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Abstract

1. Deep learning models for plant species identification rely on large annotated

datasets. The Pl@ntNet system enables global data collection by allowing users

to upload and annotate plant observations, leading to noisy labels due to diverse

user skills. Achieving consensus is crucial for training, but the vast scale of

collected data (number of observations, users and species) makes traditional label

aggregation strategies challenging. Existing methods either retain all observations,

resulting in noisy training data or selectively keep those with sufficient votes, dis-

carding valuable information. Additionally, as many species are rarely observed,

user expertise can not be evaluated as an inter-user agreement: otherwise, botanical

experts would have a lower weight in the AI training step than the average user.

2. Our proposed label aggregation strategy aims to cooperatively train plant identifica-

tion AI models. This strategy estimates user expertise as a trust score per user based

on their ability to identify plant species from crowdsourced data. The trust score is

recursively estimated from correctly identified species given the current estimated

labels. This interpretable score exploits botanical experts knowledge and the het-

erogeneity of users. Subsequently, our strategy removes unreliable observations but

retains those with limited trusted annotations, unlike other approaches.

3. We evaluate Pl@ntNet’s strategy on a newly released large subset of the Pl@ntNet

database focused on European flora, comprising over 6M observations and 800K

users. This anonymized dataset of votes and observations is released openly at

https://doi.org/10.5281/zenodo.10782465. We demonstrate that estimating users

skills based on the diversity of their expertise enhances labeling performance.

4. Our findings emphasize the synergy of human annotation and data filtering in im-

proving AI performance for a refined training dataset. We explore incorporating

AI-based votes alongside human input in the label aggregation. This can further

enhance human-AI interactions to detect unreliable observations (even with few

votes).

Keywords: crowdsourcing, botanical skills, human-AI interaction, label aggregation,

Pl@ntNet, plant identification
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1 Introduction

Computer vision models are a great aid in plant species recognition in the field (Vidal et

al., 2021; Borowiec et al., 2022; Mäder et al., 2021). However, to train them we need large

annotated datasets. These datasets are often created thanks to citizen science approaches,

collecting both reliable and useful information (E. D. Brown and Williams, 2019). Among

existing plant recognition applications, the Pl@ntNet citizen science platform (Affouard

et al., 2017) enables global data collection by allowing users to upload and annotate plant

observations (Bonnet et al., 2020).

User

Plant

Pl@ntnet
app

Obs.

Recognized
species

Training data 

Predictions

Machine learning

FIG. 1. Pl@ntNet system of human-AI interaction for plant species recognition. Users
take their plant observations in the Pl@ntNet application. A prediction is output by the
AI model. Users can validate the prediction or propose another species. The whole votes
collection is used to evaluate user expertise (see Algorithm 1) and actively revise obser-
vations identifications.

At the time of writing, this participatory approach has resulted in the collection of

over 20 million observations (images or group of images of the same plant), belonging to

almost 46 000 species, by more than 6 million users worldwide. In total, more than 25

million of images are shared in these observations. The collaborative process of Pl@ntNet

is synthetized in Fig. 1. The AI model interacts with the human decision by proposing

possible species given an observation. For each returned species, using a similarity search,

the Pl@ntNet system also shows similar pictures from the database. This lets users visu-
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ally check that their observation is likely to belong to a predicted species given the most

similar observations. For instance, such a visual control can help to compare two plants

at various growth stages.

Plant species identification is a task that requires skills to recognize morphological

traits (shapes, measurements, environments and specific characteristics). A large number

of users with diverse skills have participated in gathering plant observations and helped

improve the training dataset of our computer vision model. Their participation is based on

votes that they can cast on others’ observations, or by the initial species determination of

their observation. The quality of each vote is then processed by the algorithm presented

in Section 2.2.

Other citizen science projects such as iNaturalist (Van Horn et al., 2018) or eBird

(Sullivan et al., 2009) use a similar approach to collect data, but differ in their label aggre-

gation strategy. The iNaturalist project, with more than 2.5 million users, records the votes

at different taxonomic levels. The resulting label is the aggregation of at least two votes

on a species-level identification (or coarser or finer taxonomic level). A taxon requires

at least a two-thirds agreements among identifiers and all users have the same weight in

the decision-making. Over time, a taxon can be further refined by the community, de-

bated or revoked. eBird handles taxon quality control by using a checklist in each region

for observers. Quality control on the checklist is performed and, combined with user

knowledge – number of species and checklist submitted, number of flagged observations,

discussions among local experts – the species observation is accepted. The eBird project

also showed that monitoring species accumulation from observers can help to sort their

skills (Kelling et al., 2015). While they consider the species accumulation by hours spent

on each collected observation, we propose a strategy that takes into account the entire

history of observations of the observer.

In this article, we present the Pl@ntNet label aggregation strategy. Using a new large-

scale dataset of more than 6 million observations and 800 thousand users, we show that

our strategy can improve the quality of the collected data, without removing every obser-

vation that was only labeled by single users. Finally, aggregated labels are used in practice

to train an AI model. We explore how the information contained in the AI predictions can

be integrated into the label aggregation strategy to generate new votes and help control

data quality. By using the model’s predictions within the label aggregation, the goal is to

correct possible mistakes from non expert users without contradicting botanical experts.
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2 Methods

2.1 Dataset and notation

To compare the different label aggregation strategies on large-scale datasets, we introduce

a subset of the Pl@ntNet database focused on Southwestern European flora observations

– Baleares, Corsica, France, Portugal, Sardegna and Spain – from 2017 to October 2023.

In total, 9 005 108 votes are cast by nuser = 823 251 users on 6 699 593 observations after

two cleaning steps on the voted species. The first one is a filtering step. We only keep

the votes with plant species belonging to the World Checklist of Vascular Plants (WCVP)

(Govaerts, 2023). For the second step, according to Kew’s Royal Botanical Garden, we

matched synonyms to their backbone species if the species is part of the k-southwestern-

europe checklist from Plants of the World Online (POWO, 2024) (POWO) system. Note

that there are plant species listed in the accepted species from WCVP that are not in the

k-southwestern-europe POWO checklist. As there is a possible taxon ambiguity in this

case – multiple species possible for a given synonym depending on the referential – we

leave the proposed label untouched. The dataset is available at https://zenodo.org/records/

10782465.

Notation In the following, denote K the number of species within the dataset. We

index the observations by i ∈ [n•] = {1, . . . , n•} where D• is the considered dataset

composed of n• observations and their associated votes. For example, the full south-

western European flora dataset from Pl@ntNet of nSWE = 6699 593 observations is

denoted DSWE. Other subsets are presented in Section 2.3. We write U the set of all

users. Each user u has a unique identifier used as an index, and we denote Ui the set

of users that have voted on observation i – i.e. U = ∪i∈[nSWE]Ui. The vote of user u

on observation i is denoted yui ∈ [K]. Estimated labels are denoted ŷi ∈ [K]. Each

observation i is created by an author u stored in Author(i).
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2.2 Proposed label aggregation strategy

Algorithm 1 Pl@ntNet iterative weighted majority vote

Input: Votes as (u, yui )i∈[nSWE],u∈[nuser] for each observation i and user u answering the
voted species yui , accuracy threshold θacc, confidence threshold θconf, weight function
f , initial weight γ > 0

Output: Estimated labels ŷi and validity indicator si for each observation i
1: Initialize user weights as wu = γ for each user u ∈ [nuser]
2: while not converged do
3: Get current estimated labels with a weighted majority vote

∀i ∈ [nSWE], ŷi = argmax
k∈[K]

∑
u∈Ui

wu1(y
u
i = k)

4: for each observation i ∈ [nSWE] do
5: Compute label confidence: confi(ŷi) =

∑
u∈Ui

wu1(y
u
i = ŷi)

6: Compute label accuracy: acci(ŷi) = confi(ŷi)/
∑

k∈[K] confi(k)

7: Compute validity indicator: si = 1(acci(ŷi) ≥ θacc and confi(ŷi) ≥ θconf)
8: end for
9: for each user u ∈ [nuser] do

10: Compute the number of valid identified species for authoring observations:

nauthor
u = |{yui ∈ [K] | yui = ŷi, si = 1,Author(i) = u}|

11: Compute the number of identified species by voting on other’s observations:

nvote
u = |{yui ∈ [K] | yui = ŷi,Author(i) 6= u}|

12: Compute the rounding number of identified species per user:

nu = Round

(
nauthor
u +

1

10
nvote
u

)
13: Transform number of estimated species per user into trust score: wu = f(nu)
14: end for
15: end while

Pl@ntNet label aggregation strategy relies on estimating the number of correctly identi-

fied species for each user. Similar to other strategies, we rely on an EM-based iterative

procedure (Dempster, Laird, and Rubin, 1977) to estimate consecutively the users’ skills

and each observation’s species. The detailed iterative algorithm is provided in Algo-

rithm 1 and available at https://github.com/peerannot/peerannot. The label aggregation

strategy generates a trust indicator (si) on the observation that can reveal whether an ob-

servation is valid or not. Notice that in Algorithm 1 we value 10 times more authored

observations than voting on other’s observations – if a user proposes a new observation
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with a label (species name) it is more useful than proposing a label by clicking. Indeed,

being on the field leads to more information on the environment and a better determi-

nation of the species. Finally, note that an identified species is exclusively identified as

author – part of nauthor
u in Algorithm 1) – or as click – part of nvote

u – to avoid redundant

skills. The final number of species identified by users is the aggregation of these two

terms: nu = Round
(
nauthor
u + 1

10n
vote
u

)
.
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FIG. 2. Weight function in Equation (1) used to map the number of identified species to a
trust score in the Pl@ntNet label aggregation strategy. A new user starts with a weight of
f(0) = f(1) = γ ' 0.74. The user confidence threshold θconf = 2 requires a user to have
identified at least nu = 8 species to become self-validating. The parameters α = 0.5,
β = 0.2 and γ ' 0.74 are used in practice.

The weight function f shown in Fig. 2 is a non-decreasing function that maps the

number of identified species nu to a trust score in the form of:

wu = f(nu) = nα
u − nβ

u + γ , (1)

where α, β ∈ R?
+ are hyperparameters that were calibrated internally to fit prior knowl-

edge and γ > 0 is the constant representing the initial weight of each user. In practice,

we use α = 0.5, β = 0.2 and γ = log(2.1) ' 0.74 in the weight function. This func-

tion is sub-linear (O(
√
nu)) but with two different behaviors. The goal of Equation (1) is

to separate new users from experts and then help sort multiple experts. This is modeled

by the two behaviors of the weight function. In the first part which corresponds to new

users with low nu, the term in the power of β decreases the weight. We chose an initial

weight wu = γ such that a user has a weight equal to 1 (rounding to two decimals) with
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two different identifications. This separates the users who only come once to test the ap-

plication from others. In the second part with a higher number of identified species, the

term to the power of β becomes negligible and we tend to the square root function. The

sub-linear scale allows for reducing discrepancies between people who have identified a

comparable number of species (and thus have presumably comparable expertise). As for

the two thresholds that control the level of uncertainty accepted for a given label, they are

set to θconf = 2 to control the total weight on an observation and θacc = 0.7 to control the

agreement between users given their expertise.

Users are said self-validating when they are trusted enough so that their proposed

label single-handedly makes an observation valid (si = 1). From Algorithm 1, we see that

this is verified when their weight wu is greater than the level θconf. Indeed, with a single

label we obtain confi(ŷi) = wu > θconf and acci(ŷi) = 1 > θacc. In practice, this means

that an experienced user who has collected enough weight can validate any observation

without any other user’s vote. Note that this identification can later be invalidated by other

users with enough weight thanks to the accuracy threshold θacc.

2.3 Evaluation against other aggregation strategies

Existing aggregation strategies. Plant species label aggregation is a challenging task

due to the large number of species K = 11 425. Hence, many classical strategies in the

label aggregation literature such as Dawid and Skene’s (Dawid and Skene, 1979) and other

variations (Passonneau and Carpenter, 2014; Sinha, Rao, and Balasubramanian, 2018) are

not applicable as they require estimating a K×K confusion matrix for each user. For the

considered dataset DSWE, this would result in 11 4252 × 823 251 ≈ 1014 parameters to

estimate. Similar issues occur for other label aggregation strategies (Whitehill et al., 2009;

Hovy et al., 2013; Q. Ma and Olshevsky, 2020). We do not consider deep-learning-based

crowdsourcing strategies as Rodrigues and Pereira (2018) and Chu, J. Ma, and Wang

(2021) or Lefort et al. (2022) as they require training a neural network from crowdsourced

labels, but do not output aggregated labels on the training set. In the Pl@ntNet application,

we need to propose one or multiple species for each observation to users. To overcome

these issues, we consider the following label aggregation strategies that can scale with K

and the number of users:

• Majority Vote (MV) (James, 1998): it selects the most answered label1 and is the

1Ties are broken at a random – creating sometimes some variability in the labeling process.
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most common aggregation strategy. More formally, given an observation i:

MV(i, {yui }u) = argmax
k∈[K]

∑
u∈Ui

1(yui = k) .

• Worker Agreement With Aggregate (WAWA) (Limited, 2021): this strategy, also

known as the inter-rater agreement, weights each user by how much they agree with

the MV labels on average. More formally, given an observation i:

WAWA(i,DSWE) = argmax
k∈[K]

∑
u∈Ui

wu1(y
u
i = k)

with wu =
1

|{yui′}i′ |

nSWE∑
i′=1

1 (yui′ = MV(i′, {yui′}u)) .

As there is no observation filter for the MV and WAWA, we consider that for all

observation i, si = 1 for these two strategies.

• TwoThird: The TwoThird aggregation generates a label for observations with at

least two votes. The estimated label represents the one with at least two-thirds of

the majority in agreement. Every user has the same weight in the aggregation. It

is part of the iNaturalist’s label aggregation system (Van Horn et al., 2018). More

formally:

TwoThird(i, {yui }u) =

MV(i, {yui }u) if si = 1

undefined otherwise

with si = 1

(
max
k∈[K]

1

|Ui|
∑
u∈Ui

1(yui = k) ≥ 2

3

)
.

Creation of an evaluation set in a crowdsourcing setting. To evaluate the perfor-

mance of a label aggregation strategy, it is necessary to know the ground truth on a subset

of the data. However, in the context of crowdsourced data, there is no known truth for the

observations. The sheer volume of data makes it impossible to ask botanical experts to

create such ground truth for the whole database. Moreover, identifying species from im-

ages is much less accurate than identifying them in the field, due to the partial information

contained in the image (Experts, 2018).

Instead of asking experts to label a subset of the data, we rather identify botanical

experts in the Pl@ntNet user database and consider their determinations as ground truth.

We asked botanical-known experts to reference other experts who could have a Pl@ntNet
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account to create a list of expert users. To these we have added TelaBotanica (Heaton,

Millerand, and Proulx, 2010) users with registered confirmed botanical experience from

their account and that are also Pl@ntNet users that participated in the South-Western

Europe flora subset. In total, 98 Pl@ntNet users were identified as botanical experts. Ob-

servation with at least one vote from one of these experts constitute our test set denoted

Dexpert. The answers of these experts are considered ground truth labels and used to eval-

uate strategies’ performance. Despite our selection process of supposedly ‘indisputable’

experts, a few observations in the test set still end up with contradictory labels (4 observa-

tions in total). As they represent a very small percentage, we simply removed them from

Dexpert.

Our evaluation set Dexpert is finally composed of 26 811 observations which received at

least one vote from one of the experts. Despite the large number of users, not all observa-

tions obtain multiple annotations. Indeed, 310 564 users were single-time voters (meaning

they interacted with the system only once). The lack of votes is a large component of dif-

ficulty in the Pl@ntNet database, as there is a high imbalance of the distribution of votes

between observations as represented in Fig. 4b. There is a high concentration of votes

for a small percentage of the observations as shown in Fig. 4a. Of these evaluation data,

17 125 received more than two identifications and are stored in Dmultiple votes. Then, 1 263

have more than two votes with at least one disagreement between users and are stored

in Ddisagreement. Fig. 3 shows the distribution of observations from DSWE to the finer and

more ambiguous Ddisagreement.

Evaluation metric. To evaluate the label aggregation strategies, we use the following

label recovery accuracy computed on the evaluation datasets:

Acc(ŷ, y;D•) =
1

n•

n•∑
i=1

1(ŷi = yi)1(si = 1) ,

with ŷ = (ŷi)i the estimated labels on D• ∈ {Dexpert,Dmultiple votes,Ddisagreement}, y = (yi)i

the associated experts labels, considered as ground truth. When the aggregation strategy

indicates the observation as invalid (si = 0 for Pl@ntNet and TwoThird), this metric

considers the sample as wrongly classified. Precision and recall scores are also computed

to respectively measure the correctness of the observations indicated as valid and the

ability to recover the ground truth observations in the valid set. We take into account the

species imbalance by using a macro-average for these metrics. This treats rare species as
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FIG. 3. Log-scales distribution of the observations in the South-West European Flora
subset from the Pl@ntNet database. Note that the (sub-)datasets introduced are nested:
DSWE ⊃ Dexpert ⊃ Dmultiple votes ⊃ Ddisagreement. Dexpert and the following subsets contain
observations that received at least one vote from one of the experts.

equally important to common ones. Denoting respectively TPk, FPk and FNk the true

positives, false positives and false negatives related to the species k, the macro averaged

precision and recall write

Precisionmacro =
1

K

K∑
k=1

TPk

TPk + FPk
and Recallmacro =

1

K

K∑
k=1

TPk

TPk + FNk
.

As both the Pl@ntNet and the TwoThird strategies can invalidate some of the obser-

vations, we also compute the proportion of observations removed from the whole dataset

(whereas previous metrics are computed on the evaluation dataset). This complementary

metric allows measuring the proportion of samples "lost" for the training of the AI model

after the aggregation step. In practice, filtering data might remove some noisy samples

from the dataset. Yet, in general, the more samples are filtered, the fewer ones to train the

neural network training. Finally, we also consider the proportion of species retrieved by

the aggregation strategies on Dexpert,Dmulitple votes and Ddisagreement. This is a critical con-

sideration because if a species identified by experts is absent from the aggregated data,

the neural network trained on this data will be unable to make predictions for that very

species.

We evaluate the label recovery Acc of each strategy on Dexpert,Dmulitple votes and

Ddisagreement (see also Fig. 3): the test set where experts have provided at least one

vote (Dexpert), its subset of observations with at least 2 votes and one from an expert
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(A) Relationship between the number of observa-
tions per user and the variety of species proposed
per user. Each point represents a concentration of
users in the SWE flora subset. 310,564 users pro-
posed a single vote.

(B) Lorenz curves representing the im-
balance distribution of the number of
votes in the South-West European Flora
subset from the Pl@ntNet database.
This imbalance is mitigated but kept in
the created test set.

FIG. 4. Pl@ntNet activity summary in the SWE flora subset. (A): The majority of users
have proposed a small number of observations and species. However, some users have
proposed a large number of observations and species. (B): In a perfectly balanced dataset,
the Lorenz curve would be the diagonal – 50% of the votes would be for 50% of the
observations. In practice, there is a high imbalance of the distribution of votes between
observations – 80% of the observations are represented by 10% of votes.

(Dmultiple votes) and its subset of observations with at least 2 votes, one from an expert,

and one disagreement (Ddisagreement). The latter is the most challenging as it contains the

observations with the most ambiguity. We selected these subsets to investigate the label

aggregation strategies’ performance depending on the ambiguity level.

2.4 Taking into account AI votes

While we restricted ourselves to the SWE subset, Pl@ntNet’s data is collected internation-

ally. The more correctly identified observations are added to the training set, the better the

prediction of the trained model for end-users. This classifier is trained from valid observa-

tions and aggregated labels (see Fig. 1). Note that, in addition to Algorithm 1 and the filter

on species names, more pre-processing are implemented for better performance (Affouard

et al., 2017), such as additional rejection class (e.g. non-plant observations), malformed

observations (multiple images of different species in a single observation). At the time

of writing, the model in use in Pl@ntNet is DINOv2 (Oquab et al., 2024) a transformer-

based network. This network is based on contrastive learning (Waida et al., 2023), and
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represents similar images as close embedding to learn similar features for similar obser-

vations and then uses supervised learning to fine tune the model. Several transformations

are performed during training such as data augmentation (Suorong et al., 2023), data

standardization and label smoothing (Szegedy et al., 2016). However, note that some ob-

servations from DSWE have been processed by an earlier version of Pl@ntNet’s AI: either

an InceptionV3 (Szegedy et al., 2015) or a BEIT (Bao et al., 2021) classifier. We can use

the classifiers to generate votes. For an observation i, the AI vote is denoted yAI
i ∈ [K].

The probability output in the classifier’s predicted species is denoted P(yAI
i ).

If we consider the trained model as any other user, denoted as AI as user, the same

label aggregation strategies as in Section 2.2 are available. However, with the Pl@ntNet

aggregation algorithm, the AI weight increases drastically and overpowers human users

(see Section 3.1). This would mean the next Pl@ntNet model is mostly trained on the

predictions of the previous one. This defeats the purpose of a cooperative active learning

system and the human-AI interaction. It would result in a dangerous feedback loop, and

possible mode collapse. Thus, we explore alternative ways of integrating the AI votes in

the aggregation algorithm:

• AI as user: This is the naive approach we just described. The AI is considered as

any other user in the database. The total number of users is thus raised to nuser + 1.

• Fixed weight AI: Give a fixed weight wAI = 1.7 > 0 to the AI. The weight is below

the threshold θconf so that it can not self-validate its predictions. The confidence

writes

confi(ŷi) =
∑
u∈Ui

wu1(y
u
i = ŷi) + wAI1(y

AI
i = k) . (2)

The final estimated label becomes

ŷi = argmax
k∈[K]

∑
u∈Ui

wu1(y
u
i = k) + wAI1(y

AI
i = k) . (3)

• Invalidating AI: The AI is considered as a user with a fixed weight and can only

participate in invalidating identifications i.e. have si = 0. This translates as the con-

fidence updated as in Equation (2) but the final Weighted MV remains unchanged

from Algorithm 1.

• Confident AI: The AI is considered a user with a fixed weight and can only par-

ticipate if the confidence in its prediction P(yAI
i ) is over a threshold θscore ∈ [0, 1].
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The confidence writes

confi(ŷi) =
∑
u∈Ui

wu1(y
u
i = ŷi) + wAI1(y

u
i = ŷi, P(yAI

i ) ≥ θscore) . (4)

The final estimated label becomes

ŷi = argmax
k∈[K]

∑
u∈Ui

wu1(y
u
i = k) + wAI1(y

AI
i = k, P(yAI

i ) ≥ θscore) . (5)

On the choice of the AI weight. The AI has a fixed weight wAI > 0 for the Fixed

weight AI, the Invalidating AI and the Confident AI strategies. The choice of this

weight must meet several constraints. First, we would like to avoid the AI votes to be

self-validating as it would validate all the AI predictions on a large part of the database,

thus we must have wAI < θconf in Algorithm 1. We also want the AI votes to help clean

the database by invalidating some observations from low-weight users (with weight 0<

wlow ≤ θconf ). Thus wlow/(wlow + wAI) < θacc. Hence, our constraints read:wAI < θconf

wlow
wlow+wAI

< θacc

. (6)

Taking the extreme case where a user becomes self-validating: wlow = θconf , we obtain

that wAI > θconf

(
1−θacc
θacc

)
. And using the first condition in Equation (6), we obtain the

bounds

θconf

(
1− θacc
θacc

)
< wAI < θconf (⇐⇒ 0.85 < wAI < 2) . (7)

As more than a million observations from our dataset only have two votes, one way

to choose the AI weight is to consider that the AI can invalidate two erroneous non-

experts that would both have just enough weights to make the observation valid: 1.95 =

wlow < 2. Then, the AI weight should be greater than their cumulated confidence:

wAI > 2wlow

(
1−θacc
θacc

)
. We finally take the upper rounded value wAI = 1.70 (which

satisfies Equation (7)).

3 Results

3.1 Label aggregation performance comparison

Accuracy of the aggregation strategies. We begin by evaluating the accuracy of

the label aggregation strategies on the set of observations labeled by experts, Dexpert.
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(A) Accuracy on Dmultiple votes w.r.t. to the pro-
portion of classes recovered

(B) Accuracy on Ddisagreement w.r.t. the propor-
tion of classes recovered

FIG. 5. Accuracy of the aggregation strategies w.r.t. the proportion of classes (species)
retrieved on subsets with at least two votes – either agreeing (A) or with at least one
disagreeing vote (B). The Pl@ntNet aggregation is more accurate, especially in a highly
ambiguous setting (B). The TwoThird data filter highly impacts how many classes are
kept in the dataset and the overall accuracy in both settings. WAWA and MV perform
similarly with a benefit for WAWA when skill evaluation is needed.

Fig. 5 shows how many predicted labels match the experts answers on Dmultiple votes

and Ddisagreement. More importantly, we compare this quantity with the proportion of

species retrieved by the aggregation strategy. We observe that the data filtering from the

TwoThird strategy – requiring at least two third of agreements – highly degrades perfor-

mance with respect to other strategies. On Dexpert, MV reaches 97% of accuracy, WAWA

98%, TwoThird 60% and Pl@ntNet 99%. To differentiate between the best-performing

strategies, we need to look at more ambiguous observations like those in Dmultiple votes

and Ddisagreement. In highly ambiguous frameworks, the WAWA strategy outperforms the

MV one. However, overall the Pl@ntNet aggregation is more often in adequation with

the experts and retrieves almost 90% of plant species identified by experts in highly

ambiguous datasets against 73% for WAWA, 71% for MV and only 41% for TwoThird.

Precision and recall. To better evaluate each aggregation strategy, we compute the

macro precision and recall metrics for each species. Results are shown in Fig. 6a. The

observations filter (si = 0) for the TwoThird strategy highly impacts its ability to iden-

tify most of the positive observations for a given species. While this agreement threshold

filter is created to keep as few noisy samples as possible in research-graded (data quality

indicator for research database usage in TwoThird) observations, TwoThird obtains better

precision than MV and WAWA but Pl@ntNet’s precision shows significant improvement.

WAWA strategy outperforms a naive MV aggregation showing that, indeed, weighing
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(A) Precision and recall of label aggregation
strategies on Ddisagreement.

(B) Number of observations in DSWE indicated
as valid for training (si = 1).

FIG. 6. (A): TwoThird strategy has better precision than MV and WAWA strategies,
with lower recall because of the heavy filter on the validity of observations. Pl@ntNet
aggregation strategy obtains best precision and recall and outperforms other strategies.
(B): TwoThird performance drop can be explained in part by the high proportion of data
considered invalid. Note that MV and WAWA strategies do not invalidate any observation,
hence keeping potentially mislabeled or low-quality observations. Pl@ntNet achieves a
balance between filtering out observations and achieving high performance.

users can lead to better performance. Pl@ntNet strategy outperforms all others by several

orders of magnitude. Weighing users based on their number of identified species is both

interpretable and effective. The observation filter does not negatively impact the recall.

Volume of valid data. The community labels are aggregated to generate training data

for the AI model. The more data the better, however, we need to filter out observations

with low visual quality or potentially mislabeled. This is the reason for the validity indi-

cator si in the TwoThird and Pl@ntNet strategies. On DSWE, Fig. 6b shows how much

data is kept for later training. MV and WAWA keep all proposed observation for training

– including potential noisy ones. TwoThird filters out most observations to keep nearly

1.5 million (representing 23.43% of the total observations). Pl@ntNet finds an improved

balance between filtering invalid observations and keeping enough data for training.

Qualitative results on Pl@ntNet observation filter. In this section, we show some ex-

amples of observations invalidated by the Pl@ntNet strategy (see Fig. 7). Invalid obser-

vations often come from the lack of user participation with other’s observations. Causes

of disagreements from users can occur from a multitude of factors – blurriness, multiple

species in the same observation, the distance from the plant does not allow precise iden-
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FIG. 7. Examples of invalid (si = 0) and valid (si = 1) observations using the Pl@ntNet
strategy described in Algorithm 1.

tification, etc. Valid observations, as shown in the second row of Fig. 7 are zoomed in on

the plant’s flower, leaf or organ to help the identification process.

3.2 Aggregation considering AI vote

The current trained neural network model in Pl@ntNet’s system can make predictions

based on its training on the Pl@ntNet database (across different floras). We compare the

four following strategies – AI as user, fixed weight AI, invalidating AI and confident

AI, presented in Section 2.4 to integrate the AI vote into the Pl@ntNet label aggregation

strategy. For the confident AI strategy, we evaluate multiple thresholds θscore. Note that

if θscore = 0 the AI votes for all observations and if θscore = 1 the AI does not vote and

we recover the performance of the current Pl@ntNet aggregation strategy presented in

Algorithm 1. We see in Fig. 8 that the confident AI strategy with θscore = 0.7 seems to

perform best and keep the most data in both DSWE and Dexpert.

4 Discussion

We demonstrated that collaborative identification of plant species can effectively be used

to obtain expert level labels. Releasing a large subset of millions of observations and

thousands of users from the Pl@ntNet organization, we investigate a label aggregation

strategy that weighs user answers based on their estimated number of species correctly

identified without using prior expert knowledge. Many strategies used previously either

do not scale to the magnitude of the current databases – either Pl@ntNet, iNaturalist or
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FIG. 8. Performance in label recovery and number of observations marked as valid de-
pending on how the AI vote is integrated. MV, WAWA and Pl@ntNet strategy without
AI vote are used as reference. The best-performing strategy overall is confident AI with
θscore = 0.7. We also see that when θscore tends to 1, we recover the vanilla Pl@ntNet
aggregation strategy.

eBird – or are outperformed by our aggregation.

Our strategy weighs users based on the number of correctly identified species. This

weight is interpretable and shows the diversity of the user’s skill set. It can be directly

applied to other crowdsourced frameworks with a high number of classes like TwoThird

or eBird. The values for both hyperparameters θconf and θacc which respectively handle

the cumulated weight on observation and the agreement level for the given label can be

applied as is.

Note that Pl@ntNet’s label control system heavily rests on visual analysis of observa-

tions and inter-user agreements. Additional metadata such as geolocation, date, phenolog-

ical stage or visual description can be registered in Pl@ntNet and help identify the plant’s

species but are currently not directly taken into account for user evaluation. Such informa-

tion – in particular spatial information – could also be used to generate more interaction

between users and collect more votes through possible common interests. In addition,

users are helped by the system with images similar to the identification proposed in a

given checklist. The additional information could guide users in their vote – for example

by notifying a possible incoherence between the current botanical knowledge on a species

and the metadata entered (such as the altitude, the distance to the sea, a species not known

to survive in a given area).

As for the inclusion of the AI vote, some concerns should be raised. First, as the AI
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model is trained from the aggregated labels and observations, integrating its vote should

not make the AI predictions run out of control. If we consider the AI as a user, as we are

in iterative training, the system fails to learn from the human labels. However, using the

AI vote to invalidate the data with a fixed weight can help clean the database, and with

enough weight other users can switch its validity back. However, this would not help in

switching the wrong label. To do so, we investigate in Section 3.2 to only consider a fixed

weight label with enough confidence from the AI model. We observe that this strategy

leads to better performance. As we use the output probabilities we should discuss the

calibration of our network too.
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FIG. 9. Reliability diagrams for the Pl@ntNet AI on the expert dataset and on the more
ambiguous Ddisagreement subset. The AI is overall underconfident (A). However, on more
ambiguous observations it is overconfident for observations leading to high predicted
probabilities (B).

Calibration is the measure of how close the output confidence is to the true probabil-

ity (Niculescu-Mizil and Caruana, 2005). Currently, the Pl@ntNet AI is not calibrated

using post-processing methods (Platt, 1999; Guo et al., 2017). We discuss hereafter the

calibration of the current AI model and possible guidelines for further integration of AI

votes.
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From Fig. 9a, we see that currently, Pl@ntNet AI is underconfident. Meaning that

it consistently underestimates its confidence and outputs to users more uncertainty than

it should. One factor that can influence the results is that the calibration is computed

on the test set where experts either authored or voted on observations. Botanical experts

have more experience with taking pictures of plants and better equipment than the aver-

age citizen. Thus, the observation quality – and subsequently the probability distribution

output by the AI – can be biased. Another factor known for leading to such subopti-

mal predictions is the data augmentation (Kapoor et al., 2022). As the model trains on

multiple versions of each original sample with multiple distortions, these variations can

become unrepresentative of the underlying sample distribution and cause unnecessary

prediction difficulties. The data augmentation is used to mitigate the species imbalance

of the database.

However, this imbalance is also known to lead to miscalibrations in predictions (Ao,

Rueger, and Siddharthan, 2023). On Fig. 9b, we see that for ambiguous observations

(where users disagree), the AI is overconfident in its highest predictions – which repre-

sents half of the dataset – and underconfident in the other half. These different calibration

behaviors inform us that, if a given strategy should incorporate the AI votes in the label

aggregation based on the output probabilities, we need to be able to rely on such prob-

abilities. Therefore, even if the confident AI strategy leads to the best performance in

Section 2.4, it should not be used directly without recalibration of the model – using for

example temperature scaling (Guo et al., 2017). In future work, more study is needed to

investigate the confidence gap of the model and the observations’ ambiguity from users’

labels. The current large-scaled and interpretable aggregation strategy from Pl@ntNet

already outperforms others without the AI votes.

Statement on inclusion

We affirm our commitment to promoting diversity and inclusivity in scientific research.

Our collected crowdsourced data brings together a wide range of participants. We actively

encourage and welcome involvement from individuals of diverse backgrounds, expertise,

and perspectives, recognizing the value of their contributions in advancing ecological

research and promoting a more comprehensive understanding of plant biodiversity.
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