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Abstract—Prediction of traffic dynamics plays a significant role
in many Intelligent Transportation Systems (ITS). Nonetheless,
accurate and real-time traffic prediction is always a difficult
task. The classical models are challenged by the complex spa-
tiotemporal relationships of the road network that raises unsolved
questions relating the reliability and the feasibility of prediction
models. Nowadays, the development of localization and commu-
nication technologies in transportation has led to massive data
collected by on-board sensors known as floating car data (FCD).
These data sets open up a new direction for traffic prediction
using big data analysis methods. In this paper, we propose to
address the traffic dynamics prediction problem using a self-
adaptive multi-agent system that aims at continuously processing
vehicle trajectory data to detect and learn different traffic
dynamics and thus predict traffic evolution. The proposed system
includes two processes: local learning, which distributes learning
tasks at the agent level, and prediction process, which enables
accurate traffic prediction using cooperative interactions among
agents. The conducted experiments underline the performance
of our system compared to the well-known models in the traffic
prediction domain.

Index Terms—Traffic prediction, dynamic clustering, Multi-
Agent System, continuous learning, self-adaptive mechanisms

I. INTRODUCTION

Nowadays, traffic congestion has become a big concern for
urban mobility because of its inconveniences such as time
and consumed energy waste, negative impacts on physical and
emotional health of drivers, and especially high risk of colli-
sion at the end of jam queue. Providing drivers with accurate
information, especially relating traffic jams can improve traffic
safety. One promising approach widely used in many services
of Intelligent Transportation Systems (ITS) for traffic control,
planning, safety, and guidance, has been referred to traffic
dynamics prediction. By observing future traffic dynamics on
the road network estimated by this approach, we can predict
the position of the traffic jam, its queue, and its propagation
property.

However, estimating accurate traffic dynamics remains chal-
lenging due to complex and long-term spatiotemporal depen-

dencies. Indeed, on the one hand, prediction models must con-
sider the temporal dependencies of traffic data as non-linearity,
non-stationarity, or seasonality, and the spatial correlations in
the road network. On the other hand, the model complexity
should be reasonable to adapt to large-scale applications. This
trade-off is not easy to balance. In addition, the changes in the
drivers’ behavior when they are provided with traffic dynamics
predictions must be considered to update continuously learned
models. Indeed, drivers can change their itineraries given
updated traffic information inducing changes in the learned
temporal regularities. To deal with this problem, the learning
process needs to continuously adapt and integrate all changes
in the driving environment into the model. A learning method
that is explainable and easy-to-update is appreciated in this
case. Moreover, the recently widespread deployment of GPS
localization and V2X (Vehicle-to-Everything) connectivity
also brings a new generation of traffic data mining. Floating
car data (FCD) along car’s trajectory allow us to develop
novel prediction models based on learning from data without
model assumption a priori.

This paper presents ADRIP - a self-adaptive multi-agent
system for traffic dynamics prediction. Its architecture is based
on the road network description to decentralize the prediction
process at the level of road segments composing the network.
Agents representing road segments in the MAS implement
each two parallel and autonomous processes. The first one, a
continuous learning process using dynamic clustering, aims
at dynamically learning from vehicle data streams the clusters
representing the traffic dynamics on a given road segment. As
collected vehicle data raises the question of specific behaviors
of some vehicles that do not correspond to the observed
traffic dynamics, the learning process is provided with a
method enabling the detection of such singular behaviors. The
second process, based on cooperation between neighboring
road segments, computes real-time traffic predictions. This
process enables cooperative behaviors of agents including self-
adaptation and self-correction that help them to overcome the



conflicts during interactions and improve prediction.

II. STATE OF THE ART

Many existing studies have focused on traffic dynamics
prediction by estimating the mean speed, volume, or density
of traffic for a given time horizon. The well-known approaches
are categorized into two main groups: parametric models and
non-parametric models [1].

A. Parametric models

Parametric models refer to prediction models using a finite
set of parameters and a fixed structure. Data used in these
models satisfy different assumptions as normality, stationarity,
or no outliers existence. The most common parametric models
suited for traffic prediction are the family of ARMA-based
models. They show the linear dependency of future values on
the previous values (Auto-Regressive - AR) and the random
noise series (Moving Average - MA) with stationary assump-
tion. ARIMA - an extended version of ARMA applied in
[2] can deal with non-stationary data. Some later models can
address spatial relationships such as the multivariate models
called VARMA (Vector Auto-Regressive Moving Average) and
STARIMA (Space-Time Autoregressive Integrated Moving
Average). The results in [3] demonstrated the improvement
of prediction performance by multivariate models applied to
large networks with large amounts of sensors.

Parametric models are very explicit and clear to understand
the relationships between parameters and outputs. The imple-
mentation and execution of these models do not require high
computational capacities. They can achieve good performance
in regular traffics. However, they can only solve linear prob-
lems with the strong imposed assumptions on traffic data that
is not suited for complex applications and irregular traffic data.

B. Non-parametric models

Non-parametric models do not fix the dependencies between
variables, the set of parameters and the model structure can
change adapting to arrival data. This property brings high
flexibility for models but requires training them on large
and diverse data sets to calibrate parameters. Thus, vehicle
trajectory data are very suited for non-parametric models.
The well-known model first applied for traffic prediction is
the K-nearest neighbor model (KNN). KNN finds the K
closest clusters to the current traffic state and estimates the
predictions by observing the next states of its k-neighbors. An
adaptive spatiotemporal KNN model (ST-KNN) was developed
in [4] that considered the spatial heterogeneity of road traffic.
Another application of KNN was presented in [5] for traffic
state prediction under special events.

Feed Forward Neural Network (FFNN) - a simple neural
network, was used in [6] to estimate multiple steps of next
traffic flows on multiple road segments. Paper [7] applied an
improved NN with a stack of hidden layers to capture the
complex dependencies between the input and output variables.
The obtained MSE (Mean Squared Error) decreased by 14%
compared to traditional NN with one hidden layer. However,

adding multiple hidden layers to capture long-term dependen-
cies leads to increase model complexity.

RNN-based models (Recurrent Neural Networks) such as
Long Short-Term Memory (LSTM) or Gated Recurrent Units
(GRU) are specially designed to address long-term dependency
issues. The comparison in [8] showed that RNN-based models
outperformed ARIMA by reducing errors by 10%. [9] also
underlined their higher performance on traffic congestion
prediction. However, RNN-based models sometimes encounter
problems caused by vanishing or exploding gradients [10].

Recent approaches including Convolutional Neural Net-
works (CNN) and Graph Convolutional Networks (GCN) aim
to fill the gap relating to spatial correlation modeling in
previous models. In [11], the input traffic data were sent to
CNN as images in which spatiotemporal traffic dynamics were
converted to a two-dimensional time-space matrix. Work in
[12] and [13], combining LSTM and CNN models, outper-
formed the original models since it benefits from both temporal
and spatial dependency modelings. STGCN (spatiotemporal
graph convolutional networks) [14] and DCRNN (Diffusion
convolutional recurrent neural network) [15] showed the per-
formance of GCN on graph structure data using spatial in-
formation without restricting models to only process on grid
structure data (images, videos) as CNN. Some latter works
aim at improving the performance of GCN by integrating the
ATtention mechanism in ATGCN [16] for dynamic spatial-
temporal correlations, adopting the mechanism of iterative
prediction for Long-Short terms prediction in LSGCN [17]
and including a continual learning mechanism for streaming
traffic flow forecasting in [18].

C. Discussion

TABLE I: Comparison of traffic prediction models

Model Modeling
ability

Spatial
considera-
tion

Online
learning

Model
simplicity

ARIMA Linearity - - ++
SARIMA Linearity,

seasonality
- - +

VARMA,
STARIMA

Linearity,
multi-variate

++ - -

KNN Non-linearity + - ++
FFNN Non-linearity + - -
RNN Non-linearity,

long-term
dependency

- - –

CNN Non-linearity,
long-term
dependency

++ - –

GCN Non-linearity,
long-term
dependency

+++ - –

Table I highlights the characteristics of learning approaches
to build and train models for traffic predictions regarding four
criteria: modeling ability, spatial consideration, online learn-
ing and model simplicity. These criteria are chosen based on
the need of balancing between high-level modeling ability for
spatiotemporal relations and dynamic properties for large-scale



and real-time applications. Temporal dependencies covered by
all the studied models are not considered in this table. Two
points are underlined in this comparison. First, learning phase
of all models is offline, so that it does not update the learned
model when driving environments and traffic data evolve. Sec-
ond, the consideration of long-term temporal dependency
and spatial correlation increases model complexity that
limits their usage on large-scale applications.

The first limit which we aim to address is the lack of con-
tinuous learning by using dynamic clustering for the learning
process. Continuous learning requires a process capable of
integrating arrival observations and continuously updating
the model with restriction of memory and time. Dynamic
clustering technique is proven to be efficient for dealing with
infinite and evolved data thanks to flexible structural changes.
These properties refer to the following behaviors: (1) create
new clusters when detecting novel data behaviors, (2) adjust
or update the centroid of clusters when aggregating new
data, (3) merge clusters when they approach each other and
(4) split dispersed clusters. The well-known methods include
CluStream [19], DenStream [20], the family of topological
structures based on Self-Organizing Maps (SOM) and Grow-
ing Neural Gas (GNG) introduced in [21], [22] and [23].
These models have been widely applied in network intrusion
detection, financial transaction, phone recording, web click
stream processing, etc. To our knowledge, their application for
traffic dynamics prediction is novel as in [24] that presents a
system for Online Real-time Unsupervised Network Anomaly
Detection Algorithm. This system outperformed DBSCAN and
PCA (Principal Component Analysis) in detecting anomalies
in traffic networks.

The second point to consider is maintaining a reasonable
complexity level of system. For that, we consider decentral-
ized and cooperative decisions of self-adaptive systems based
on multi-agent system (MAS) approach for the prediction pro-
cess. According to [25], MAS consists of multiple autonomous
entities known as agents which can perceive information from
their environment, make decisions according to their percep-
tions and knowledge, and act to cooperatively reach their local
goals. MAS aims at decentralizing the function by distributing
the control at the agent’s level so that each agent owns only a
partial view of the environment and a local decision-making
algorithm to obtain its individual goals. To achieve the global
objective of the system, agents need to cooperate with others.
MAS-based systems allow us to integrate the self-adaptive
mechanisms to deal with open and complex applications such
as life-long supervised machine learning [26], traffic control
[27],etc. In the following, we present ADRIP - a self-adaptive
multi-agent system that explores the dynamic clustering to
self-adapt to dynamic changes in traffic and the self-correction
mechanism to provide more accurate traffic prediction.

III. SYSTEM DESCRIPTION

This section formalizes the problem considered in this work,
and defines the corresponding system architecture.

A. Problem description

Previous traffic prediction models presented in the state
of the art are based on the road network topology as it
enables to integrate spatial dependencies. For example, spatial
dependencies can be evaluated by the correlations between
neighboring sensors from observed data. The traffic prediction
problem is then described as follows, given :

• a set of vehicles V = v1; v2; ...; vn, each following an
itinerary I segmented into a sequence of road segments
noted I = {rds1, . . . , rdsd} and communicating its
mobility profile to each crossed road segment;

• a set of road segments determined according to the road
network in Open Street Map (OSM), its starting and
ending points located by GPS devices;

conceive a system able to learn and predict future traffic
dynamics at the level of each road segment.

Previous studies define traffic dynamics prediction as the
prediction of mean speed, volume, or density. These macro-
scopic traffic parameters cannot express the variation of ve-
hicle information on a road segment over time. For example,
the predicted mean speed at 30km/h can refer to both cases:
a constant speed of a vehicle on a considered road segment
and a homogeneous change of vehicle speeds from 0km/h to
60km/h. To fill this gap, we introduce Mobility Profile (MP)
computed by each vehicle when crossing a road segment.

Definition 1. Mobility Profile (MP)
The MP is defined as the distribution of travel time at

different speed ranges on a given road segment.

Figure 1 illustrates the MP of a vehicle crossing a segment
of 72m length with maximum speed of 30km/h using 7 speed
ranges.

Fig. 1: Illustration of MP

Given a MP, perspicuous information as total travel time,
mean speed, or speed variation, can be communicated to
drivers. In addition, by its definition, a MP is enough succinct
to adapt to memory and calculation time restrictions for
continuous learning and real-time prediction.

B. System architecture

From the problem description and the AMAS approach
(Adaptive Multi-Agent System), two types of agents have been



defined :
• Vehicle Agents (VA): representing each a vehicle, they

aim to share their MPs along the crossed road segments
of their trajectory.

• Segment Agents (SA): associated each with a road
segment of the road network, their aim is to locally
predict future traffic dynamics on their corresponding
road segment. To do that, SA’s behavior is divided into
two processes: a learning process and a prediction process
(cf.Fig 2).

Fig. 2: System architecture

At each SA, the learning process continuously classifies the
different MPs perceived from VAs into clusters representing
different traffic dynamics and memorizes them with their
associated timestamp. The output of the learning process is
a database of traffic dynamics clusters, each described by a
centroid MP and a list of Ranges of Use (RUs) indicating the
moments when vehicles crossed that road segment with this
MP. The clustering decisions and structure are updated at each
received MP. That enables the system to locally self-adapt to
traffic dynamics evolution. In this process, only the communi-
cations between VAs and corresponding SAs are established
to exchange MPs. The learning process addresses the temporal
dependencies by observing the transitions between clusters.

Simultaneously with the learning process, SAs perform a
prediction process that provides traffic dynamics estimations
until a given time horizon. To relate to the fact that traffic
dynamics on a given segment are impacted by the traffic of
neighboring segments, each SA cooperates with its neigh-
boring SAs defined by the road network to compute the
predictions. This cooperative interaction between SAs is the
key of the prediction process since it assesses the propagation
of traffic dynamics. Given that, the prediction process achieves
the integration of spatial dependencies.

Finally, in order to provide accurate predictions, SA com-
pares its predictions to true perceived traffic information and
deploys its self-correction mechanism to improve its predic-
tions.

IV. SEGMENT AGENT BEHAVIOR

A. Learning process

All SAs perform the same dynamic clustering algorithm
(cf. Algorithm 1) to cluster the perceived MPs on their asso-

Algorithm 1 Dynamic clustering algorithm of SA

1: percMP ←− getMPFromVA()
2: isSingular ←− NoiseDetection(percMP)
3: if isSingular == False then
4: SimClus ←− similarClusters (LearnedClusters, per-

cMP, α)
5: if SimClus ̸= ∅ then
6: if card(SimClus) ≥ 2 then
7: MostSimClus ←− mergeClus(SimClus, α)
8: else
9: MostSimClus ←− SimClus[0]

10: end if
11: MostSimClus.centroid ←− adjustGiven(percMP)
12: MostSimClus.RUs ←− updateGiven(percMP)
13: else
14: SA.createNewClus(percMP)
15: end if
16: else
17: Ignore perceived MPs
18: end if

ciated road segment. Nonetheless, depending on the stream
of perceived MPs, each SA possesses a different cluster
structure and learned database. This distribution of clustering
mechanism at the SA level enables several benefits. First, SAs
function simultaneously and independently from each other
to facilitate system control, mitigate the potential damage of a
centralized processing node and reduce the calculation time by
enabling parallel processing on multiple processors. Second, it
enhances the openness and flexibility of the system since SAs
can be easily added or removed when having some changes
in the road network. Third, it self-adapts to the continuous
update when traffic dynamics change on the road network. For
example, when the correlations between road segments evolve,
the system only needs to update the relationships between
related road segments rather than recomputing for the entire
road network.

Algorithm 1 details the learning process performed by a
SA. After perceiving a MP (percMP ) from a VA, SA verifies
whether the new MP describes a singular vehicle behavior
(NoiseDetection()). If it is not the case, SA searches for
existing clusters similar to percMP by assessing the simi-
larity between percMP and the centroids of learned clusters
(similarClusters()). If more than one similar cluster is found,
SA evaluates if they have to merge together (mergeClus()).
Then, the most similar one is chosen to assign percMP and
is updated. Otherwise, a new cluster is created by SA for
percMP . If a singular behavior is detected, SA ignores the
new perceived MP.

1) Detection of singular behaviors: Using trajectory data
of vehicles as representative of traffic dynamics requires con-
sistency. Indeed, we can only deduce the dynamics of traffic
from the time series of vehicle speeds when the behaviors
of vehicles correctly reflect what happens on road segments
(no-outlier existence assumption). This required consistency is



not always guaranteed, for example with emergency vehicles
moving with particular priorities or vehicles moving with indi-
vidual behaviors in free-flow traffic. In such cases, the learning
process is disturbed since it may consider such behaviors as
new clusters of traffic dynamics while these discrepancies are
due to the diversity of individual vehicle behaviors.

Our noise detection method is constructed as a multi-
criteria method to detect singular behaviors according to each
established situation. In this paper, we explore the detection of
singular behaviors in free-flow traffic. For that, we compare the
distance between the position of the vehicle communicating
percMP and its leading vehicle to the stopping sight distance
(SSD). SSD ( [28], [29]) is defined as the minimum distance
required on a roadway to enable a vehicle traveling at or near
the design speed to stop before reaching a stationary object
in its path. If the computed distance is greater than the SSD
of the road segment, that vehicle may have singular behavior
since it is not constrained by the security restrictions and the
new percMP is thus considered as noise. Other situations will
be studied and added to further versions of ADRIP.

2) Searching for similar clusters: The similarity between
a MP and a cluster is evaluated by the similarity between this
MP and the centroid of the cluster.

Definition 2. MPs similarity
The distance measure between two MPs, regarding the time

by speed range, is defined as an array whose elements are the
absolute differences in time travel of respective speed ranges of
both MPs. Two MPs are similar to each other if each element
of the obtained array is less than a threshold α (cf. equation
1).

MPDiff(MP i,MP l) =[|MP i
j −MP l

j |] ≤ αj

∀j ∈ {1, . . . , N}
(1)

where N is the number of speed ranges, MP i
j and MP l

j are
the values of time travel corresponding to the jth speed range.
Noting that both MPs must have the same list of speed ranges
sorted in increasing order. αj is a time threshold adapting to
each speed range j. Indeed, the travel times with different
speed intervals have different ranges (eg. longer travel time
for lower speed). Thus, using the adaptive similarity thresholds
for different speed ranges has the same aim as data rescaling
techniques such as data normalization or standardization.

3) Merging similar clusters: When more than one cluster
is similar to the perceived MP, SA evaluates if they have to
merge together. That allows the clustering structure to adapt to
new arrival data without depending on initial data. mergeClus()
method (cf. Algorithm 2) focuses on the two most similar
clusters to the perceived MP. Thus, the merging of clusters is
a local process that avoids costly calculations. If the difference
between the two most similar clusters satisfies equation 1, they
merge together. The new centroid is computed as the mean of
their centroids and the list of RUs is the aggregation of their
lists of RUs.

Algorithm 2 mergeClus(SimClus, α)

1: OrderedSimClus ← SimClus ordered increasingly by the
distance to percMP

2: c1 ← OrderedSimClus[0]
3: c2 ← OrderedSimClus[1]
4: d ← MPDiff(c1.centroidMP, c2.centroidMP)
5: if d ≤ α then
6: c1.centroidMP = (c1.centroidMP + c2.centroidMP)/2
7: c1.listRUs.append(c2.listRUs)
8: end if
9: Update SA’s database

10: return c1

4) Integrating perceived MP to learned database : At this
step, if the set of similar clusters is empty, SA creates a
new cluster with percMP as the centroid. Otherwise, the
information from percMP is used to adjust the centroid of
the most similar cluster using γ as an adjustment coefficient
(cf. equation 2). In this algorithm, γ plays a similar role as
learning rate in the optimization algorithms as in the gradient
descent that makes the chosen cluster gradually move towards
the new percMP .

MP sim
adjusted = MP sim + γ ∗ sign(percMP −MP sim) (2)

B. Prediction process

The prediction process aims to compute the chain of the
next changes of MPs for a required time horizon. Thus, the
predicted data is denoted as: P = {(predMP1, T s1) −→
(predMP2, T s2) −→ · · · −→ (predMPH , T sH)}. Tsi is the
predicted timestamp where the traffic on a given SA changes
to predMPi. predMP1, T s1 is predicted using current traffic
state. A prediction (predMPi, T si) is computed using the
previous prediction predMPi−1, T si−1.

To complete the criteria highlighted in table I, the prediction
process addresses two points: spatial dependency and real-time
update.

First, for including spatial dependency, SAs are based on the
fact that the traffic dynamics on a given segment are impacted
by its neighboring road segments (spatial correlation). Each
SA cooperates with the neighboring SAs (SAs associated with
direct upstream and downstream road segments as defined by
OSM) to collect the historical information required for its
predictions (cf Algorithm 3). Through these interactions, each
SA computes the predictions based on how its traffic dynamics
in the past have been influenced by its neighboring SAs. The
information of considered SA and its neighbors constitute a
Configuration of traffic.

Definition 3. Configuration
The configuration at an instant T under the point of view

of a SA is the set of observed MPs with their corresponding
RU at T on itself and on its neighboring SAs.

Second, the real-time update in the prediction process is
firstly guaranteed by the real-time extension of predicted data
to ensure that they are always available up to the required



time horizon. When the current prediction horizon is shorter
than the required one, SAs use the farthest prediction to
compute the next one. This extension mechanism is continuous
through time. However, as the following prediction is com-
puted based on the previous one, the bad performance of the
previous step can propagate and make the prediction accuracy
degrade quickly. Thus, the real-time update also includes a
self-correction mechanism using real-time observed data. This
ability allows to enhance the availability and reliability of the
prediction process.

Algorithm 3 Prediction algorithm performed by each SA for
a horizon H

1: currentTs ←− Current timestamp of prediction process
2: Ts ←− currentTs
3: while Ts < currentTs + H do
4: ConfigTs ←− buildConfig(SA, neighborSAs,Ts)
5: listRUs ←− getRUs(SA.MPTs)
6: histConfigs = []
7: for RU ∈ listRUs do
8: histConfigs.add(buildConfig(SA, neighborSAs,

RU.start))
9: end for

10: mostSimConfig ←− evalutateConfigSim(ConfigTs,
histConfigs)

11: predMP, RU predMP ←− getFollow-
ingMP(mostSimConfig)

12: Ts ←− Ts + RU predMP
13: end while

1) Prediction algorithm: Algorithm 3 details this prediction
process starting from the current timestamp with the current
observed configuration, until the desired prediction horizon H .
The main principle is, given a configuration constituted by the
observed MP of SA and the observed MPs of its neighbors at
a given timestamp, to figure out the most similar configuration
in the past called historical configuration. The prediction of
SA is then defined as the succeeding MP that was observed
after this historical configuration. This prediction lasts as long
as the selected MP lasts in the past (RU predMP )

At each timestamp Ts of the prediction process, SA builds
(buildConfig()) the configuration ConfigTs from its MP and
by asking the MPs from its neighbors. Then, SA extracts the
RUs (listRUs) at Ts (getRUs()) and constructs, for each RU,
the historical configuration containing the MPs of its neighbors
at the beginning of the RU. SA then compares each historical
configuration with ConfigTs (evalutateConfigSim()) based on
two ordered criteria:

1) the number of neighboring SAs with different MPs in
both configurations to address the difference in traffic
dynamics;

2) the time gap between the beginnings of RUs in both
configurations to address the difference in dynamic
propagation time.

The most similar historical configuration
(mostSimConfig) is then defined as the historical

configuration minimizing both criteria. Then, SA gets
the next MP and its RUs of this configuration as the
predictions for the next minutes from Ts. SA computes the
achieved prediction horizon by forwardly shifting Ts for a
time interval equal to the RUs of predicted MP. If the desired
horizon H is not reached yet, all described steps are repeated.

2) Cooperation failures: During interactions between SAs,
some specific situations can occur and disturb the functioning
of SAs. That requires SAs to self-adapt. Thus, a set of coop-
erative behaviors allowing SAs to overcome those situations
and maintain the adequate functioning of the system has been
defined.

First, during the construction of traffic configuration, SA
faces an issue where it does not receive responses from
its neighbors for their MPs’ demands. As a result, SA is
unable to establish the complete configuration. This happens
as some neighbors haven’t estimated yet their prediction
at the requested timestamp, preventing them from sending
this information to demanding SA. In such cases, SAs with
shorter prediction horizons launch their calculation first. The
remaining SAs will wait until the required predictions are
computed. Through this mechanism, SAs self-organize their
execution based on different situations.

Second, in cases where the current MP on a SA has not
been observed yet, SA does not have the historical information
necessary for the prediction process. To address this lack of
information, SA will use this MP as the prediction until the
required prediction horizon. When SA detects a significant
difference between the predicted MP and the observed MP, it
activates the self-correction mechanism to correct the predic-
tion. Noting that, in parallel, the learning process will cluster
this new MP into the SA database allowing the prediction
process to perform better in the future.

Third, when several historical configurations are similar to
the configuration at time Ts, SA must select the most accurate
one for its prediction. In such cases, the configurations are
considered as equivalent, SA will opt for the most recent
one. This choice is coherent with the objective of continuous
learning, emphasizing the significance of recent changes in the
driving environment.

3) Self-correction mechanism: The goal of the self-
correction mechanism is to detect when the predicted MP is
different from the observed MP and correct it. To do that, when
a change of MP is detected, SA compares the perceived MP
with the predicted MP. If the difference between them is larger
than the similarity threshold (cf.Equation 1), SA relaunches
the prediction process using its current configuration. This
mechanism allows to reduce the degradation of prediction
performance due to the dependence of following predicted
steps on previous ones.

V. EXPERIMENTS

A. Data generation

Traffic data applied in the experiment are generated by
GAMA platform (GIS Agent-based Modeling Architecture)
[30]. GAMA is a simulation platform widely used for building



explicit agent-based simulations, including traffic simulation
with the illustration of many interactions between agents
(vehicle, road, infrastructure, people, etc). GAMA allows to
perform simulations using real road networks by importing
external road networks from shape files or OSM files. For this
evaluation, we chose as a scenario a road network consisting of
63 road segments (cf. figure 3) with various lengths including
roundabouts and different intersection types. However, many
road segments among them are divided by the crosswalks,
making them very short and unremarkable for this study. After
eliminating those segments, it remains 30 segments used for
this comparison.

Fig. 3: The scenario from OSM (left) and the projection of chosen
zone in GAMA

The behaviors of vehicles in this simulation follow Ad-
vanced Driving Skill [31] which is inspired by the Intelligent
Driver Models and the MOBIL model for lane change. To get
enough diversity in traffic dynamics, the number of vehicles
at every instant of the simulation is inhomogeneously varied
between 50 and 200 vehicles. The starting position of vehicles
and the destination are randomly chosen. Then, GAMA com-
putes all possible paths between these two points and picks
the optimal one considered as the trajectory of the vehicle.
We simulated the traffic and registered the obtained data for 3
hours, totalizing approximately 9300 vehicle trajectories. The
generated data include the GPS position, speed, and distance
to the closest leading vehicle at every second for every vehicle.

B. Evaluation metrics

To evaluate the prediction performance, we adopt 2 metrics
(equation 3): MAE (Mean Absolute Errors) and RMSE (Root
Mean Squared Error).

MAE =
1

N

N∑
i=1

|yi − ŷi|; RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2

(3)
where yi is the ith true value, ŷi is the ith predicted value and
N is the number of data points.

C. Parameter setting

ADRIP has two parameters to be defined a priori which
are the adjustment coefficient γ fixed at 0.05 and the similarity
threshold vector α defined as 20% of the time required to cross

the segment with the average speed of each speed range. We
compare ADRIP with five models presented in the state of the
art. Their implementations are found in Python modules with
the parameters set as follows:

• ARIMA (statmodel): Order = (30,1,1), numbers of lags
= 30.

• KNN (sklearn): k = 18
• FFNN (keras.layers): Hidden layers = 2, units = 256,

learning rate = 1e−3, dropout rate = 0.1, decay rate =
1e−2, batch size = 256, optimizer: stochastic gradient
descent algorithm.

• RNN (LSTM, GRU) (keras.layers.recurrent): Hidden
cells with 64 units, dropout layer = 0.2.

D. Results and analysis

The conducted experiment compares our 2 versions of
ADRIP: without and with the self-correction mechanism with
ARIMA, KNN, FFNN, RNN models (LSTM, GRU) for pre-
diction of travel time on a road segment

We train ARIMA, KNN, FFNN, RNN models, and ADRIP
with the data set corresponding to the first 2 hours of simula-
tion. Learned models are used to estimate future data for the
next hour. All predicted travel time for the next hour will be
compared with data from the simulation. Noting that these
models do not update themselves during the testing phase
while the learning process of ADRIP is continuously updated
through time.

1) Time travel prediction: The inputs of compared models
are the time series of travel times of all crossing vehicles
on each road segment for every 10 seconds. Those models
predict the next value by analyzing its dependence on the
previous 5-minute observations. During the testing phase,
the vectors of 5-minute previous observations are used to
estimate the predictions for the next 5 minutes. Data rescaling
transformations such as normalization, standardization, etc are
not applied since it is impractical for continuous learning to
set up the rescaling parameters due to the dynamic arrival and
generation of data [32].

Concerning ADRIP that learns and predicts MPs, the travel
time is the sum of all elements of the predicted MP as T =∑N

j=1 MPj . The prediction process computes in real-time the
next MP changes until the next 5 minutes equivalent to 30
next points (a prediction is provided every 10 seconds to allow
comparison with other models).

During experiments, we notice that some road segments
have a high diversity of traffic dynamics as they are located at
the main entries and exits of the considered area, thus many
vehicles crossed them. As a result, travel time data on those
segments exhibit high variance. Table 4 shows the boxplots
and standard deviations of travel time data on studied road
segments. Some of them show the values mostly constant as
their value range showed by the boxplot is small and their
standard deviation is insignificant. Meanwhile, others express
high variation of data due to many outliers on the boxplots
and big standard deviations.



Fig. 4: Boxplots and standard deviation of travel time data. Roads
framed by a dotted line express high variation of data.

Table II shows the comparison results on road segments
with low variation of traffic data and highlights four key
points. First, ARIMA, with its linear modeling limitation and
strict data assumption, obtains significant prediction errors.
Second, KNN, FFNN, LSTM, and GRU with their capacity
of capturing long-term temporal dependencies and non-linear
modeling have good performance in travel time prediction
for low variation data. High accuracy achieved in KNN is
due to the benefits of static clustering, which analyzes the
data structure for clustering from a complete database thus
having the better understanding to detect clusters. In contrast,
dynamic clustering attempts to detect data structure from small
samples and gradually update it. That leads to potentially
inadequate clustering structures initially, requiring more data
and time to improve. Results obtained by both versions of
ADRIP are close to the compared models. In addition, ADRIP
gains in explicability since we can determine which historical
configuration brings this prediction and also the impacts of
each neighboring road segment on the predictions. That helps
to better analyze and understand the traffic evolution. We note
that the self-correction mechanism does not enhance prediction
accuracy. This is due to the fact that when dealing with low
variation data, ADRIP does not frequently launch the self-
correction mechanism since no MP change is detected. ADRIP
can misunderstand that its predictions are good. Further tests
and analysis are required to identify the situations where SAs
must launch this mechanism.

TABLE II: Prediction errors in second of travel time prediction on
road segments with low variations of traffic

Criteria MAE RMSE

ARIMA 21.52 26.75
KNN 8.75 14.80
FFNN 10.76 16.71
LSTM 9.05 14.90
GRU 9.11 15.18
ADRIP without
self-correction 10.64 16.87
ADRIP with
self-correction 11.82 18.08

In table III, the comparison results between ADRIP and

other models on road segments with high variation of traffic
data are presented (the road segments framed by a dotted
line in figure 4). First, ARIMA remains obtaining the worst
performance. Second, we remark that ADRIP without self-
correction obtains worse accuracy compared to KNN, FFNN,
LSTM, and GRU. That is resulted from the emergence of
new behavioral patterns of the high dynamics of traffic.
The functioning of the prediction process in SAs is often
disturbed since many new MP are created and SAs do not
have historical information about them. Thus, the prediction is
quickly degraded since the following prediction step depends
on the previous one. In such cases, ADRIP proposes the
prediction as current MP and relies on the self-correction
mechanism to correct them if errors are detected. Indeed,
ADRIP with the self-correction mechanism outperforms most
compared models in both criteria, except for a slightly higher
MAE than FFNN. However, compared to FFNN, our proposed
model achieves a lower RMSE. Since RMSE penalizes the
large errors more significantly than MAE, we can deduce
from this phenomenon that, ADRIP makes more small-scale
errors but fewer large-scale errors than FFNN. In summary,
the comparison results have proven the advantages of the self-
correction mechanism and its importance when dealing with
highly dynamic information.

TABLE III: Prediction errors in second of travel time prediction on
road segments with high variations of traffic

Criteria MAE RMSE

ARIMA 149.29 190.68
KNN 91.49 122.02
FFNN 90.14 126.23
LSTM 110.24 145.07
GRU 108.06 141.71
ADRIP without
self-correction 134.53 181.08
ADRIP with
self-correction 91.07 120.10

VI. CONCLUSION AND PERSPECTIVE

In this paper, we introduced a traffic dynamics prediction
model based on dynamic clustering and multi-agent systems.
The proposed system consists of two processes: continuous
learning with local dynamic clustering, and real-time predic-
tion based on cooperative decisions.

ADRIP’s architecture satisfies the requirement of traffic
prediction problem: temporal dependencies are considered in
the learning process while spatial correlations are handled by
the prediction process. Our system can fill the gap in studied
methods for continuous learning thanks to dynamic clustering
and MAS. From our knowledge, dynamic clustering for traffic
prediction is novel. This paper demonstrated its adequacy to
address the considered problem due to its flexible structure
adapting to new arrival data and reasonable complexity in
responding to time and memory restrictions for online updates.
Our system can leverage the advantages and solve the limita-
tions of vehicle trajectory data. Indeed, the rich information
from onboard sensors allows us to provide the prediction



of Mobility Profile which is more representative for traffic
dynamics than macroscopic parameters. Besides, the vehicle
trajectory data stream is non-stationary, i.e. its distribution
may change over time and arrive continuously and potentially
unboundedly through time. Continuous learning is necessary
since storing all the arrival data is not feasible. Our system
also addresses the detection of singular vehicle behaviors
improving the prediction quality. On the other hand, the pre-
diction process integrates several real-time update mechanisms
including self-organization, self-adaptation, and self-correction
allowing to enhance the availability and reliability of the
obtained results.

The conducted experiment on generated data by GAMA
has shown promising results. ADRIP with self-correction
mechanism outperforms other compared models in both MAE
and RMSE criteria.

For further works, many possibilities are interesting to
explore. First, the detection of singular behaviors of vehicle
data will be investigated with different cases. For example,
an online anomaly detection mechanism for traffic network
data presented in [24] is interesting to explore. Second, the
comparison criteria between configurations can also consider
the seasonality of traffic, the fading of outdated data, etc to
filter the redundant configurations and improve cooperation.
Furthermore, a case test on real-world data will be conducted.
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