reclassified ML system with based on minefield records and spatial
and airborne data achieves a cost-benefit ratio compared
to that of other systems aiming to exclude areas of more
than 140:1.

2022

Comput. Commun., vol. 195, no. C, pp. 441–450, Nov.
2022.

object detection,
search route
optimization

test field UAV / drone landmine not specified metal detector, magnetometer neural network,
reinforcement learning

detection rate Deep reinforcement learning supports trajectory
optimization for magnetometer-mounted UAV

2021

The Journal of
Conventional Weapons Destruction, vol. 25, no. 1, p. 29,
2021.

object detection test field UAV / drone AP landmine,
landmine

plastic image data , hyperspectral images neural network,
convolutional neural
network

detection rate, F1
score

CNN on UAV-based minefield data produces a model that
can identify the PFM-1 mine with over 90% accuracy and
can provide maps with mine locations

2020

Remote. Sens., vol. 12, no. 5, p. 859, 2020.

object detection test field UAV / drone different soil
types

AP landmine,
landmine

plastic image data , thermal images,
hyperspectral images

neural network,
convolutional neural
network

precision UAV image data with NN achieves over 70% accuracy in
mine detection

2014

in DETECTION
AND SENSING OF MINES, EXPLOSIVE OBJECTS,
AND OBSCURED TARGETS XIX, S. S. Bishop and J.
C. Isaacs, Eds., in Proceedings of SPIE, vol. 9072. 2014.
doi: 10.1117/12.2052592.

object detection test field handheld device different soil
types, buried

AP landmine, AT
landmine,
landmine

not specified ground penetrating radar neural network ROC, detection rate,
false alarm rate

NN can be taught to reconstruct background GPR data to
detect anomalies as landmines

H. Abdelbaki, E. Gelenbe, T. Kocak, and S. E.
El-Khamy, “Random neural network filter for land
mine detection,”

S. Agarwal, V. S. Chander, P. P. Palit, R. J. Stanley,
and O. R. Mitchell, “Sensor fusion for hand-held
multi-sensor landmine detection,”

A. C. Alegria, H. Sahli, and E. Zimányi, “Application
of density analysis for landmine risk mapping,”

H. F. M. Ali, A. M. R. F. El-Bab, Z. Zyada, and S. M.
Megahed, “Estimation of landmine characteristics in
sandy desert using neural networks,” 

B. A. Baertlein and W. J. Liao, “Wavelet-based
higher-order neural networks for mine detection in
thermal IR imagery,” 

M. Bajic, “The Advanced Intelligence Decision
Support System for the Assessment of Mine-suspected
Areas,”

A. Barnawi, N. Kumar, I. Budhiraja, K. Kumar, A.
Almansour, and B. A. Alzahrani, “Deep reinforcement
learning based trajectory optimization for
magnetometer-mounted UAV to landmine detection,”

J. Baur, G. Steinberg, A. Nikulin, K. Chiu, and T. de
Smet, “How to Implement Drones and Machine
Learning to Reduce Time, Costs, and Dangers
Associated with Landmine Detection,” 

J. Baur, G. Steinberg, A. Nikulin, K. Chiu, and T. S.
de Smet, “Applying Deep Learning to Automate
UAV-Based Detection of Scatterable Landmines,”

L. E. Besaw and P. J. Stimac, “Deep Learning
Algorithms for Detecting Explosive Hazards in
Ground Penetrating Radar Data,” 

Björn Kischelewski
Table 3: 

Björn Kischelewski
Analysis of eligible publications

Björn Kischelewski
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Year Source Study aim Data
acquisition

Acquisition
device

Specific field
conditions ERW types ERW material Input features AI algorithm Result metrics Key findinigs for literature review

2021

 IEEE
Trans. Geosci. Remote Sens., vol. abs/1810.01316, no. 1,
pp. 182–195, Jan. 2021.

object detection test field handheld device different soil
types, buried

AP landmine, AT
landmine,
landmine, other
UXO

metal,
minimal-metal,
plastic

ground penetrating radar neural network,
convolutional neural
network, autoencoder

AUC, ROC, detection
rate, false alarm rate

Autoencoders can successfully be trained to detect
landmines from GPR data with an AUC of 98%

2014

IEEE Trans. Geosci. Remote Sens., vol. 52,
no. 8, pp. 5218–5229, 2014.

object detection test field not specified other UXO not specified metal detector, electro magnetic
induction

gausian mixture model false alarm rate Gaussian Mixture Models can identify UXO correctly
while minimizing FAR

2007

in IEEE International
Geoscience & Remote Sensing Symposium, IGARSS
2007, July 23-28, 2007, Barcelona, Spain, Proceedings,
IEEE, 2007, pp. 2022–2025.

object detection test field airplane buried landmine not specified image data , thermal images,
hyperspectral images

set-based classifier,
nearest neighbors

ROC, detection rate,
false alarm rate

Set-based clustering outperforms kNN for landmine
detection

2015

IEEE J. Sel. Top. Appl. Earth Obs.
Remote. Sens., vol. 8, no. 2, pp. 835–844, 2015.

object detection test field handheld device other UXO metal metal detector, magnetometer support vector machine,
neural network,
tree-based algorithm,
random forest

detection rate, false
alarm rate

Random Forest outperforms SVM and NN for landmine
detection from EMI

2008

Signal
Processing, vol. 88, no. 4, pp. 1053–1060, Apr. 2008.

object detection test field not specified buried AP landmine,
landmine

minimal-metal ground penetrating radar linear / logistic
regression

false alarm rate Two-sided linear prediction can be trained to suppress
ground reflection from GPR

2002

in IEEE International Geoscience and Remote
Sensing Symposium, IGARSS 2002, Toronto, Ontario,
Canada, 24-28 June 2002, IEEE, 2002, pp. 334–336.

object detection test field not specified buried AT landmine,
landmine

metal ground penetrating radar principal component
analysis

ROC, detection rate,
false alarm rate

Model-based analysis of sensor location with PCA
improves landmine detection from GPR

2002

 in IEEE International Geoscience and
Remote Sensing Symposium, IGARSS 2002, Toronto,
Ontario, Canada, 24-28 June 2002, IEEE, 2002, pp.
1556–1559.

object detection,
sensor fusion

test field not specified buried other UXO metal metal detector, magnetometer,
electro magnetic induction

naive bayes ROC, detection rate,
false alarm rate

"limiting the processing bandwidth to those frequencies
that are the most robust to naturally occurring geological
noise" optimizes sensor fusion

2001

IEEE Trans. Fuzzy
Syst., vol. 9, no. 1, pp. 17–30, 2001.

object detection,
sensor fusion

test field not specified other UXO metal metal detector, magnetometer,
electro magnetic induction

neural network, naive
bayes, k-means

ROC, detection rate,
false alarm rate

Bayesian approach is beneficial for sensor fusion and
radar object detection

2012

in 2012 4TH INTERNATIONAL CONFERENCE
ON INTELLIGENT AND ADVANCED SYSTEMS
(ICIAS), VOLS 1-2, 345 E 47TH ST, NEW YORK, NY
10017 USA: IEEE, 2012, pp. 46–50.

object detection test field not specified buried AT landmine,
landmine

metal metal detector, gradiometer neural network error distance (cm) Microcontroller-based NN can be used for real-time
landmine detection from gradiometer data

1999

 IEEE Trans. Neural Netw., vol. 10, no. 1, pp.
186–193, 1999.

object detection test field not specified AP landmine,
landmine

metal,
minimal-metal,
plastic

image data , thermal images,
hyperspectral images

neural network detection rate, false
alarm rate

Fusion of multispectral and thermal imaging via NN
outperforms single sensor detection

2005

EURASIP J. Adv. Signal Process., vol. 2005,
no. 12, pp. 1867–1885, 2005.

object detection test field vehicle mounted different soil
types, buried

AT landmine,
landmine

metal,
minimal-metal,
plastic

ground penetrating radar hidden markov model ROC, detection rate,
false alarm rate

Hidden Markov Models for GPR data improve detection
performance by 10% on average

P. Bestagini, F. Lombardi, M. Lualdi, F. Picetti, and S.
Tubaro, “Landmine Detection Using Autoencoders on
Multi-polarization GPR Volumetric Data,”

A. Bijamov, J. P. Fernández, B. E. Barrowes, I.
Shamatava, K. O’Neill, and F. Shubitidze, “Camp
Butner Live-Site UXO Classification Using
Hierarchical Clustering and Gaussian Mixture
Modeling,” 

J. Bolton and P. D. Gader, “Application of random
set-based clustering to landmine detection with
hyperspectral imagery,” 

M. P. Bray and C. A. Link, “Learning Machine
Identification of Ferromagnetic UXO Using
Magnetometry,” 

T. C. T. Chan, H. C. So, and K. C. Ho, “Fast
communication: Generalized two-sided linear
prediction approach for land mine detection,” 

J. Cheng and E. L. Miller, “Model-based principal
component techniques for detection of buried
landmines in multiframe synthetic aperture radar
images,” 

L. M. Collins, Y. Zhang, and L. Carin, “Model-based
statistical sensor fusion for unexploded ordnance
detection,”

L. M. Collins et al., “A comparison of the
performance of statistical and fuzzy algorithms for
unexploded ordnance detection,” 

M. Elkattan, A. Salem, F. Soliman, A. Kamel, and H.
El-Hennawy, “Microcontroller Based Neural Network
for Landmine Detection using Magnetic Gradient
Data,” 

A. Filippidis, L. C. Jain, and P. Lozo, “Degree of
familiarity ART2 in knowledge-based landmine
detection,”

H. Frigui, K. C. Ho, and P. D. Gader, “Real-Time
Landmine Detection with Ground-Penetrating Radar
Using Discriminative and Adaptive Hidden Markov
Models,” 
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acquisition

Acquisition
device

Specific field
conditions ERW types ERW material Input features AI algorithm Result metrics Key findinigs for literature review

2001

IEEE Trans. Geosci. Remote Sens.,
vol. 39, no. 6, pp. 1231–1244, 2001.

object detection test field vehicle mounted different soil
types, buried

AT landmine,
landmine

metal,
minimal-metal,
plastic

ground penetrating radar hidden markov model ROC, detection rate,
false alarm rate

Hidden Markov Models for GPR can generalize landmine
detection between different test sites

2000

Signal
Processing, vol. 80, no. 8, pp. 1669–1686, 2000.

object detection test field not specified different soil
types, buried

AP landmine,
landmine, other
UXO

metal metal detector, electro magnetic
induction

likelihood ratio test ROC, detection rate,
false alarm rate

Generalized likelihood ratio test method can significantly
reduce FAR in landmine detection

2015

in
2015 8TH INTERNATIONAL WORKSHOP ON
ADVANCED GROUND PENETRATING RADAR
(IWAGPR), 345 E 47TH ST, NEW YORK, NY 10017
USA: IEEE, 2015.

object detection test field not specified buried AP landmine, AT
landmine,
landmine

metal,
minimal-metal,
plastic

ground penetrating radar support vector machine,
basis pursuit denoise,
orthogonal matching
pursuit

detection rate, false
alarm rate

Sparse Reconstruction Based Classification method with
basis pursuit denoising can detect and classify landmines
from GPR

2019

IEEE
Trans. Geosci. Remote Sens., vol. 57, no. 12, pp.
10036–10055, Dec. 2019.

object detection test field not specified buried AP landmine, AT
landmine,
landmine

metal,
minimal-metal,
plastic

ground penetrating radar support vector machine,
neural network,
convolutional neural
network

detection rate, false
alarm rate

"Online [Dictionary Learning] methods reduce  learning
time  by  36-93%  and  increase  mine  detection by
4-28%" over a SVM-based approach

2021

in 2021 15TH
EUROPEAN CONFERENCE ON ANTENNAS AND
PROPAGATION (EUCAP), in Proceedings of the
European Conference on Antennas and Propagation. 345
E 47TH ST, NEW YORK, NY 10017 USA: IEEE, 2021.

object detection test field not specified different soil
types

improvised
explosive device

not specified ground penetrating radar support vector machine accuracy, specificity,
recall

SVM trained with GPR data can outperform metal
detector for identifying IED

2010

 in IEEE
International Symposium on Geoscience and Remote
Sensing IGARSS. Jul. 2010, pp. 4196–4199.

object detection test field vehicle mounted AT landmine,
landmine

ground penetrating radar support vector machine,
hidden markov model

ROC, detection rate,
false alarm rate

"[SVM with] HMM-based kernel [...] is less sensitive to
the positioning error [of the landmine]"

2015

EURASIP J. Adv. Signal Process., vol. 2015, p. 75, Aug.
2015.

object detection test field vehicle mounted different soil
types, buried

landmine not specified ground penetrating radar neural network,
ensemble methods,
hidden markov model

AUC, ROC, detection
rate, false alarm rate

Ensemble of HMM outperforms single HMM

2001

IEEE Trans. Geosci. Remote Sens., vol. 39, no.
4, pp. 797–804, 2001.

object detection test field not specified buried other UXO metal metal detector, magnetometer neural network detection rate, false
alarm rate

NN trained with magnetometer data is able to generalize
across test sites for UXO detection

2002

IEEE Trans. Geosci. Remote Sens.,
vol. 40, no. 6, pp. 1374–1384, Jun. 2002.

object detection test field handheld device different soil
types, buried

AP landmine, AT
landmine,
landmine

metal, plastic ground penetrating radar linear / logistic
regression

ROC, detection rate,
false alarm rate

Efficient, simple linear prediction methods achieve good
results for landmine detection from GPR data

2009
in

Proceedings of the 5th International Conference on
Wireless communications, networking and mobile
computing, in WiCOM’09. IEEE Press, Sep. 2009, pp.
2135–2138.

object detection test field not specified different soil
types, buried

landmine plastic ground penetrating radar support vector machine detection rate Feature extraction improves performance for SVM-based
landmine detection from GPR data

2006

in 2006 8th
international Conference on Signal Processing, IEEE,
2006. doi: 10.1109/ICOSP.2006.345920.

object detection test field not specified buried AT landmine,
landmine

metal ground penetrating radar,
ultra-wideband radar

support vector machine false alarm rate "The Fuzzy HyperSphere Support Vector Machine has
stronger generalization capability than the HyperPlane
SVM in UWB SAR landmine detection."

P. D. Gader, M. Mystkowski, and Y. Zhao, “Landmine
detection with ground penetrating radar using hidden
Markov models,” 

P. Gao and L. M. Collins, “A two-dimensional
generalized likelihood ratio test for land mine and
small unexploded ordnance detection,” 

F. Giovanneschi and M. A. Gonzalez-Huici, “A
Preliminary analysis of a Sparse Reconstruction
Based Classification method applied to GPR data,” 

F. Giovanneschi, K. V. Mishra, M. A. Gonzalez-Huici,
Y. C. Eldar, and J. H. G. Ender, “Dictionary Learning
for Adaptive GPR Landmine Classification,” 

S. Gutierrez et al., “Advances on the detection of
Landmines and IEDs in Colombia using UWB GPR
and Machine Learning Techniques,” 

A. Hamdi, O. Missaoui, and H. Frigui, “AN SVM
classifier with HMM-based kernel for landmine
detection using ground penetrating radar,”

A. Hamdi and H. Frigui, “Ensemble hidden Markov
models with application to landmine detection,”

S. J. Hart, R. E. Shaffer, S. L. Rose-Pehrsson, and J.
R. McDonald, “Using physics-based modeler outputs
to train probabilistic neural networks for unexploded
ordnance (UXO) classification in magnetometry
surveys,” 

K. C. Ho and P. D. Gader, “A linear prediction land
mine detection algorithm for hand held ground
penetrating radar,” 

W. Jian-bin, T. Mao, and L. Yu-tao, “Feature
extraction and recognition of landmine,” 

T. Jin, Z. Zhou, Q. Song, and W. Chang, “The
evidence framework applied to fuzzy hypersphere
SVM for UWB SAR landmine detection,” 
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Acquisition
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Specific field
conditions ERW types ERW material Input features AI algorithm Result metrics Key findinigs for literature review

2008

IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, 2, pp.
3783–3791, Nov. 2008.

object detection test field not specified different soil
types, buried

AT landmine,
landmine

metal ground penetrating radar,
ultra-wideband radar

support vector machine,
hidden markov model

ROC, detection rate,
false alarm rate

SVM-based landmine detection from UWB data with
HMM improves performance

2012

IEEE Trans. Geosci. Remote Sens., vol. 50, no. 10, pp.
4135–4144, Oct. 2012.

object detection test field vehicle mounted different soil
types, buried

landmine not specified ground penetrating radar space-wavenumber
processing

ROC, detection rate,
false alarm rate

Feature extraction improves performance for landmine
detection from GPR data

2023

 Remote. Sens., vol. 15, no. 4, p. 967, 2023.

object detection real-world UAV / drone different soil
types

landmine metal image data , thermal images neural network,
convolutional neural
network

detection rate,
precision, recall

Pretrained CNNs can detect UXO from thermal UAV
image data

2018

in
2018 26TH TELECOMMUNICATIONS FORUM
(TELFOR), 345 E 47TH ST, NEW YORK, NY 10017
USA: IEEE, Nov. 2018, pp. 392–395.

object detection test field not specified buried AP landmine, AT
landmine,
landmine

not specified ground penetrating radar neural network,
convolutional neural
network

ROC, detection rate,
false alarm rate,
confusion matrix

Pretrained CNNs can detect landmines from GPR data

2011

in 2011 IEEE
International Geoscience and Remote Sensing
Symposium, IGARSS 2011, Vancouver, BC, Canada,
July 24-29, 2011, IEEE, 2011, pp. 878–881.

object detection test field vehicle mounted different soil
types, buried

AT landmine,
landmine

metal,
minimal-metal

ground penetrating radar relevance vector
machine, linear / logistic
regression

ROC, detection rate,
false alarm rate

Summarizing the training landmine alarms by few
representatives improves learning

2018

Pattern Anal. Appl., vol. 21, no. 3, pp.
671–684, Aug. 2018.

object detection test field not specified buried AT landmine,
landmine

metal, plastic ground penetrating radar tree-based algorithm,
RealBoost with decision
trees, ensemble methods

ROC, detection rate,
false alarm rate,
sensitifity

Random Forest methods on GPR data outperform
approach based on 3D statistical moments for landmine
detection

2015

 in
Artificial Intelligence and Soft Computing - 14th
International Conference, ICAISC 2015, Zakopane,
Poland, June 14-18, 2015, Proceedings, Part I, L.
Rutkowski, M. Korytkowski, R. Scherer, R.
Tadeusiewicz, L. A. Zadeh, and J. M. Zurada, Eds., in
Lecture Notes in Computer Science, vol. 9119. Springer,
2015, pp. 436–447.

object detection test field not specified AT landmine,
landmine

metal, plastic ground penetrating radar tree-based algorithm,
RealBoost with decision
trees, ensemble methods

AUC, ROC, detection
rate, false alarm rate,
sensitifity

Ensemble Boosting with Trees works well for GPR data

2010

 in DETECTION AND
SENSING OF MINES, EXPLOSIVE OBJECTS, AND
OBSCURED TARGETS XV, R. S. Harmon, K. H.
Holloway, and J. T. Broach, Eds., in Proceedings of SPIE,
vol. 7664. 2010. doi: 10.1117/12.851364.

object detection,
sensor fusion

test field not specified AP landmine, AT
landmine,
landmine

not specified ground penetrating radar, metal
detector, electro magnetic
induction

tree-based algorithm,
random forest, ensemble
methods

ROC, detection rate,
false alarm rate

Fusion of GPR and EMI improves performance for
landmine detection

2006

Neural Process.
Letters, vol. 23, no. 1, pp. 47–54, Feb. 2006.

object detection test field not specified landmine not specified metal detector, electro magnetic
induction

neural network,
delta-technique

ROC, detection rate NN outperforms simple delta technique for EMI sensor
recognition and generalizes well even with little data

2017

in 25th European
Signal Processing Conference, EUSIPCO 2017, Kos,
Greece, August 28 - September 2, 2017, IEEE, Aug.
2017, pp. 508–512.

object detection test field not specified buried landmine not specified ground penetrating radar neural network,
convolutional neural
network

AUC, ROC, detection
rate, false alarm rate,
accuracy

CNN for GPR require only little preprocessing for
successful landmine detection

T. Jin and Z. Zhou, “Feature Extraction and
Discriminator Design for Landmine Detection on
Double-Hump Signature in Ultrawideband SAR,”

T. Jin, J. Lou, and Z. Zhou, “Extraction of Landmine
Features Using a Forward-Looking
Ground-Penetrating Radar With MIMO Array,”

M. Bajic nd B. Potocnik, “UAV Thermal Imaging for
Unexploded Ordnance Detection by Using Deep
Learning,”
V. Kafedziski, S. Pecov, and D. Tanevski, “Detection
and Classification of Land Mines from Ground
Penetrating Radar Data Using Faster R-CNN,” 

A. Karem and H. Frigui, “A multiple instance
learning approach for landmine detection using
Ground Penetrating Radar,” 

P. Klesk, M. Kapruziak, and B. Olech, “Statistical
moments calculated via integral images in application
to landmine detection from Ground Penetrating
Radar 3D scans,” 

P. Klesk, M. Kapruziak, and B. Olech, “A
Comparison of Shallow Decision Trees Under
Real-Boost Procedure with Application to Landmine
Detection Using Ground Penetrating Radar,”

M. P. Kolba, P. A. Torrione, and L. M. Collins,
“Fusion of ground-penetrating radar and
electromagnetic induction sensors for landmine
detection and discrimination,”

T. Koçak and M. Draper, “A Back-propagation
Neural Network Landmine Detector Using the
Delta-technique and S-statistic,” 

S. Lameri, F. Lombardi, P. Bestagini, M. Lualdi, and
S. Tubaro, “Landmine detection from GPR data using
convolutional neural networks,” 
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acquisition

Acquisition
device

Specific field
conditions ERW types ERW material Input features AI algorithm Result metrics Key findinigs for literature review

2007

IEEE
Trans. Geosci. Remote Sens., vol. 45, no. 2, pp. 389–397,
Feb. 2007.

object detection test field not specified AT landmine,
landmine

metal, plastic ground penetrating radar neural network AUC, ROC, detection
rate, false alarm rate

AUC/ROC optimization techniques lead to better results
for NN and GPR

2010

in IMAGE AND SIGNAL
PROCESSING FOR REMOTE SENSING XVI, L.
Bruzzone, Ed., in Proceedings of SPIE, vol. 7830. 1000
20TH ST, PO BOX 10, BELLINGHAM, WA
98227-0010 USA: SPIE-INT SOC OPTICAL
ENGINEERING, 2010. doi: 10.1117/12.865045.

object detection test field UAV / drone different soil
types

landmine not specified image data , hyperspectral images support vector machine AUC, ROC, detection
rate, false alarm rate

Multitask SVM learning performs well for landmine
detection from remote sensing data

2009

IEEE Trans.
Geosci. Remote Sens., vol. 47, no. 5, pp. 1454–1466,
2009.

object detection test field not specified different soil
types

other UXO metal metal detector, magnetometer,
electro magnetic induction

linear / logistic
regression

AUC, ROC, detection
rate, false alarm rate

The MigLogit classifier improves generalization between
two different test sites for UXO

2005

in Detection and
Remediation Technologies for Mines and Minelike
Targets X, Pts 1 and 2, R. S. Harmon, J. T. Broach, and J.
H. Holloway, Eds., in PROCEEDINGS OF THE
SOCIETY OF PHOTO-OPTICAL
INSTRUMENTATION ENGINEERS (SPIE), vol. 5794.
2005, pp. 1060–1070.

object detection,
sensor fusion

test field UAV / drone,
airplane

different soil
types, buried

landmine metal, plastic ground penetrating radar bayesian network ROC, detection rate,
false alarm rate

Bayesian Networks enable sensor fusion and improve
detection results

2008

 IEEE Trans. Geosci. Remote
Sens., vol. 46, no. 9, pp. 2558–2567, 2008.

object detection test field not specified other UXO metal metal detector, magnetometer,
electro magnetic induction

nearest neighbors ROC, detection rate,
false alarm rate

Semi Supervised learning helps to keep contextual
information in mine detection

2005

in Image Analysis and
Processing - ICIAP 2005, 13th International Conference,
Cagliari, Italy, September 6-8, 2005, Proceedings, F. Roli
and S. Vitulano, Eds., in Lecture Notes in Computer
Science, vol. 3617. Springer, 2005, pp. 735–742.

risk predicition real-world airplane other UXO metal image data , hyperspectral images tree-based algorithm,
other-tree based
algorithm, ensemble
methods, nearest
neighbors

false alarm rate,
accuracy, sensitifity,
specificity

Simple, historic images with tree based ensemble methods
can be used to predict a probability of UXO.

2011

IEEE
Trans. Geosci. Remote Sens., vol. 49, no. 6, 1, pp.
2080–2099, Jun. 2011.

object detection test field vehicle mounted different soil
types, buried

AP landmine, AT
landmine,
landmine

metal,
minimal-metal

ground penetrating radar hidden markov model ROC, detection rate,
false alarm rate

Multistream HMM outperform single stream HMM for
landmine detection from GPR data

2004

in PROCEEDINGS OF
THE SOCIETY OF PHOTO-OPTICAL
INSTRUMENTATION ENGINEERS (SPIE), vol. 5415.
2004, pp. 996–1007.

object detection test field vehicle mounted landmine not specified ground penetrating radar neural network,
convolutional neural
network

AUC, ROC, detection
rate, false alarm rate

Holographic NN outperforms standard NN in terms of
generalization across sites

2014

Remote. Sens., vol. 6,
no. 10, pp. 9729–9748, 2014.

object detection test field not specified buried AP landmine, AT
landmine,
landmine, other
UXO

plastic ground penetrating radar linear / logistic
regression, neural
network

false alarm rate,
accuracy

NN outperforms logistic regression for landmine detection
from GPR

W.-H. Lee, P. D. Gader, and J. N. Wilson, “Optimizing
the area under a receiver operating characteristic
curve with application to land-mine detection,” 

J. M. Leiva-Murillo, L. Gomez-Chova, and G.
Camps-Valls, “Multitask SVM learning for Remote
Sensing Data Classification,” 

X. Liao and L. Carin, “Migratory Logistic Regression
for Learning Concept Drift Between Two Data Sets
With Application to UXO Sensing,” 

G. Q. Liu, Y. J. Sun, and J. Li, “Automatic target
recognition with Bayesian networks for wide-area
airborne minefield detection,” 

Q. Liu, X. Liao, and L. Carin, “Detection of
Unexploded Ordnance via Efficient Semisupervised
and Active Learning,”

S. Merler, C. Furlanello, and G. Jurman, “Machine
Learning on Historic Air Photographs for Mapping
Risk of Unexploded Bombs,” 

O. Missaoui, H. Frigui, and P. Gader, “Land-Mine
Detection With Ground-Penetrating Radar Using
Multistream Discrete Hidden Markov Models,” 

N. Mudigonda, R. Kacelenga, and M. Edwards,
“Holographic neural networks versus conventional
neural networks: A comparative evaluation for the
classification of landmine targets in ground
penetrating radar images,” 

X. Núñez-Nieto, M. Solla, P. Gómez-Pérez, and H.
Lorenzo, “GPR Signal Characterization for
Automated Landmine and UXO Detection Based on
Machine Learning Techniques,” 
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Acquisition
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Specific field
conditions ERW types ERW material Input features AI algorithm Result metrics Key findinigs for literature review

2018

in 41st
International Conference on Telecommunications and
Signal Processing, TSP 2018, Athens, Greece, July 4-6,
2018, IEEE, 2018, pp. 1–4.

object detection test field not specified buried landmine not specified ground penetrating radar neural network,
convolutional neural
network, autoencoder

AUC, ROC, detection
rate, false alarm rate

Autoencoders can easily be trained on each new site

1997

IEEE Trans. Neural Netw., vol. 8, no. 6, pp.
1456–1467, Nov. 1997.

object detection test field not specified AP landmine,
landmine

metal, plastic microwave sensor neural network, nearest
neighbors

detection rate, false
alarm rate

Neural networks for landmine detection from microwave
data benefits from preprocessing like outlier removal

2021

 in 19th IEEE International Conference on Smart
Technologies, EUROCON 2021, Lviv, Ukraine, July 6 -
8, 2021, IEEE, Jul. 2021, pp. 175–178.

object detection,
sensor fusion

test field UAV / drone buried landmine not specified image data , thermal images,
hyperspectral images

linear / logistic
regression, ensemble
methods

detection rate, false
alarm rate

Sensor fusion with multiple linear and statistical models is
capable of landmine identification from UAV
multispectral image data

2006

 IEEE Trans. Geosci. Remote
Sens., vol. 44, no. 2, pp. 260–272, Feb. 2006.

object detection test field #VALUE! buried AP landmine,
landmine

metal ground penetrating radar support vector machine ROC, detection rate,
false alarm rate

SVM is capable of abrupt change detection for AP
landmine detection from GPR

2015
in

2015 European Conference on Mobile Robots (ECMR),
IEEE, Sep. 2015, pp. 1–6.

object detection,
sensor fusion

test field not specified AP landmine, AT
landmine,
landmine

metal,
minimal-metal

ground penetrating radar, metal
detector

bayesian network detection rate, false
alarm rate

Bayesian Networks enable sensor fusion and improve
detection results

2017

 in 2017 IEEE International Conference
on Autonomous Robot Systems and Competitions,
ICARSC 2017, Coimbra, Portugal, April 26-28, 2017, L.
Marques and A. Bernardino, Eds., IEEE, Apr. 2017, pp.
204–209.

object detection,
sensor fusion

test field not specified different soil
types, buried

landmine metal,
minimal-metal

ground penetrating radar, metal
detector

linear / logistic
regression

ROC, detection rate,
false alarm rate,
precision, accuracy,
recall

Regularized sensor fusion improves performance for
landmine detection

2021

 ENGINEERING JOURNAL-THAILAND,
vol. 25, no. 3, pp. 61–67, 2021.

object detection test field vehicle mounted buried metal, plastic image data , thermal images neural network,
convolutional neural
network

accuracy CNN achieves high accuracy in identifying buried
landmines from thermal images

2023

Sensors, vol. 23, no. 12, p. 5693, Jun. 2023.

object detection,
sensor fusion

test field UAV / drone AP landmine, AT
landmine,
landmine

metal image data , thermal images,
hyperspectral images

neural network detection rate, false
alarm rate, precision,
recall

Fusion of thermal and RGB image data can achieve worse
results than only RGB.

2019

IEEE ACCESS, vol. 7, pp. 107259–107269, 2019.

risk predicition real-world not specified different soil
types, buried

landmine not specified ERW records, infrastructure data,
topology data

support vector machine,
linear / logistic
regression, ensemble
methods

AUC, ROC, detection
rate, false alarm rate

Simple ML models like SVM or logistic regression can
perform probability density prediction of landmines over
large areas from topological and infrastructure data

2011

in DETECTION AND SENSING OF
MINES, EXPLOSIVE OBJECTS, AND OBSCURED
TARGETS XVI, R. S. Harmon, J. H. Holloway, and J. T.
Broach, Eds., in Proceedings of SPIE, vol. 8017. 2011.
doi: 10.1117/12.884872.

object detection test field vehicle mounted different soil
types, buried

AT landmine,
landmine

metal,
minimal-metal

ground penetrating radar relevance vector
machine, ensemble
methods, principal
component analysis,
gausian mixture model

ROC, detection rate,
false alarm rate

Context-dependent model fusion improves landmine
detection performance for GPR data

2011

IEEE
Trans. Geosci. Remote Sens., vol. 49, no. 5, pp.
1689–1700, May 2011.

object detection test field vehicle mounted different soil
types, buried

AT landmine,
landmine

metal,
minimal-metal

ground penetrating radar relevance vector
machine, ensemble
methods

ROC, detection rate,
false alarm rate,
confusion matrix

Context-dependent model fusion especially improves
reduction of false alarm rates for landmine detection

F. Picetti, G. Testa, F. Lombardi, P. Bestagini, M.
Lualdi, and S. Tubaro, “Convolutional Autoencoder
for Landmine Detection on GPR Scans,” 

G. L. Plett, T. Doi, and D. Torrieri, “Mine detection
using scattering parameters and an artificial neural
network,” 

M. O. Popov, S. A. Stankevich, S. P. Mosov, O. V.
Titarenko, M. V. Topolnytskyi, and S. S. Dugin,
“Landmine Detection with UAV-based Optical Data
Fusion,”

D. Potin, P. Vanheeghe, E. Duflos, and M. Davy, “An
abrupt change detection algorithm for buried
landmines localization,”

J. Prado, S. Filipe, and L. Marques, “Bayesian sensor
fusion for multi-platform landmines detection,” 

J. Prado and L. Marques, “Reducing false-positives in
multi-sensor dataset of landmines via sensor fusion
regularization,”

C. N. N. Priya, S. D. Ashok, B. Majhi, and K. S.
Kumaran, “Deep Learning Based Thermal Image
Processing Approach for Detection of Buried Objects
and Mines,”

Z. Qiu, H. Guo, J. Hu, H. Jiang, and C. Luo, “Joint
Fusion and Detection via Deep Learning in
UAV-Borne Multispectral Sensing of Scatterable
Landmine,” 
W. Rafique, D. Zheng, J. Barras, S. Joglekar, and P.
Kosmas, “Predictive Analysis of Landmine Risk,”

C. R. Ratto, K. D. Morton Jr, L. M. Collins, and P. A.
Torrione, “Contextual Learning in
Ground-Penetrating Radar Data Using Dirichlet
Process Priors,” 

C. R. Ratto, P. A. Torrione, and L. M. Collins,
“Exploiting Ground-Penetrating Radar
Phenomenology in a Context-Dependent Framework
for Landmine Detection and Discrimination,” 
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2011

 in 2011 IEEE International
Geoscience and Remote Sensing Symposium, IGARSS
2011, Vancouver, BC, Canada, July 24-29, 2011, IEEE,
2011, pp. 874–877.

object detection test field vehicle mounted different soil
types, buried

AT landmine,
landmine

metal,
minimal-metal

ground penetrating radar relevance vector
machine, ensemble
methods, hidden markov
model

ROC, detection rate,
false alarm rate

Context-dependent model fusion improves landmine
detection performance for GPR data

2017

in 2017 9th
International Workshop on Advanced Ground Penetrating
Radar (IWAGPR), IEEE, Jun. 2017, pp. 1–6.

object detection test field vehicle mounted landmine not specified ground penetrating radar tree-based algorithm,
random forest, ensemble
methods

AUC, ROC, detection
rate, false alarm rate

Mitigating translational variance in GPR scans improves
detection performance

2006

MILITARY OPERATIONS
RESEARCH, vol. 11, no. 3, pp. 49–61, 2006.

risk predicition real-world not specified landmine not specified ERW incident data, ERW records,
infrastructure data, topology data

naive bayes confusion matrix Simple bayesian approach with Meta-Gaussian model
performs accurate predictions of landmine probability in a
given area for real world data

2023

CoRR, vol. abs/2311.03115, 2023, doi:
10.48550/ARXIV.2311.03115.

risk predicition real-world not specified landmine not specified ERW incident data, ERW records,
infrastructure data, topology data

neural network AUC, ROC, detection
rate, false alarm rate

TabNet (attention tech) enables prediction of landmine
risks for large regions across countries

2024

JOURNAL OF LOCATION
BASED SERVICES, 2024, doi:
10.1080/17489725.2023.2298803.

risk predicition real-world not specified landmine not specified ERW records, infrastructure data,
topology data

support vector machine,
tree-based algorithm,
random forest, other-tree
based algorithm,
ensemble methods

AUC, ROC, detection
rate, false alarm rate,
precision, accuracy,
recall

Including prior military knowledge (e.g., conflict lines)
improves landmine risk prediction

2018

in 2018 17th International Conference on Ground
Penetrating Radar (GPR), IEEE, Jun. 2018, pp. 1–4.

object detection test field vehicle mounted buried AT landmine,
landmine

metal, plastic ground penetrating radar support vector machine detection rate, false
alarm rate

Landmine detection from GPR data is feasible in real time

2011

in 2011 6th International Workshop
on Advanced Ground Penetrating Radar (IWAGPR),
IEEE, Jun. 2011, pp. 1–5.

object detection test field vehicle mounted buried AT landmine,
landmine

not specified ground penetrating radar support vector machine,
ensemble methods

ROC, detection rate,
false alarm rate

Ensemble Boosting with SVMs works well for GPR data

2019

IEEE Sens. J., vol. 19, no. 20, SI, pp.
9341–9351, Oct. 2019.

object detection test field not specified different soil
types, buried

AP landmine, AT
landmine,
landmine

not specified image data , thermal images,
hyperspectral images

support vector machine,
neural network,
convolutional neural
network, tree-based
algorithm, other-tree
based algorithm,
ensemble methods,
nearest neighbors

accuracy SVM outperforms CNN in landmine detection from
multispectral images

2007

 Circuits Systems Signal Process., vol. 26, no. 2,
pp. 165–191, Apr. 2007.

object detection,
sensor fusion

test field handheld device buried AP landmine, AT
landmine,
landmine

metal,
minimal-metal

ground penetrating radar, metal
detector

neural network ROC, detection rate,
false alarm rate

Fusion of metal detector and GPR data is supported by
preprocessing of the data

2002

Inf. Fusion,
vol. 3, no. 3, pp. 215–223, 2002.

object detection,
sensor fusion

test field handheld device different soil
types, buried

AP landmine, AT
landmine,
landmine

metal,
minimal-metal

ground penetrating radar, metal
detector, electro magnetic
induction

neural network ROC, detection rate,
false alarm rate

Feature level fusion outperforms decision level fusion and
the GPR and MD in isolation consistently

C. R. Ratto, K. Morton, L. M. Collins, and P.
Torrione, “A hidden Markov context model for
GPR-based landmine detection incorporating
stick-breaking priors,”

D. Reichman, L. M. Collins, and J. M. Malof, “The
effect of translational variance in training and testing
images on supervised buried threat detection
algorithms for ground penetrating radar,” 

S. R. Riese, D. E. Brown, and Y. Y. Haimes,
“Estimating the probability of landmine
contamination,” 

M. D. Rubio et al., “RELand: Risk Estimation of
Landmines via Interpretable Invariant Risk
Minimization,” 

A. Saliba, K. Tout, C. Zaki, and C. Claramunt, “A
location-based model using GIS with machine
learning, and a human-based approach for demining
a post-war region,” 

X. Shi, D. Cheng, Z. Song, and C. Wang, “A Real-time
Method For Landmine Detection Using Vehicle Array
GPR,” 

Y. Shi, Q. Song, T. Jin, and Z. Zhou, “Landmine
detection using boosting classifiers with adaptive
feature selection,” 

J. S. Silva, I. F. Linhas Guerra, J. Bioucas-Dias, and T.
Gasche, “Landmine Detection Using Multispectral
Images,” 

R. J. Stanley, K. C. Ho, P. Gader, J. N. Wilson, and J.
Devaney, “Land Mine and Clutter Object
Discrimination Using Wavelet and Time Domain
Spatially Distributed Features from Metal Detectors
and Their Fusion with GPR Features for Hand-Held
Units,”

R. J. Stanley, P. D. Gader, and K. C. Ho, “Feature and
decision level sensor fusion of electromagnetic
induction and ground penetrating radar sensors for
landmine detection with hand-held units,” 
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Year Source Study aim Data
acquisition

Acquisition
device

Specific field
conditions ERW types ERW material Input features AI algorithm Result metrics Key findinigs for literature review

2001

in
SIGNAL PROCESSING, SENSOR FUSION, AND
TARGET RECOGNITION X, I. Kadar, Ed., in
PROCEEDINGS OF THE SOCIETY OF
PHOTO-OPTICAL INSTRUMENTATION
ENGINEERS (SPIE), vol. 4380. 2001, pp. 135–141.

object detection test field handheld device different soil
types, buried

AP landmine, AT
landmine,
landmine

metal,
minimal-metal

metal detector neural network ROC, detection rate,
false alarm rate

Spatially distributed features based on correlating
sequences of metal detector energy values with weighted
density distribution functions improve landmine detection
performance.

2018

 J. Appl.
Remote Sens., vol. 12, no. 3, Jul. 2018, doi:
10.1117/1.JRS.12.036002.

object detection test field not specified different soil
types, buried

AP landmine,
landmine

metal,
minimal-metal,
plastic

ground penetrating radar support vector machine AUC, ROC, detection
rate, false alarm rate

Incremental covariance-guided one-class SVM improve
landmine detection from GPR

2018

Int. J. Remote Sens., vol. 39, no. 2, pp. 289–314, Jan.
2018.

object detection test field not specified different soil
types, buried

AP landmine,
landmine

metal,
minimal-metal,
plastic

ground penetrating radar support vector machine AUC, ROC, detection
rate, false alarm rate

Covariance-guided one-class SVM improve landmine
detection from GPR

2016

 in International Image
Processing, Applications and Systems, IPAS 2016,
Hammamet, Tunisia, November 5-7, 2016, IEEE, 2016,
pp. 1–6.

object detection test field not specified different soil
types, buried

AP landmine,
landmine

metal,
minimal-metal,
plastic

ground penetrating radar support vector machine AUC, ROC, detection
rate, false alarm rate

SVM with RBF Kernel performs well for landmine
detection from GPR data

2017

in 2017 International
Conference on Advanced Technologies for Signal and
Image Processing (ATSIP), Fez, Morocco, May 22-24,
2017, M. E. Hassouni, M. Karim, A. B. Hamida, A. B.
Slima, and B. Solaiman, Eds., IEEE, May 2017, pp. 1–6.

object detection test field not specified different soil
types, buried

AP landmine,
landmine

metal,
minimal-metal,
plastic

ground penetrating radar support vector machine AUC, ROC, detection
rate, false alarm rate

One class SVM with RBF outperforms multi class SVM
with other kernels for landmine detection from GPR data

2004

in 2004 IEEE Region
10 Conference TENCON 2004., IEEE, 2004, pp.
195–198 Vol. 1.

object detection test field not specified buried other UXO metal ground penetrating radar linear / logistic
regression

ROC, detection rate,
false alarm rate

Predicting the symmetry of an object improves UXO
detection rates from GPR data

2010

IEEE Trans. Geosci. Remote Sens., vol. 48,
no. 9, pp. 3465–3470, Sep. 2010.

object detection test field helicopter buried AP landmine, AT
landmine,
landmine

not specified image data , thermal images,
hyperspectral images

likelihood ratio test,
dual window-based
eigen separation
transform (DWEST)

ROC, detection rate,
false alarm rate

Spatial pattern information improves the detection of
landmines in minefields from multispectral image data

2006

in PROCEEDINGS
OF 2006 CIE INTERNATIONAL CONFERENCE ON
RADAR, VOLS 1 AND 2, S. J. Wu, Ed., 345 E 47TH
ST, NEW YORK, NY 10017 USA: IEEE, 2006, p. 607+.

object detection test field not specified different soil
types, buried

landmine not specified ground penetrating radar,
ultra-wideband radar

support vector machine ROC, detection rate,
false alarm rate

Hypersphere SVM outperforms hyperplane SVM in
landmine detection from UWB data

2022

 IEEE Trans. Geosci. Remote Sens.,
vol. 60, pp. 1–16, 2022.

object detection test field vehicle mounted buried improvised
explosive device

metal,
minimal-metal

ground penetrating radar support vector machine,
neural network,
convolutional neural
network

confusion matrix,
accuracy

Dictionary learning method outperforms ML techniques
(SVM, MLP, CNN) for IED detection from GPR data.

2011

in DETECTION AND SENSING OF MINES,
EXPLOSIVE OBJECTS, AND OBSCURED TARGETS
XVI, R. S. Harmon, J. H. Holloway, and J. T. Broach,
Eds., in Proceedings of SPIE, vol. 8017. 2011. doi:
10.1117/12.884136.

object detection test field vehicle mounted different soil
types, buried

AT landmine,
landmine

metal, plastic ground penetrating radar gausian mixture model ROC, detection rate,
false alarm rate

GPR pre-processing using GMM outperforms the simpler
squared energy based metric

R. J. Stanley, N. Theera-Umpon, P. Gader, S.
Somanchi, and D. Ho, “Detecting landmines using
weighted density distribution function features,” 

K. Tbarki, S. Ben Said, R. Ksantini, and Z. Lachiri,
“Adaptive landmine detection and localization system
based on incremental one-class classification,”

K. Tbarki, S. Ben Said, R. Ksantini, and Z. Lachiri,
“Covariance-guided landmine detection and
discrimination using ground-penetrating radar data,”

K. Tbarki, S. B. Said, R. Ksantini, and Z. Lachiri,
“RBF kernel based SVM classification for landmine
detection and discrimination,”

K. Tbarki, S. B. Said, R. Ksantini, and Z. Lachiri,
“Landmine detection improvement using one-class
SVM for unbalanced data,” 

N. Theera-Umpon and S. Auephanwiriyakul,
“Unexploded ordnance detection by measuring object
symmetry via linear prediction,” 

A. M. Thomas and J. M. Cathcart, “Applications of
Grid Pattern Matching to the Detection of Buried
Landmines,” 

J. Tian, Z. Zhi-min, C. Wen-ge, and S. Qian,
“Aspect-invariant feature extraction and associated
landmine detector in UWBSAR,” 

F. H. C. Tivive, A. Bouzerdoum, and C. Abeynayake,
“Classification of Improvised Explosive Devices Using
Multilevel Projective Dictionary Learning With
Low-Rank Prior,”

P. Torrione, K. Morton Jr, and L. E. Besaw, “Adaptive
Gaussian Mixture Models for Pre-Screening in GPR
Data,” 
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Year Source Study aim Data
acquisition

Acquisition
device

Specific field
conditions ERW types ERW material Input features AI algorithm Result metrics Key findinigs for literature review

2011

 in DETECTION
AND SENSING OF MINES, EXPLOSIVE OBJECTS,
AND OBSCURED TARGETS XVI, R. S. Harmon, J. H.
Holloway, and J. T. Broach, Eds., in Proceedings of SPIE,
vol. 8017. 2011. doi: 10.1117/12.884130.

object detection,
sensor fusion

test field vehicle mounted different soil
types, buried

AT landmine,
landmine

metal, plastic ground penetrating radar, metal
detector, electro magnetic
induction

support vector machine,
tree-based algorithm,
random forest, ensemble
methods, naive bayes,
likelihood ratio test

ROC, detection rate,
false alarm rate

Simple logistic discriminant classification is sufficient for
fusion across sensors

2006

 in DETECTION AND
REMEDIATION TECHNOLOGIES FOR MINES AND
MINELIKE TARGETS XI, PTS 1 AND 2, J. T. Broach,
R. S. Harmon, and J. H. Holloway, Eds., in Proceedings
of SPIE, vol. 6217. 2006. doi: 10.1117/12.665660.

object detection,
sensor fusion

test field vehicle mounted AP landmine, AT
landmine,
landmine

metal,
minimal-metal

ground penetrating radar, metal
detector, electro magnetic
induction

relevance vector
machine

ROC, detection rate,
false alarm rate

Fusion via RVM with a combination of linear and RBF
kernels provides most robust results for landmine
detection from GPR and EMI data

2012

 IEEE Trans. Geosci.
Remote Sens., vol. 50, no. 1, pp. 119–129, Jan. 2012.

object detection test field vehicle mounted buried AP landmine, AT
landmine,
landmine

metal metal detector neural network ROC, detection rate,
false alarm rate,
accuracy

Feature extraction and decision fusion improve landmine
detection performance from metal detector data

2019

 in Intelligent Data
Engineering and Automated Learning - IDEAL 2019 -
20th International Conference, Manchester, UK,
November 14-16, 2019, Proceedings, Part I, H. Yin, D.
Camacho, P. Tiño, A. J. Tallón-Ballesteros, R. Menezes,
and R. Allmendinger, Eds., in Lecture Notes in Computer
Science, vol. 11871. 2019, pp. 542–549.

object detection test field handheld device buried AP landmine,
landmine

metal,
minimal-metal

metal detector, magnetic
induction spectroscopy

support vector machine,
neural network

ROC, detection rate,
false alarm rate,
confusion matrix

NN outperforms SVM in landmine detection from
Magnetic induction spectroscopy data

2014

SAIEE AFRICA
RESEARCH JOURNAL, vol. 105, no. 3, pp. 90–103,
Sep. 2014.

object detection test field not specified buried AP landmine, AT
landmine,
landmine

metal,
minimal-metal

ground penetrating radar neural network,
principal component
analysis

NN does not perform well in detection of low-metal
landmines from GPR data

2024

 Remote Sensing,
vol. 16, no. 4, p. 677, Feb. 2024.

object detection test field vehicle mounted different soil
types

AP landmine,
landmine

minimal-metal image data , hyperspectral images neural network,
convolutional neural
network

precision, F1 score,
recall

Pre Trained CNNs can detect AP mines from RGB image
data

2011

 in 2011 IEEE INTERNATIONAL
GEOSCIENCE AND REMOTE SENSING
SYMPOSIUM (IGARSS), in IEEE International
Symposium on Geoscience and Remote Sensing
IGARSS. 345 E 47TH ST, NEW YORK, NY 10017
USA: IEEE, Jul. 2011, pp. 834–837.

object detection test field not specified landmine not specified metal detector, electro magnetic
induction

support vector machine,
nearest neighbors

ROC, detection rate,
false alarm rate

KNN offers robust performance for landmine detection
but is computational less efficient than a SVM and hence
not suitable for real-world application.

2007
in 2007 IEEE INTERNATIONAL

CONFERENCE ON ACOUSTICS, SPEECH, AND
SIGNAL PROCESSING, VOL II, PTS 1-3, in
International Conference on Acoustics Speech and Signal
Processing ICASSP. 345 E 47TH ST, NEW YORK, NY
10017 USA: IEEE, 2007, pp. 605–608.

object detection test field not specified landmine not specified image data , hyperspectral images gaussian processes ROC, detection rate,
false alarm rate

Suggest that nonparametric Gaussian Process classifiers
generalize better to new environments

2009
IEEE

GEOSCIENCE AND REMOTE SENSING LETTERS,
vol. 6, no. 3, pp. 528–532, Jul. 2009.

object detection test field not specified buried landmine not specified ground penetrating radar linear / logistic
regression

AUC, ROC, detection
rate, false alarm rate

Infinitely imbalanced logistic regression outperforms
standard logistic regression for landmine detection from
GPR data

P. Torrione, K. Morton Jr, and L. E. Besaw, “Sensor
Fusion Approaches for EMI & GPR Based
Subsurface Threat Identification,”

P. Torrione, J. Remus, and L. Collins, “Comparison of
pattern recognition approaches for multi-sensor
detection and discrimination of anti-personnel and
anti-tank landmines,”

M. D.-J. Tran, C. Abeynayake, and L. C. Jain, “A
Target Discrimination Methodology Utilizing
Wavelet-Based and Morphological Feature Extraction
With Metal Detector Array Data,”

W. van Verre, T. Ozdeger, A. Gupta, F. J. W. Podd,
and A. J. Peyton, “Threat Identification in
Humanitarian Demining Using Machine Learning and
Spectroscopic Metal Detection,”

P. A. van Vuuren, “LANDMINE DETECTION BY
MEANS OF GROUND PENETRATING RADAR: A
MODEL-BASED APPROACH,” 

E. Vivoli, M. Bertini, and L. Capineri, “Deep
Learning-Based Real-Time Detection of Surface
Landmines Using Optical Imaging,”

M.-H. Wei, W. R. Scott Jr, and J. H. McClellan,
“LANDMINE DETECTION USING THE
DISCRETE SPECTRUM OF RELAXATION
FREQUENCIES,”

D. P. Williams, “Gaussian process classification using
image deformation,” 

D. P. Williams, V. Myers, and M. S. Silvious, “Mine
Classification With Imbalanced Data,” 
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Year Source Study aim Data
acquisition

Acquisition
device

Specific field
conditions ERW types ERW material Input features AI algorithm Result metrics Key findinigs for literature review

2006

in 2006 8TH INTERNATIONAL
CONFERENCE ON SIGNAL PROCESSING, VOLS
1-4, B. Z. Yuan, Q. Q. Ruan, and X. F. Tang, Eds., in
International Conference on Signal Processing. 2006, p.
1827+.

object detection test field not specified different soil
types, buried

AT landmine,
landmine

metal ground penetrating radar support vector machine,
principal component
analysis

detection rate, false
alarm rate

PCA preprocessing improves performance of landmine
detection with SVM from GPR data

2008

in IGARSS 2008 - 2008 IEEE
International Geoscience and Remote Sensing
Symposium, IEEE, Jul. 2008, pp. II–177–II–180.

object detection,
sensor fusion

test field not specified different soil
types, buried

AP landmine, AT
landmine,
landmine

metal,
minimal-metal

ground penetrating radar, metal
detector, electro magnetic
induction

linear / logistic
regression, ensemble
methods, nearest
neighbors

ROC, detection rate,
false alarm rate

Hierarchical Mixture of Experts model results in high
detection performance from GPR and EMI fusion

2012

 in IEEE International Workshop on Machine
Learning for Signal Processing, MLSP 2012, Santander,
Spain, September 23-26, 2012, IEEE, 2012, pp. 1–6.

object detection test field not specified buried landmine not specified ground penetrating radar hidden markov model ROC, detection rate,
false alarm rate

Multiple Instance Hidden Markov Model outperforms
standard Hidden Markov Model in landmine detection
from GPR data

2016

IET
Comput. Vision, vol. 10, no. 8, pp. 873–883, Jul. 2016.

object detection test field not specified buried AP landmine, AT
landmine,
landmine

metal,
minimal-metal

metal detector, electro magnetic
induction

ensemble methods,
hidden markov model

accuracy Mixture of hidden Markov model experts improves
landmine detection performance from EMI data

2008

Massachusetts Institute of Technology, Cambridge, MA,
USA, 2008. [Online]. Available:
https://hdl.handle.net/1721.1/44722

object detection test field not specified buried other UXO metal metal detector, electro magnetic
induction

support vector machine,
neural network

confusion matrix,
accuracy

Noise and clutter create difficulties for UXO detection
from EMI data

2014

IEEE J. Sel. Top. Appl.
Earth Obs. Remote. Sens., vol. 7, no. 3, pp. 813–819,
2014.

object detection test field vehicle mounted buried landmine not specified ground penetrating radar hidden markov model,
gausian mixture model

false alarm rate Gibbs sampling to learn the parameters of Hidden Markov
Models with Gaussian mixtures outperforms standard
expectation-maximization and minimum classification
error algorithms

2020

 in 2020 IEEE
INTERNATIONAL RADAR CONFERENCE (RADAR),
345 E 47TH ST, NEW YORK, NY 10017 USA: IEEE,
Apr. 2020, pp. 208–213.

object detection test field not specified different soil
types, buried

landmine plastic ground penetrating radar, doppler
radar

support vector machine,
linear / logistic
regression, tree-based
algorithm, random
forest, ensemble
methods

precision, accuracy,
recall

Random Forest outperforms SVM and logistic regression
for landmine detection from Doppler radar data

2023

 Remote. Sens., vol. 15, no. 18, p. 4411, 2023.

object detection test field airplane different soil
types

landmine not specified ground penetrating radar,
ultra-wideband radar

neural network false alarm rate,
precision, F1 score,
recall

Constant false alarm rates detector NN achieves similar
results to CNN while being more computationally
efficient

2003

EEE Trans. Geosci.
Remote Sens., vol. 41, no. 5, 1, pp. 1016–1024, May
2003.

object detection test field vehicle mounted different soil
types, buried

AT landmine,
landmine

metal,
minimal-metal,
plastic

ground penetrating radar hidden markov model ROC, detection rate,
false alarm rate

Training Hidden Markov Models with evolutionary
algorithms and generalized probabilistic reduces false
alarm rates by a factor of two

Y. Yan-Guang, S. Qian, and Z. Zhi-Min, “A novel
method of landmines detection based on improved
SVM,” 

S. E. Yuksel, G. Ramachandran, P. Gader, J. Wilson,
G. Heo, and D. Ho, “Hierarchical Methods for
Landmine Detection with Wideband Electro-Magnetic
Induction and Ground Penetrating Radar
Multi-Sensor Systems,” 

S. E. Yüksel, J. Bolton, and P. D. Gader, “Landmine
detection with Multiple Instance Hidden Markov
Models,”

S. E. Yüksel and P. D. Gader, “Context-based
classification via mixture of hidden Markov model
experts with applications in landmine detection,” 

B. Zhang, “Classification, identification, and modeling
of unexploded ordnance in realistic environments,”

X. Zhang, J. Bolton, and P. D. Gader, “A New
Learning Method for Continuous Hidden Markov
Models for Subsurface Landmine Detection in
Ground Penetrating Radar,” 

Y. Zhang, D. Orfeo, D. Huston, and T. Xia, “Software
Defined Doppler Radar for Landmine Detection using
GA-Optimized Machine Learning,”

Y. Zhang, Y. Song, and T. Jin, “Lightweight
CFARNets for Landmine Detection in Ultrawideband
SAR,”
Y. Zhao, P. D. Gader, P. Chen, and Y. Zhang,
“Training DHMMs of mine and clutter to minimize
landmine detection errors,” I
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