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Abstract—Proposing practical solutions to mitigate the effects
of climate change on the electricity system requires thorough
understanding and quantification. This paper introduces a new
method of quantifying dynamic network capacity at the trans-
mission level, using established thermal models and a set of
regional expansion plan tools. The results suggest this approach
can increase component capacity by up to 21% during winter
and up to 16% during nighttime hours for overhead lines.
This approach offers a viable option for electricity operators to
address the challenge of balancing the need to reduce failure rates
and capacity loss with the crucial demand for new investment
in transmission assets, reducing more than 1% of system cost
expansion by 2050.

Index Terms—Climate Change, Dynamic Thermal Rating,
Power transmission meteorological factors, Thermal Factors.

I. INTRODUCTION

This paper presents the findings of research on regional
network expansion planning, taking into account the impact
of climate change on transmission network equipment. As
emphasized by [1], a transmission network expansion up to 80
million kilometers in Europe is possible, whilst transmission
capacity reduction from 1.9% to 5.8% is expected in the
United States [2]. These challenges underscore the importance
of analyzing future investments and developing new flexibility
strategies using established methods.

Regarding the transmission network, various solutions have
been proposed to alleviate network congestion problems. One
of them is the implementation of Dynamic Thermal Rating
(DTR) on critical transmission lines. This technology aims
to identify network components’ real-time current carrying
capacity, typically higher than their static nominal value. By
doing so, DTR enables the reduction of network conges-
tion, associated curtailments, and delays or the avoidance
of network reinforcements while simultaneously enhancing
reliability. It can be integrated into power system expansion
plans [3], [4], but its dependency on meteorological factors,
such as ambient temperature, makes it particularly sensitive to
climate change.
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Climate scenario models and trajectories have been pub-
lished for specific road maps. Among these, quantitative
projections, such as Representative Concentration Pathways
(RCPs) and Shared Socio-Economic Pathways (SSPs), provide
valuable tools for assessing regional climate changes and
their specific impacts on the energy sector. Indeed, electricity
demand is expected to increase up to 21% [5], a key factor in
determining capacity expansion planning.

In academic literature, the Long-Term Demand Forecasting
Methods (LDFM) are often described as incorporating trend
analysis, econometric modeling, or combined analysis, as
discussed in [6], [7]. These methods explore linear and non-
linear relationships among economic indicators, demographic
factors, and weather variables such as Gross Domestic Product
(GDP), ambient temperature, and population. Furthermore,
statistical and machine-learning algorithms have been explored
for this task.

As a main contribution, this research aims to quantify
the impact of climate change on power system transmission
capacity as a part of strategic planning methodology for a
regional utility with the following approach:

• Deriving a quasi-Dynamic Thermal Ratings (qDTRs)
algorithm as the first solution to recover the lost trans-
mission capacity.

• Quantify the impact of climate change on power system
transmission capacity considering future climatic projec-
tions datasets.

The paper is organized as follows: Section II illustrates the
load demand forecast, thermal model, and methodology. The
results are described in Section III, and conclusions are drawn
in Section IV.

II. METHODOLOGY

A. Overview

We introduce a model to assess the long-term effects of
climate conditions on regional capacity, employing qDTR as
a critical metric in II-B. This model is delineated in Fig. 1.
Initially, a regression machine learning model is trained using



Fig. 1. Proposed block diagram: It is divided into three sections representing the estimation of network capacity using qDTR, the preparation of the network,
and its economic analysis via GTEP.

historical techno-economic regional and meteorological data to
project demand by regions II-C. Subsequently, data describing
the electrical grid configuration are gathered to cluster and
construct the network II-D. The transmission information,
including location details and meteorological time series, is
then utilized in components’ thermal models to estimate the
capacity II-B. These ratings are subsequently incorporated into
a G&TEP, enabling the calculation of optimal investments and
operating costs.

B. Quasi Dynamic Thermal Ratings

qDTR, as proposed in [8], [9], are employed to quantify
ratings for a long-term horizon. After gathering the time series
and parameters outlined in Section II-G, the DTR is estimated
using a component thermal model. This model is based on
the thermal balance between the heat generated by the Joule
effect (I2R) and the heat dissipated in the environment through
convection or conductivity (Qc), radiation (Qr), and solar
heat gain (Qs), as described in (1) and applying the model
outlined in [10]. These time series data are fitted with a
probability distribution, as detailed in [11], focusing on the
lower tail of the simulations for each month/day combination.
A predetermined tolerance level to the risk of thermal overload
(0.1% in this case) is then selected.

I2R+Qs = Qr +Qc (1)

C. Load Model

Long-term regional energy demand forecasting comprehen-
sively assesses factors that drive future energy consumption
patterns, such as economic parameters, seasonal variations,
and spatial behaviors. With an hourly resolution, this module
targets each sub-grid’s load demand profile in MWh. The
pre-selection of features was conducted using a combination
of time series meteorological data, demographic factors, and

demand observations, guided primarily by bibliographic anal-
yses in [6]. This selection process adheres to the nonlinear
relationship described in (2), where i represents the year, and
a, b, and c are parameters derived from historical data. To
ensure the spatiality of the system throughout the European
region, we rely on the open sources described in section II-G.
The profile and shape of the hourly demand result depend
mainly on economic influences and the temperature condition
of the region. Demand curves are calculated for the sub-grid by
gathering the profile demand of the above region (Country or
region) from [12], GDP, population, and hourly temperatures.

Di = a(per capita income)bi(population)ci (2)

Due to the problem’s complexity, we implemented the fol-
lowing preprocessing and numerical transforms: a) Minimum
and maximum scaling, b) Encoding of cyclical Day of the
Year, and c) Hourly interpolation. During the initial phase, we
assessed a range of regression machine-learning techniques
to determine the most fitting approach for our method. This
evaluation centered on key error metrics such as Root Mean
Squared Error (RMSE) and Mean Absolute Error (MAE). The
dataset is divided by geographical regions to train and test the
models. The training set is initially randomly partitioned into
70%, with an additional 10% reserved for tuning the model
hyperparameters, employing techniques outlined in [13]. The
remaining 30% is designated as the validation set for model
testing. N-fold cross-validation is employed to mitigate overfit-
ting, dividing the test dataset into five folds. This ensures that
all region sizes are represented in each fold, thus maintaining
homogeneity of selection.

D. Dimensional Reduction

The objective is to analyze the electricity network of Euro-
pean regions, focusing on long-term generation and demand
patterns. The process starts with the regions categorized at



level zero of the Nomenclature of Territorial Units for Statis-
tics (NUTS) (countries) and extends to the departments (level
three of NUTS). This analysis is based on geographic infor-
mation about electricity transmission and generation networks
as well as technical-economic data.

A regional strategic approach to the power system follows
the same methodology, utilizing geographical boundaries from
[14]. To account for the fluctuating nature of renewables, each
region is analyzed using wind production density [15]. A
coordinate is selected based on the criterion of reflecting an
average speed of more than 4.5 m/s during the period analyzed,
ensuring that it is not located above 1000 m above sea level
and within a protected natural area [16], the production is
extrapolated to form a defined curve. Similarly, a profile for
the PV (photovoltaic) system is generated, with the distinction
that coordinate selection is based on a statistical analysis of
the 50th percentile.

The transmission lines’ geographical locations and electrical
parameters are imported, analyzed, and established. A geo-
graphic mask is generated for each line based on its departure
and arrival locations using its NUTS two and three regional
codes. The lines are sorted by voltage and linearly aggregated
in their bundles to maintain transmission capacity. In addition,
a single transformer is configured between the high- and low-
voltage buses at each regional location.

E. Representative days Selection

In order to keep the problem computationally manageable,
a representative set of days is chosen, applying a clustering
algorithm per region described in (3). This set incorporates
diverse input time series and is evaluated over the scenario
horizon. A scaling method is selected to normalize all data
points, and one representative day and one extreme day are
chosen per month, region, and country. This ensures critical
points from each sub-region are included and maintains the
representation of typical days for the entire system.

arg min
{µ1,...,µk}

k∑
j=1

∑
xi∈Cj

∥xi − µj∥2 (3)

Where µk are the centroids of the k clusters, each repre-
senting a typical day for a specific region and month.

F. Generation, Transmission and Expansion Planning

Economic implications arising from reduced capacity due
to climate change are evaluated through Generation, Trans-
mission, and Expansion Planning (G&TEP) analyses [17].
G&TEP studies are carried out using qDTRRCP based on three
climatic projections. This comparison illuminates the errors
incurred when the impact of climate change on transmission
capacity is overlooked.

In generation, conventional power plans (CCGT, OCGT,
Oil, and Hydro) include some technical constraints such as
capacity constraints, pnommax , CO2 emissions, and technology
efficiency.

In addition, G&TEP utilizes STR alongside the year cal-
culated from each RCP data. This comparison highlights the
advantages of qDTRs, which vary over time to recover lost
transmission capacity.

G. Datasets
The impact on quasi-Dynamic Thermal Rating (qDTR)

capacity is quantified by organizing data into three primary
categories:

• Socio-Economics data: This includes national/regional
accounts data such as GDP (a) [18] and population (b)

[19]. Geographical boundaries are defined based on the
Eurostat regional classification of territorial units for
statistics (NUTS3 & NUTS2) (c) [14]

• Electrical Data: Electrical Data: Hourly historical time
series of electricity demand profiles for each country and
region (d) [12], [20], combined with annual geolocated
generation plants with physical characteristics(e) [21],
such as fuel type and capacity, and techno-economic as-
sumptions such as fuel prices, VOM (f) [22]–[24]. OHLs
electrical parameters and locations are also considered(g)

[17].
• Climatologists Datasets: Historical reanalysis and Rep-

resentative Concentration Pathway (RCP)-based climate
projections from ECMWF ERA5 and Copernicus C3S,
with a high resolution of 0.25◦, covering the period from
January 01, 1970, to December 31, 2072(h) [20], [25].

TABLE I
DATASETS AND PARAMETERS

Variable Units Process Source
Socio-Economics

GDP MEuros II-C a
Population M II-C b
Territorial Classification o II-C,II-B,II-D c

Electrical
Load Profile MW II-C d
Power Plant Capacity MW II-F e
Power Plant Techno-
Economic

- II-F f

OHL Electrical and Loca-
tion

- II-B , II-F g

Climate
Temp. Air at 2 m K II-C,II-B h
Net surface solar radiation Jm−2 II-B, II-F h
u - v - wind at 10 m and
100m

ms−1 II-B, II-F h

III. RESULTS

The hourly simulations were performed based on a selection
of representative days over the projected horizon, delineating
the electricity benefits attributable to the adoption of qDTR.
The spatial distribution, comprising sixty-nine pre-selected
regions, is shown in Fig. 3. The data for each region were
processed and assimilated as set out in the II-G.

The model is designed to optimize the expansion and
operation of the existing grid capacity, projected from 2021, to



meet the anticipated growing demand by 2050. The simulation
parameters, delineated in Table II, dictate the framework
within which these optimizations are performed. As mentioned
in II-C a LDFM leveraging regression-based methodologies
at an hourly step was trained, validated, and selected. Al-
though the results are not shown in this paper, the outcomes
underscore the efficacy of linear regression and XG-Boost
methodologies, manifesting an average deviation of 12% from
observed values.

TABLE II
MODEL SPECIFICATIONS PARAMETERS

Variable Units Value

Socio-Economics

Technology Financial MEUR
MWe

[22]–[24]

CO2 Emission tCO2
MWh

[22]

Spatial Resolution Km2 25

Electrical

Thermal Risk % 0.1

PV Density MW
Km2 2.60

Wind Density MW
Km2 6.64

Hydro pmax % 9

OHL Conductor - 490-AL1/64-ST1A

Bus Voltage kV 220 / 380

Scenarios Description

Projection RCP 2.6, 4.5, 8.5

Timeframe Year 2021 - 2050

Resolution Hour 24

Days Selection Days (2) Representative + (1)
Extreme

Expansion Limit - 1.5 to 4.5 times (220kV -
380kV)

Modeling tools [17]

A. Benefits of qDTR vs STR

As described in II-B and detailed for a specific line in
Fig. 2, qDTR is used to determine the maximum capacity
of OHLs, considering future meteorological projections from
2021 to 2050 across different RCP scenarios(qDTRRCPx, where
x represents the RCP scenario evaluated). Table III illustrates
the percentage mean variation of the average rating compared
with the STR. In all three scenarios, qDTRRCP consistently
exceeds STRRCP with increases of 16% and 20% specifically
for the 2.6 scenario. In contrast, as a trade-off, using a
risk probability of 0.1 %, we ensure that during the high-
temperature season, the rating operates within the safety zone,
with an average decrease of -7% during the day and summer.
This trend persists across all seasons and projections. Conse-
quently, enhancing the capacity increases loadability, thereby
reducing the necessity for transmission expansion by 3% in
the high-emission scenario.

Fig. 2. qDTR for Line FRC1 - FRF2 with an exceedance probability of 0.1%

TABLE III
∆% QDTR / STR MEAN CAPACITY DIFFERENCES OVER A FIFTY-YEAR

WITH RCP2.6, 4.5, 8.5

Description Summer Winter Autumn Spring Day Night
qDTRRCP8.5,STR

Min -7 12 -2 -1 -7 3
Max 13 21 18 20 20 21

Average 4 18 12 12 8 15
qDTRRCP4.5,STR

Min -6 12 -2 -1 -7 3
Max 13 13 20 22 20 21

Average 5 21 13 12 8 15
qDTRRCP2.6,STR

Min -7 12 -1 -1 -7 2
Max 13 23 20 21 23 23

Average 5 20 13 12 9 16
RCP8.5,STR RCP4.5,STR RCP2.6,STR

Loading 7 7 8

B. Impact on network costs

This section delves into investment decisions in the G&TEP,
integrating climate-variant supply and qDTR for power sys-
tem components. We apply STRRCP and qDTRRCP based on
climate projections. The ensuing G&TEP estimates changes
in CAPEX, OPEX, and renewable curtailment. Results in
Table IV highlight: 1 enhancements with qDTRRCP over
STRRCP with a maximum increase above 20 % in Winter
and during nights. 2 Significant reductions in curtailment over
14%, resulting in reductions of more than 1% in the total cost
of the system.



Fig. 3. Geographical representation highlights the analyzed regions, illustrat-
ing the variance in line expansion from STR to RCP 4.5.

TABLE IV
VARIATION (IN %) FOR THE THREE SCENARIOS CONCERNING YEARLY FIX

RATING AND COSTS

RCP8.5,STR RCP4.5,STR RCP2.6,STR
CAPEX

Renewable -1 -2 -1.8
Fossil -2 -1 -2

Nuclear 0 0 0
Total -1 -1 -1
OPEX

Renewable -3 -4.3 -3.4
Fossil 0 -1 -1

Nuclear 4 5 3
Total -0.3 -1 -1

Curtailment -14 -16 -17
System Cost -0.4 -1 -1

IV. CONCLUSIONS

In summary, this study verifies that:

• Climate predictions, marked by increased ambient tem-
peratures, lead to a decline in transmission capacity
within the power system. Specifically, reductions of ap-
proximately -7% in the worst-case scenario.

• The proposed qDTR approach facilitates heightened
transmission capacities, countering the rating reduction
stemming from climate change. This method enhances
component capacity by an average of up to 12%.

• Overall network costs demonstrate strong fluctuations
while a consistent decline in renewable production cur-
tailment and Load Shedding is achieved, on average 15%
and 9%.

• The qDTRs is presented as a straightforward solution that
does not require telecommunications or controls and can
be easily applied to network components. Leaving the
application of DTRs to more critical assets.

• qDTR allows for higher transmission capacities, con-
cluding in a 1% reduction in the system’s total cost,
potentially saving billions of Euros.
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