The evolution of olfactory sensitivity, preferences, and behavioral responses in Mexican cavefish is influenced by fish personality - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue eLife Année : 2024

The evolution of olfactory sensitivity, preferences, and behavioral responses in Mexican cavefish is influenced by fish personality

Résumé

Animals are adapted to their natural habitats and lifestyles. Their brains perceive the external world via their sensory systems, compute information together with that of internal states and autonomous activity, and generate appropriate behavioral outputs. However, how do these processes evolve across evolution? Here, focusing on the sense of olfaction, we have studied the evolution in olfactory sensitivity, preferences, and behavioral responses to six different food-related amino acid odors in the two eco-morphs of the fish Astyanax mexicanus . To this end, we have developed a high-throughput behavioral setup and pipeline of quantitative and qualitative behavior analysis, and we have tested 489 six-week-old Astyanax larvae. The blind, dark-adapted morphs of the species showed markedly distinct basal swimming patterns and behavioral responses to odors, higher olfactory sensitivity, and a strong preference for alanine, as compared to their river-dwelling eyed conspecifics. In addition, we discovered that fish have an individual ‘swimming personality’, and that this personality influences their capability to respond efficiently to odors and find the source. Importantly, the personality traits that favored significant responses to odors were different in surface fish and cavefish. Moreover, the responses displayed by second-generation cave × surface F2 hybrids suggested that olfactory-driven behavior and olfactory sensitivity is a quantitative genetic trait. Our findings show that olfactory processing has rapidly evolved in cavefish at several levels: detection threshold, odor preference, and foraging behavior strategy. Cavefish is therefore an outstanding model to understand the genetic, molecular, and neurophysiological basis of sensory specialization in response to environmental change.
Fichier principal
Vignette du fichier
M-Blin-et-al-elife-92861-v1.pdf (7.18 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04602972 , version 1 (06-06-2024)

Licence

Identifiants

Citer

Maryline Blin, Louis Valay, Manon Kuratko, Marie Pavie, Sylvie Rétaux. The evolution of olfactory sensitivity, preferences, and behavioral responses in Mexican cavefish is influenced by fish personality. eLife, 2024, 12, pp.RP92861. ⟨10.7554/eLife.92861⟩. ⟨hal-04602972⟩
37 Consultations
13 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More