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Abstract

We consider a bistable reaction-diffusion equation ut = ∆u + f(u) on RN in the
presence of an obstacle K, which is a wall of infinite span with many holes. More
precisely, K is a closed subset of RN with smooth boundary such that its projection
onto the x1-axis is bounded and that RN \K is connected. Our goal is to study what
happens when a planar traveling front coming from x1 = −∞ meets the wall K.

We first show that there is clear dichotomy between “propagation”and “blocking”.
In other words, the traveling front either passes through the wall and propagates toward
x1 = +∞ (propagation) or is trapped around the wall (blocking), and that there
is no intermediate behavior. This dichotomy holds for any type of walls of finite
thickness. Next we discuss sufficient conditions for blocking and propagation. For
blocking, assuming either that K is periodic in y := (x2, . . . , xN ) or that the holes
are localized within a bounded area, we show that blocking occurs if the holes are
sufficiently narrow. For propagation, three different types of sufficient conditions for
propagation will be presented, namely “walls with large holes”, “small-capacity walls”,
and “parallel-blade walls”. We also discuss complete and incomplete invasions.
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1 Introduction

We consider a reaction-diffusion equation on RN , N ≥ 2, in the presence of obstacles. The
problem is formulated as follows: ut = ∆u+ f(u), x ∈ Ω := RN \K,

∂u

∂ν
= 0, x ∈ ∂Ω,

(1.1)

where f ∈ C1 is a bistable nonlinearity satisfying, for some 0 < α < 1,

f(0) = f(α) = f(1) = 0, f ′(0) < 0, f ′(α) > 0, f ′(1) < 0,

∫ 1

0

f(s)ds > 0, (1.2)
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and the obstacle K is a closed set with uniformly smooth boundary satisfying

K ⊂ {x ∈ RN | 0 ≤ x1 ≤M}, Ω := RN \K is connected, (1.3)

for some constant M > 0. Here and in what follows we shall use the notation

x = (x1, x2, . . . , xN) = (x1, y), y = (x2, . . . , xN).

By “uniformly smooth”, we mean that there exists δ > 0 such that for every point x∗ ∈ ∂Ω =
∂K, the sets ∂Ω∩{|x−x∗| ≤ δ} and Ω∩{|x−x∗| ≤ δ} can respectively be expressed locally
as a graph and a subgraph of a smooth function whose derivatives have uniform bounds that
do not depend on x∗. We call ν the outward unit normal to Ω on ∂Ω.

The condition in (1.2) guarantees that the one-dimensional equation

ut = uxx + f(u) (x ∈ R)

possesses a traveling wave solution of the form φ(x− ct) where c is a positive constant and
the profile function φ satisfies{

φ′′(z) + cφ′(z) + f(φ(z)) = 0 (z ∈ R),

0 < φ < 1, φ(−∞) = 1, φ(+∞) = 0.
(1.4)

It is known that c is unique and the traveling wave profile φ is unique up to translation ([6]).
Hereafter we set

φ(0) = α. (1.5)

Then (1.4) and (1.5) determine the function φ uniquely. Using the same function φ, one can
construct a special solution of the equation ut = ∆u+ f(u) on RN of the form

u(t, x) = u(t, x1, x2, . . . , xN) = φ(x1 − ct), (1.6)

which we call the planar front solution. The goal of the present paper is to study the behavior
of the planar front solution in the presence of the wall K.

To formulate this question more precisely, we have to first construct a solution of (1.1)
that behaves like the planar front solution (1.6) when t is sufficiently negative and whose
front approaches K as time passes. The following theorem guarantees the existence of such
a solution. Note that this theorem holds for any type of obstacle K as long as it lies in the
right half space x1 ≥ 0. Therefore the thickness of K need not be finite.

Theorem 1. Assume simply that K ⊂ {x ∈ RN | x1 ≥ 0} and that the boundary of
Ω = RN \ K is uniformly smooth. Then here exists a unique entire solution ū of (1.1)
satisfying 0 < ū < 1 (x ∈ Ω, t ∈ R) and

lim
t→−∞

sup
x∈Ω
|ū(t, x)− φ(x1 − ct)| = 0. (1.7)

This solution satisfies ūt > 0 for all x ∈ Ω, t ∈ R.
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Remark 1.1. In our previous paper [3, Theorem 2.1], we stated basically the same result
as above, except that we considered left-bound traveling waves of the form φ(x1 + ct) in [3],
while in the present paper we consider right-bound traveling waves that are given in the form
φ(x1 − ct). Apart from this sign difference, the analysis remains the same. However, as
there was a small gap in the proof of [3, Theorem 2.1] concerning the claim ut > 0, we give
a complete proof of the theorem in Section 5.

Since the solution ū is monotone increasing in t, the following limit exists, which we call
the limit profile:

v̄(x) := lim
t→+∞

ū(t, x) (limit profile). (1.8)

This function v̄ is a solution of the following stationary problem: ∆v + f(v) = 0, x ∈ Ω := RN \K
∂v

∂ν
= 0, x ∈ ∂Ω.

(1.9)

The long-time behavior of the solution ū can be understood from this limit profile v̄.
Since v̄ is the limit of ū satisfying (1.7) and ūt > 0, it clearly has the following property:

0 < v̄ ≤ 1 in Ω, lim
x1→−∞

v̄(x) = 1. (1.10)

As we shall see later in Theorem 2, either of the following althernatives holds, which we call
“propagation” and “blocking”, and there is no intermediate behavior:

lim
x1→+∞

v̄(x1, y) =

{
1 (propagation),

0 (blocking).
(1.11)

Furthermore, quite importantly, the above convergence is uniform regardless of the choice of
the wall K so long as it is confined in the region {0 ≤ x1 ≤ M}. As a consequence of this
uniformity, one can show that the limit of a sequence of walls that block the front is again
a blocking wall (Corollary 2.1). In other words, the family of blocking walls is closed.

Note that the classification (1.11) between propagation and blocking is defined for the
limit profile of the special solution ū. One may then wonder what happens for other solutions.
It turns out that a large class of solutions whose initial support is contained in the region
{x1 ≤ 0} converge to the same limit v̄ as t → +∞ (Theorem 3). Therefore, the notion of
propagation and blocking defined in (1.11) has much broader relevance.

The organization of this paper is as follows. In Sections 2, 3, 4, we present our main
results. In Section 2, we assume simply that K satisfies (1.3) and prove Theorem 2, which
establishes the dichotomy (1.11). We next show that many solutions with initial support in
the region {x1 ≤ 0} converge to the same limit v̄ defined in (1.8) as t→ +∞ (Theorem 3).

In Section 3, we give sufficient conditions for blocking. More precisely, if all the holes are
sufficiently narrow in a certain sense, then blocking occurs. For this result, we consider two
cases: the case where the holes of K are localized within a bounded area (Theorem 4) and
the case where K is periodic in y ∈ RN−1

y (Theorem 5).
For propagation, we give three different types of sufficient conditions, namely
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(a) walls with large holes;

(b) small-capacity walls (or skeleton walls);

(c) parallel-blade walls.

The case (a) is intuitively clear. If the wall has a large enough hole that allows a ball
of radius R0 > 0 to pass through from one side of the wall to the other side, where R0 is a
specific constant to be specified later, then propagation occurs (Theorem 6).

The case (b) deals with walls that have small capacity. If the capacity of the wall is very
small, then propagation occurs even if there is no large open space in the wall (Theorem 7).
This is typically the case when the wall is made of dense debris-like objects.

The case (c) deals with walls that consist of very thin pannels that are parallel to the
x1-axis. For example, in the case N = 2, a parallel-blade wall consists of thin needle-like
obstacles that are all parallel to the x1-axis. Here again propagation can occur even if the
space between the needles is narrow, so long as the needles are thin enough (Theorem 8).

Figure 1 shows typical images of the above three types of walls.

(a) (b) (c)

Figure 1: (a) wall with large holes; (b) small-capacity wall; (c) parallel-blade wall

We also present a result on complete invasion. More precisely we show that if the wall K
satisfies certain geometrical conditions then we have v̄ = 1 on entire Ω (Theorem 9).

In Section 6, we prove the dichotomy theorem (Theorem 2), using a Liouville type theorem
by Liu et al [13] (Theorem 6.2).

In Section 7, we prove Theorems 4 and 5 on blocking. The main idea is to construct an
upper barrier, which is a stationary supersolution that tends to 0 as x1 → +∞. This barrier
function is constructed by a variational method.

In Section 8 we prove the main results for propagation for the above three types of walls
(a), (b), (c) (Theorems 6, 7, 8). The proof of Theorem 6 for case (a) is rather straightforward,
and it is based on the comparison principle and a sliding argument. In the proof of Theorem 7
for case (b), we combine the classical theory of removable singularities on a set of zero capacity
and the above mentioned fact (Corollary 2.1) that the limit of a sequence of blocking walls
is again blocking.
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The proof of Theorem 8 for case (c) is based on a rather non-standard comparison ar-
gument. More precisely, we construct a family of “quasi-subsolutions” wλ that slide along
the x1-axis and show that wλ remains “nearly below” the limit profle v̄ for all λ ∈ R. Here,
wλ being nearly below v̄ means that the measure of the set {x | wλ(x)− v̄(x) > 0} remains
small. Once this is shown, we have v̄(x)→ 1 as x1 → +∞. In order to make this argument
work, we need a refined version of Poincaré inequality (Lemma 8.4), which will be proved in
Appendix A.

Section 9 is devoted to the proof of Theorems 9 and 10 on complete and incomplete
invasions.

2 Main results 1: dichotomy theorem

In this section we consider general type of walls of finite thickness, that is, we simply assume
the condition (1.3), and state Theorem 2 on the classification between propagation and
blocking, and Theorem 3 on the behavior of solutions with compactly supported initial data.

2.1 Dichotomy theorem

We start with the results on the classification of the long-time behavior of the solution ū.

Theorem 2 (Dichotomy). Assume (1.3), and let v̄ denote the limit profile defined in (1.8).
Then one of the following alternatives holds:

lim
x1→+∞

v̄(x1, y) = 1 (propagation), lim
x1→+∞

v̄(x1, y) = 0 (blocking)

Furthermore, the above convergence is uniform with respect to y ∈ RN−1 and K so long as
K satisfies (1.3). More precisely, for any ε > 0, there exists M ε ≥ M that does not depend
on K such that

v̄(x1, y) ∈ (0, ε] ∪ [1− ε, 1] for all x1 ≥M ε, y ∈ RN−1. (2.1)

An immediate consequence of the above theorem is the following:

Corollary 2.1. Let K1, K2, K3, . . . be a sequence of smooth walls satisfying

Kj ⊂ {x ∈ RN | 0 ≤ x1 ≤M} (j = 1, 2, 3, . . .)

that converge to a wall K∞ in the Hausdorff distance. If blocking occurs for every Kj (j =
1, 2, 3, . . .) then the same holds for K∞. To be more precise, if v̄j (j = 1, 2, 3, . . .) denote the
limit profile for Kj, and if v̄∞ denotes the limit of any convergent subsequence of {v̄j}, then

lim
x1→+∞

v̄∞(x1, y) = 0 uniformly in y ∈ RN−1.

The above corollary implies that blocking walls form a closed family. This result will be
exceedingly useful in the proof of propagation results for small capacity walls (Theorem 7)
and for parallel-blade walls (Theorem 8) as we shall see in subsections 8.2 and 8.3.
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Somewhat similar dichotomy results are also known in other contexts. In [11], the
propagation of a solution u(t, x) emanating from the planar front φ(x1 − ct) in a domain
made up of, roughly speaking, a straight half-cylinder {x1 ≤ 0, |y| < R} and a cone
{x1 ≥ 0, |y| < R + β|x1|} (β > 0) was investigated: in that geometrical configuration,
a dichotomy also holds for the limit profile v̄(x) of u(t, x) as t→ +∞, namely, either v̄ = 1
in the domain (complete invasion), or v̄(x1, y)→ 0 as x1 → +∞.

2.2 Behavior of more general solutions

So far, the notion of propagation and blocking has been defined by using the special solution ū
satisfying (1.7). Here we consider the following initial-boundary value problem associated
with (1.1) and show that many solutions of this problem share the same limit profile as ū,
therefore the classification between propagation and blocking has much broader implications.

ut = ∆u+ f(u), t > 0, x ∈ Ω := RN \K,
u(0, x) = u0(x), x ∈ Ω,

∂u

∂ν
= 0, t > 0, x ∈ ∂Ω.

(2.2)

Before stating the theorem, we introduce some notation. Let H(z), z ≤ 0, be the function
that is defined uniquely by the following conditions:

H ′′ + f(H) = 0 (−∞ < z < 0), H(0) = 0, lim
z→−∞

H(z) = 1.

Such a function exists since f is an unbalanced bistable nonlinearity satisfying (1.2). It is
easily seen that H ′ < 0 and that 0 < H < 1 in (−∞, 0). The function H is extended by 0
in (0,+∞). Next let ΨP (x) denote the compactly supported subsolution of (1.1) defined
in (8.1). Then the following holds:

Theorem 3. Let u be a solution of (2.2) whose initial data u0 satisfies

ΨP (x) ≤ u0(x) ≤ H(x1) for x = (x1, x2, . . . , xN) ∈ Ω

for some P ∈ Ω ∩ {x1 < 0}. Then

lim
t→+∞

u(t, x) = v̄(x), (2.3)

where v̄ is the limit profile of the special solution ū defined in (1.8).

The proof of Theorems 2 and 3 will be given in Section 6. More specifically, Theorem 2
will be proved by using a Liouville type result due to Liu et al [13]. Theorem 3 will be proved
by first observing that v̄ is the minimal among all the stationary solutions that satisfy (1.10)
(Proposition 6.4). Once this minimality is established, Theorem 3 follows immediately.
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3 Main results 2: sufficient conditions for blocking

In this section we discuss sufficient conditions for blocking (Theorems 4 and 5). In addition
to the finite-thickness condition (1.3), we assume that either of the following holds:

(K1) (wall with localized holes): there exist a, b with 0 ≤ a < b ≤ M such that {x ∈ RN |
a ≤ x1 ≤ b} \K is bounded;

(K2) (periodic wall): there exist linearly independent vectors p2, . . . ,pN ∈ RN−1
y such that

K + pi = K (i = 2, . . . , N) (periodicity in y). (3.1)

Note that, in (3.1), the vectors p2, . . . ,pN ∈ RN−1
y are identified with those in RN whose

projection onto the x1-axis is 0.
For both (K1) and (K2), the blocking is proved by constructing a suitable upper barrier

around the wall. The construction of the barrier is based on an variational argument. The
proofs for the case (K1) and the case (K2) are essentially the same, except that the variational
argument for (K2) is carried out on the unit periodicity cell defined in (3.3).

3.1 Blocking for walls with localized holes

In this subsection we consider the case (K1). We repeat our assumption:

{x ∈ RN | a ≤ x1 ≤ b} \K is bounded for some 0 ≤ a < b ≤M . (3.2)

This includes the case where the wall K has a single hole. We introduce some notation.

Ωb := {(x1, y) ∈ Ω | x1 > b}, Ωa,b := {(x1, y) ∈ Ω | a < x1 < b}.

Theorem 4 (Blocking for walls with localized holes). Assume that Ωb is a uniformly Lips-
chitz domain. Then there exists ε > 0, depending on f , b−a and Ωb, such that if (3.2) holds
and |Ωa,b| ≤ ε, then blocking necessarily occurs, where |A| denotes the Lebesgue measure of
a set A.

It should be noted that the dependence of ε on the set Ωb is quite subtle. In fact, if one
fixes the passage Ωa,b, even a very narrow one, then it is shown in [2] that an opening from
this passage into the area {x1 ≥M} that is gradual enough will allow the wave to propagate
through the wall. Therefore, the narrowness of the passage Ωa,b alone cannot guarantee
blocking; whether blocking occurs or not depends on the combination of Ωa,b and Ωb.

We prove the above theorem in subsection 6.3 by constructing a barrier function w0 that
is a stationary super solution of the elliptic equation in the region Ω−1 with w0(−1, y) = 1
for all y ∈ RN−1 and w0(x1, y)→ 0 as x1 →∞. Such a barrier function blocks fronts as we
have ū(x, t) < w0(x) for all t ∈ R, x ∈ Ω−1.
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3.2 Blocking for periodic walls

Here we assume that K satisfies (3.1). In what follows, we shall denote the set of vectors
p2, . . . ,pN by P . We say that a set S ⊂ RN (or S ∈ RN−1

y ) is P-periodic if

S = S + p2 = · · · = S + pN .

Here the vectors p2, . . . ,pN ∈ RN−1
y are identified with those in RN whose projection onto the

x1-axis is 0. Thus (3.1) means that K is P-periodic. We say that a function w(x) = w(x1, y)
defined on a set Ω′ ⊂ RN is P-periodic if its domain of definition Ω′ is P-periodic and if

w(x1, y) = w(x1, y + p2) = · · · = w(x1, y + pN) for all (x1, y) ∈ Ω′.

The unit periodicity cell associated with P is a set in RN−1
y defined by

CP =
{ N∑

i=2

ti pi | 0 < ti < 1
}
. (3.3)

Theorem 5 (Blocking for periodic walls). Assume that Ωb is a uniformly Lipschitz domain.
Then there exists ε > 0, depending on f , b− a and Ωb, such that if |Ωa,b ∩{(a, b)×CP}| ≤ ε,
then blocking necessarily occurs.

As in the previous subsection, we prove this theorem by constructing a barrier function w0

in the region Ω−1 satisfyin w0(−1, y) = 1 for all y ∈ RN−1 and w0(x1, y) → 0 as x1 → ∞.
As before, the construction of this barrier function is based on a variational argument, but
this time, the variational argument is carried out on the unit periodicity cell CP .

4 Main results 3: sufficient conditions for propagation

Here we discuss sufficient conditions for propagation. As mentioned in Introduction, we
present three different types of walls that allow propagation, namely:

(a) walls with large holes, (b) small-capacity walls, (c) parallel-blade walls.

We begin with the case (a).

4.1 Conditions for propagation (a): walls with large holes

This is a wall such that at least one of its holes is large enough to allow a ball of radius R0

to pass through it. Here the constant R0 > 0 is defined as follows. Consider the problem
∆Ψ + f(Ψ) = 0 (|x| < R),

Ψ = 0 (|x| = R),

0 < Ψ < 1 (|x| < R).

(4.1)
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This problem has a solution if R > 0 is sufficiently large. To see this, consider the functional

H[Ψ] =

∫
|x|≤R

(
1

2
|∇Ψ|2 − F (Ψ)

)
dx, F (s) :=

∫ s

0

f(σ)dσ

under the boundary condition Ψ(x) = 0 (|x| = R). We extend the domain of F so that
F (s) < 0 for s < 0 and F (s) < F (1) for s > 1. Since F (1) = maxs∈R F (s) > F (0) = 0
by the assumption (1.2), H[Ψ] takes a negative value if R is sufficiently large. The global
minimizer of H is therefore not 0 for such R, and it is a solution of (4.1). Furthermore, Ψ
is a radially symmetric decreasing function and satisfies

α < Ψ(0) < 1. (4.2)

Now we define
R0 = min{R > 0 | (4.1) has a solution}. (4.3)

The existence of the above minimum follows from standard elliptic estimates. The main
result of this subsection is the following:

Theorem 6 (Walls with large holes). Suppose that there exists a continuous curve γ con-
necting some point P1 in the region {x1 < 0} and some point P2 in the region {x1 > M} such
that the distance between K and any point on γ is larger than or equal to the constant R0

defined in (4.3). Then propagation occurs.

4.2 Conditions for propagation (b): small-capacity walls

Our second type of wall is a wall of small capacity in a certain sense. Let us first recall the
standard notion of zero capacity in RN .

Definition 4.1 (Set of zero capacity). Let K0 be a compact set in RN . We say that K0 has
zero capacity if the following holds:

inf

{∫
D

|∇w|2dx
∣∣∣ w ∈ C1(D), w ≥ 1 (x ∈ K0), w = 0 (x ∈ ∂D)

}
= 0, (4.4)

where D is a bounded open set with smooth boundary containing K0.

As one can easily verify, the condition (4.4) depends only on K0 and does not depend on
the choice of the open set D ⊃ K0. It is well-known that, if K0 is a set of zero capacity and
if D is an open set containing K0, then any bounded harmonic function defined on D \ K0

can be extended to a harmonic function on D. Similarly, if v is a bounded solution of
∆v+f(v) = 0 on D \K0, then it can be extended to a solution of ∆v+f(v) = 0 on D ([19]).

Here are two typical examples of situations in which a set has zero capacity ([18]).

(C1) The m-dimensional Hausdorff measure of K0 is 0 for any m < N − 2;

(C2) K0 is a locally finite union of smooth (N − 2)-dimensional manifolds.
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For example, a discrete set has capacity 0 for any N ≥ 2. If N = 3, a locally finite union of
curves (allowing intersections) has zero capacity (the case (C2)).

Our main result of this type of walls is the following:

Theorem 7 (Small capacity walls). Let Kε (0 < ε ≤ ε0) be a family of walls satisfying

Kε ⊂ {x ∈ RN | 0 ≤ x1 ≤M}, lim sup
ε→0

Kε ⊂ K1 ∪ K0,

where K1 is a closed set (possibly empty) satisfying the same condition as in Theorem 6 for
K = K1, while K0 is a closed set of zero capacity. Then for all sufficiently small ε > 0,
propagation occurs for Kε.

KK

𝛾𝛾

(a) (b)

𝜀𝜀

Figure 2: (a) wall with a large hole; (b) hole filled with small-capacity debris

Figure 2 (a) shows an example to which Theorem 6 applies. The wall has a tunnel that
allows a ball of radius R0 to pass through. The dotted line indicates the curve γ. Figure 2
exemplifies the situation to which Theorem 7 applies. Here, the same tunnel as in (a) is filled
with debris-like objects. The front penetrates through the debris if its capacity is sufficiently
small. In the special case where K1 = ∅, every part of Kε has small capacity.

4.3 Conditions for propagation (c): parallel-blade walls

Our third type of wall consists of objects that are very thin (like thin blades, possibly curved)
that are all parallel to the x1-axis. More precisely, it is defined as follows:

(P) Let Σ ⊂ RN−1
y be a closed P-periodic set formed by a locally finite union of smooth

(N − 2)-dimensional manifolds that intersect transversely with one another if they
ever intersect, so that the boundary of each connected component of the set RN−1

y \Σ
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is a uniformly Lipschitz manifold. For each small ε > 0, let Nε(Σ) denote the ε-
neighborhood of Σ. Finally, let Kε (0 < ε < ε0) be a family of P-periodic closed sets
in RN with smooth boundary satisfying the following conditions:

Kε ⊂ [0,M ]×Nε(Σ) for all 0 < ε ≤ ε0, (4.5)∫
∂Kε∩∆P

|ν · e1| dSx ≤ ε1 for all 0 < ε ≤ ε0, (4.6)

where ν denotes the outward unit vector to ∂Kε, e1 the unit vector in the x1 direction,
∆P := R × CP denotes the infinite cylinder in RN whose cross section is CP , the unit
periodicity cell, and ε1 = ε1(ε) is an ε-dependent quantity that tends to 0 as ε→ 0.

The main theorem for this type of wall is the following:

Theorem 8 (Parallel-blade walls). Let the family of P-periodic obstacles Kε satisfy (4.5)
and (4.6). Then for all sufficiently small ε > 0, propagation occurs for Kε.

Remark 4.2. To give the reader an idea of what the conditions (4.5) means, let us consider
the case N = 2. In this case, Σ is a discrete set of points and [0,M ] × Σ is a set of line
segments that are all parallel to the x1-axis and are aligned periodically in the y direction. The
condition (4.5) implies that Kε consists of objects that are contained in an ε neighborhood
of those line segments, therefore they are all thin objects of thickness at most 2ε. The
condition (4.6) implies that the surface of those thin objects are rather flat in the middle
part, while around their edge the surface can have many tiny bumps so long as the total
length of the boundary around the edge remains small. In the case N = 3, walls consisting
of thin parallel panels and also those with honeycomb structure are typical examples of Kε.

K0KεKε

Figure 3: Image of a parallel-blade wall (left) and a magnified view of each blade (right).
K0 := limε→0K

ε has positive N − 1 Hausdorff measure, therefore its capacity is positive.

4.4 Complete invasion

In this subsection we give a sufficient condition for the limit profile v̄ to be identically equal
to 1, which we call complete invasion.

Definition 4.3. K is called directionally convex in the direction x1 if, for some a ∈ R, the
following holds. Here e1 denotes the unit vector parallel to the x1 axis.
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(i) for every line Λ parallel to e1, the set K ∩ Λ is either a single line segment or empty;

(ii) K ∩ {x ∈ RN | x1 = a} = π(K), where π(K) is the orthogonal projection of K onto
the hypersurface x1 = a.

Note that the above condition is slightly more stringent than the usual notion of “direc-
tional convexity” because of the second condition K ∩ {x | x1 = a} = π(K). An example of
directionally convex objects is given in Figure 4 (a).

Theorem 9 (Complete invasion). Assume that K is directionally convex in the direction x1.
If propagation occurs, then v̄(x) = 1 for all x ∈ Ω.

Essentially the same result is proved in our earlier paper [3, Theorem 6.4]. Though the
paper [3] dealt with the case where K is a compact obstacle, the proof remains the same.
The proof of Theorem 9 will be given in Section 9. We think that complete invasion occurs
for a much broader class of K than just directional covexity. On the other hand, as shown
in [3, Theorem 6.5], complete invasion does not occur if part of K has a reservoir-like shape
with narrow entrance (see Figure 4 (b)). Here we state this result in a somewhat vague
manner. A more precise statement of this theorem is given in Theorem 9.1 in Section 9.

Theorem 10 (Incomplete invasion). Assume that part of K has a reservoir-like configuration
as shown in Figure 4 (b). If the entrance of this reservoir is sufficiently narrow, then complete
invasion does not occur. More precisely, the value of v̄ remains close to 0 inside the reservoir,
even if propagation occurs. In other words, there are such cases that 0 < v̄ < 1 on Ω, while
v̄(x)→ 1 as x1 → ±∞.

(a) (b)

Figure 4: (a) Directionally convex objects; the dotted line indicates the hyperplane x1 = a.
(b) A wall that has a reservoir with narrow entrance, which prevents complete invasion.

The above theorem can be proved by constructing an upper barrier around the mouth of
the reservoir, in precisely the same style as in the proof of Theorem 5 for blocking.
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5 Proof of Theorem 1

Here we prove Theorem 1 concerning the entire solution ū satisfying (1.7). As we mentioned
in Introduction, the same result appears in our ealier work [3, Theorem 2.1]. The statement
of [3, Theorem 2.1] was completely correct, along with the proof of the existence of such an
entire solution. However, there was a gap in the proof of the monotonicity of u(x, t) in t; see
Remark 5.3 for details. In this section we give a complete proof of this theorem. As we shall
see, the monotonicity and uniqueness follows easily from the property (1.7) (Proposition 5.1).

5.1 Proof of the existence

The proof of the existence of ū satisfying (1.7) goes exactly along the same line as in the
proof of Theorem 2.1 of [3], except that ϕ(x1 + ct) in [3] is replaced by φ(x1 − ct) here. We
prove the result under a slightly more general assumption that f is a multistable nonlinearity
that simply satisfies the following conditions:{

f(0) = f(1) = 0, f ′(0) < 0, f ′(1) < 0,

there exists a function φ defined on R satisfying (1.4) for some c > 0.
(5.1)

In other words, we assume that the one-dimensional equation ut = uxx + f(u) possesses a
traveling wave of speed c > 0 connecting 0 and 1.

We construct the entire solution ū as a limit of a sequence of solutions (un)n∈N of the
Cauchy problem (2.2) that are defined for −n ≤ t < +∞ and are trapped between some
sub- and super-solutions. Such an approach is found in [9, 10] for the construction of new
entire solutions of the Fisher-KPP equations, and also in [7, 8] for the construction of entire
solutions of a bistable reaction-diffusion equation having a pair of mutually annihilating
fronts. For the supersolution, we rely in part on a technique of Guo and Morita [8]

Proof of the existence. As in [3], we introduce some auxiliary notations. Let

λ =
c+

√
c2 − 4f ′(0)

2

be the positive root of the equation λ2 − cλ+ f ′(0) = 0, let

T =
1

λ c
log

c

c+M1

∈ (−∞, 0)

with M1 > 0 being a free parameter to be chosen later, and let

ξ(t) =
1

λ
log

c

c−M1 eλ c t
.

The function ξ is well defined in (−∞, T ] and it solves the equation

ξ′(t) = M1 e
λ (ct+ξ(t)) in (−∞, T ], with ξ(−∞) = 0.
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Notice also that the function t 7→ ct+ ξ(t) is increasing in (−∞, T ] and that

ct+ ξ(t) ≤ cT + ξ(T ) = 0 for all t ≤ T.

Now let
H =

{
x ∈ RN | x1 < 0

}
=
{
x ∈ Ω | x1 < 0

}
and define two functions w− and w+ by

w−(t, x) =

{
φ(x1 − ct+ ξ(t))− φ(−x1 − ct+ ξ(t)) for t ≤ T, x ∈ H,
0 for t ≤ T, x ∈ Ω \H,

w+(t, x) =

{
φ(x1 − ct− ξ(t)) + φ(−x1 − ct− ξ(t)) for t ≤ T, x ∈ H,
2φ(−ct− ξ(t)) for t ≤ T, x ∈ Ω \H.

Notice that w− > 0 in (−∞, T ]×H since φ is decreasing, while w+ > 0 in (−∞, T ]×Ω, and
that w± are both continuous in (−∞, T ] × Ω. Furthermore, both functions w± are of class
C2 in (−∞, T ]×

(
Ω\{x1 = 0}

)
, w+ is of class C1 in (−∞, T ]× Ω, and

ν · ∇w± = 0 on (−∞, T ]× ∂Ω (5.2)

since ∂Ω ⊂ RN \H and w± do not depend on x in (−∞, T ]× (Ω\H). Note also that

0 ≤ w−(t, x) < w+(t, x) on (−∞, T ]× Ω (5.3)

and that
lim
t→−∞

sup
x∈Ω

|w±(x, t)− φ(x1 − ct∓ ξ(t))| = 0. (5.4)

As shown in [3, Lemma 2.2], if M1 > 0 is chosen sufficiently large, there exists T ′ with
T ′ ≤ T (≤ 0) such that the following inequalities hold, the proof of which is omitted here:

w+
t ≥ ∆w+ + f(w+) in (−∞, T ′]×

(
Ω\{x1 = 0}

)
,

w−t ≤ ∆w− + f(w−) in (−∞, T ′]×
(
Ω\{x1 = 0}

)
.

We fix such M1 and T ′ ≤ 0 in the sequel. Since w− has a positive derivative gap at x1 = 0,
the above inequality together with (5.2) implies that w− is a sub-solution of (1.1) in the time
range −∞ < t ≤ T ′. Also, since w+ has no derivative gap at x1 = 0, the above inequality
and (5.2) imply that w+ is a super-solution of (1.1) in the time range −∞ < t ≤ T ′.

Now, for n ≥ −T ′, let un(t, x) be the solution of (1.1) for t ≥ −n with initial data

un(−n, x) = w−(−n, x). (5.5)

By (5.3), we have w−(−n, x) = un(−n, x) < w+(−n, x). Since w− (resp. w+) is a sub- (resp.
super-) solution, the comparison principle implies

w−(t, x) ≤ un(t, x) ≤ w+(t, x) for t ∈ [−n, T ′], x ∈ Ω. (5.6)
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Setting t = −(n− 1) in the above inequality yields, for n ≥ −T ′ + 1,

un(−n+ 1, x) ≥ w−(−n+ 1, x) = un−1(−n+ 1, x).

Applying again the comparison principle, we obtain

un(t, x) ≥ un−1(t, x) for t ∈ [−n+ 1, T ′], x ∈ Ω.

Hence the sequence un(t, x) is monotone increasing in n. Letting n→∞ and using parabolic
estimates, we see that this sequence converges to an entire solution defined for t ∈ R, x ∈ Ω,
which we denote by ū(t, x). Letting n→ +∞ in (5.6) gives

w−(t, x) ≤ ū(t, x) ≤ w+(t, x) for t ∈ (−∞, T ′], x ∈ Ω.

This, together with (5.4), and that fact that ξ(t)→ 0 as t→ −∞ show that ū satisfies (1.7).
The proof of the existence is complete.

5.2 Proof of the uniqueness and monotonicity

The uniqueness and time monotonicity of ū in Theorem 1 are direct consequences of the
property (1.7). More precisely, the following proposition holds:

Proposition 5.1. Let ū be an entire solution of (1.1) satisfying (1.7). Then ūt > 0 for all
t ∈ R, x ∈ Ω. Furthermore, there exists only one entire solution of (1.1) that satisfy (1.7).

This above proposition follows from Lemma 5.2 below. This lemma will also play an
important role in the proof of Proposition 6.4 (the minimality of v̄) and Theorem 6.

Before stating the lemma, we introduce some notation. Let δ0 ∈ (0, 1
2
) be such that

f ′(s) < 0 for s ∈ [0, δ0] ∪ [1− δ0, 1]. (5.7)

As before, we use the notation x = (x1, x2, . . . , xN) = (x1, y), where y = (x2, . . . , xN).

Lemma 5.2 (comparison of ancient solutions). Let u(t, x), ũ(t, x) be solutions of (1.1) de-
fined on (−∞, T ]× Ω for some T ∈ R and satisfying 0 ≤ u ≤ 1, 0 ≤ ũ ≤ 1.

(i) Assume that there exist a smooth function a(t) such that

u(t, x) < ũ(t, x) (∀t ∈ (−∞, T ], x ∈ Ω ∩ {x1 = a(t)}),

1− δ0 ≤ ũ(t, x) ≤ 1 (∀t ∈ (−∞, T ], x ∈ Ω ∩ {x1 ≤ a(t)}) ,
Then

u(t, x) < ũ(t, x) for all t ∈ (−∞, T ], x ∈ Ω ∩ {x1 ≤ a(t)}.

(ii) Assume that there exist a smooth function b(t) such that

u(t, x) < ũ(t, x) (∀t ∈ (−∞, T ], x ∈ Ω ∩ {x1 = b(t)}) ,

0 ≤ u(t, x) ≤ δ0 (∀t ∈ (−∞, T ], x ∈ Ω ∩ {x1 ≥ b(t)}) .
Then

u(t, x) < ũ(t, x) for all t ∈ (−∞, T ], x ∈ Ω ∩ {x1 ≥ b(t)}.
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Proof. Since f ′ < 0 on the compact set [0, δ0] ∪ [1− δ0, 1], there exists σ > 0 such that

f ′(s) ≤ −σ for s ∈ [0, δ0] ∪ [1− δ0, 1].

We first prove (i). Let w(t, x) := u(t, x)− ũ(t, x). Then w satisfies

wt = ∆w + h(t, x)w (t ∈ (−∞, T ], x ∈ Ω ∩ {x1 ≤ a(t)}),

where

h(t, x) =

∫ 1

0

f ′ (su(t, x) + (1− s)ũ(t, x)) ds,

along with the boundary condition

w(t, x) < 0 (t ∈ (−∞, T ], x ∈ Ω ∩ {x1 = a(t)}). (5.8)

Also, since 1− δ0 ≤ ũ ≤ 1 and u ≤ 1, we have w ≤ δ0. It suffices to show that w < 0.
Suppose that w(t, x) ≥ 0 for some t ∈ (−∞, T ], x ∈ Ω ∩ {x1 ≤ a(t)}). Then we have

1− δ0 ≤ ũ(t, x) ≤ u(t, x) ≤ 1, which implies h(t, x) ≤ −σ. It follows that

wt ≤ ∆w − σw wherever w ≥ 0. (5.9)

Now we choose T1 < T arbitrarily and define a function η(t, x) = δ0e
−σ(t−T1). Then

ηt = −ση = ∆η − ση, (t ∈ [T1, T ], x ∈ Ω ∩ {x1 ≤ a(t)}).

Note also that

η(T1, x) = δ0 ≥ w(T1, x) (x ∈ Ω ∩ {x1 ≤ a(T1)}),
η(t, a(t), y) > 0 > w(t, a(t), y) (t ∈ [T1, T ], (a(t), y) ∈ Ω),

∂η

∂ν
(t, x) =

∂w

∂ν
(t, x) = 0 (t ∈ [T1, T ], x ∈ ∂Ω ∩ {x1 ≤ a(t)}).

Thus, in view of (5.9), η acts as an upper barrier for w. Consequently,

w(t, x) ≤ η(t, x) = δ0e
−σ(t−T1) (t ∈ [T1, T ], x ∈ Ω ∩ {x1 ≤ a(t)}).

Recall that T1 ∈ (−∞, T ) is arbitrary. Letting T1 → −∞, we obtain

w(t, x) ≤ 0 for all t ∈ (−∞, T ], x ∈ Ω ∩ {x1 ≤ a(t)}.

Since w is not identically 0 by virtue of (5.8) (Ω∩ {x1 = ξ} 6= ∅ for every ξ ∈ R), the strong
maximum principle implies w < 0. The statement (i) is proved.

The statement (ii) is proved in the same manner, by simply replacing the region Ω∩{x1 ≤
a(t)} by Ω ∩ {x1 ≥ b(t)}. All we have to show is that w = u − ũ < 0 for x1 ≥ b(t). Since
0 ≤ u ≤ δ0 and 0 ≤ ũ ≤ 1, we have 0 ≤ ũ ≤ u ≤ δ0 whenever w ≥ 0, which implies (5.9). The
conclusion w < 0 then follows by arguing as above. The proof of Lemma 5.2 is complete.

Now we are ready to prove Proposition 5.1.

17



Proof of Propostion 5.1. We begin with the proof of ūt > 0. Let δ0 > 0 be as in Lemma 5.2.
We recall that φ satisfies the condition (1.5), that is, φ(0) = α. Let L > 0 be such that

1− δ0

2
≤ φ(z) < 1 for z ∈ (−∞,−L], 0 < φ(z) ≤ δ0

2
for z ∈ [L,+∞)

and define a(t) = ct− L, b(t) = ct+ L. Then

1− δ0

2
≤ φ(x1 − ct) < 1 if x1 ≤ a(t), 0 < φ(x1 − ct) ≤

δ0

2
if x1 ≥ b(t).

Now let τ > 0 be a constant. Then since φ is monotone decreasing, we have

φ(x1 − c(t+ τ))− φ(x1 − ct) > 0.

Since ū(t, x) converges to φ(x1− ct) and ū(t+ τ, x) to φ(x1− c(t+ τ)) as t→ −∞ uniformly
on Ω, we see that, for any sufficiently small τ > 0, there exists T < 0 such that

1− δ0 ≤ ū(t, x), ū(t+ τ, x) < 1 for t ∈ (−∞, T ], x ∈ Ω ∩ {x1 ≤ a(t)}, (5.10)

0 < ū(t, x), ū(t+ τ, x) ≤ δ0 for t ∈ (−∞, T ], x ∈ Ω ∩ {x1 ≥ b(t)}, (5.11)

ū(t+ τ, x)− ū(t, x) > 0 for t ∈ (−∞, T ], x ∈ Ω ∩ {a(t) ≤ x1 ≤ b(t)}. (5.12)

Combining (5.10), (5.11), ū(t + τ, a(t)) − ū(t, a(t)) > 0, ū(t + τ, b(t)) − ū(t, b(t)) > 0 and
applying Lemma 5.2 with ũ(t, x) := ū(t+τ, x) and u(t, x) := ū(t, x), we see that ū(t+τ, x)−
ū(t, x) > 0 if t ≤ T and if x1 ≤ a(t) or x1 ≥ b(t). This, together with (5.12), imply

ū(t+ τ, x)− ū(t, x) > 0 for t ∈ (−∞, T ], x ∈ Ω.

By the comparison principle, the same inequality holds for t ≥ T . Therefore ū(t + τ, x) −
ū(t, x) > 0 for all t ∈ R and x ∈ Ω. Consequently

ūt(t, x) = lim
τ→+0

ū(t+ τ, x)− ū(t, x)

τ
≥ 0.

Since ūt is not identically 0, the strong maximum principle implies ūt > 0.
Next we prove the uniqueness. Suppose that û satisfies

lim
t→−∞

sup
x∈Ω
|û(t, x)− φ(x1 − ct)| = 0.

Then, by setting ũ(t, x) = û(t + τ, x), u(t, x) = ū(t, x) and applying Lemma 5.2 as above,
we see that û(t+ τ, x) > ū(t, x) on R× Ω for all sufficiently small τ > 0. Letting τ → 0, we
obtain û ≥ ū. Similarly, by setting ũ(t, x) = ū(t + τ, x), u(t, x) = û(t, x), we obtain ū ≥ û.
Thus we have û = ū and the proof of the uniqueness is complete.

Remark 5.3. As mentioned earlier, Theorem 1 of the present paper states the same result
as Theorem 2.1 of our earlier paper [3]. However, there was a gap there in the part concerned
with the proof of the monotonicity of ū in t which was pointed out to us by S. Eberle. The
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gap in [3] lies in the claim that the subsolution w−(t, x) used in the construction of the entire
solution ū is monotone increasing in t. This is not true and we cannot infer from it, as in
[3], that the function un defined by (5.5) satisfies (un)t > 0.

Yet, the monotonicity property of the limit function ū holds true. There are different
ways to fill the gap in proving it. The quickest way is to simply modify the definition of un
in (5.5), i.e. un(−n, x) = w−(t, x), replacing it with

un(−n, x) = sup
s≤−n

w−(s, x). (5.13)

Then it is easily seen that un satisfies (un)t > 0 and w− ≤ un ≤ w+ as desired. The key-
point of this corrected proof was indicated privately by one of the authors to S. Eberle and was
used in his paper [5] for the construction of front-like entire solutions of some heterogeneous
bistable reaction-diffusion equations in straight infinite cylinders. As a matter of fact, the
same idea of defining un as in (5.13) to construct a monotone increasing entire solution
is also found in the proof of [15, Theorem 5] for constructing a monotone increasing orbit
emanating from an unstable equilibrium point in an order-preserving dynamical system.

In the present paper, we have taken a different and new approach, which is to keep the
existence proof in [3] as it is and to derive the monotonicity of ū directly from the prop-
erty (1.7). This way, we can prove that monotonicity holds in general as a consequence of
property (1.7). Another advantage of this approach is that, once Lemma 5.2 is established,
the uniqueness and the monotonicity can be derived simultaneously. Furthermore, Lemma 5.2
turns out to be a powerful tool. In fact, it will also play an important role here in the proof
of the minimality of v̄ in Proposition 6.4 as well as for the blocking results of Section 7.

The method of proof we introduce here is of independent interest and could be applied in
other situations as well.

6 Proof of the dichotomy theorem

In this section we prove Theorem 2 (dichotomy theorem) and Theorem 3 (universality of
the limit profile v̄). Throughout this section, we only assume that K satisfies (1.3) (finite
thickness) besides the smoothness of ∂K.

6.1 A Liouville type result

Before proving Theorem 2, we recall a recent result by Liu et al [13] on a Liouville type
theorem. Let v be a solution of the following equation on the entire space RN :

∆v + g(v) = 0 in RN (6.1)

where g : R→ R is a C1 function whose zeros are all isolated. In order to define the stability
of the solution v, we consider linearized eigenvalue problems of the following form in balls BR

of radius R with the Dirichlet boundary conditions:{
−∆φ− g′(v)φ = λRφ, with φ > 0 in BR,

φ = 0 on ∂BR.
(6.2)
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Definition 6.1. We say that a solution v of (6.1) is stable if the principal eigenvalue λ = λR
of the problem (6.2) satisfies λR ≥ 0 for all R > 0.

Notice that this notion of stability is defined in a weak sense as it allows λR to be 0.

Theorem 6.2. ([13, Theorem 1.4]) Let v be a bounded solution of

∆v + g(v) = 0 in RN

that is stable in the sense of Definition 6.1. Assume that the one-dimensional equation

w′′ + g(w) = 0 in R

does not have any nonconstant bounded stable solution. Then v is a constant.

Since our nonlinearity f (extended by f(s) = f ′(0)s for s < 0 and f(s) = f ′(1)(s− 1) for
s > 1) clearly satisfies the assumption of the above theorem, we have the following corollary:

Corollary 6.3. Let f be as in (1.2) and let v be a bounded solution of

∆v + f(v) = 0 in RN (6.3)

that is stable in the sense of Definition 6.1 with g = f . Then either v = 0 or v = 1.

Proof. By Theorem 6.2, v is a constant. Therefore v is either 0 or α or 1. By the stability
assumption, v = α is excluded.

6.2 Proof of Theorem 2

Proof of Theorem 2. Suppose that (2.1) does not hold for some ε = ε0 > 0. Then there
exists a sequence of walls

Kj ⊂ {x ∈ RN | 0 ≤ x1 ≤M} (j = 1, 2, 3, . . .)

and a sequence of real numbers bj → ∞ such that the limit profile vj corresponding to the
wall Kj satisfies

ε0 < vj(bj, yj) < 1− ε0 (j = 1, 2, 3, . . .)

for some yj ∈ RN−1. Define a function wj(x) = wj(x1, y) on {(x1, y) |M − bj < x1 <∞, y ∈
RN−1} by wj(x1, y) = vj(x+ bj, y + yj). Then wj satisfies

∆wj + f(wj) = 0
(
(x1, y) ∈ (M − bj,∞)× RN−1

)
, ε0 < wj(0, 0) < 1− ε0.

Since w1, w2, w3, . . . are uniformly bounded, we can choose a subsequence of (wj)j∈N that
converges locally uniformly in the C2 sense to a function w∞ on RN satisfying

∆w∞ + f(w∞) = 0 (x ∈ RN)

along with the inequality
ε0 ≤ w∞(0, 0) ≤ 1− ε0. (6.4)

Recall that each vj is stable from below since it is a limit of a sequence of increasing solutions
ūj(t, x) as t→ +∞. Therefore vj is stable in the sense of Definition 6.1. Since such stability
is robust under spatial translation and limiting procedures, we see that w∞ is also stable in
the same sense. Consequently, by Corollary 6.3, we have either w∞ = 0 or w∞ = 1, but this
contradicts the inequality (6.4). This contradiction proves Theorem 2.
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6.3 Proof of Theorem 3

We begin with the following proposition which states that the limit profile v̄ defined in (1.8)
is the minimal among all stationary solutions satisfying (1.10).

Proposition 6.4 (Minimality). Let v be a solution of the stationary problem (1.9) such that

0 < v ≤ 1 in Ω, lim
x1→−∞

v(x) = 1.

Then v ≥ v̄ on Ω.

Proof. Let δ0 ∈ (0, 1
2
) be the constant that appears in (5.7), and let a < 0 be such that

1− δ0 ≤ v(x) ≤ 1 for all x ∈ RN with x1 ≤ a.

Next choose T < 0 sufficiently negative so that

0 < ū(t, x) ≤ δ0 for all t ∈ (−∞, T ], x ∈ Ω with x1 ≥ a.

Such T exists since ū satisfies (1.7). In particular, we have

ū(t, a, y) < v(a, y) for all t ∈ (−∞, T ]. y ∈ RN−1.

Applying Lemma 5.2 (i) in the region x1 ≤ a and (ii) in the region x1 ≥ a, we see that

ū(t, x) < v(x) for all t ∈ (−∞, T ], x ∈ Ω.

By the comparison theorem, the above inequality holds also for t ≥ T , hence ū < v every-
where. Consequently, v̄ = limt→+∞ ū ≤ v. The proposition is proved.

Proof of Theorem 3. We first show that H < v̄ in the region x1 ≤ 0. Let δ0 > 0 be as in (5.7)
and choose a < 0 such that

1− δ0 ≤ v̄(x) < 1 for all x ∈ Ω with x1 ≤ a.

For each λ ≤ 0, define Hλ(x) = Hλ(x1, y) = H(x1 − λ, y). Then Hλ is defined in the region
x1 ≤ λ and satisfies 0 ≤ Hλ < 1. Note also that

Ha(a, y) = 0 < v̄(a, y) for all y ∈ RN−1.

Applying Lemma 5.2 to ũ = v̄ and u = Ha, we see that Ha < v̄ in the region x1 ≤ a. Now
we let λ vary from a to 0 continuously. Then, by the strong maximum principle, the graph
of Hλ remains strictly under that of v̄ as λ varies from a to 0. Consequently,

H(x) = H0(x) < v̄(x) for all x ∈ Ω with x1 ≤ 0.

Next let UP be the solution of (2.2) whose initial data is ΨP (x) := Ψ(x − P ). Since
ΨP is a subsolution, UP (t, x) is monotone increasing in t. This, together with the fact that

21



ΨP ≤ H < v̄, we see that UP converges as t → +∞ to some positive solution V P of (1.9)
satisfying

ΨP < V P ≤ v̄ on Ω. (6.5)

Now we choose an arbitrary point Q in Ω ∩ {x1 ≤ −R0}, where R0 is the constant
defined in (4.3), that is, the radius of the support of Ψ and ΨP . For each s ∈ [0, 1], let
P (s) = (1− s)P + sQ be the interpolation point between P and Q, and consider the family
of subsolutions {ΨP (s)}s∈[0,1]. At s = 0, we have ΨP (0) < V P by (6.5). As s increases
continuously from 0 to 1, ΨP (s) remains strictly below V P since otherwise the graph of
ΨP (s∗) touches that of V P from below for some s = s∗, but this is impossible by the strong
maximum principle. Hence ΨQ < V P for all Q in Ω ∩ {x1 ≤ −R0}, which implies

V P (x1, y) > Ψ(0) > α for all x1 ≤ −R0, y ∈ RN−1

since maxx ΨQ(x) = maxx Ψ(x − Q) = Ψ(0) > α; see (4.1) and (4.2). Since f(s) > 0 for
α < s < 1, the above inequality and a comparison argument imply

lim
x1→−∞

V P (x1, y) = 1.

Hence, by Proposition 6.4, V P ≥ v̄. Therefore V P = v̄ by (6.5) . In other words,

lim
t→∞

UP (t, x) = v̄(x).

Since ΨP ≤ u0 < v̄, we have UP (t, x) ≤ u(t, x) < v̄(x) by the comparison principle.
Hence (2.3) holds. The theorem is proved.

7 Proof for blocking

In this section we prove Theorems 4 and 5 on the blocking of fronts. We first consider
the case where the holes of K are localized (Theorem 4), then dicuss the case where K is
periodic in y (Theorem 5). The two cases can be treated almost in parallel, with only a
minor modification.

The blocking phenomenon in bistable equations caused by a narrow passage was first
demonstrated rigorously by Matano [14] for dumbbell-shaped bounded domains. Later, sim-
ilar blocking results in bounded dumbbell-shaped domains were obtained by many authors
including [16, 12]. In the mean while, the works of Berestycki, Bouhours and Chapuisat [2]
and Hamel and Zhang [11] discuss blocking phenomena for traveling waves that propagate
through a semi-infinite cylinder-shaped domain (for x1 ≤ 0) having a wide opening at the
end, with bounded or unbounded section as x1 → +∞.

As mentioned in Introduction, the main idea of the proof of blocking in the present paper
is to construct a barrier function, denoted by w0, that is a stationary super-solution of the
elliptic equation in the region Ω−1 = Ω ∩ {x1 > −1} with w0(−1, y) = 1 for all y ∈ RN−1

and w0(x1, y)→ 0 as x1 → +∞. More precisely, w0 is a solution of the problem
∆w0 + f(w0) = 0, x ∈ Ω−1 := Ω ∩ {x1 > −1},
∂w0

∂ν
= 0, x ∈ ∂K = ∂Ω−1 ∩ {x1 > −1},

w0(−1, y) = 1, y ∈ RN−1,

(7.1)
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satisfying
w0(x1, y)→ 0 as x1 → +∞. (7.2)

In the case where K is P - periodic, we further assume that

w0(x1, y) is P - periodic in y. (7.3)

Next we will compare w0 and ū in (1.7) and, by using Lemma 5.2 (ii), it will follow that v̄(x) ≤
w0(x) for all x ∈ Ω−1. Therefore the existence of such a barrier function w0 immediately
implies blocking.

We present two different methods for constructing the barrier function w0. Both methods
rely on a variational argument for the same energy functional but under different constraints.
The first method uses a constraint that is an extension of the one found in [14, Theorem 6.2].
The second method goes along the same line as in [2], though the argument is given in a
more precise and more general manner. Each of the two approaches is interesting in its own
right and they may lead to different ways of generalizing the results in the future studies.

7.1 Proof of blocking: the first approach

We begin with the case where the holes of K are localized in a bounded area. The case
where K is periodic can be treated with only minor modifications.

To start with, we observe that we can extend f linearly outside the interval (0, 1), that
is, we set

f(s) = f ′(0)s for s < 0, and f(s) = f ′(1)(s− 1) for s > 1. (7.4)

Define

F (s) :=

∫ s

0

f(r)dr.

By the condition (1.2), the function −F possesses a local minimum at s = 0, a global
minimum at s = 1, with

0 = −F (0) > −F (1),

and one local maximum at s = α, with −F (α) > 0. One has that

−F (s)→ +∞ as s→ ±∞.

We choose constants µ > 0, σ > 0 and δ ∈ (0, α] such that

− F (s) + µ(s− δ)2 ≥ σ for any s ∈ R. (7.5)

Such constants certainly exist since −F (s) > 0 for s ∈ (0, α] and −F is bounded from below.
From (7.5) and −F ≥ 0 in (−∞, α], it follows that

− F (s) + µ(s− s̄)2 ≥ 0 for any s ∈ R, s̄ ∈ (−∞, δ]. (7.6)

Next we decompose Ωb := Ω ∩ {x1 > b} into a union of bounded subdomains Dj ⊂
Ωb (j = 1, 2, 3, . . .) with uniformly Lipschitz boundaries such that

Di ∩Dj = ∅ (i 6= j), Ωb ⊂
∞⋃
j=1

Dj, (7.7)
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∫
Dj

|∇φ|2dx ≥ 2µ

∫
Dj

(
φ− φ̄

)2
dx, ∀φ ∈ H1(Dj) (j = 1, 2, 3, . . .), (7.8)

Dmin := inf
j
|Dj| > 0, (7.9)

where φ̄ denotes the average of φ over Dj. The inequality (7.8) is the so-called Poincaré–
Wirtinger inequality, thus the condition (7.8) implies that the first positive eigenvalue of −∆
on Dj under the Neumann boundary conditions, denoted by µ1(Dj), satisfies

µ1(Dj) ≥ 2µ for all j ∈ N. (7.8’)

Remark 7.1 (About the condition (7.8)). By the Szegő–Weinberger inequality [20], we have
µ1(Dj) ≤ µ1(B), where B is a ball of the same volume as Dj. Thus

µ1(Dj) ≤
(
|B1|
|Dj|

) 2
N

µ1(B1),

where B1 denotes the unit ball in RN . This and (7.8’), together with (7.9), imply

Dmin ≤ |Dj| ≤
(
µ1(B1)

2µ

)N
2

|B1|. (7.10)

Thuerefore the volume of Dj is uniformly bounded from below and above. This volume con-
straint is not enough to guarantee (7.8) or (7.8’). For example, even if Dj has a proper
volume, µ1(Dj) can be very small if it is a long thin object, or if it is dumbell-shaped with a
narrow middle part. On the other hand, if Dj is a convex domain, then, by [17], we have

µ1(Dj) ≥ π2 (diam(Dj))
−2 ,

where diam(Dj) denotes the maximal diameter of Dj, hence (7.8’) may be satisfied if
diam(Dj) is not too large. Summarizing, the conditions (7.8) (or (7.8’)) and (7.9) are
fulfilled if the volume of Dj lies in a certain range, if the maximal diameter of Dj is not
too large, and if it has a relatively regular shape such as convexity. Since we are assuming
that Ωb is a uniformly Lipschitz domain, such a decomposition exists. What we have to pay
attention is only the region near the wall K. In the region away from K, we can simply
set Dj to be rectangles or parallelepiped domains of the same size.

Now we are ready to prove the main results of this section.

The case of localized holes:

Proof of Theorem 4. We first recall the assumption of the theorem: Ωa,b is bounded and

|Ωa,b| ≤ ε, (7.11)

where the value of ε is to be specified later. We define a functional

J−1(w) :=

∫
Ω∩{−1<x1<b}

(
|∇w|2

2
− F (w) + F (1)

)
dx+

∫
Ωb

(
|∇w|2

2
− F (w)

)
dx, (7.12)
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where w varies in the set

X := {w ∈ H1
loc(Ω−1) | w(−1, y) = 1 for (almost) all y ∈ RN−1}.

If w satisfies

w̄j :=
1

|Dj|

∫
Dj

w dx ≤ δ (j = 1, 2, 3, . . .), (7.13)

then, by (7.6) and (7.8), we have∫
Dj

(
|∇w|2

2
− F (w)

)
dx ≥

∫
Dj

(
µ(w − w̄j)2 − F (w)

)
dx ≥ 0. (7.14)

Therefore the following sum is well-defined

0 ≤
∞∑
j=1

∫
Dj

(
|∇w|2

2
− F (w)

)
dx ≤ +∞.

Thus the second term on the right-hand side of (7.12) can be defined as the following sum:∫
Ωb

(
|∇w|2

2
− F (w)

)
dx :=

∞∑
j=1

∫
Dj

(
|∇w|2

2
− F (w)

)
dx.

Furthermore, since W (s) attains its global minimum at s = 1, we have∫
Ω∩{−1<x1<b}

(
|∇w|2

2
− F (w) + F (1)

)
dx ≥ 0. (7.15)

Therefore the functional J−1(w) in (7.12) is well-defined with values in [0,+∞], provided
that w satisfies the constraint (7.13). For each δ ∈ (0, α], we define:

Xδ := {w ∈ X | w satisfies (7.13)}. (7.16)

Next we define a function ζ by

ζ(x) = ζ(x1, y) =


1 if − 1 ≤ x1 ≤ a,

b− x1

b− a
if a ≤ x1 ≤ b,

0 if x1 ≥ b.

(7.17)

This function clearly belongs to Xδ for any δ ∈ (0, α] and satisfies

J−1(ζ) =

∫
Ω∩{a≤x1≤b}

(
|∇ζ|2

2
− F (ζ) + F (1)

)
dx ≤ ε

(
1

2(b− a)2
− F (α) + F (1)

)
.

Now we consider the following minimization problem:

Minimize
w∈Xδ

J−1(w). (7.18)
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The global minimizer of the above problem exists by virtue of (7.14) and (7.15). Let w0 be
the global minimizer. Since ζ belongs to Xδ, we have

0 ≤ J−1(w0) ≤ J−1(ζ) ≤ ε

(
1

2(b− a)2
− F (α) + F (1)

)
. (7.19)

We claim that the condition (7.13) holds strictly for w0, namely

w0|Dj :=
1

|Dj|

∫
Dj

w0 dx < δ (j = 1, 2, 3, . . .), (7.20)

if ε is chosen sufficiently small. To see this, suppose the contrary. Then

w0|Dj∗ =
1

|Dj∗|

∫
Dj∗

w0 dx = δ for some j∗ ∈ N. (7.21)

By (7.5), (7.8), and (7.21), we have∫
Dj∗

(
|∇w0|2

2
− F (w0)

)
dx ≥

∫
Dj∗

(
µ(w0 − w0|Dj∗ )

2 − F (w0)
)
dx ≥ σ|Dj∗|,

while, by (7.6) and (7.13), we have, for all j ∈ N,∫
Dj

(
|∇w0|2

2
− F (w0)

)
dx ≥

∫
Dj

(
µ(w0 − w0|Dj)2 − F (w0)

)
dx ≥ 0.

This, together with (7.15), implies

J−1(w0) ≥ σ|Dj∗ | ≥ σDmin. (7.22)

Now we choose ε > 0 sufficiently small so that

ε < σDmin

(
1

2(b− a)2
− F (α) + F (1)

)−1

. (7.23)

Then (7.22) contradicts (7.19). This contradiction proves that (7.20) holds, provided that ε
has been chosen to satisfy (7.23). This implies that w0 lies in the interior of Xδ in the H1

loc

topology, hence it satisfies the following Euler–Lagrange equation:
∆w0 + f(w0) = 0, x ∈ Ω−1,

∂w0

∂ν
= 0, x ∈ ∂Ω−1 ∩ {x1 > −1},

w0(−1, y) = 1, y ∈ RN−1,

along with the constraint (7.20).
Next we compare w0 and ū in (1.7). If we choose T sufficiently negative, we have

0 < ū(t, x) ≤ δ0 for all t ∈ (−∞, T ], x ∈ Ω−1 = Ω ∩ {x1 > −1}, (7.24)
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where δ0 is the constant introduced in (5.7). Furthermore,

ū(t, x) < w0(x) = 1 for all t ∈ (−∞, T ], x ∈ Ω ∩ {x1 = −1}. (7.25)

Thus, by Lemma 5.2 (ii), we have ū(t, x) < w0(x) for all x ∈ Ω−1 and t ∈ (−∞, T ], hence
for all t ∈ R by the comparison principle. It follows that v̄(x) ≤ w0(x) for all x ∈ Ω−1 .
This, together with (7.20), implies that the propagation does not occur. In other words, we
do not have v̄(x) → 1 as x1 → +∞. Together with Theorem 2, the proof of Theorem 4 is
complete.

Remark 7.2. Though we did not need it in the above proof, we can further show that
w0(x)→ 0 as x1 → +∞. Indeed, by (7.14), we have

+∞ > J−1(w0) ≥
∞∑
j=1

∫
Dj

(
|∇w0|2

2
− F (w0)

)
dx ≥

∞∑
j=1

∫
Dj

(
µ(w0 − w0|Dj)2 − F (w0)

)
dx,

where w0|Dj denotes the average of w0 on Dj. Hence

lim
j→+∞

∫
Dj

(
µ(w0 − w0|Dj)2 − F (w0)

)
dx = 0.

One can then deduce that w0|Dj → 0 as j → +∞ since µ(s − s̄)2 − F (s) > 0 for s ∈ R if
0 < s̄ ≤ δ. Elliptic estimates then imply w0(x)→ 0 as x1 → +∞.

The case where K is periodic:

The proof of Theorem 5 goes completely in parallel to the proof of Theorem 4. The only
difference is that the decomposition of the domain Ωb given in (7.7) is now done in the unit
cylinder of periodicity ∆P = R × CP , where CP is as in (3.3), and the energy J−1 is also
defined in ∆P . Thus each Dj is a subset of Ωb ∩∆P and the condition (7.7) is replaced by

Di ∩Dj = ∅ (i 6= j), Ωb ∩∆P ⊂
∞⋃
j=1

Dj. |∂Dj| = 0 (j = 1, 2, 3, . . .), (7.26)

and the energy functional J−1 is given in the form

J−1(w) :=

∫
Ω∩∆P∩{−1<x1<b}

(
|∇w|2

2
− F (w) + F (1)

)
dx+

∫
Ωb∩∆P

(
|∇w|2

2
− F (w)

)
dx.

Apart from these obvious modifications, the proof of Theorem 5 can be carried out in com-
pletely the same manner as that of Theorem 4, so we omit the details.

7.2 Proof of Theorem 5, the second approach

In this subsection we explain the second approach for the proof of blocking. We consider
only the periodic case. As mentioned earlier, this approach is similar to the one found in [2].
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To construct the barrier w0 satisfying (7.1) and (7.2), we first consider a solution w = wR
of the following problem in the region Ω−1,R = Ω ∩ {−1 < x1 < R}, for R ≥ M + 1, that
vanishes on the right hand side boundary:

∆w + f(w) = 0, x ∈ Ω−1,R,

∂w

∂ν
= 0, x ∈ ∂K = ∂Ω−1,R ∩ {−1 < x1 < R},

w(−1, y) = 1, y ∈ RN−1,

w(R, y) = 0, y ∈ RN−1,

w(x1, ·) is P - periodic.

(7.27)

The idea is to construct a function that is close to 1 in Ω−1,a, close to 0 in Ωb,R and has a
transition from 1 to 0 in Ωa,b that is not much costly in terms of energy when the trace of
this set in one periodicity cell is small in measure.

By the maximum principle we know that all solutions w of (7.27) with the function f
extended as in (7.4) satisfy 0 ≤ w ≤ 1, whence are solutions with the original function f .
We then require some notations. We introduce the restrictions of the sets Ω,Ωα,Ωa,b to one
periodicity cell. That is, we denote:

D := Ω ∩ R×CP ; Dα := {(x1, y) ∈ Ω ; x1 > α, y ∈ CP};

Dα,β := {(x1, y) ∈ Ω ; α < x1 < β, y ∈ CP} = Ωα,β ∩ (α, β)×CP .
For simplicity, we denote DR = D−1,R. Let F (z) :=

∫ z
0
f(s)ds and consider the functional:

J(w) :=

∫
DR

|∇w|2

2
− F (w).

Consider the function ζ = ζ(x1) defined by:

ζ(x) = ζ(x1) =


1 if − 1 ≤ x1 ≤ a;
b− x1

b− a
if a ≤ x1 ≤ b;

0 if b ≤ x1 ≤ R.

(7.28)

We are going to locate a local minimum of J over the space of P-periodic functions
in H1(DR) that satisfy the limiting conditions at x1 = 1 and x1 = R, and which is close to ζ.
We denote by H1

P the space of P-periodic functions over ΩR := Ω−1,R that are in H1(DR)
and let

H = HR := {u ∈ H1
P ; u ∈ H1(DR), u(−1, y) = 1, u(R, y) = 0, for (almost) all y ∈ RN−1}.

We consider the problem of finding a local minimum of J over HR, at least when ε is
sufficiently small. Here is the key result in this direction.

Proposition 7.3. Given the domain Ωb and b− a, there exist δ > 0 and ε > 0 such that if
|Da,b| ≤ ε, then for all R ≥M + 1 we have

inf {J(w) ; w ∈ HR, ||w − ζ||H1(DR) = δ} > J(ζ).
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Proof. It should be emphasized that δ and ε are independent of R ≥ M + 1. We denote
w = ζ+v and thus v is in the space H0,R corresponding to the limiting conditions v(−1, y) =
v(R, y) = 0 for (almost) all y, with periodicity in y. We split the functional J in three parts
J1, J2, J3 corresponding to integration over the the domains D−1,a, Da,b and Db,R respectively.

1. Estimate for J1. From the assumptions on f , it follows that there exists some γ > 0
such that

−F (z) ≥ −F (1) + γ(z − 1)2 for all z ∈ R.

Therefore, reducing γ if need be, we can assume that γ < 1/2, and we get

J1(w) =

∫
D−1,a

|∇w|2

2
− F (w) = J1(1 + v) ≥ γ||v||2H1(D−1,a) + J1(ζ). (7.29)

2. Estimate for J2. We first note that∫
Da,b

|∇w|2

2
≥
∫
Da,b

|∇v|2

4
−
∫
Da,b

|∇ζ|2

2
=

∫
Da,b

|∇v|2

4
− 1

2(b− a)2
|Da,b|.

Therefore, if |Da,b| ≤ ε we get∫
Da,b

|∇w|2

2
≥
∫
Da,b

|∇v|2

4
+

∫
Da,b

|∇ζ|2

2
− Cε,

where C > 0 is a generic constant. Using the same inequality as above for −F , we get∫
Da,b

−F (w) ≥
∫
Da,b

(
−F (ζ) + γ

v2

2
− γ(ζ − 1)2−F (1) +F (ζ)

)
≥
∫
Da,b

(
−F (ζ) + γ

v2

2

)
−Cε.

Combining the two preceding inequalities yields:

J2(w) =

∫
Da,b

|∇w|2

2
− F (w) ≥ γ

2
||v||2H1(Da,b)

+ J2(ζ)− Cε. (7.30)

3. Estimate for J3. Owing to the assumption f ′(0) < 0, 0 is a strict local minimum for
−F . Therefore, for q > 2 given, reducing γ if need be, there exists C > 0 such that

−F (z) ≥ γz2 − C|z|q, for all z ∈ R.

We choose q to be defined by q := 2N
N−2

when N ≥ 3 and q = 4 when N = 2. Since ζ(x) = 0
in Db,R and choosing γ < 1/2, we see that

J3(w) =

∫
Db,R

|∇w|2

2
− F (w) ≥ γ||v||2H1(Db,R) − C

∫
Db,R

|v|q.

Next, we require the following consequence of the Gagliardo-Nirenberg and Sobolev inequal-
ities.
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Lemma 7.4. There is a constant Cq > 0, independent of R ≥ M + 1, such that for any
function u in H1(Db,R), periodic in y, that vanishes on y = R there holds

‖u‖Lq(Db,R) ≤ Cq‖u‖H1(Db,R).

We wish to emphasize that in these inequalities, the constant C depends on the do-
main Db, in particular its Lipschitz norm, but it does not depend on R. These inequalities
follow from the classical Gagliardo-Nirenberg and Sobolev inequalities (and known as La-
dyzhenskaya’s inequality in the particular case N = 2, q = 4).

Combining the previous inequalities yields:

J3(w) =

∫
Db,R

|∇w|2

2
− F (w) ≥ γ||v||2H1(Db,R) − C||w||

q
H1(Db,R) + J3(ζ). (7.31)

4. Conclusion of the proof of Proposition 7.3. Combining the three estimates for
J1, J2 and J3, we obtain:

J(w) =

∫
DR

|∇w|2

2
− F (w) ≥ γ

2
||w − ζ||2H1(DR) − C||w − ζ||

q
H1(DR)

− Cε+ J(ζ). (7.32)

By choosing adequately δ > 0 we can make γ
2
δ2 − Cδq > 0. Then for ε > 0 small enough,

this inequality proves Proposition 7.3.

Conclusion of the proof of Theorem 5. We choose δ > 0 and ε > 0 as in the previous propo-
sition. Note that they are independent of R ≥ M + 1. For any such R we consider the
minimization problem

min{J(w) ;w ∈ HR, ‖w − ζ‖H1(DR) ≤ δ}. (7.33)

By standard arguments, we know that J achieves its minimum on the closed ball of radius
δ centered on ζ in HR. From Proposition 7.3, it follows that

J(ζ) < min{J(w) ;w ∈ HR, ||w − ζ||H1(DR) = δ}.

This implies that the minimum of J in the ball of radius δ about ζ is necessarily an interior
minimum. Hence it is a local minimum of the energy J .

For all R ≥M + 1, we have thus found a solution wR of problem (7.27) that furthermore
satisfies

||wR − ζ||H1(DR) ≤ δ.

Since δ > 0 is independent of R, we see that wR is bounded in H1 norm, independently
of R. Therefore, we can extract a subsequence wRj of wR that converges weakly to some
function w0 in H1(D−1). This function is a solution of problem (7.1). Moreover, as a limit
of local minima, it is also a stable solution of problem (7.1). Arguing precisely as in the
proof of Theorem 2 in Subsection 6.2, we see that either w0(x1, y) → 0 or w0(x1, y) → 1
as x1 → +∞. But we know that the latter is impossible since w0 is in L2(D−1), whence
w0(x1, y)→ 0 as x1 → +∞. The construction of the barrier function w0 is thus complete.
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In order to conclude the proof of Theorem 5, it suffices to show that v̄ ≤ w0 in the
region Ω−1. This follows from the existence of T sufficiently negative such that (7.24)-(7.25)
hold, together with Lemma 5.2 (ii). As this part of the argument is precisely the same as
in the proof of Theorem 4 in the previous subsection, we omit the details. The proof of
Theorem 5 in the second approach is complete.

8 Proofs for propagation

In this section, we prove Theorems 6, 7 and 8 on the propagation of fronts for the following
three types of walls:

• walls with large holes (Theorem 6);

• small-capacity walls (Theorem 7);

• parallel-blade walls (Theorem 8).

8.1 Walls with large holes: proof of Theorem 6

Proof of Theorem 6. Let R0 be the constant defined in (4.3) and let Ψ be the solution of (4.1)
for R = R0. For each point P ∈ Ω with d(P,K) ≥ R0 (here d(P,K) denotes the distance
between P and the set K), we define a function ΨP on Ω as follows:

ΨP (x) =

{
Ψ(x− P ) if |x− P | ≤ R0,

0 otherwise.
(8.1)

Then ΨP is continuous on Ω and satisfies

0 ≤ ΨP (x) < 1 (x ∈ Ω), max ΨP = Ψ(0) > α,

∆ΨP + f(ΨP ) = 0 (|x− P | < R0).

Clearly, for any P ∈ Ω with d(P,K) ≤ R0, ΨP is a subsolution of (1.1).
Since v̄ → 1 as x1 → −∞, and since max ΨP = Ψ(0) < 1, we have

ΨP (x) < v̄(x)

if the x1 coordinate of P is sufficiently negative. Choose such P and call it P0. Next let
P (s) = (1−s)P0 +sP1 be the interpolation point between P0 and P1. As s varies from 0 to 1
continuously, the graph of ΨP (s) slides along the line segment P0P1. By the strong maximum
principle and the fact that v̄ > 0 and that ΨP (s) is a compactly supported subsolution, we
see that ΨP (s) remains below v̄ all the way to s = 1. Hence P1 < v̄.

Next we move P continuously along the curve γ, from P1 to P2. Then, since the distance
between each point on γ and K is bounded from below by R0, ΨP is a compactly supported
subsolution. Thus, again by the strong maximum principle, ΨP remains below v̄ all the way
to P = P2, hence ΨP2 < v̄. Finally, let Q be an arbitrary point in the region {x1 ≥M +R0}
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and connect P2 and Q by a continuous curve γ2 that is outside the R0-neighborhood of K.
Then, by the same argument as above we see that ΨQ < v̄. Consequently we have

v̄(x) > Ψ(0) > α for all x ∈ {x1 ≥M +R0}.

By a simple comparison argument, we easily see that this implies v̄ → 1 as x1 → +∞ since
f(s) > 0 for α < s < 1. The proof of Theorem 6 is complete.

8.2 Small capacity walls: proof of Theorem 7

Proof of Theorem 7. Suppose the contrary. Then there exist positive numbers εj → 0 such
that blocking occurs for Kεj (j = 1, 2, . . .). Let vj denote the limit profile for Kεj and let
vj → v∞ (after taking a subsequence). Then v∞ satisfies

∆v∞ + f(v∞) = 0 in RN \ (K1 ∪ K0).

Since K0 has capacity 0 and v∞ is bounded, K0 is a removable singularity. Therefore

∆v∞ + f(v∞) = 0 in RN \ K1.

By the assumption, K1 has a passage of width larger than or equal to R0. Therefore, as in
the proof of Theorem 6, we see that v∞ → 1 as x1 → +∞. This, however, contradicts the
statement of Corollary 2.1. This contradiction proves the theorem.

8.3 Parallel-blade walls: proof of Theorem 8

The proof of propagation for this type of wall is based on a rather non-standard comparison
argument using “quasi-subsolutions”, the meaning of which will be explained below. In what
follows, v̄ε will denote the limit profile corresponding to the wall Kε. We want to show that
v̄ε(x)→ 1 as x1 → +∞ if ε is sufficiently small.

We introduce a function ρ = ρ(x1) on R that will serve as the basis of our argument. Let
δ > 0 be a small constant such that s 7→ f(s)− δ satisfies∫ b

0

(f(s)− δ) ds > 0,

where b is the stable zero of the function s 7→ f(s) − δ such that α < b < 1. We define a
function ρ = ρ(x1) on R by 

ρ′′ + f(ρ) = δ if x1 < 0

ρ > 0, ρ′ < 0 if x1 < 0

ρ(x1) = 0 if x1 ≥ 0

ρ(x1)→ b as x1 → −∞.

(8.2)

Such a function ρ exists and is unique as long as δ > 0 is sufficiently small. This is easily
seen by a shooting argument for the ordinary differential equation u′′ + f(u) = δ, and we
omit the details.
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Next, for each λ ∈ R, we define a function ρλ on RN by

ρλ(x) := ρ(x1 − λ).

The support of ρλ is the half space {x1 ≤ λ}. Since v̄(x) → 1 as x1 → −∞ and sup ρλ =
b < 1, it follows that for all sufficiently large λ < 0 the function ρλ is below v̄ε, i.e.

ρλ(x) ≤ v̄ε(x) (x ∈ Ω). (8.3)

We would like to show that this inequality continues to hold for all λ by a sliding type
argument. However, this is not necessarily true in general. Indeed, the function ρλ is not
exactly a subsolution of (1.1) for large λ > 0 because it does not satisfy the appropriate
boundary conditions ∂νρ

λ ≤ 0 on some part of the boundary of Kε. Consequently, the
inequality (8.3) may not hold for all x ∈ Ω if λ > 0. Instead, we are going to show that the
region where ρλ(x) is larger than v̄ε(x) remains small. More precisely, define

Dλ := {x ∈ Ω | ρλ(x) > v̄ε(x)} ∩∆P

We shall now prove that the volume of Dλ remains small for all λ > 0 provided ε is sufficiently
small, which implies that (8.3) “nearly” holds.

Let wλ := ρλ − v̄ε. Then wλ is of class C2 on Ω and satisfies

∆wλ + f ′(ξ(x))wλ = δ, in Ω

wλ > 0 in Dλ,

wλ = 0, on ∂Dλ ∩ Ω,

∂wλ

∂ν
=
∂ρλ

∂ν
on ∂Dλ ∩ ∂Kε.

(8.4)

As for the boundary conditions on ∂∆P it is understood that we are dealing with P-periodic
functions and we will see that these conditions do not affect the computations that follow.

Lemma 8.1. The set S(λ) := {x ∈ Ω | wλ(x) = 0} ∩∆P has Lebesgue measure zero.

Proof. Suppose that S(λ) has a positive Lebesgue measure. Then by the Lebesgue density
theorem, almost every point x∗ of S(λ) is a density point, in the sense that

lim
r→0

|S(λ) ∩Br(x
∗)|

|Br(x∗)|
= 1, (8.5)

where Br(x
∗) denotes a ball of radius r centered at x∗. This implies ∇wλ(x∗) = 0, since

otherwise S(λ) would be a smooth hypersurface around x∗, thus (8.5) would not hold.
Next, since ∆wλ = δ > 0 at x∗, there exists a unit vector e such that

d2

ds2
wλ(x∗ + se) > 0.

This, together with wλ(x∗) = 0 and ∇wλ(x∗) = 0, implies that wλ(x) > 0 in the intersection
of a small neighborhood of x∗ and the interior of a dual cone with vertex at x∗. This again
contradicts (8.5). Therefore (8.5) never holds, hence S(λ) has Lebesgue measure zero.
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Corollary 8.2. |Dλ| is increasing and continuous in λ.

Proof. Since wλ(x) = ρλ(x) − v̄ε(x) is increasing in λ for each fixed x ∈ Ω, the set Dλ is
increasing in λ, hence so is |Dλ|. To prove continuity, observe that wλ(x) is continuous and
increasing in λ for each fixed x. Hence, for each λ0 > 0,

Dλ0 = lim
λ→λ0−0

Dλ =
⋃

0<λ<λ0

Dλ.

Consequently, we have
|Dλ0 | = lim

λ→λ0−0
|Dλ|.

Next, for each λ0 ≥ 0, the continuity and monotonicity of wλ implies

lim
λ→λ0+0

|Dλ| = |Dλ0 ∪ S(λ0)|.

Since S(λ0) is a set of measure zero by Lemma 8.1, we have

lim
λ→λ0+0

|Dλ| = |Dλ0|.

This establishes the continuity of λ 7→ |Dλ|.

Now we are ready to prove the following estimate on the volume of Dλ.

Proposition 8.3. For any given constant ν > 0, there exists ε0 = ε0(ν), also depending on
f , such that if assumptions (4.5)–(4.6) are satisfied for any ε ≤ ε0, we have

|Dλ| ≤ ν, for all λ ∈ R. (8.6)

Proof. Let λ0 < 0 be such that v̄ε(x1, y) ≥ b for all x1 ≤ λ0 and all y. For λ > λ0, define

Rλ = Ω ∩ {(x1, y) ∈ ∆P , λ0 < x1 < λ}.

The difference wλ satisfies a linear equation

∆wλ + q(x)wλ = δ in Rλ, (8.7)

for some function q bounded by the Lipschitz norm of f :

|q(x)| ≤ Lf := ||f ′||L∞(0,1), for all x ∈ Ωλ.

For each η > 0, let χη be defined by:

χη(s) =


0, if s ≤ 0,

s/η, if 0 ≤ s ≤ η,

1, if s ≥ η.
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Multiply equation (8.7) by χη(w
λ) and integrate by parts on Rλ to get:

δ

∫
Rλ
χη(w

λ) = −
∫
Rλ
χ′(wλ)|∇wλ|2 +

∫
∂Rλ

∂wλ

∂ν
χη(w

λ) dSx +

∫
Rλ
q(x)wλχη(w

λ). (8.8)

Observe that wλ ≤ 0 on x1 = λ0 and x1 = λ, as well as on ∂Rλ \Kε, and that there is no
contribution of the boundary of ∆P because the functions are periodic. Thus we get∫

∂Rλ

∂wλ

∂ν
χη(w

λ) dSx =

∫
∂Rλ∩Kε

∂ρλ

∂ν
χη(w

λ) dSx.

Since ∂ρλ/∂ν = ∇ρλ · ν = ρ′(x1 − λ)e1 · ν, the condition (4.6) implies∫
∂Rλ∩∂Kε

∣∣∣∂ρλ
∂ν

∣∣∣ dSx ≤ ε1‖ρ′‖L∞ .

Denoting ‖ρ′‖L∞ by k this, together with χη(w
λ) = 0 when wλ ≤ 0, yields

δ

∫
Rλ
χη(w

λ) ≤ Lf

∫
Dλ
wλ + k ε1.

Then, letting η → 0, we obtain

δ|Dλ| ≤ Lf

∫
Dλ
wλ + k ε1. (8.9)

To derive the second estimate we need, we multiply equation (8.7) by w+ (to simplify
notations, we now write w instead of wλ). Integration over Rλ and Green’s formula yield:

δ

∫
Dλ
w ≤

∫
∂Rλ

w+ ∂w

∂ν
dSx −

∫
Dλ
|∇w|2 + Lf

∫
Dλ
w2

=

∫
∂Rλ∩∂Kε

w
∂ρλ

∂ν
dSx −

∫
Dλ
|∇w|2 + Lf

∫
Dλ
w2

where we have used the fact that
∫
Rλ
∇w · ∇w+ =

∫
Dλ
|∇w|2. Again using condition (4.6),

we obtain

δ

∫
Dλ
w ≤ −

∫
Dλ
|∇w|2 + Lf

∫
Dλ
w2 + k ε1.

Combining this with (8.9) yields

|Dλ| ≤ δ−2Lf

(
−
∫
Dλ
|∇w|2 + Lf

∫
Dλ
w2

)
+ kδ−1(1 + Lfδ

−1) ε1. (8.10)

Next we set D̂λ := Dλ \ ([0,M ]×Nε(Σ)). Then

−
∫
Dλ
|∇w|2 + Lf

∫
Dλ
w2 ≤ −

∫
D̂λ
|∇w|2 + Lf

∫
D̂λ
w2 + CΣLf ε,
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where CΣ is a constant depending on Σ. This and (8.10) yield

|Dλ| ≤ δ−2Lf

(
−
∫
D̂λ
|∇w|2 + Lf

∫
D̂λ
w2

)
+ C1(ε+ ε1),

where the constant C1 involves the various other parameters δ, Lf , k, CΣ which are fixed and
in particular do not depend on ε.

By Lemma 8.4 below, there exists a constant C > 0, independent of ε, such that:

|Dλ| ≤ δ−2Lf

(
−C|D̂λ|−2/N + Lf

)∫
D̂λ
w2 + C1(ε+ ε1)

so long as |D̂λ| ≤ η0. Choose η1 > 0 sufficiently small such that Cη
−2/N
1 ≥ Lf . Then we

have
|Dλ| ≤ η1 =⇒ |Dλ| ≤ C1(ε+ ε1).

Since, by the assumption in (4.6), ε1 = ε1(ε) tends to 0 as ε→ 0, there exists ε∗ such that

η1 > C1(ε+ ε1) for all ε ∈ (0, ε∗].

Thus, if ε ∈ (0, ε∗], we have

|Dλ| ≤ η1 =⇒ |Dλ| ≤ C1(ε+ ε1)
(
< η1 ),

which implies that |Dλ| cannot take a value between C1(ε+ ε1) and η1. Now, as we increase
the value of λ, the value of |Dλ| for λ ≤ 0 equals 0 and it depends on λ > 0 continuously by
Corollary 8.2. Consequently, we have

|Dλ| ≤ C1(ε+ ε1) for all λ ∈ R,

provided that 0 < ε < ε∗. Since C1(ε + ε1) can be arbitrarily small if ε is chosen small, the
proof of Proposition 8.3 is complete.

Completion of the proof of Theorem 8. The inequality (8.6) implies that the limit profile v̄ε

cannot tend to 0 as x1 → +∞, since otherwise we would have |Dλ| → +∞ as λ → +∞.
Hence propagation occurs for Kε so long as 0 < ε < ε∗. The theorem is proved.

Here is the lemma we used in the above proof. It will be proved in Section A of Appendix.

Lemma 8.4. There exist a constant η0 > 0 that is independent of ε and a constant C > 0,
depending on η0, but again independent of ε, such that, for any nonnegative w ∈ H1

P(RN \
([0,M ]×Nε(Σ)) the following inequality holds∫

supp(w)∩∆P

|∇w|2dx ≥ C |supp(w) ∩∆P |−2/N

∫
supp(w)∩∆P

w2dx (8.11)

so long as |supp(w) ∩∆P | ≤ η0.

Remark 8.5. There are indeed cases where the inequalty (8.3) does not hold everywhere in
Ω for large values of λ; in other words, we may have Dλ 6= ∅ for large λ. For example, if
some parts of Kε have tiny reservoir-shaped pockets with a sufficiently narrow entrance as
shown in Figure 5, then the value of v̄ remains small inside those pockets by Theorem 10,
therefore the inequality (8.3) cannot hold in those pockets. Note that the condition (4.6) is
satisfied provided the pockets are tiny enough.
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Kε

Figure 5: A tiny pocket on the surface of Kε, which prevents complete invasion.

9 Complete and incomplete invasions

In this section we prove Theorem 9 on a sufficient condition for complete invation and
Theorem 10 on an example of incomplete invasion.

9.1 Proof of Theorem 9 for complete invasion

As we mentioned earlier, the proof is basically the same as that of Theorem 6.4 in [3], though
the notation here is simpler as we are considering directional convexity only in direction x1.

Proof of Theorem 9. Let ρ = ρ(x1) be as in (8.2) and define a function W λ on RN by

W λ(x) := max{ρ(x1 − λ), ρ(M − x1 − λ)}. (9.1)

This function is symmetric with respect to the hyperplane {x1 = M/2} and monotone
decreasing (resp. increasing) in the region {x1 ≤ M/2} (resp. {x1 ≥ M/2}). When λ < 0,
the support of W λ is the set {x1 ≤ λ} ∪ {x1 ≥ M − λ}, which does not touch the wall K.
Therefore, W λ|Ω is a subsolution of (1.1) for all λ < 0. Furthermore, since we are assuming
that propagation occurs, we have v̄(x)→ 1 as x1 → ±∞. Therefore, we have

W λ|Ω(x) < v̄(x) for all x ∈ Ω (9.2)

if λ is sufficiently negative.
Now we increase λ continuously. Since W λ|Ω is a subsolution for all λ < 0, (9.2) continues

to hold up to λ = 0 by the strong maximum principle. Once λ becomes positive, the support
of W λ meets the wall K, but W λ|Ω remains to be a subsolution for all λ > 0. To see this,
recall that K is directionally convex and that ρ is a monotone decreasing function. Therefore

∂W λ

∂ν
≤ 0 on ∂Ω \ {x1 = M/2}.

Furthermore, at x1 = M/2, W λ has a positive derivative gap. Consequently, W λ|Ω is a
subsolution for all λ > 0. We can therefore increase λ continuously in the region λ > 0, to
obtain (9.2) for all λ ∈ R. Hence

v̄(x) ≥ lim
λ→+∞

W λ(x) = b on Ω.

Since b > α, a simple comparison argument shows that v̄(x) = 1 everywhere. The proof of
the theorem is complete.

37



9.2 Proof of Theorem 10 for incomplete invasion

Here we restate Theorem 10 in a more precise manner and prove it. The method of the proof
is basically the same as the proof of Theorem 4 for blocking given in Subsection 7.1. We
first specify the structure of the “reservoir”.

A typical image of a reservoir is shown in Figure 6 (left). The mouth of the reservoir
can face in any direction. Let e denote the unit vector pointing toward the mouth of the
reservoir. The reservoir consists of two open subdomains Ω0 and Ω−: the former represents
the narrow entrance path and the latter the interior of the reservoir (Figure 4 (right)). Here
z := x · e denotes the coordinate in the direction e. We assume that

∂Ω0 ∩ Ω ⊂ {z = a} ∪ {z = b}, ∂Ω− ∩ Ω ⊂ {z = b},

as shown in Figure 6 (right). We set Γ := ∂Ω0 ∩ {z = a}, the outer-most boundary of Ω0.
The entire reservoir is the domain Ωres := Ω0 ∪ (Ω− ∩ Ω).

𝑎𝑎 𝑏𝑏
𝑧𝑧

Ω0
Ω−𝒆𝒆 Γ

Figure 6: Example of a reservoir-like configuration and its magnified view.

Next let δ ∈ (0, α], µ > 0, σ > 0 be the constants satisfying (7.5)-(7.6), that is,

−F (s) + µ(s− δ)2 ≥ σ for any s ∈ R,

−F (s) + µ(s− s̄)2 ≥ 0 for any s ∈ R, s̄ ∈ (−∞, δ],
where F (s) =

∫ s
0
f(r)dr, with f extended as in (7.4). We decompose the domain Ω− into a

union of subdomains Dj ⊂ Ω− (j = 1, 2, . . . ,m) with uniformly Lipschitz boundaries such
that

Di ∩Dj = ∅ (i 6= j), Ω− ⊂
m⋃
j=1

Dj,∫
Dj

|∇φ|2dx ≥ 2µ

∫
Dj

(
φ− φ̄

)2
dx ∀φ ∈ H1(Dj) (j = 1, 2, . . . ,m),

where φ̄ denotes the average of φ over Dj. We set

Dmin := min{|D2|, |D2|. . . . , |Dm|}.

See Remark 7.1 on such decomposition and the meaning of the constant µ. If the size of Ω−
is very large, we need to split it into subdomains of appropriate sizes, otherwise we can
simply set m = 1 and D1 = Ω−.
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Our goal is to construct an upper barrier that blocks the invasion of ū into the reservoir.
Such a barrier can be constructed as a stationary solution V (x) of the following problem:

∆V + f(V ) = 0, x ∈ Ωres,

V = 1, x ∈ Γ,

∂V

∂ν
= 0, x ∈ ∂Ωres \ Γ

(9.3)

that satisfies
1

|Dj|

∫
Dj

V (x)dx ≤ δ for all j = 1, 2, . . . ,m. (9.4)

To do so, we first define the following functional which is an analog of J−1 in (7.12):

Jres(w) :=

∫
Ω0

(
|∇w|2

2
− F (w) + F (1)

)
dx+

∫
Ω−

(
|∇w|2

2
− F (w)

)
dx

and minimize this functional on the following set of functions

Xδ =

{
w ∈ H1(Ωres)

∣∣∣wΓ = 1,
1

|Dj|

∫
Dj

w(x)dx ≤ δ (j = 1, 2, . . . ,m)

}
.

Let V be the global minimizer of Jres over the set Xδ and define

ζ(x) =


b− z
b− a

if x ∈ Ω0,

0 if x ∈ Ω−.

Since ζ ∈ Xδ, we have

Jres(V ) ≤ Jres(ζ) ≤ |Ω0|
(

1

2(b− a)2
− F (α) + F (1)

)
.

Now assume that the following inequality holds:

|Ω0| < σDmin

(
1

2(b− a)2
− F (α) + F (1)

)−1

. (9.5)

Then, arguing as in the proof of Theorem 4, we see that (9.4) holds strictly, that is,

1

|Dj|

∫
Dj

V (x)dx < δ for all j = 1, 2, . . . ,m.

This implies that V lies in the interior of Xδ, hence it satisfies the Euler–Lagrange equa-
tion (9.3). Since Ωres is bounded, V is uniformly positive in Ωres. Therefore ū(t, x) < V (x)
in Ωres for t sufficiently negative. Hence, by the comparison principle, ū(t, x) < V (x) for all
t ∈ R, which implies v̄(x) ≤ V (x) in Ωres. Combining this and (9.4), we see that v̄ is not
identically equal to 1. Summarizing, we have proved the following theorem.

Theorem 9.1. Let Ω0 and Ω− be as above, and assume that (9.5) holds. Then v̄ < 1. In
particular, the complete invasion does not occur even if propagation takes place.
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A Appendix: relative Poincaré inequality

In this Appendix, we prove Lemma 8.4, which we have used in the proof of Theorem 8 in
Subsection 8.3. We restate this lemma:

Lemma A.1. There exist a constant η0 > 0 that is independent of ε and a constant C > 0,
depending on η0, but again independent of ε, such that, for any nonnegative w ∈ H1

P(RN \
([0,M ]×Nε(Σ)) the following inequality holds∫

supp(w)∩∆P

|∇w|2dx ≥ C |supp(w) ∩∆P |−2/N

∫
supp(w)∩∆P

w2dx (A.1)

so long as |supp(w) ∩∆P | ≤ η0.

The above lemma follows from Proposition 2.3 (2) of [4]. We state this proposition for
the special case where w belongs to H1 ∩ C.

Proposition A.2 ([4]). Let Ω̂ be a domain in RN , not necessarily bounded, with a uniformly

Lipschitz boundary, and let η0 be a real number with 0 < η0 < |Ω̂|. Then there exists

a constant C depending only on Ω̂ and η0 such that, for any open set D ⊂ Ω̂ satisfying
|D| ≤ η0 and any function w ∈ H1(Ω̂) ∩ C(Ω̂) such that w = 0 in Ω̂ \ D, the following
inequality holds: ∫

D

|∇w|2dx ≥ C

(∫
D

|w|2N/(N−2)dx

)(N−2)/N

if N ≥ 3,∫
D

|∇w|2dx ≥ C

(∫
D

|w|γ−2dx

)−1 ∫
D

|w|γdx if N = 2,

(A.2)

where γ ≥ 2 is arbitrary if N = 2.

By Hölder’s inequality,∫
D

w2dx ≤
(∫

D

|w|2N/(N−2)dx

)(N−2)/N (∫
D

dx

)2/N

.

Combining this with (A.2) for N ≥ 3, we obtain∫
D

|∇w|2dx ≥ C|D|−2/N

∫
D

w2dx. (A.3)

In the case N = 2, the above inequality follows by setting γ = 2 in (A.2).
An important point of the estimate (A.3) is that, unlike the standard Poincaré inequality,

w is required to be 0 only on ∂D ∩ Ω̂ and no restriction is imposed on the value of w
on ∂D ∩ ∂Ω̂. This aspect of estimate (A.3) will be important in the proof of Lemma A.1.
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Proof of Lemma A.1. We divide the integral on the left-hand side of (A.1) as follows:

I− =

∫
supp(w)∩Ω̂−

|∇w|2dx, I0 =

∫
supp(w)∩Ω̂ε0

|∇w|2dx, I+ =

∫
supp(w)∩Ω̂+

|∇w|2dx,

where
Ω̂− = ∆P ∩ {x1 < 0}, Ω̂+ = ∆P ∩ {x1 > M},

Ω̂ ε
0 = ∆P ∩

(
(0,M)×

(
RN−1
y \ Nε(Σ)

) )
.

These are all domains with uniformly Lipschitz boundaries, with Ω̂± being unbounded, while
Ω̂ ε

0 is bounded and ε-dependent. Note also that Dλ is bounded, since Dλ ⊂ Rλ.

We first consider the integral I0. This integral is taken over the region supp(w)∩ Ω̂ ε
0 . The

set Ω̂ ε
0 is a close approximation of Ω̂ 0

0 := ∆P ∩
(
(0,M)×

(
RN−1
y \ Σ

))
, which is a bounded

open set having finitely many connected components each of which being a bounded domain
with a Lipschitz boundary, by virtue of the assumption on Σ given in subsection 4.3. Each
connected component of Ω̂ ε

0 is also a bounded domain with a Lipschitz boundary and is a close

approximation of the corresponding connected component of Ω̂ 0
0 . It is not difficult to see that

there is a diffeomorphism between each connected component of Ω̂ ε
0 and the corresponding

connected component of Ω̂ 0
0 whose Jacobian matrix is uniformly close to identity for all

sufficiently small ε > 0. Thus the estimate (A.3) applies to each of the connected components

of Ω̂ ε
0 with a constant C = C0 that is independent of ε. Consequently, by Proposition A.2

and (A.3), if η0 is chosen relatively small, we have

I0 ≥ C0|supp(w) ∩∆P |−2/N

∫
supp(w)∩Ω̂ε0

w2dx, (A.4)

so long as |supp(w) ∩ Ω̂ε
0| ≤ η0 and |supp(w) ∩∆P | 6= 0.

Next, as regards the integral I− and I+, since Ω̂− and Ω̂+ are simple domains that do
not depend on ε, we can apply Proposition A.2 and (A.3) directly, to obtain

I± ≥ C±|supp(w) ∩∆P |−2/N

∫
supp(w)∩Ω̂±

w2dx, (A.5)

for some constant C± > 0, provided that |supp(w) ∩ Ω̂±| ≤ η0 and |supp(w) ∩ ∆P | 6= 0.
Combining (A.4) and (A.5), we obtain (A.1). The lemma is proved.
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