
HAL Id: hal-04603075
https://hal.science/hal-04603075v1

Submitted on 6 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flexible Terrain Erosion
Marc Hartley, Nicolas Mellado, Christophe Fiorio, Noura Faraj

To cite this version:
Marc Hartley, Nicolas Mellado, Christophe Fiorio, Noura Faraj. Flexible Terrain Erosion. The Visual
Computer, 2024, 40, pp.4593-4607. �10.1007/s00371-024-03444-w�. �hal-04603075�

https://hal.science/hal-04603075v1
https://hal.archives-ouvertes.fr

CGI2024 manuscript No.
(will be inserted by the editor)

Flexible Terrain Erosion
A Fluid Simulation-Independent Approach Compatible with Multiple
Representations

Marc Hartley1 · Nicolas Mellado2 · Christophe Fiorio1 · Noura Faraj1

Abstract In this paper, we present a novel particle-
based method for simulating erosion on various terrain
representations, including height fields, voxel grids, ma-
terial layers, and implicit terrains. Our approach breaks
down erosion into two key processes - terrain alteration
and material transport - allowing for flexibility in simu-
lation. We utilize independent particles governed by ba-
sic particle physics principles, enabling efficient parallel
computation. For increased precision, a vector field can
adjust particle speed, adaptable for realistic fluid sim-
ulations or user-defined control. We address material
alteration in 3D terrains with a set of equations appli-
cable across diverse models, requiring only per-particle
specifications for size, density, coefficient of restitution,
and sediment capacity. Our modular algorithm is versa-
tile for real-time and offline use, suitable for both 2.5D
and 3D terrains.

1 Introduction

Automated terrain generation is a key component of
natural scene digital modeling for animated movies and
video games. A standard approach is to first generate a
base terrain geometry using noise to define the height
on the input domain [28, 31, 42], the result will most
likely lack realism and feel synthetic. Erosion simulation

Marc Hartley
E-mail: marc.hartley@umontpellier.fr

Nicolas Mellado
E-mail: nicolas.mellado@irit.fr

Christophe Fiorio
E-mail: christophe.fiorio@lirmm.fr

Noura Faraj
E-mail: noura.faraj@umontpellier.fr
1 LIRMM, CNRS, Université de Montpellier, France
2 IRIT, CNRS, Université de Toulouse, France

algorithms are applied, to simulate thousands of years
of ageing by reproducing physical phenomena - i.e. ef-
fects of the elements (rain, wind, running water...) - af-
fecting the terrain making it more believable [17,44,45].
The process of terrain alteration caused by the effect
of water, air, or any other element - natural or not -
over time is usually performed in three steps [29]: de-
tachment - pieces of the ground of variable dimen-
sions, ranging from complete ledges to grains of sand,
are removed from the terrain depending on the simu-
lated meteorological phenomenon - transport - pieces
of ground fallen from their initial position are moved
to a different one (e.g. a cornice falls down a slope or
a grain of sand is thrown into the air) - and deposi-
tion - transported pieces of land are accumulated at
a new part of the landscape. Various phenomena can
cause these alterations: thermal erosion (bursting of
rocks caused by expansion of water under frost, then
falling of debris to the bottom of a slope), hydraulic
erosion (detachment caused by the impact of water
particles on surfaces and the transport of sediments by
the flow of runoff), wind erosion (fine particles car-
ried away in the wind and hit surfaces on their way,
creating new fine particles which then also fly away),
chemical erosion (chemical decomposition of rocks
caused by rainwater or other fluids), other exceptional
phenomena such as avalanches, animals, lightning, etc...
modify the terrain [1, 8–11].

In practice, the core idea to simulate erosion is to
add or remove material from the terrain at given po-
sitions on the interface between the terrain and fluid
eroding it (e.g. air or water). Hence, the two major
problems to tackle are: how to locally alter the ter-
rain geometry for material detachment and deposition
and where to perform these alteration given the prop-
erties of the environment (terrain slope, fluid density
and velocity). A terrain is more than often represented

2 M. Hartley et al.

Coastal erosion Gobelins - Wind erosion Thermal erosion

Fig. 1: Applying shading and textures on the generated geometry can produce a plausible aspect of a coast eroded
by waves on a long timespan, or a desertic landscape eroded by wind, or a mountainous area flatten by thermal
erosion.

Fig. 2: Our method require a base geometry, a small number of parameters for the particles and the medium
used for the erosion simulation. It can be easily adapted to be compatible with different mediums and terrain
representations.

in 2.5D using a 2D image called a heightmap which
grey scale values define terrain elevation. While being
the major terrain representation, only a limited num-
ber of environments can be modeled. Indeed, natural
landscapes are intrinsically 3D (overhangs, cavities or
geological structures such as arches or gobelins), this
is particularly true for underwater environments gen-
eration. Alternate representation such as voxel grids,
material layers or implicit surfaces can be used. A wide
variety of method have been proposed to simulate natu-
ral erosion phenomena on heightmaps as the partial dif-
ferential equations to model erosion can be discretized
and solved in 2D and the material detachment and de-
position at a given point of the terrain surface can be
easily performed by elevating or lowering the ground
level i.e. changing locally pixel intensities. For volumet-
ric representations, the alteration of the terrain is not
as trivial. To define where to perform the erosion pro-
cess the local slope variations are more than often used
combined with eroding medium information. This fluid
can be simulated using particle systems, Smoothed Par-
ticle Hydrodynamics (SPH) [25] or approximated using
a simple vector field. Proposed methods offer a specific
erosion effect tailored to a single terrain representation
and fluid simulation.

In this work we propose an approach to simulate
a large part of the geomorphological and meteorologi-
cal phenomena present in the literature of terrain gen-
eration (including 3D and volumetric effects). We in-
troduce a generalized algorithm performing the three
stages of erosion on surface and volume representations
alike, and expose very few intuitive parameters to be
adjusted by the user (Figure 2). We propose to tackle

separately the material variation and the fluid simula-
tion. Our method relies on a particle system to sim-
ulate eroding agents, each thrown particle will collide
with the terrain, perform terrain alteration at the colli-
sion point and transport material along its path. Their
motion is computed using simple particle physics ac-
counting for the medium density and particle proper-
ties (buoyancy and gravity forces). We consider each
particle as independent, hence, they do not interact
with each other, no collision detection or response. This
simplification allows for efficient parallel computation.
When more accuracy or control is needed, we propose to
provide a vector field used to modify the particle speed
at each time step. The nature of this vector field is flex-
ible, it can be computed using a more or less accurate
fluid simulation (SPH, FLIP,...) or be manually defined
by the user. We propose a particle-based strategy for
material alteration that can be applied on surface and
volumetric representation.
The main contributions of this paper are:

– a generalized particle-based algorithm performing
the three stages of erosion on surface and volume
representations,

– decoupling the erosion system from the fluid simu-
lation, making the process more flexible in its usage
and implementation and opening the door for richer
effects that can easily be produced.

2 State of the art

In this section, we first present the major terrain repre-
sentations (height fields, layered representations, voxel
grids, and scalar functions) and a subset of the ma-

Flexible Terrain Erosion 3

jor simulated phenomena used to erode terrains. We
highlight the fact that, in the literature, a specific ero-
sion method tailored to a given terrain representation
is proposed for given phenomena which might lead to
limitation in term of terrain modeling. Indeed, changing
representation costs information and precision loss.

2.1 Terrain Representations

A terrain can be represented in various ways, each of
them suited for a given application of which we give an
brief overview, more details can be found in [17].
Height Fields represents the surface of the terrain by
defining the elevation at each point in a 2D grid. This
representation is simple, regular, and fast to process
allowing for easy manipulation, such as raising or low-
ering the terrain [15,16].
Layered Representations are an extension of height
fields using a 2D grid where each cell represents a stack
of different materials instead of a simple height [6,36] al-
lowing for memory efficient representation of volumetric
terrains. To create complex structures, arches or caves,
solid materials can be transformed into more granular
ones, that can be stabilized [36].
Voxel Grids are regular, uniform volumetric grids that
encode information on the presence or absence of ma-
terial for each 3D point in the domain. Voxel grids are
advantageous due to their regularity [13] and ability to
represent volumetric models at the cost of high memory
footprint, which has limited their use in terrain gener-
ation [21, 23, 26]. We consider two voxel grid represen-
tations : density-voxel grids for which each voxel con-
tains a scalar value, for instance the occupation per-
centage [14] and binary voxel grids that can be seen as
a mask containing the presence of material information.
Implicit terrains represent landscapes as an implicit
surface defined by a scalar function. This allows for
high definition large terrain modeling. The application
of combinable scalar function overlays [18] or the defini-
tion of user-defined gradients [19] can be used to create
complex terrain features. Altering a implicitly defined
surface is a challenging task hence limited option exist
for erosion simulation [33].

2.2 Erosion Processes

Erosion processes play a crucial role in shaping land-
scapes over time. We present different kind of erosion
and how they apply to given terrain representations.
Note that using existing methods all erosion methods
can not be used on all representation.
Thermal Erosion is driven by large temperature shifts,
transferring material based on slope thresholds. The
process is iterative, redistributing material until slopes
stabilize. It can be computed efficiently on height fields

and layered terrains due to their manipulable height na-
ture [6, 28, 36]. However, its application on voxel grids
is challenging due to limited Z-axis resolution.
Hydraulic Erosion stems from water movement, erod-
ing and depositing sediment based on water flow inten-
sity. 2.5D terrains are widely studied for this simulation,
using either water slope velocities [29] or water simu-
lations for erosion effects [27]. For smaller scales, 3D
fluid simulations on voxel grids have been proposed [5].
Kristof et al [25] used SPH (Smoothed Particle Hydro-
dynamics) for meshless erosion simulations on various
terrains. Their method involves numerous particle in-
teractions, demanding significant computational power.
Our approach draws inspiration from this but enhances
efficiency by removing certain particle interactions.
Wind Erosion shifts material through wind force, no-
tably impacting areas with fine surface particles like
deserts. It has been modeled on discrete height fields
[35,40] by mimicking sand’s wind-driven trajectory and
using thermal erosion for corrections. This process is
simulated by iteratively displacing small amounts of
matter, which make it less suitable for representations
with discrete height resolution.
Erosion by Other Forces includes influences like glaciers,
snow, tectonic movements, and fauna, each introduc-
ing distinctive terrain patterns, enriching its intricacy
[8–12, 43]. However, most methods are tailored by a
given terrain representation, often the height fields, and
might not be applicable to other representations due to
their intrinsic properties.

3 Particle erosion

Erosion occurs in three stages: material detachment,
transport and deposition (respectively in red, black and
green in Figure 3). In our approach, particles move
through the medium following its flow (i.e. wind in air
or currents in water) and then absorb or deposit a small
amount of material upon contact with the land surface,
effectively fulfilling the three stages of erosion.

detachment

Fig. 3: Three steps of the erosion process from the sed-
iment point of view: detachment from its original lo-
cation - dotted red circle -, transport in a fluid - dot-
ted black circle -, deposition at a new location - dotted
green circle.

4 M. Hartley et al.

3.1 Overview

Particles are transported through the medium and can
pass through several different media. Each medium is
defined by a density and a flow. Consider, for example,
water density to be 1000 kgm−3 and that of air to be
1 kgm−3. The gravity applied to the particles is then
very different between open and submerged environ-
ments due to the difference in buoyancy, while the pro-
cess remains similar. Using a pre-calculated flow field
to guide particle movement simplifies the simulation by
treating particles as independent entities, eliminating
the need for inter-particle calculations. This not only
reduces significantly the overall execution time but also
offers users high flexibility over the quality of the sim-
ulation and simplify the implementation.

3.2 Erosion process

qdetachment

qdeposit

Every time the particle hits the
ground, a given amount qdetachment

of sediment is detached from the
ground (red arrows) while another
amount qdeposit of sediments is de-
posed at this location (green ar-
rows). Our erosion model is based on the work of Wo-
jtan et al where a regular 3D grids are used to esti-
mate the fluid velocity and sediment transport [52]. In
the spirit of [25], we transposed their method into a
particle-based erosion simulation, but, in our proposi-
tion, we decouple the particle system from the fluid sim-
ulation, making the process more flexible and opening
the door for richer effects that can easily be produced.

Detachment. As a particle approaches the surface
of the terrain, its motion applies friction at the interface
between fluid and ground, causing bedrock to dislocate
microscopic parts, that we call abrasion. We use pseu-
doplastics model to approximate the amount of matter
removed due to the shear forces while considering the
physical properties of the fluid and the ground [52].

The shear rate θ is approximated by the relative
velocity of the fluid to the solid boundary υrel over a
short distance l. We approximate the shear stress τ at
the solid boundary by a power-law:

τ = Kθn (1)

where θ = υrel/l, K is the shear stress constant (often
set to 1) and n ∈ [0, 1] is the flow behaviour index.
Shear-thinning models typically assume n close to 1

2 ,
which is why we used this value as a constant.

We can then compute the erosion rate ε at any con-
tact point between a fluid and a solid boundary using
(1) by

ε = Kε(τ − τc)
a (2)

with Kε ∈ [0, 1] a user-defined erosion constant, τc the
critical shear stress value for which the matter starts to
behave like a fluid and a a power-law constant, typically
considered as a = 1.

In our method, the eroded quantity is approximated
as the material contained in the half sphere, of radius R,
in the normal opposite direction at the particle impact
point (Figure 6). We then use (2):

qdetachment = ε
2πR3

3
(3)

to get the final eroded amount qdetachment. The particle
is also defined by a maximal amount of sediments that
can be contained in its volume before being saturated
noted Cmax. Note that this constant will be used for
the settling velocity computation (7).

Deposition. The eroded sediments are considered
in suspension in a fluid and are affected by its velocity.
A fluid particle then transports the sediments in its flow
until gravity settles it onto the ground again. The effect
of gravity is modeled by a settling velocity ws defined in
Eq (7). We consider that the amount of sediment settled
is proportional to the norm of the settling velocity as
proposed in [52] with ω ∈ [0, 1]:

qdeposit = ω||ws||. (4)

3.3 Transport

Our simulation is computed by integrating the full tra-
jectory of multiple particles at each iteration unlike
most other erosion methods. This allows to constantly
have a terrain in a plausible state, while giving the pos-
sibility to increase the aging effect by running more
iterations. Note that, reducing progressively the overall
erosion strength can be used as a strategy to adapt the
computation time to a chosen level-of-details.

We first present how to compute the particle speed
using particle’s physics then how to add optional medium
velocity field to add a fluid simulation or user control.

Particle’s physics. From its independence with
other particles: we consider each particle following New-
ton’s laws of motion.
First, we define the external forces Fext applied on each
particle, we consider gravity and buoyancy. We calcu-
late the buoyancy force B = −ρfV g⃗ with ρf the den-
sity of the fluid, V the volume of the particle and g

the gravitational acceleration, but we can also calcu-
late the force of gravity G = Mpg⃗ with Mp the mass
of the particle. We then have the final external force
Fext = G⃗ + B⃗ = Mpg⃗ − υfV g⃗ knowing the density of
an object ρp =

Mp

V , we have:

Fext = V g⃗(ρp − ρf). (5)

Flexible Terrain Erosion 5

High bounciness Low bounciness

Particle erosion

Fig. 4: The coefficient of restitution affects the amount
of energy absorbed from the particle when hitting the
ground. Here, rain is applied on an initial slope (yellow).
Only two particles are displayed, with a high (blue) and
low (red) coefficient of restitution. The resulting slope
after erosion is displayed in blue and red (right).

The particle velocity υ can be integrated from (5) by:

υ =

∫
Fext dt+ ws + υ0, (6)

with ws the settling speed of sediments in a fluid with
a viscosity µ given by Stoke’s Law [48]:

ws =
2

9
gR2 (ρp − ρf)

µ
f(C). (7)

We use the Richardson-Zaki relation as the hindered
settling coefficient:
f(C) = 1−

(
C

Cmax

)n

with C and Cmax respectively the fraction of volume of
sediments contained and the maximal fraction of sedi-
ments the particle can contain, and n an exponent typ-
ically 4–5.5, which we set to 5 [38,52].

Finally, the particle position can be integrated as:

p =

∫
v dt+ p0.

When the particle hits the ground, a coefficient of resti-
tution affects its behaviour by reducing its velocity post-
collision. This value depends on ground material as it
is influenced mainly by the material’s particle shape,
coefficient of friction and density [53]. Less bouncy par-
ticles lose speed quickly and settle down sooner, forming
a steeper pile (Figure 4 blue), or a higher talus angle
like chalk. On the other hand, more bouncy particles
disperse more widely upon hitting a surface, resulting
in a gentler accumulation like clay (Figure 4 red).

Velocity field. In our model, we allow the user to
add a velocity field to the environment that influences
particles motion. This velocity field can be the result of
a complex fluid simulation, a uniform vector field, or an
artistic motion field. We modify Equation (6) such that
the particle’s speed will be influenced by the velocity
field as follows:

υ =

∫
Fext dt+ ws + αυf + υ0, (8)

with υf medium velocity field modulated by α ∈ [0, 1].

Base terrain generation

Terrain representation: Simulation:

(Optional) Velocity field

S
im

u
la

ti
o
n

C
o
n
tr

o
l

- Height field,
- Voxel grid,
- Stacked layers,
- SDF, ...

- Particle emission
- Detachment and
deposition computation

Fig. 5: Our overall pipeline: our erosion process com-
pute matter displacement of a terrain using an arbi-
trary representation as long as intersections between
particles and the ground can be detected. An optional
velocity field, provided by the user, guides the particles
trajectories. We propose surface alteration methods to
apply the erosion to the terrain in a coherent way be-
tween possible representations.

Our particle system can model intricate scenarios,
like the erosion caused by water currents on the seabed
or aeolian erosion. The velocity field remains static dur-
ing the erosion, which may cause inconsistencies in the
fluid velocity field. However, minor changes can be over-
looked to maintain a balance between realism and com-
putational efficiency [50]. We offer several velocity im-
provement methods:
-Fluid simulation refinement: Many erosion sys-
tems incorporate fluid simulation, requiring regular up-
dates for erosion and velocity [25,52]. Our method can
use fluid simulations with multi-resolution refinement,
with the possibility to focus the velocity field adjust-
ments near the updated boundaries of the surface [41].
-Particle velocities in fluid simulation: With a La-
grangian fluid simulation relying on particle systems
[24], our particle velocities can be incorporated in its
computation. This approach is only a provisional solu-
tion due to potential parameter mismatches with main
fluid simulation.
-Velocity field diffusion: Given the minor changes
to the surface level at each erosion iteration, which re-
flect the gradual alterations in terrain surface, we can
estimate that the velocity at a fixed point transition-
ing between the inside and outside of the terrain closely
mirrors the velocities observed in its surrounding area.
In this context, we can simply interpolate the velocity
field at any transitioning point. This simple method,
as used in Figure 9, allows us to find a balance be-
tween achieving realistic flow simulations and maintain-
ing computational efficiency.

6 M. Hartley et al.

Q<0

Q>0

Q=qdeposit-qdetachment

Height field Layered materials Voxel grid Implicit surface

c

D

Fig. 6: Illustration of the material detachment in the
(half-)sphere at contact point C (cross) on different
representations. (height field) When Q < 0 material
detachment happen in the bottom scaled half sphere
of the particle’s contact with the ground, while the de-
position is applied on the upper half sphere of volume
when Q > 0. Unlike the height field, for 3D terrains
detachment and deposit are applied in the full sphere
around the contact point.

4 Our erosion method

In this section, we describe how to apply detachment
and deposition to different terrain representations with
our method (Figure 5). We cover the most commonly
used representations namely height fields, layered ter-
rains, voxel grid and implicit surfaces, note that our
work could be extended to additional representations.
Two conditions need to be satisfied for a representation
to be eligible for our erosion method: being able to eval-
uate the intersection of a particle with the ground and
compute the normal of the terrain at this point. To the
best of our knowledge, all representation do.
We use Verlet integration for the particle’s physics [51],
with low error rate and stability even for high dt, reduc-
ing computation time for negligible imprecision [2, 49].

For all the representations, the amount of material
absorbed by the particle, i.e. the erosion value qdetachment

from (3), is taken around the particle at a radius R,
meaning that the modification of the terrain by a par-
ticle at position c will only occur for the positions p

satisfying ||p − c|| < R. At the same time, the amount
qdeposit from (4) is deposited, resulting in a change
Q = qdeposit − qdetachment.

In our simulation, while the dynamics are informed by
physical principles, the particle size is conceptualized
within a dimensionless framework. This provides the
flexibility to adapt our results to various real-world
scales, ensuring the applicability of our model across
diverse scenarios. Note that, for a 2.5D terrain, we can
consider that half of the sphere surrounding the particle
is affected which has a volume of V2.5D = 2πR3

3 while
a 3D terrain is affected by the full sphere V3D = 4πR3

3

(as illustrated Figure 6). In the following sections, we
will describe the strategies used to modify the amount
of matter for different representations.

4.1 Application on height fields

On a height field defined by h(p) = z, the intersection
point with the surface is verified at pz = h(p), and the
normal can be computed at the intersection point.

For this representation, the half sphere is scaled in
the z direction to fit αV = Q using α = Q

V . We then
can decrease the height h′(p) at all points p by the
height of the scaled half sphere at position p. Given
the height of the scaled half sphere of center c and the
distance of the particle to the center d = ||p − c|| by
hhalfsphere(p) = α

√
R2 − d2 for all p such that d ≤ R

the radius around a particle.
This change of height can be sampled at all points

of the 2D grid by reducing the height by

∆h(p) =

√
R2 − d2

α
=

Q
2
3πR

3

√
R2 − d2 (9)

The height at each point after an erosion is then com-
puted as h̃(p) = h(p) +∆h(p).

4.2 Application on layered terrains

Layered terrains are defined as µ : R3 → N assigning a
discrete material index µ for any point in space [6,36]. In
the original work, outer borders stack elements of the
terrain are transformed into density-voxels to enable
global erosion through height changes. We enable the
erosion/deposition process directly on the layers hence
removing the need for representation changes.
When intersecting the terrain, the amount eroded for
each material stack should be the integration of the vol-
ume of the intersection between the sphere surrounding
the particle and the cubicle represented by the stack.
Since there is no easy solution [22], we approximate the
volume of the stack we need to alter using the previ-
ously defined height field equation (9). At a distance d

from the particle, the height is defined as:

H(d) =
|Q|

2
3πR

3

√
R2 − d2. (10)

If Q > 0 (more deposition is applied that detachment)
then we transform the materials in the stack contained
in the sphere to become ground material. For Q < 0

the materials are transformed in background material.

4.3 Application on implicit terrains

Implicit terrain are defined using a function f(p) and
its variation resulting from the erosion process using
∆f(p). We propose a strategy to compute ∆f(p) at
any point of the sphere surrounding the erosion point
based on metaball primitives. At each contact point a
metaball is added to create a hole or a bump in the

Flexible Terrain Erosion 7

terrain. A metaball is defined as:

∆f(p) =
3Q

π

(1− d)

R
(11)

with d the distance of the point p to the sphere center.
For all point p for which d ≥ R, ∆f(p) = 0 (see A).

As they are the most commonly used representa-
tions, we propose a formulation to erode implicit ter-
rains defined by Signed Distance Functions (SDF) and
by gradient or vector fields.

Signed Distance Functions Considering SDF, the
terrain is defined as the 0-set of the signed distance
function f : R3 → R, hence, for f(p) = 0, the inside as
f(p) < 0 and outer-part (i.e. air or water) as f(p) > 0.
The particle erosion applies at impact points at discrete
positions, so we propose to add or subtract metaballs
defined using equation (11) to respectively deposit or
erode material using a composition tree:
metaball(p) = −∆f(p).
Now the eroded terrain function f̃(p) will be evaluated
at each point p from the initial terrain value f(p), the
erosion function metaball(p) and the composition func-
tion g(f1, f2):

f̃(p) = g(f(p),metaball(p)).

As a metaball is added for each particle bounce on the
terrain space partitioning optimization algorithms such
as k-d trees, BSP trees or BVH can easily be used to
improve performances.

Other implicit terrains are present in the liter-
ature, notably a 2.5D representation based on the sur-
face gradient [19] and a 3D representation based on
curves [4] for which the trajectory of each particle pro-
jected to the closest surface could be used to define the
alteration of the terrain.
In the case of gradient-based representation, we pro-
pose to use the partial derivative from the equation of
the 2D scalar fields (9) that gives:

∇h′ = − Q
2
3R

3

1√
R2 − d2

C⃗P (12)

with C⃗P the vector from the position p to evaluate to
the center of the erosion point c. Now the new gradient
field can be computed as:

∇h̃(p) = ∇h(p) +∇h′(p).

4.4 Application on voxel grids

We consider two of the voxel grids representations: density-
voxel grids and binary voxel grids for which we present
our material alternation strategy.

Density voxels. We consider "density-voxel" grids
defined on f : Z3 → [−1, 1] for which a voxel is be full

for f(p) = 1, partially full for −1 < f(p) < 1 or empty
for f(p) ≤ −1. This definition allows us to erode them
smoothly. Since this kind of grid is a discretizaion of a
scalar function, We could directly use (11), as described
previously, but we take advantage of the discrete nature
of the representation to avoid expensive computation.
We apply the erosion from a particle at position c on
all points p in the volume proportionally to the dis-
tance from the center of the sphere d = ||p− c|| to find
an approximation to the real erosion value per voxel
qapprox = Q 1−d

R . Using their discrete nature, we rectify
this value to sum up the total erosion value to Q by di-
viding each value by the sum of the distances. We now
consider eroding the "empty" voxels since their density
can drop until −1. We then have for all surrounding
voxels:

∆f(p) = Q
(1− d

R)∑
(1− d

R)
. (13)

Resulting voxel value is computed as f̃(p) = f(p) +

∆f(p). In our implementation, when f(p) > 1, we sim-
ply transport the density excess to the above voxel,
giving it a very close analogy to height fields as long
as |∆f | < 1.

Binary voxels The terrain can be represented us-
ing an occupancy function as f : Z3 → {0, 1} where a
voxel f = 1 defines the ground and f = 0 the back-
ground.
We propose to apply particle erosion by assigning vox-
els a number of hits, and transform them as air or as
ground when this number reaches a critical value C

that is proportional to the particle’s strength parame-
ter Kε [3].
On a hit, all voxels in a radius R receive a hit number:

∆hits = ⌊α∆f⌋ (14)

with ∆f the erosion per voxel computed using (13) and
α a coefficient high enough to obtain values above 1.
All voxels with #hits > C are transformed to back-
ground and voxels with #hits < −C are transformed
to ground.
Note that, a binary voxel grid can also be transformed
into a density-voxel grid to be eroded smoothly.

Our formulation for height fields (9), can be used to
erode 2D scalar field-based representations. Similarly,
our proposition for SDF (11) enables erosion for con-
tinuous 3D scalar fields and voxels (13) for discrete 3D
scalar fields respectively.

5 Results

8 M. Hartley et al.

Fig. 7: Our erosion method is applied iteratively on a completely synthetic island, the terrain is altered to obtain
a plausible shape by forming rills. The use of particles with hydraulic densities dropped from the sky results in a
strong erosion on the sides of the mountains, and the particles that slide to the sea are mainly drifting offshore
resulting in the formation of small beaches and a weaker erosion on the bottom of the water body. Repeating the
process causes the island height to decrease progressively up to the point where only the submerged part of the
terrain is sheltered from erosion.

Our erosion process enables
the simulation of a wide
range of erosion effects on
the major terrain represen-
tations alike. In this section,
we present applications that
demonstrate the versatility
of our method by changing the particle’s effect size,
quantity, density, maximum capacity, deposition factor
and the velocity fields. The results of each process are
presented in Figure 14, parameters used are available at
Table 1. It is important to note that all erosion exam-
ples presented in this section are available for any 3D
terrain representation. However, we cannot create vol-
umetric structure, such as overhangs, using 2.5D repre-
sentations (height fields).

Environment density ρf is set to 1 kgm−3 above wa-
ter level (terrain blue part) and to 1000 kgm−3 below
it. Velocity field’s refinement is done by using the pre-
sented diffusion strategy.

Rain. Hydraulic erosion from rain is the most com-
mon process used in terrain generation. In this case,
particles are seen as water droplets falling from the sky
and rolling downhill due to the gravitational force of
Earth. No velocity field is required from fluid simula-
tion. These parameters result in a detailed geometry of
the rills on the side of mountains that quickly emerge
and deposit many sediments in the valley. We demon-
strate the result of rain erosion in Figure 14: Rain with
a computation time of 4 seconds.
Using this erosion parameters in combination with wa-
ter bodies results in different outcomes (Figure 7). The
terrain above water is directly affected by the erosion
process while particles colliding with the underwater
part of the terrain are slowed down and filled with sed-
iments, leading to mainly apply deposition. The result
is a typical hydraulic erosion on mountains and the for-
mation of slopes and beaches near water level.

Coastal erosion. Waves repeated motion creates
coastal erosion, that can be seen as cliffs with holes at

the water level.
We apply a uniform velocity field in the water pointing
towards the coast to simulate waves and emit particles
from the water area with a large size, a density between
air and water densities, a high capacity factor and a low
deposition factor ω. Using these parameters, the erosion
process is focused at the interface of air and water, and
apply a coarse detachment while depositing a very small
quantity of sediments, simulating the corrosive effect of
water on limestone.
This effect can only be simulated on 3D terrain repre-
sentations, but will create cliffs on a 2D representation.
Figure 14: Coastal presents the result of coastal erosion
on a density-voxel grid that creates overhangs around
sea level using a small amount of particles. Note that,
the same effect using an alternate implicit representa-
tion based on SDF is displayed in Figure 10. A shaded
version of this effect is presented in Figure 1.

Rivers. Given a source point, we generate parti-
cles that run downhill, simulating the formation of a
river. More complex erosion simulation using fluid sim-
ulations like SPH [25] would create realistic results at
the cost of high processing time. Our method offers the
flexibility to be applied either with a velocity field (sim-
ple, used given or resulting from a fluid simulation) or
without allowing for simplicity and efficiency.
When provided with a hand-made or procedural veloc-
ity field, our particle system can reproduce simple river
meanders (Figure 14: Meanders).
Figure 14: River presents a river that has been mod-
eled by emitting water particles with different sizes that
ranges from 1.5m to 5m, a high coefficient of restitu-
tion and a low capacity factor. Random sizes are used
to simulate a river for which the flow rate had fluctu-
ated over formation time, while the low capacity ensure
that the banks of the river stays smooth. A high coef-
ficient of restitution is a strategy that let the particles
flow with low friction, approaching a water behaviour.
Our particles are affected only by gravity, without fluid
simulation.

Flexible Terrain Erosion 9

Name Rep. Dimensions Res #P #N R COR ρp Cfactor ε ω Vel field t

Rain H 100x100 20 100 10 1.0 1.0 1000 10.0 2.5 0.3 None 4.0
Coastal DV 100x100x30 10 80 3 5 0.1 500 10.0 5.0 0.5 Uniform 0.5
Meanders I N/A N/A 10 20 5.0 1.0 1000 1.0 1.0 1.0 (1) 1
River H 100x100 5 100 50 1.5-5 0.5 900 0.1 1.0 1.0 None 2.5
Landslide H 100x100 20 200 10 2.5 0.2 500 0.1 1.0 1.0 None 4
Volcano DV 100x100x40 50 150 30 1.0 5.0 2000 1.0 1.0 5.0 None 0.8
Karst BV 100x100x50 2 1000 40 5 0.5 500 10.0 5.0 0.5 Uniform 20
Tunnel DV 100x100x50 1 100 100 2.5 0.1 500 1.0 1.0 1.0 None 0.8
Wind DV 100x100x50 0.2 100 10 1.5 0.9 1.5 1.0 1.0 1.0 [33] 0.5
Underwater H 100x100 10 100 50 2.5 0.9 1000 1.0 1.0 1.0 [47] 4

Table 1: Parameters used for the generation of the terrains presented in Figure 14, with "Rep" the representation
(H: Heightmap, DV: Density-voxels, BV: Binary voxels, I: Implicit) "Res" the resolution in meter per voxel or
cell, #P the number of particles per iteration, #N the number of iterations, R the particles radius (in voxel or
cell unit), COR the coefficient of restitution, ρp the particle density in kgm−3, Cfactor, ε and ω respectively the
capacity, erosion and deposition factors, "Vel field" the type of velocity field used and t the computation time of
the simulation in seconds on CPU.
(1) The velocity field is a vector field defined as υf (p) = [0 sin(p.x) 0]T .

Landslide are mainly caused by large amount of
water saturating the ground and flowing downhill, trans-
porting matter in its path.
By using water particles with a medium size, a low coef-
ficient of restitution and a low capacity factor but a high
deposition factor ω, they transport sediments on short
distances as the velocity quickly drops to 0, and ground
material is completely spread along its path since it is
easier to deposit the same amount of sediment than
the eroded amount at each collision point. Reducing the
density of the particle simulates a rise of viscosity in the
settling velocity formula, increasing again the quantity
of matter to deposit at contact with the ground. By
this means, we can simulate landslides as illustrated on
Figure 14: Landslide. A smoother surface is resulting,
compared to the rain erosion as the rills are filled with
sediments as soon as they begin to form. By setting the
initial capacity of the particle equal to 10% of its max
capacity, the mass of the terrain increases, simulating a
volcano eruption as illustrated on Figure 14: Volcano.

Karsts networks are created over hundreds of years
from the corrosion of water on the limestone in the
ground. A limited number of methods have been pro-
posed for the procedural generation of karsts [34].
By reducing the deposition factor ω, the particles simu-
late corrosion (without mass conservation). We can use
the same particle parameters than the coastal erosion
(big size, a density between air and water densities, a
high capacity factor and a low ω) and optionally pro-
vide a 3D shear stress map. The karst will automatically
follow the softest materials, which is geologically coher-
ent as given in example in Figure 14: Karst, where we
can observe a "pillar" that is formed in the center, and
thus the karst forms two corridors that finally merge

partially. Underground results are only available for
representations allowing 3D structures. Another under-
ground terrain simulation is shown in Figure 14: Tunnel
in which a water runoff is eroding a tunnel without the
use of a fluid simulation. Here, when particles bounce
often on the terrain surface, the coefficient of restitution
may be seen as a viscosity parameter.

Wind erosion is a significant process in desertscapes
shaping since there are no obstacles on the airflow path.
Air particles can reach high velocities, transporting sand
over long distances forming either dunes or are blasted
into rocks, eroding into goblins.
By setting the density of our particles close to 1 kgm−3,
two erosion simulations can be applied at once. Air par-
ticles follow closely the flowfield given by the user in air.
This flowfield can be given from a complex simulation,
a user-defined wind rose [35] or a random flowfield with
a general direction.
The generation of the different sand structures depends
on the velocity field provided, and a simple field will eas-
ily generate linear dunes. On contact with a rock block,
the simulation will automatically erode block borders,
creating shapes looking like gobelins.
Figure 14: Wind gives an example of wind erosion on
a flat surface with rock columns being eroded. Given a
strong 2D velocity field computed by the high wind sim-
ulation proposed in [35] is used on light particles, the
simulation is fast thanks to the low number of collisions
each particle has with the ground.

Multiple phenomena A terrain eroded with mul-
tiple erosion phenomena applied on a 500x500x50 density-
voxel grid is illustrated in Figure 8. Here, water-density
particles are applying rain on the terrain while the coasts
of the river are being eroded thanks to a velocity field

10 M. Hartley et al.

defined at the water level. The velocity field defined in
the air mainly affects particles with air-density, such
that wind erosion can be applied at the same time. The
computation of these effects took 7 seconds on CPU.

Underwater currents Procedural generation of
underwater 3D terrains has received little attention.
The difference between the underwater and the sur-
face rely on the buoyancy force that is much stronger,
meaning that the water flow has a much more impact-
ing effect on erosion than wind. Taking into account
the density of the environment and the velocity field of
water in our formulas are the keys to be able to apply
any erosion in this environment. Our method works in
a water environment by giving at least water density to
particles. Given a velocity field describing underwater
currents from a complex simulation or from a sketch,
the particle system erodes the terrain.
In the example presented in Figure 14: Underwater,
the velocity field is given by a simple 3D fluid simu-
lation [46] applied on the terrain.

A complex water flow simulation is computed us-
ing SIMPLE [7] fluid simulation with OpenFOAM. The
resulting erosion can then follow complex water move-
ment and erode the terrain at the most affected parts of
the 3D terrain as the trajectories of the particles (green)
is highly affected by the fluid velocity (blue). The den-
sity of the particles and the environment being close,
the buoyancy cancels most of the gravity force, leaving
the velocity of the particles computed by the fluid ve-
locity υf and settling velocity ws from (8) (Figure 9).

6 Comparisons

In the following section, we compare our method with
existing ones to show that while we are versatile on the
terrain representation, we are also able to reproduce
various effects without applying specific algorithms. The
other works are displayed in blue to distinguish them
from ours.

Fig. 8: Multiple erosion types can be combined. On an
initial synthetic 500x500x50 density voxel grid, the a
wind erosion is applied on the surface of the terrain
while hydraulic erosion shapes the rills and the base
of the mountains. A water current digs its borders and
spreads sediments at the bottom.

Velocity field

Particle trajectories

Input Eroded result

Fig. 9: A complex water flow simulation is computed us-
ing OpenFOAM. Particle trajectories (green) are highly
affected by the fluid velocity (blue). Most the terrain
exposed surfaces is eroded (bottom).

Coastal erosion on implicit terrain represen-
tation: Paris et al present an erosion simulation method
applied to implicit terrains able to create coastal ero-
sion, karsts and caves by adding negative sphere primi-
tive in the terrain’s construction tree [33]. The positions
of the spheres are determined using a Poisson disk sam-
pling at the weakest terrain area defined by the Geology
tree of their model. They are simulating the corrosion
effect of water on the rocks. Our work is also able to
approximate this phenomena by defining the position of
these sphere primitives at the position where the water
particles hit the surface. While the computation time
of the positions of the sphere is higher due to the fact
that we are evaluating the position of our particles at
every time step in the implicit model (which could be
improved by the triangulation of the implicit surface,
or better, a dynamic triangulation), the distribution of
our erosion primitives is based on a physical model in-
stead of a mathematical model, meaning that we can
integrate more easily the direction and strength of the
waves for example. The management of their sphere
primitives can be replicated with our method by con-
sidering that a particle exists until a collision occurs,
at which point it disappears. Their method is not con-
serving the mass of the terrain, which is acceptable for
the corrosion simulation, but limits its validity for other
erosion simulations. In our method, the particle can be
tracked until it settles, ensuring mass conservation (Fig-
ure 10);

Wind erosion on voxel grid representation:
Jones et al propose a weathering erosion on voxel grids
by approximating and eroding continuously the most
exposed voxels [3]. When a solid voxel is decimated, it is
considered deposit and is displaced down the slope until
a minimal talus angle in the terrain is reached and if the
deposition is eroded again, it disappears. Our work is
able to reproduce their algorithm by sending our parti-
cles from a close distance to the terrain surface. By do-
ing so, we reproduce the erosion process as much as the
deposition process since the air particles, filled with sed-

Flexible Terrain Erosion 11

Fig. 10: The algorithm proposed by Paris et al [33] al-
lows for the simulation of coastal erosion (left) that we
can reproduce almost identically by allowing our parti-
cles to collide only once with the ground and applying
only erosion (center). If we apply our erosion with the
full tracking of our particles and using deposition, we
can achieve more diverse results (right).

Fig. 11: The algorithm proposed by Jones et al [3] al-
lows for an efficient simulation of the spheroidal ero-
sion, making the creation of gobelins on voxel grids in
a plausible way (left). Our algorithm naturally erodes
the most exposed areas of the terrain when particles
are affected by the wind (right).

iments, is falling automatically towards the local min-
imum of the erosion point. Just like in their work, we
can easily define the resistance value of the materials to
add diversity in the results. By adding the possibility
of a wind field, even a very simple uniform vector field,
to the simulation, we naturally add the wind shadow-
ing effect that protects a gobelin surrounded by bigger
gobelins, and also allows the deposit slope to fit more
closely to the wind direction (Figure 11).

Hydraulic erosion on height field representa-
tion: Mei et al integrate and adapt to the GPU the
pipe model proposed in [30] for the fluid simulation [27].
This simulation is simple but efficient enough to ap-
proximate the Shallow-Water equations in real time and

Fig. 12: While our resulting geometry on the hydraulic
erosion (bottom) is less smoothed than the one pro-
posed proposed by Mei et al. [27] (top), our method
allows the application on more terrain representations
than the height fields only.

use the speed of columns of water to compute the ero-
sion and deposition rate on the 2D grid of the terrain
at each time step. Using columns of water even allows
the flow to overpass small bumps on the terrain over
time. Our method initially rely on a stable fluid flow
that is consistent during the whole life time of a par-
ticle, but by refining the simulation at each time step
instead of at the end of the particles lifetime, our ero-
sion model is able to reproduce this effect, allowing the
terrain to have a single batch of fluid going through
it. Our method can be seen as a generalization of Mei
at al. that can then be used on more than discrete 2D
grids (Figure 12).

Wind erosion on stacked materials represen-
tation: Paris et al [35] simulate the effect of wind over
sand fields defined on stacked materials, creating dune
structures, even taking into account obstacles like [40]
and different material layers like vegetation [11] that are
not affected by abrasion [35]. A wind field simulation
is required to produce results, and while [40] and [32]
consider a uniform vector field, this work consider a
dynamic vector multi-scaled warped field from the ter-
rain height. The sand grains then apply multiple moves:
sand lift, bounces, reptation and avalanching. Once the
sand is lifted by the wind, the trajectory of the grains
can be seen as the displacement of particles, fitting com-
pletely with our model as illustrated Figure 13.

Fig. 13: The algorithm from Paris 2020 allow the gen-
eration of desertscapes (top), which we can (at least
partially) reproduce with our erosion simulation (bot-
tom). The different effects are achieved by affecting the
wind direction and strength.

7 Discussion

This work is a generalization of erosion that is appli-
cable to any terrain representation. In practice, while
similar particle physics is used on different terrain rep-
resentations, using similar parameters does not ensure
resulting in the same eroded terrain. Surfaces and nor-
mals being approximated differently have rippling effect
on particle trajectories. Note that, not all effects can be

12 M. Hartley et al.

applied to all representations, forinstance, karsts gener-
ation on 2.5D data structures.

Realism Realism of the erosion simulation is highly
correlated to the size and quantity of particles used and
their distribution. Using too few or distributing them
too sparsely will result in a terrain that is unrealistic
since the alteration will have localized effects, breaking
process homogeneity.
The resolution is also limited by the number and size of
the particles, which can be problematic on implicit ter-
rains that can theoretically have a infinite resolution.
Our method allows to perform erosion on implicit ter-
rains. However, in its current form, our algorithm is
time expensive on implicit representations since a large
number of primitives are added in the composition tree.
Using skeletons-defined primitives [20,39]from particles
trajectories and erosion/deposition values could be a
solution to optimize the computation time.

Usage of velocity fields In our erosion algorithm, we
simplify particle physics to enhance computational ef-
ficiency and facilitate parameterization. We use the ve-
locity field from fluid simulations to approximate par-
ticle velocities. Sediment mass is harnessed to compen-
sate for this approximation, allowing compatibility with
various fluid simulation algorithms. Velocity fields can
be recomputed at a frequency meeting the applications
needs, ranging from "classic erosion simulation" (re-
computed at each time step) to "simple simulation"
(never recomputed). We addressed provisional adjust-
ments to mitigate discrepancies when terrain changes
due to erosion are not reflected in a static velocity field
in section “3.3 Transport”. However, it is important to
note that these are expedient solutions and may not
fully capture precise dynamics of an evolving terrain.

Performances To facilitate parallelization, we inten-
tionally overlook particle interactions and sediment ex-
changes, albeit at the expense of achieving smoother re-
sults. Surface collisions are simplified to basic bounces
with a damping parameter instead of relying on com-
plex particles and ground properties (Young’s modulus,
friction, material, ...) [53], further easing the parame-
terization process. However, these simplifications, com-
bined with the inherent discrete nature of particles, as
opposed to the continuous nature of erosion, result in a
correlation between realism and particle count.
The performance of our method is influenced by the
time required for collision detection. Consequently, we
mainly observe better performances with explicit ter-
rain models than with implicit models.

Particle’s atomicity While we can replicate various
effects, the "fan" shape commonly observed in natural
erosion patterns is not perfectly represented. This limi-
tation arises because we do not account for the splitting

of a particle, a process that significantly influences the
multidirectional dislocation and trajectory of individ-
ual particles [37]. Additionally, we acknowledge an issue
where particles may collide with the ceiling and the de-
position is stuck. While a potential resolution involves
splitting particles upon impact rather than simply de-
positing sediments, this introduces complexities to the
parallelization layer of the method. Allowing particles
to split introduces unpredictability in the total number
of particles that will exist in the simulation. This unpre-
dictability can complicate the use of multi-threading.
Future works includes finding a data structure allowing
this splitting efficiently, leading to more realistic erosion
patterns.

Simulation with multiple materials One aspect we
haven’t addressed is a layered terrain with multiple ma-
terials. In the native way our method is done, we do not
consider the transport of different materials (all sed-
iments are considered as sand), but by storing a list
of the different materials and the quantity transported
by each particle, the same simulation process could be
done at the cost of some memory and performance over-
head.
Another possible adaptation of the erosion strategy for
material voxels is to extend the erosion computation
from binary voxels by define transformation rules from
one material to another when a voxel is eroded a num-
ber #hits < −C or #hits > C. For example, the ma-
terial "clay" may transform to "sand" when eroded or
to "rock" when many depositions occurred.

8 Conclusion

We introduced a flexible particle-based erosion system
that is easy to use and simple to implement. We have
presented how to adapt the process for various terrain
representations and generate a variety of erosion phe-
nomenon due to rain, wind, water bodies... by adjust-
ing intuitive parameters hence generate automatically
realistic 2.5D and 3D terrains. The use of external ve-
locity fields provides a high flexibility i.e. using the sim-
ulations that best fits the user’s needs (precision, con-
trol, implementation efficiency...). Our method can also
be applied to underwater environments with identical
physics simulation since our erosion method can be ap-
plied on 3D representations. Erosion algorithms are of-
ten limited to the use of height fields, but by finding
more generalized methods, we can go toward a global
use of 3D terrains, which can offer richer and more di-
verse landscapes.

Flexible Terrain Erosion 13

9 Revision

We have addressed the reviewers concerns in red namely
a typography in section 3.2.

References

1. Argudo, O., Galin, E., Peytavie, A., Paris, A., Guérin,
E.: Simulation, modeling and authoring of glaciers. ACM
Transactions on Graphics 39, 1–14 (2020). DOI 10.1145/
3414685.3417855

2. Baraff, D., Witkin, A.: Large steps in cloth simulation.
Proceedings of the 25th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH 1998
pp. 43–54 (1998). DOI 10.1145/280814.280821

3. Beardall, M., Butler, J., Farley, M., Jones, M.D.: Di-
rectable weathering of concave rock using curvature esti-
mation. IEEE Transactions on Visualization and Com-
puter Graphics 16(1), 81–94 (2010). DOI 10.1109/
TVCG.2009.39

4. Becher, M., Krone, M., Reina, G., Ertl, T.: Feature-
based volumetric terrain generation. Proceedings - I3D
2017: 21st ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games (2017). DOI 10.1145/3023368.
3023383

5. Beneš, B., Těšínský, V., Hornyš, J., Bhatia, S.K.: Hy-
draulic erosion. Computer Animation and Virtual Worlds
17(2), 99–108 (2006). DOI 10.1002/cav.77

6. Beneš, B., Forsbach, R.: Layered data representation for
visual simulation of terrain erosion. Proceedings - Spring
Conference on Computer Graphics, SCCG 2001 pp. 80–
86 (2001). DOI 10.1109/SCCG.2001.945341

7. Caretto, L.S., Gosman, A.D., Patankar, S.V., Spald-
ing, D.B.: Two calculation procedures for steady, three-
dimensional flows with recirculation. In: Proceedings of
the Third International Conference on Numerical Meth-
ods in Fluid Mechanics, vol. 19, pp. 60–68 (1973)

8. Cordonnier, G., Braun, J., Cani, M.P., Beneš, B., Pey-
tavie, A., Guérin, É.: Large Scale Terrain Generation
from Tectonic Uplift and Fluvial Erosion. IEEE Transac-
tions on Visualization and Computer Graphics 24 (2017).
DOI 10.1109/TVCG.2017.2689022

9. Cordonnier, G., Cani, M.P., Beneš, B., Braun, J., Galin,
É.: Sculpting Mountains: Interactive Terrain Modeling
Based on Subsurface Geology. IEEE Transactions on
Visualization and Computer Graphics 24 (2018). DOI
10.1109/TVCG.2017.2689022

10. Cordonnier, G., Ecormier-nocca, P., Galin, É., Gain, J.,
Beneš, B., Cani, M.P.: Interactive generation of time-
evolving, snow-covered landscapes with avalanches. Com-
puter Graphics Forum 37(2), 497–509 (2018). DOI
10.1111/cgf.13379

11. Cordonnier, G., Galin, É., Gain, J., Beneš, B., Guérin, É.,
Peytavie, A., Cani, M.P.: Authoring landscapes by com-
bining ecosystem and terrain erosion simulation. ACM
Transactions on Graphics 36(4) (2017). DOI 10.1145/
3072959.3073667

12. Cordonnier, G., Jouvet, G., Peytavie, A., Braun, J., Cani,
M.P., Benes, B., Galin, E., Guérin, E., Gain, J.: Forming
terrains by glacial erosion. ACM Transactions on Graph-
ics 42, 14 (2023). DOI 10.1145/3592422\"{\i}

13. Dey, R., Doig, J.G., Gatzidis, C.: Procedural feature gen-
eration for volumetric terrains using voxel grammars.
Entertainment Computing 27, 128–136 (2018). DOI
10.1016/j.entcom.2018.04.003

14. Eisemann, E., Decoret, X.: Single-pass gpu solid voxeliza-
tion for real-time applications. pp. 73–80 (2008)

15. Emilien, A., Poulin, P., Cani, M.P., Vimont, U.: Interac-
tive procedural modelling of coherent waterfall scenes.
Computer Graphics Forum 34, 22–35 (2015). DOI
10.1111/cgf.12515

16. Gain, J., Marais, P., Straßer, W.: Terrain sketching. Pro-
ceedings of I3D 2009: The 2009 ACM SIGGRAPH Sym-
posium on Interactive 3D Graphics and Games 1(212),
31–38 (2009). DOI 10.1145/1507149.1507155

17. Galin, E., Guérin, E., Peytavie, A., Cordonnier, G., Cani,
M.P., Benes, B., Gain, J.: A review of digital terrain mod-
eling. Computer Graphics Forum 38, 553–577 (2019).
DOI 10.1111/cgf.13657

18. Guérin, É., Digne, J., Galin, É., Peytavie, A.: Sparse rep-
resentation of terrains for procedural modeling. Com-
puter Graphics Forum 35(2), 177–187 (2016). DOI
10.1111/cgf.12821

19. Guérin, E., Peytavie, A., Masnou, S., Digne, J., Sauvage,
B., Gain, J., Galin, E.: Gradient terrain authoring. Com-
puter Graphics Forum 41, 85–95 (2022). DOI 10.1111/
cgf.14460

20. Hong, Q.: A skeleton-based technique for modelling im-
plicit surfaces. Proceedings of the 2013 6th Interna-
tional Congress on Image and Signal Processing, CISP
2013 2(Cisp), 686–691 (2013). DOI 10.1109/CISP.2013.
6745253

21. Ito, T., Fujimoto, T., Muraoka, K., Chiba, N.: Mod-
eling rocky scenery taking into account joints. Pro-
ceedings of Computer Graphics International Conference,
CGI 2003-Janua(July 2014), 244–247 (2003). DOI
10.1109/CGI.2003.1214475

22. Jones, B.D., Williams, J.R.: Fast computation of ac-
curate sphere-cube intersection volume. Engineering
Computations 34, 1204–1216 (2017). DOI 10.1108/
EC-02-2016-0052

23. Kaufman, A., Cohen, D., Yagel, R.: Volume Graphics.
Computer 26(7), 51–64 (1993). DOI 10.1109/MC.1993.
274942

24. Koschier, D., Bender, J., Solenthaler, B., Teschner, M.:
A Survey on SPH Methods in Computer Graphics. Com-
puter Graphics Forum 41(2), 737–760 (2022). DOI
10.1111/cgf.14508

25. Krištof, P., Beneš, B., Křivánek, J., Št’ava, O.: Hydraulic
erosion using smoothed particle hydrodynamics. Com-
puter Graphics Forum 28(2), 219–228 (2009). DOI
10.1111/j.1467-8659.2009.01361.x

26. Lengyel, E.: Voxel-based terrain for real-time virtual sim-
ulations p. 148 (2010)

27. Mei, X., Decaudin, P., Hu, B.G.: Fast hydraulic erosion
simulation and visualization on GPU. Proceedings - Pa-
cific Conference on Computer Graphics and Applications
pp. 47–56 (2007). DOI 10.1109/PG.2007.27

28. Musgrave, F.K., Kolb, C.E., Mace, R.S.: The synthesis
and rendering of eroded fractal terrains. Proceedings
of the 16th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH 1989 pp. 41–50
(1989). DOI 10.1145/74333.74337

29. Neidhold, B., Wacker, M., Deussen, O.: Interactive phys-
ically based fluid and erosion simulation. Natural Phe-
nomena pp. 25–32 (2005)

30. O’Brien, J.F., Hodgins, J.K.: Dynamic simulation of
splashing fluids. Proceedings Computer Animation, CA
1995 pp. 198–205 (1995). DOI 10.1109/CA.1995.393532

31. Olsen, J.: Realtime procedural terrain generation. De-
partment of Mathematics And Computer Science (. . .
p. 20 (2004)

14 M. Hartley et al.

32. Onoue, K., Nishita, T.: A method for modeling and
rendering dunes with wind-ripples. Proceedings - Pa-
cific Conference on Computer Graphics and Applications
2000-January, 427–428 (2000). DOI 10.1109/PCCGA.
2000.883978

33. Paris, A., Galin, E., Peytavie, A., Guérin, E., Gain, J.:
Terrain amplification with implicit 3d features. ACM
Transactions on Graphics 38, 1–15 (2019). DOI 10.1145/
3342765

34. Paris, A., Guérin, E., Peytavie, A., Collon, P., Galin,
E.: Synthesizing geologically coherent cave networks.
Computer Graphics Forum 40, 277–287 (2021). DOI
10.1111/cgf.14420

35. Paris, A., Peytavie, A., Guérin, E., Argudo, O., Galin,
E.: Desertscape simulation. Computer Graphics Forum
38, 47–55 (2019). DOI 10.1111/cgf.13815

36. Peytavie, A., Galin, E., Grosjean, J., Merillou, S.: Arches:
a framework for modeling complex terrains. Computer
Graphics Forum 28, 457–467 (2009). DOI 10.1111/j.
1467-8659.2009.01385.x

37. Ranz, W.E., Talandis, G.R., Gutterman, B.: Mechanics
of Particle Bounce. A.I.Ch.E. Journal 6(March), 124–127
(1960)

38. Richardson, J.F., Zaki, W.N.: The sedimentation of a sus-
pension of uniform spheres under conditions of viscous
flow. Chemical Engineering Science 3 (1954)

39. Rigaudière, D., Gesquière, G., Faudot, D.: Shape Mod-
elling with Skeleton based Implicit Primitives. Methods
(2000)

40. Roa, T., Benes, B.: Simulating desert scenery. Winter
School of Computer Graphics SHORT communication
Papers Proceedings pp. 17–22 (2004)

41. Roose, D., Leuven, K.U., López, Y.R.: Dynamic refine-
ment for fluid flow simulations with sph particle refine-
ment for fluid flow simulations with sph (2011)

42. Roudier, P., Peroche, B., Perrin, M.: Landscapes Syn-
thesis Achieved through Erosion and Deposition Process
Simulation. Computer Graphics Forum 12(3), 375–383
(1993). DOI 10.1111/1467-8659.1230375

43. Schott, H., Paris, A., Fournier, L., Guérin, E., Galin, E.:
Large-scale terrain authoring through interactive erosion
simulation (2023)

44. Smelik, R.M., Kraker, K.J.D., Groenewegen, S.A.,
Tutenel, T., Bidarra, R.: A survey of procedural methods
for terrain modelling. Proceedings of the CASA work-
shop on 3D advanced media in gaming and simulation
(3AMIGAS) (2009)

45. Stachniak, S., Stuerzlinger, W.: An algorithm for au-
tomated fractal terrain deformation. In Proceedings of
Computer Graphics and Artificial Intelligence pp. 64–76
(2005)

46. Stam, J.: Stable fluids. Proceedings of the 26th An-
nual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH 1999 pp. 121–128 (1999). DOI
10.1145/311535.311548

47. Stam, J.: Flows on surfaces of arbitrary topology. ACM
Transactions on Graphics 22(3), 724–731 (2003). DOI
10.1145/882262.882338

48. Stokes, G.G.: On the Effect of the Internal Friction
of Fluids on the Motion of Pendulums, pp. 1–10.
Cambridge University Press (2009). DOI 10.1017/
CBO9780511702266.002

49. Swope, W.C., Andersen, H.C., Berens, P.H., Wilson,
K.R.: A computer simulation method for the calcula-
tion of equilibrium constants for the formation of physical
clusters of molecules: Application to small water clusters.

The Journal of Chemical Physics 76(1), 637–649 (1982).
DOI 10.1063/1.442716

50. Tychonievich, L.A., Jones, M.D.: Delaunay deformable
mesh for the weathering and erosion of 3D terrain. Vi-
sual Computer 26(12), 1485–1495 (2010). DOI 10.1007/
s00371-010-0506-2

51. Verlet, L.: Computer "experiments" on classical fluids. i.
thermodynamical properties of lennard-jones molecules.
Phys. Rev. 159, 98–103 (1967). DOI 10.1103/PhysRev.
159.98

52. Wojtan, C., Carlson, M., Mucha, P.J., Turk, G.: Animat-
ing corrosion and erosion. Natural Phenomena pp. 15–22
(2007)

53. Yan, P., Zhang, J., Kong, X., Fang, Q.: Numerical sim-
ulation of rockfall trajectory with consideration of arbi-
trary shapes of falling rocks and terrain. Computers and
Geotechnics 122 (2020). DOI 10.1016/j.compgeo.2020.
103511

A Computation of a metaball

We use the following formula to evaluate a metaball in space
with a center c and of radius R:

g(p) = 1−
||p− c||

R

using the euclidean distance.
We have a total amount Q to define in this space, so the

final metaball function f needs to satisfy the equations (15)
and (16):

f(p) = λg(p) (15)∫
p∈V3D

f dp = Q (16)

First, let’s exploit the radial symmetry of the metaball
and rewrite g(p) = 1−r by using the polar coordinates of the
point p− c.

We can then integrate g over the volume V3D as∫ 1

0

∫ π

0

∫ 2π

0

g(r)r2 sin(θ) dr dθ dϕ

=

∫ 1

0

∫ π

0

∫ 2π

0

(1− r)r2 sin(θ) dr dθ dϕ

=

∫ 1

0

(1− r)r2 dr ×
∫ π

0

sin θ dθ ×
∫ 2π

0

1 dϕ

We then break down the integrals one by one such as∫ 1

0

(1− r)r2 dr =
1

12∫ π

0

sin θ dθ = 2∫ 2π

0

1 dϕ = 2π

By combining all these integrals, we get
∫
g = 1

12
× 2 ×

2π = π
3
.

So given
∫
f = qdetachment and

∫
f = λ

∫
g, we can

deduce that λ = Q∫
g
= 3

π
Q.

From (15) we finally get

f(p) =
3Q

π

(
1−

||p− c||
R

)
(17)

Flexible Terrain Erosion 15

, representing the rate of change on the evaluation function
of the terrain surface.

The integration in the voxel space is out of the scope of
this paper and a numerical solution is instead proposed in
Section 4.4.

16 M. Hartley et al.

Rain

Costal

River

Landslide

Volcano

Karst

Tunnel

Wind

Underwater

Meanders

Fig. 14: Erosion processes results on various representations presented in section 5. Used parameters used are
detailed in Table 1.

	Introduction
	State of the art
	Particle erosion
	Our erosion method
	Results
	Comparisons
	Discussion
	Conclusion
	Revision
	Computation of a metaball

