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K-STABLE VALUATIONS AND CALABI-YAU METRICS ON
AFFINE SPHERICAL VARIETIES

TRAN-TRUNG NGHIEM

Abstract. After providing an explicit K-stability condition for a Q-Gorenstein
log spherical cone, we prove the existence and uniqueness of an equivariant K-
stable degeneration of the cone, and deduce uniqueness of the asymptotic cone of
a given complete K-invariant Calabi-Yau metric in the trivial class of an affine
G-spherical manifold, K being the maximal compact subgroup of G.

Next, we prove that the valuation induced by K-invariant Calabi-Yau metrics
on affine G-spherical manifolds is in fact G-invariant. As an application, we
point out an affine smoothing of a Calabi-Yau cone that does not admit any K-
invariant Calabi-Yau metrics asymptotic to the cone. Another corollary is that
on C3, there are no complete Calabi-Yau metrics with maximal volume growth
and spherical symmetry other than the standard flat metric and the Li-Conlon-
Rochon-Székelyhidi metrics with horospherical asymptotic cone. This answers the
question whether there is a nontrivial asymptotic cone with smooth cross section
on C3 raised by Conlon-Rochon when the symmetry is spherical.

1. Introduction

1.1. Background. The Yau-Tian-Donaldson correspondence establishes an equiva-
lence between the existence of canonical metrics and an algebro-geometric stability
condition. Large progress has recently been made for Ricci-flat Kähler cone met-
rics (also called conical Calabi-Yau metrics) on a Fano cone, which is basically an
affine cone with respect to a polarization over a log Fano base, hence comes with an
effective complex torus action.

In base-independent terms, given a complex algebraic torus T , a Fano cone Y is a
Q-Gorenstein klt T -affine variety with an effective T -action and a unique fixed point
under T [LWX21]. The Reeb cone of Y consists of elements ξ in the compact Lie
algebra of T acting with positive weights on non-zero elements of C[Y ].

A conical Calabi-Yau metric on (Y, JY ) is a ∂JY ∂JY -exact (weak) Ricci-flat metric
ω with potential r2, compatible with the weak complex structure JY , and homoge-
neous under the scaling vector field generated by r, i.e.

Lr∂rω = 2ω.

In particular, the ξ = −JY (r∂r) is a Reeb vector generating a holomorphic isometric
action of a compact torus Tξ,c on Y [DS17, Lemma 2.17].

Fano cones offer very rich geometry as they contain contact geometric structures,
as well as underlying Fano orbifold structures. They serve as asymptotic models for
Calabi-Yau metrics on affine manifolds in [Li19] [CR21] [Szé19] [BD19] [Ngh24], but
also as local tangent cones to Kähler-Einstein metrics [HS17].

Through the pioneering works of [CS18], [CS19], [HL23], [Li21], it is now estab-
lished that a Fano cone has a Ricci-flat Kähler cone metric if and only if it is K-stable.
More precisely, when the cone has a unique singularity, K-stability of a polarized cone
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2 TRAN-TRUNG NGHIEM

(Y, ξ) is shown in [CS19] to be equivalent to a K-stability condition that extends the
Fano orbifold stability of Ross-Thomas [RT11].

The general Q-Gorenstein case was solved by C. Li [Li21] by using the equivalence
between (weak) Ricci-flat Kähler cone metrics on (Y, ξ) and certain g-solitons over
quasi-regular Fano orbifold quotients of Y . The g-soliton equations have moreover
the same form when passing from one Reeb vector to another while keeping the
underlying CR structure. The K-stability of the Fano cone is then equivalent to
weighted K-stability of all quasi-regular quotients of Y .

Varieties with low complexity have been known to provide concrete examples to
test K-stability criteria [Del20a], [IS17]. The complexity of a variety with a regular
action of a reductive group G is basically the codimension of a generic Borel orbit.
Normal varieties with complexity zero are called spherical varieties. Equivalently, a
G-variety is spherical if and only if it has a open dense orbit under the action of a
Borel subgroup of G.

A simple G-spherical affine variety Y is said to be a G-spherical cone if its unique
closed orbit is the fixed point of G. In fact, a Q-Gorenstein G-spherical cone is
always a Fano cone with respect to the action of a torus compatible with G [Ngh23].

1.2. K-stable degeneration and K-stability of spherical cones. Let Y be an n-
dimensional Q-Gorenstein conical embedding of a spherical space G/H with colored
cone (CY ,DY ) and set of G-invariant divisors VY (identified with their G-invariant
valuations). Let TH = AutG(Y )0 ≃ (NG(H)/H)0 be the connected component of
the automorphism group of Y compatible with G.

Our first goal is to extend the main result on existence of log Calabi-Yau metrics
on toric cones with an isolated singularity of de Borbon-Legendre [dBL22] to the
spherical context with more general singularities.

Define
D :=

∑
ν∈VY

(1− γν)Dν

to be a G × TH -invariant divisor (which has simple normal crossing support by
construction) with γ = (γν)ν∈VY

satisfying 0 < γν ≤ 1 such that the naturally
G × TH -linearized divisor −L := KY + D is R-Cartier. The latter is equivalent to
the existence of ϖγ ∈ int(C∨

Y ) such that

⟨ϖγ , ν⟩ = γv, ∀Dν ∈ VY , ⟨ϖγ , ρ(d))⟩ = ad,∀d ∈ DY .

The set of such elements ϖγ are called angles. The pair (Y,D) is said to be a
spherical log cone and (Y,D, ξ) is a polarized spherical log cone. Moreover, D as a
closed subvariety is also a G-spherical cone.

Given any Reeb vector ξ, one can build a (weak) cone metric ωξ =
√
−1∂∂r2ξ

following [HS16]. We say that a cone metric ωξ on Y is a log Calabi-Yau metric with
Reeb vector ξ if

Ric(ωξ) = D,

which is equivalent to

(1) (
√
−1∂∂r2ξ ) =

dVY∏
|sν |2(1−γν)

,

where sν is the canonical G-equivariant section of Dν . In particular, ωξ restricts
to a bona fide (singular) Ricci-flat Kähler metrics on Y \Supp(D). We also expect
that ωξ has conic singularities of angles 2πγν along Dν in the log smooth locus of Y
(conditionally on an analogue of Guenancia-Paun’s result [GP16]).
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Theorem A (Proposition 3.2). Let (Y,D, ξ) be a polarized spherical log cone with
angles γ = (γν)ν∈VY

, 0 < γν ≤ 1. Then the following are equivalent
• Y has log Calabi-Yau metrics with Reeb vector ξ.
• (Y,D, ξ) is K-stable.
• barDH(∆ξ)−ϖγ ∈ (−V)∨, ∆ξ := {p ∈ C∨

Y , ⟨p, ξ⟩ = n}.

The K-stability criterion generalizes largely our previous work on horospherical
cones [Ngh23], which is based on solving an explicit real Monge-Ampère equation
through variational approach. Here we explore the algebro-geometric method by
constructing explicit G-equivariant test configurations of a polarized cone via de-
scription of G-equivariant degenerations in [BP87], [Del20a]. Any central fiber of
such configuration admits a further equivariant degeneration to a horospherical cen-
tral fiber [Pop86], and the Futaki invariant remains constant throughout (Lemma
2.24).

We then conclude based on an explicit computation of the Futaki invariant of a
horospherical cone in Lemma 2.25, and the fact that G-equivariant K-stability over
special test configurations is equivalent to K-stability, see Theorem 3.1.

Remark 1.1. One can compute the generalized δ-invariant for spherical log cones,
then use the valuative criterion for K-stability in Kai Huang’s PhD thesis [Hua22].
Our approach is more geometric in nature and independent of the works in [LLW22]
[Yin24].

Remark 1.2. By Pasquier’s result [Pas16], any horospherical pair as above with
0 < γν ≤ 1 has klt singularities. It follows that any spherical log pair (Y,D) defined
as above has automatically klt singularities, since a pair degenerating to a central
fiber with klt singularities also has klt singularities by [Kol96, Corollary 7.6] (thanks
to Yuchen Liu for his help).

Our next main result is the following.

Theorem B (Proposition 3.3). Any K-semistable spherical log cone (W,D, ξ) admits
an equivariant degeneration to a K-stable spherical log cone (C,D0, ξ), unique up to
equivariant isomorphisms.

This result might be of independent interest in K-stability theory. In fact, the
existence and uniqueness of the G-equivariant K-stable degeneration is known in the
Fano case [Zhu21], but a proof for log Fano cones is still lacking, since the argument
in [Zhu21] supposes the existence of a good moduli space for K-(semi)stable Fano
varieties, which has not yet been shown for Fano cones in all dimension.

By the time this article is being prepared, Xu-Zhuang has proved the boundedness
property for K-semistable log Fano cones [XZ24], which is a crucial ingredient for
the construction of the moduli spaces. However, our proof is independent of any
moduli construction and solely based on the inherent combinatorial information of
the spherical cone.

1.3. K-stable valuations and Calabi-Yau metrics. Let (M,ω) be a n-dimensional
complete Calabi-Yau manifold with maximal volume growth, i.e. for every ball Br(p)
of radius r > 0 centered at p, there is κ > 0 satisfying

vol(Br(p)) ≥ κr2n.

A metric cone C := C(Z) over some compact metric space (Z, dZ) is the metric
completion of ]0,+∞[×Z with respect to the metric

d((r1, z1), (r2, z2)) =
√
r21 + r22 − 2r1r2 cosmax {dZ(z1, z2), π}.
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The seminal work of Cheeger-Colding [CC97] shows that, given a sequence (Mi, ωi) =
(M,λiω) with λi → 0, after passing to a subsequence we obtain a metric cone C,
called the asymptotic cone (or tangent cone at infinity) of M .

In the Kähler context, consider the set K(n, κ) of complete n-dimensional polarized
Kähler manifolds (X,L, ω, p), where L is a Hermitian holomorphic line bundle over
X with curvature −iω and p a chosen base point, such that (X,ω) is Einstein with
Euclidean volume growth as in [DS17].

As remarked by Székelyhidi [Szé20], if we suppose that ω =
√
−1∂∂φ for some

smooth psh function φ on M , then we can readapt the powerful theory of Donaldson-
Sun in the noncompact setting by choosing (Li, hi) as trivial line bundles over Mi

with Hermitian metric hi = e−λiφ so that the sequence (Mi, Li, ωi) lies in the class
K(n, κ). The same arguments in [DS17, Section 3.4] then show that the tangent cone
at infinity is independent of the chosen subsequence, has a complex normal affine cone
structure (C, J0) with Q-Gorenstein klt singularities, and the metric singular set of
C (in the sense of Cheeger-Colding) in fact coincides with the algebraic singular set
of C [DS17]. Moreover, (C, J0) has a (weak) conical Calabi-Yau structure (so C is
in particular K-stable).

It is generally very hard to classify all the tangent cone at infinity of a given
Calabi-Yau affine manifold, even under the maximal volume growth condition. From
Donaldson-Sun theory, at least we know that such cone can be obtained from (M,ω)
via a 2-step degeneration as follows.

First, a complete ∂∂-exact Calabi-Yau metric ω on M induces a negative valuation
νω on the ring R(M) of holomorphic functions with polynomial growth of M (see
Section 4 for the precise definition). This valuation moreover induces a filtration
on the ring R(M) and a degeneration of M to a K-semistable Fano cone (W, ξ)
with the K-semistable Reeb valuation νξ induced by νω in a natural way. The K-
semistable cone (W, ξ) then degenerates to the K-stable cone (C, ξ) via a further test
configuration. It was recently shown by Sun-Zhang that when C has smooth link,
then (M,ω) degenerates to (C, ξ) in a single step and is moreover asymptotically
conical in the sense of Conlon-Hein [CH13] [SZ22].

Definition 1.3. We say that the valuation νω is K-stable (resp. K-semistable) if
the graded ring of R(M) by νω is finitely generated and defines a K-stable (resp. K-
semistable) Fano cone with the K-stable (resp. K-semistable) Reeb valuation induced
by νω.

In [SZ22], the authors propose a four-steps scheme to classify complete Calabi-Yau
metrics with Euclidean growth in the trivial Kähler class on noncompact manifolds.
The scheme consists of the following steps.

(1) Given an affine manifold M , classify all K-(semi)stable valuations on M .
More precisely, determine the space of all possible K-(semi)stable valuations
on M induced by complete Calabi-Yau metrics with maximal volume growth
on M .

(2) Given a K-stable valuation ν on M , determine the space Mν of all compatible
Calabi-Yau metric ω on M such that νω = ν.

(3) For any ω1, ω2 ∈ Mν , find a constant c > 0 such that c−1ω2 ≤ ω1 ≤ cω2.
(4) Let Nν be the space of conical Calabi-Yau metrics on the asymptotic cone

Cν . Show that the natural map Mν → Nν , defined by taking the rescaled
limit of the Kähler form under the weighted cone construction, is bijective.
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Our philosophy, which is rather natural, is that if we impose a large symmetry on
the metric, the scheme should be considerably simplified. We thereby achieve Step
(1) for K-stable valuations of a Calabi-Yau spherical manifold.

Theorem C (Propositions 5.9 and 5.10). If M is a G-spherical affine manifold and
ω is K-invariant complete Calabi-Yau metric with maximal volume growth in the
trivial Kähler class of M , then

• the asymptotic cone (C, ξ) of M is a G-spherical cone and unique up to an
isomorphism preserving the K-stable Reeb vector ξ.

• the negative valuation νω is G-invariant and restricts to the K-stable valuation
νξ (equivalently to −ξ) in the Cartan subspace of M , identified with that of C.
In particular, there can be only finitely many G-invariant K-stable valuations
on a G-spherical affine manifold.

Here are some remarks on this theorem.
• An immediate corollary is that the only Calabi-Yau metrics with maximal

volume growth and horospherical symmetry are the conical Calabi-Yau met-
rics on horospherical cones.

• The valuation doesn’t uniquely determine the Calabi-Yau metric, but only
up to a family. An explicit example of a 2-parameters family of Calabi-
Yau metrics on C3 with asymptotic cone C2/Z3 × C was constructed by
Chiu [Chi22]. The fourth step in Sun-Zhang classification scheme predicts
a family of Calabi-Yau metrics depending on as many parameters as the
automorphisms group of the asymptotic cone.

• As for uniqueness of the asymptotic cone, an approach independent of K-
stability theory is to use the equivariant Hilbert scheme constructed by
Alexeev-Brion in [AB04], generalizing the Haiman-Sturmfels’ Hilbert scheme
for diagonalizable group [HS04] used in [DS17, Section 3.3].

• The G-invariance of νω and uniqueness of C as an G-affine cone hold for any
K-invariant Calabi-Yau metric on a smooth affine G-variety (cf. Remark
5.12), but it is not clear how to compare νω and νξ as in the spherical case.

Since every K-invariant Calabi-Yau metric on a non Hermitian symmetric space
is necessarily ∂∂-exact of maximal volume growth, and that the K-stable valuation
induced by such metric lies outside the Weyl chamber in the G2 case by explicit
computations in [Ngh24], we obtain directly the following non-existence result as
announced therein.

Corollary D (Proposition 6.3). There is no complete K-invariant Calabi-Yau metric
with horospherical asymptotic cone on the symmetric spaces of type G2.

In particular, it follows from [BD19] that on each space, there can only be one
possible G2-spherical asymptotic cone and there exists complete K-invariant Calabi-
Yau metric on the space with this asymptotic cone.

• This seems to provide the first example of a non-rigid singular Calabi-Yau
cone that cannot be realized as the tangent cone at infinity of a given equi-
variant affine smoothing. On the other hand, the existence of a AC Calabi-
Yau metric on an affine smoothing of a smooth Calabi-Yau cone is always
guaranteed because any affine manifold is Kähler [CH22, Theorem A].

• Since the horospherical equivariant degeneration of G2/ SO4 has canonical
singularities, the non-existence result also suggests that a general existence
theorem à la Conlon-Hein [CH22, Theorem A,B] should involve finer proper-
ties of the cone’s singularities.
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• Given a Calabi-Yau cone C, it is expected that there are only two ways to
obtain Calabi-Yau manifolds: either by smoothing C or crepantly resolving
C. This turns out to be the case for smooth Calabi-Yau cones [CH22]. If both
ways work, one can shrink the exceptional divisor on the Calabi-Yau crepant
resolution X̌ to C, then smoothly deforming C to a Calabi-Yau manifold
X̂ with a different complex structure. This phenomenon is called geometric
transition which is of interest to physicists [CdlO90] [Ros06]. In our context,
no equivariant geometric transition phenomenon can occur through this cone,
since there is no equivariant crepant resolution of the G2-horospherical de-
generation cone in the first place (cf. Lemma 6.4).

• R. Conlon pointed out to me that there is not yet any counterexample when
the possible asymptotic cone has smooth link. It would also be interesting
to ask whether there exists at all any equivariant Calabi-Yau smoothing of
the G2-horospherical degenerations.

Finally, another motivation of our work comes from the author’s remark that
many known examples of Calabi-Yau manifolds of maximal volume growth with
singular tangent cones so far are in fact affine spherical manifolds with respect to the
complexified action of the given isometry on the metric. This includes the Li-Conlon-
Rochon-Székelyhidi (LCRS) metrics on Cn+1, n ≥ 2 with asymptotic cone C × A1

[Li19] [CR21] [Szé19], Biquard-Delcroix-Gauduchon’s metrics with horosymmetric
asymptotic cones [BD19], [BG97], and the metrics with horosphericala asymptotic
cones constructed by the author in [Ngh24]. Note however that on Cn+1, there exist
also metrics with non-spherical symmetry [Szé19] [CR21].

Every G-affine spherical manifold M is G-isomorphic to G ×H V , where H is a
reductive connected spherical subgroup of G (in particular G/H is an affine spherical
space), and V is a spherical H-module [KVS06, Corollary 2.2].

Example 1.4. The complex symmetric spaces G/H are all affine spherical mani-
folds. On the other hand, Cn+1 is a rank two SOn+1×C∗-symmetric non semisimple
cone with open orbit SOn+1 /SOn×C∗.

Yang Li’s metrics on C3 are in fact invariant by the maximal compact subgroup
K = SOn+1(R) × S1 and of horospherical tangent cones at infinity A1 × C. By
Székelyhidi’s uniqueness theorem [Szé20], any complete Calabi-Yau metric on C3

asymptotic to the cone is unique up to scalings and biholomorphisms. Note that
any K-invariant metric on the symmetric cone C3 is ∂∂-exact and has maximal
volume growth (cf. [Del20b]). This fact combined with Székelyhidi’s uniqueness and
Theorem C implies the following.

Corollary E (Proposition 6.7). The only possible asymptotic cones of complete
Calabi-Yau metrics with spherical symmetry on C3 are

• the horospherical asymptotic cone A1 × C of Yang Li’s metrics,
• and the asymptotic cone C3 itself of the standard flat metric.

In particular, there are only two distinct families of complete Calabi-Yau metrics
with spherical symmetry on C3.

1.4. Organization. The paper is organized as follows. In Section 2, we describe
the test configurations and compute the Futaki invariant of spherical cones. Main
Theorems A and B are proved in Section 3.

Section 4 contains a summary of Donaldson-Sun theory. The proof of Theorem C is
given in Section 5. Examples of explicit K-stable valuations on spherical Calabi-Yau
manifolds and proof of Corollary E are given in Section 6.
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2. Test configurations and Futaki invariant of spherical cones

2.1. Generalities on spherical cones. Main references for this section are [Bri97b],
[Kno91]. A spherical space is a homogeneous space G/H containing a Zariski-open
orbit under the action of a Borel subgroup B ⊂ G. A G-spherical variety X is a G-
equivariant embedding of a spherical space. A spherical variety is said to be simple if
it contains a unique closed G-orbit. Each simple spherical variety contains an open
B-stable affine subset XB that intersects the closed orbit along an open B-stable
orbit. Every spherical variety can be covered by simple spherical varieties.

Let M(G/H) be the lattice of characters of C(G/H) as a B-representation, and
N (G/H) be its dual lattice. Denote by V(G/H) the set of G-invariant valuations on
C(G/H)∗. When the spherical space is clear from the context, we will just denote
them by M,N ,V.

Theorem 2.1. [BLV86] Let Q be the parabolic subgroup of G that stabilizes the
open B-orbit BH (or equivalently, stabilizes all the colors in D).

There is a choice of a Lévi subgroup L ⊂ Q and of a maximal torus T ⊂ L (this is
also the maximal torus of G) such that one can identify M and N with the character
lattice of the adapted torus T/T ∩ H and its dual. The dimension of this torus is
the rank of G/H. We say that NR is the Cartan subspace of g/h.

For every valuation ν ∈ V, there exists an injective natural map ρ : V → NR, such
that ρ(ν)(fχ) = ⟨χ, ν⟩ where fχ ∈ C(G/H) is an eigenvector of B with character χ.

Definition 2.2. The set of reduced and irreducible B-stable divisors in G/H is called
the colors of G/H, denoted by D.

A color of a G/H-spherical embedding X is an element of D whose closure in X
contains a closed orbit. The set of colors of a spherical embedding X is denoted by
DX . The natural map ρ sends D to a subset of N , but ρ is not injective on D in
general.

Let VX be the set of G-invariant divisors of X. The injective map ρ : VX → NR
that sends a divisor to its valuation identifies VX with a finite subset in V.

To each simple embedding X, we can associate a pair (CX ,DX), where CX is the
strictly convex cone generated by VX ∪ ρ(DX), called a colored cone in the following
sense.

Definition 2.3. A colored cone (C,F) is the data of C ⊂ NR and F ⊂ D, where
0 /∈ ρ(F), C is a strictly convex cone generated by ρ(F) and a finite number of
elements of V, and F is called the set of colors of (C,F).

Theorem 2.4 (Luna-Vust). The map X → (CX ,DX) is a bijection between the set
of isomorphism classes of simple G/H-embeddings and the set of colored cones.

Theorem 2.5. [Ngh23] Let G/H be a spherical space. Let Y be a simple G-
equivariant embedding of G/H with colored cone (CY ,DY ). Then Y is a spherical
cone if and only if V(G/H) has a linear part, CY is of maximal dimension, and
D = DY (i.e. all the colors of G/H contains the unique closed orbit of Y ).
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The Q-Gorenstein assumption on a spherical cone implies that is has at worst klt
singularities. We refer the reader to [Pas17] for a survey on singularities of spherical
varieties. Any Q-Gorenstein spherical cone is in particular a Fano cone.

Theorem 2.6. [Los09] Let ΓY := C∨
Y ∩ M be the weight monoid of the spherical

cone Y (or more generally any smooth affine variety), and ΣY := (−VY )
∨. Then Y

is uniquely determined up to G-isomorphisms by (ΓY ,ΣY ).

Let TH := AutG(Y )0 ≃ (NG(H)/H)0 be the neutral component of the automor-
phisms of Y that commutes with G. Since every σ ∈ AutG(G/H)0 can be extended
to a G-equivariant isomorphism of (Y, y) to (Y, σ(y)), we have TH ≃ AutG(G/H)0.
Moreover, dim(TH) = dim linV ≥ 1, and the noncompact Lie algebra of tH can be
identified with linV, hence N (TH) = linV ∩ N .

Example 2.7. Every toric space (i.e. G = T and H = {1}) admits conical embed-
dings, while this is not the case for every spherical space. Indeed the symmetric space
SL2/T does not embed into any symmetric cone, since NSL2(T )/T ≃ Z2. However,
the space SL2/T × C∗ has a conical embedding.

Under the TH -action, the coordinate ring of Y decomposes as

R := C[Y ] =
⊕
α∈Γ

Rα,

where Γ := {α ∈ M(TH), Rα ̸= 0} is a finitely generated monoid in M(TH). The
cone σ∨ generated by Γ is strictly convex and of maximal dimension in M(TH)R. By
duality, the dual cone σ = (σ∨)∨ is also a strictly convex cone of maximal dimension.

Remark 2.8. Since the right action of TH commutes with G, every B-module R(α)

can be identified as a one-dimensional C-vector space with a TH-module RαH such
that α|N (TH) = −αH .

Definition 2.9. The interior of σ is called the (algebraic) Reeb cone of Y , denoted
by CR. A couple (Y, ξ) with ξ ∈ CR is said to be a polarized cone.

An element ξ ∈ N (TH)Q is said to be quasi-regular, and irregular otherwise.
Every Reeb vector induces a monomial valuation νξ on C[Y ], centered on the

unique fixed point of Y , such that

νξ(f) = min
α∈Γ

{⟨α, ξ⟩ , Rα ̸= 0} .

The image of νξ in NR by the map ρ in Definition 2.2 is in fact −ξ [Bri97b, Propo-
sition 4.1].

Note that when the cone Y has smooth link, then the algebraic Reeb cone can be
identified with the symplectic Reeb cone as follows. Let J be a complex structure
on Y ∗ := Y \ {0}. A Kähler metric ω on (Y, J) is compatible with a Reeb element
ξ ∈ CR if there exists a ξ-invariant smooth psh function r : Y ∗ → R>0 such that
ω = 1

2 i∂∂r
2 and ξ = J(r∂r).

Given a quasi-regular Reeb vector field ξ0 ∈ N (TH)Q, it can be shown that Y
always admits a ξ0-compatible metric and a dual 1-form η0 on Y ∗ such that η0(ξ0) =
1. In this case, the symplectic Reeb cone

C′
R := {ξ ∈ tH , η0(ξ) > 0 on Y ∗}

turns out to be exactly the algebraic Reeb cone CR (cf. [CS18, Proposition 2.7]). In
particular, it is independent of the choice of ξ0 and η0.

Definition 2.10. A spherical space G/H is called horospherical if H contains a
maximal unipotent subgroup of G.
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Let S the set of simple roots of G with respect to a Borel subgroup B and W the
Weyl group of G. Recall that there is a bijection between the subsets of S and (the
conjugacy classes of) parabolic subgroups of G as follows. For every I ⊂ S, let WI

the subgroup of W generated by the reflection sα, α ∈ I. The parabolic subgroup
PI ⊂ G is defined as the group generated by B and WI .

Given a dominant weight λ, we have λ =
∑

α∈S xαϖα, xα ≥ 0. Then define the
parabolic subgroup P (λ) as PI , where I = {α ∈ S, xα = 0} . In particular, P (ϖα) =
PS\{α}, and

∩α∈S\IP (ϖα) = PI .

Proposition 2.11. [Pas06] A G horospherical space is uniquely determined by a
couple (M, I) where I ⊂ S, and M is a sublattice of M(T ) such that for all χ ∈ M
and α ∈ I, ⟨χ, α∨⟩ = 0. The isotropy subgroup is then

H = ∩χ∈M(PI)ker(χ).

Furthermore, PI is the right-stabilizer of the open Borel orbit, and coincides with
NG(H), and G/H is an equivariant torus bundle over G/PI with fiber the torus
PI/H. The colors D of G/H are in bijection with the roots in S\I and

ρ(D) =
{
α∨|MI

, α ∈ S\I
}
.

Note that PI is the opposite parabolic subgroup of the (left-)stabilizer Q. When
Y is a conical embedding of a horospherical space G/H with colored cone (CY ,DY ),
the group TH coincides with PI/H, but since the action is reverse, the Reeb cone is
exactly

CR = −int(CY ).
Horospherical cones can be obtained systematically as follows.

Proposition 2.12. [VP72, Theorem 1] Let V (λ) be a simple G-module of highest
weight λ and eigenvector vλ. The variety

X(λ) := Gvλ ⊂ V (λ)

is then a rank one horospherical cone over the corresponding Grassmannian G/P (λ)
in P(V (λ)) where I = {α ∈ S, ⟨λ, α∨⟩ = 0} and PI = P (λ) is the stabilizer of [vλ] ∈
P(V (λ)). Moreover, C[X] ≃ V (λ)∗.

Example 2.13. As an application, one can take G = SO3 with the unique fun-
damental weight λ = 2ω, where ω is the fundamental weight of SL2. Then X(2ω)
is isomorphic to the ordinary double point, which is the Stenzel asymptotic cone of
the rank one symmetric space SO3 / SO2. Indeed, V (2ω)∗ ≃ S2V ∗ ≃ C[x2, xy, y2],
which is the coordinate ring of the ordinary double point. On the other hand, X(ω)
is simply C2.

2.2. Test configurations of spherical cones. Recall that by a result of Knop
[Kno91], if the vertex of a Fano cone Y is fixed by a reductive group G acting
effectively on Y , then there is a C∗-action on Y commuting with G.

Definition 2.14. Let (Y,D, ξ) be any polarized log Fano cone, endowed with an
effective action of a reductive group G that fixes the vertex of Y , and a compatible
action of a complex torus T containing Tξ, preserving D.

A G× T -equivariant test configuration of (Y,D, ξ) consists of
• a G×T -equivariant flat affine family π : (Y,D) → C, where D is an effective

divisor not containing any component of Y0 = π−1(0) such that each fiber
away from 0 is isomorphic to (Y,D).
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• a C∗-holomorphic action on (Y,D) generated by ζ ∈ t and commuting with
the G×T -action such that π is C∗-equivariant for this action, and that there
is a G× C∗-equivariant isomorphism (Y,D)\(Y0, D0) ≃ (Y,D)× C∗.

The test configuration is said to be special if KY+D is R-Cartier and that the central
fiber (Y0, D0) is a klt pair.

Finally, the test configuration is said to be trivial if there is a T -equivariant iso-
morphism (Y,D) ≃ (Y,D)×C and ζ = ζ0+ t∂t where ζ0 generates a C∗-holomorphic
vector field that commutes with the action of ξ, and t is an element of the compact
Lie algebra of C.

In the spherical context, if the test configuration is special, then the central fiber
(Y0, D0, ξ) is also a polarized G-spherical log cone that inherits an action of TH and
a new action of C∗ that commutes with G × TH . The action of the automorphism
group AutG×C∗(G/H × C∗)0 ⊃ TH × {1} extends automatically on (Y,D), hence a
G-equivariant test configuration of (Y,D, ξ) is also a G × TH -test configuration for
(Y,D, ξ). Moreover, since it suffices to check K-stability over special test configura-
tions (cf. Theorem 3.1), we will mainly focus on special G-equivariant configurations.

Definition 2.15. An elementary embedding is a G-equivariant embedding of G/H
with a unique closed orbit of codimension 1. A C∗-equivariant degeneration of G/H
is a G × C∗-equivariant elementary embedding E of G/H × C∗ together with a C∗-
equivariant morphism E → C.

Every couple (λ,m) ∈ V ⊕ Q∗ determines an equivariant degeneration, and vice
versa: a primitive generator of the colored cone of E is of the form (λ,m) ∈ V ⊕Q∗.
The closed orbit of E can be identified with G/H0, where H0 is a spherical subgroup
of G. If λ ∈ int(V), then G/H0 is horospherical. Moreover, G/H0 has the same
left-stabilizer of the open Borel-orbit as well as the same adapted Levi subgroup as
G/H.

For simplicity, we only describe here the test configuration of a polarized spherical
cone, as the description for a log pair follows almost word-by-word. We first need
the following result on spherical morphisms.

Proposition 2.16. [Kno91] There exists a morphism between two G/H-embeddings
X and X ′ if and only if for every colored cone (C,F) of X, there is a colored cone
(C′,F ′) of X ′ such that C ⊂ C′ and F ⊂ F ′.

Theorem 2.17. Let (Y, ξ) be a polarized Q-Gorenstein spherical cone.
(1) To each G-equivariant special test configuration of (Y, ξ) with G-spherical

central fiber Y0, there exists (ν,m) ∈ V⊕N∗ and a spherical subgroup H0 ⊂ G
such that Y0 is a G/H0-spherical embedding, and that the action of C∗ on
G/H0 is

eτ .gH0 = gν(e−τ/m)H0.

(2) Conversely, let ν ∈ V and m ∈ N∗. Let G/H0 be the central fiber of the
equivariant degeneration induced by (ν,m). Then there exists a G-equivariant
test configuration (and a special one after a suitable base change) such that
the central fiber Y0 is a conical embedding of G/H0, and that the C∗-action
can be described as above.

In particular, every polarized G-spherical cone admits a test configuration
with G-horospherical central fiber.

(3) Up to lattice isomorphisms, the lattices and weight monoids of Y and Y0 are
the same.

(4) (Y, ξ; ν) is trivial if and only if ν belongs to the linear part of V.
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Proof. Before going through the proof, remark that the spherical space G/H × C∗

has character lattices M(G/H ×C∗) = M⊕ Z and valuation cone V(G/H ×C∗) =
V ⊕R, which clearly has non-trivial linear part. The colors of G/H ×C∗ are exactly
{d× C∗, d ∈ D}.

Every test configuration induces a C∗-equivariant degeneration of G/H, hence
there exists λ ∈ V and m ∈ N∗ such that the ray generated by (λ,m) ∈ V ⊕N∗ is the
colored cone of the equivariant degeneration. The C∗-action on G/H0 is described
in [BP87], [Del20a]. Moreover this action commutes with ξ, so this action must lie
in linV ∩ CR.

Conversely, let (ν,m) ∈ V⊕N∗ and consider the conical embedding defined by the
generators of CY and (ν,m), with all the colors of G/H ×C∗. This defines clearly a
G×C∗-spherical cone Y, and the projection to R≥0(0, 1) with 0 ∈ N in the Euclidean
spaces gives an affine G × C∗-equivariant morphism π : Y → C by classification of
spherical morphisms recalled in Proposition 2.16.

The central fiber Y0 corresponds then to the divisor of Y determined by the ray
(ν,m). The latter can also be seen as an elementary embedding of G/H ×C∗, hence
an equivariant degeneration of G/H to G/H0. The special test configuration is
obtained after changing the lattice N ⊕Z to N ⊕ 1

kZ for a suitable k, while keeping
the colored cone of Y.

Remark that the coordinate rings R,R0 of Y, Y0 are isomorphic as G-modules,
hence M ≃ M0. Furthermore, R(B) is B-isomorphic to R

(B)
0 [Pop86, Proposition

4], hence ΓY ≃ ΓY0 .
Finally, taking ν that projects to the interior of V then yields a test configuration

with horospherical central fiber. The last statement results from [Del20a]. □

We will denote from now on (Y, ξ; ν) the G-equivariant test configuration of (Y, ξ)
with respect to ν ∈ V.

Remark 2.18. The embedding data of the central fiber Y0 of (Y, ξ; ν) can be obtained
as follows. The weight lattice M0 of Y0 can be identified with

M0 := (ν⊥ ∩M)⊕ Zχ ≃ M,

where χ ∈ M is such that ⟨χ, ν⟩ = 1. In particular, if we let π : N → N0 be the dual
map of the isomorphism M0 ≃ M, then

V0 = Rν ⊕ π(V).
Since the weight monoids of Y and Y0 are the same, their colored cones have the
same support, and the colors of Y0 can be determined using [GH15b].

2.3. Futaki invariant. Let us recall briefly the construction of Futaki invariant by
Collins-Székelyhidi [CS18] through index character and the equivalent characteriza-
tion of Li-Wang-Xu in terms of normalized volume and log discrepancy [LWX21].
Let (Y, ξ) be a n-dimensional polarized spherical cone and

C[Y ] = ⊕α∈ΓRα

be the decomposition of C[Y ] as a TH -representation. For any t ∈ C and ξ ∈ NR,
the index character is defined as

F (t, ξ) :=
∑
α∈Γ

e−t⟨α,ξ⟩ dimRα.

This is a meromorphic function on C with poles along imaginary axis, and decom-
poses near t = 0 as

F (t, ξ) =
a0(ξ)n!

tn+1
+

a1(ξ)(n− 1)!

tn
+O(t1−n).
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where a0, a1 : CR → R are smooth functions.
Let dξf(ν) be the directional derivative of a function at a point ξ along the vector

ν. The Futaki invariant of the test configuration (Y, ξ; ν) is defined by

Futξ(Y, ν) =
a0(ξ)

n
dξ

(
a1
a0

)
(ν) +

a1(ξ)dξa0(ν)

n(n+ 1)a0(ξ)
.

In particular, the Futaki invariant of a test configuration depends only on the coordi-
nate ring of the central fiber as a representation of TH . For computational reason, we
shall use the definition of the Futaki invariant by Li-Wang-Xu in terms of normalized
volume and log discrepancy, but note that this is the Futaki invariant of [CS18] up
to a positive constant (see for example [LLX20] for details).

Let Y be a klt normal variety. The log discrepancy function of Y is a positive
function AY over the set of valuations that admit a center on Y . For practical
reason, we only give the definition of the log discrepancy for a divisorial valuation
and refer the reader to [LLX20, Theorem 2.2, Theorem 3.5] for the general definition
for a pair (Y,D). Let E be the exceptional divisor over a proper birational model
µ : Y ′ → Y , and wE the associated valuation over C(Y ′) = C(Y ), the log discrepancy
is then

AY (wE) := 1 + wE(KY ′ − µ∗KY ).

The general discrepancy for a quasimonomial valuation is then defined in an obvious
way, and for a general valuation centered on Y by using the retraction map from
ValY to the set of quasimonomial valuations over any log smooth model of Y .

Proposition 2.19. [CS19], [Li18] Let (Y,D) be a spherical log cone with angles γ
and m be an integer such that m(KY +D) is Cartier. Let s be a G×TH-equivariant
nowhere-vanishing holomorphic section of −m(KY +D). Then there exists a linear
function ϖγ : CR → R such that

Lξs = m ⟨ϖγ , ξ⟩ s.

Moreover, the log discrepancy of wξ is exactly

A(Y,D)(wξ) = ⟨ϖγ , ξ⟩ .

If (Y,D, ξ) has log Calabi-Yau cone metrics, then A(Y,D)(wξ) = n.

Definition 2.20. Let (Y,D) be a log spherical cone. Let ξ be an element in the Reeb
cone CR and ϖγ : CR → R the linear function as above. The (algebraic) volume of
(Y, ξ) is defined as

volY (ξ) = lim
k→∞

dim
(⊕

⟨α,ξ⟩<k Rα

)
kn/n!

.

The normalized volume of a spherical log cone (Y,D) is a function that takes ξ ∈ CR
to

v̂ol(Y,D)(ξ) := A(Y,D)(wξ)
n volY (ξ) = ⟨ϖγ , ξ⟩n volY (ξ).

Remark 2.21. It has been established that vol is a continuous function, see e.g.
[CS18, Theorem 4.10] for the case where Y is smooth, and [Li21, Theorem 2.8] for
the general case. From the differentio-geometric point of view, vol is the g-weighted
volume of the (log) Fano base. More precisely, when ξ is quasi-regular, volY (ξ) is
exactly the volume of the quasi-regular quotient with respect to the transverse Kähler
form for ξ.
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Definition 2.22. Let (Y,D, ξ; ν) be any special test configuration of the polarized
spherical log cone (Y,D, ξ) with angles γ and central fiber (Y0, D0, ξ). Let A :=
A(Y0,D0) be the log discrepancy of the central fiber. The Futaki invariant of (Y,D, ξ; ν)
is defined as

Futξ(Y,D, ν) :=
dξv̂ol(Y0,D0)(ν)

nA(Y,D)(ξ)n−1 volY0(ξ)
= ⟨ϖγ , ν⟩+

⟨ϖγ , ξ⟩
n

dξ volY (ν)

volY (ξ)
.

Definition 2.23. We say that a polarized spherical log cone (Y,D, ξ) is G-equivariantly
K-semistable if for every special G-equivariant test configuration defined by ν ∈ V,
Futξ(Y,D, ν) ≥ 0.

Moreover, (Y,D, ξ) is G-equivariantly K-stable (or K-polystable in [LWX21]) if
it is K-semistable and that Futξ(Y,D, ν) = 0 only if (Y,D, ξ; ν) is a trivial test
configuration.

The following lemma allows to prove the main theorem by reducing to the com-
putation of the Futaki invariant of a horospherical cone.

Lemma 2.24. Let (Y,D, ξ; ν) be a degeneration with horospherical central fiber
(Y0, D0). The Futaki invariant of (Y,D, ξ) is the same as the Futaki invariant of
(Y0, D0, ξ).

Proof. Since the Futaki invariant as defined by Collins-Székelyhidi only depends on
the moment cone of Y (that is the convex cone generated by the weights of TH),
and that the central fiber Y0 has the same moment cone as Y by a theorem of
Knop [Kno90, Satz 5.4], the result then follows. □

Let us now compute the Futaki invariant of a pair associated to a horospherical
conical embedding G/H ⊂ Y . Recall that G/H is a equivariant torus bundle over
G/P , where P := NG(H) is the right-stabilizer of the open Borel orbit. Denote
by ΦPu the root system of the reductive part P u. By Brion’s description of the
canonical divisor, KY can be represented by

−KY =
∑
ν∈VY

Dν +
∑
d∈DY

add.

where VY is the set of G-stable divisors of Y and DY the set of colors of Y , and ad
are coefficients that depend only on G/H.

Lemma 2.25. Let (Y,D, ξ) be a polarized horospherical log cone with angles γ,
colored cone CY and Reeb cone CR := −int(CY ). Let ∆ξ = {⟨., ξ⟩ = n} ∩ C∨

Y and
barDH(∆ξ) be the barycenter of ∆ξ with respect to the Duistermaat-Heckman measure

P (p)dλ(p) :=
∏

α∈ΦPu

⟨α, p⟩ dλ(p)

For every ξ ∈ CR and ν ∈ V, the Futaki invariant of (Y,D, ξ) can be written as

Futξ(Y,D, ν) =

〈
−⟨ϖγ , ξ⟩

n
barDH(∆ξ) +ϖγ , ν

〉
,

where ϖγ can be interpreted as the B-weight of the canonical section of the Cartier
divisor −m(KY +D).

Proof. Let us first work with an usual cone Y . A horospherical cone is Q-Gorenstein
if and only if there exists a linear function l ∈ MQ on CY such that

⟨l, ν⟩ = 1, ⟨l, ρ(d)⟩ = ad.
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This linear function is exactly the B-weight −ϖ of the canonical section of KY

−ϖ =
∑

α∈ΦPu

α.

Moreover, one can show as in [Ngh23] that the unique TH -equivariant holomorphic
section s of the Cartier divisor −mKY satisfies

Lξs = −m ⟨l, ξ⟩ s.

It follows from the description of the log discrepancy in terms of s that AY (wξ) =
−⟨l, ξ⟩ = ⟨ϖ, ξ⟩ for every ξ ∈ CR. The case of (Y,D) follows by replacing (−KY , ϖ)
with (−(KY +D), ϖγ).

We now compute the volume of (Y, ξ). By continuity of the volume, it suffices
to compute volY (ξ) for a quasiregular Reeb vector ξ ∈ (CR)Q. Let X := Y// ⟨ξ⟩ be
the GIT orbifold quotient of Y . It is naturally a log Fano spherical variety endowed
with a Hamiltonian action of the torus TH/ ⟨ξ⟩, and the moment polytope for this
action after normalizing is exactly ∆ξ. The Duistermaat-Heckman measure on this
polytope coincides with Pdλ. This measure is moreover independent of the choice
of ξ, cf. [Li21]).

In particular, for a horospherical cone Y polarized by a quasi-regular Reeb element
ξ,

volY (ξ) = n!

∫
∆ξ

P (p)dλ(p).

Using the definition of the Gamma function

Γ(n+ 1) = n! =

∫
s>0

sne−sds,

and a Fubini argument, we obtain

volY (ξ) =
∫
s>0

∫
⟨.,ξ⟩=s

e−⟨p,ξ⟩ ⟨p, ξ⟩n P (p)dλ(p)ds =

∫
C∨
R

e−⟨p,ξ⟩P (p)dλ(p).

Finally, a direct computation yields

dξ(log volY )(ν) = −⟨barDH(∆ξ), ν⟩ .

The lemma then follows from the definition of the Futaki invariant in terms of nor-
malized volume. □

3. Proof of Theorem A and B

3.1. Proof of Theorem A.

Theorem 3.1. The following conditions are equivalent.
• A polarized log Fano cone (Y,D, ξ) admits log Calabi-Yau cone metric with

Reeb vector ξ.
• (Y,D, ξ) is K-stable.

Moreover, it suffices to test these stability conditions over G-equivariant special test
configurations, where G is a reductive group acting effectively and holomorphically on
(Y,D, ξ). In particular, a G-spherical cone (Y,D, ξ) admits K-invariant log Calabi-
Yau cone metrics iff (Y,D, ξ) is G-equivariantly K-stable.

Proof. This was essentially proved in [Li21], see [Li21, Theorem 2.9], also [HL23,
Theorem 1.7]. For the reader’s convenience, we provide a sketch of proof.
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Let η be the (weak) contact form associated to ξ. The log Calabi-Yau cone equa-
tion on (Y,D, ξ) can be shown (cf. Equation (78) [Li21]) to be equivalent to an
equation of the form

g(η)(dη)n−1 ∧ η = dV ξ
Y ,

where g is a positive smooth function on the link
{
r2ξ = 1

}
. Now let ξ0 := ξ − ξ′ be

any other quasi-regular Reeb vector field, and η0 = η/η(ξ0) be the contact form with
respect to ξ0. The Reeb vector ξ0 generates a C∗-action and we identify the Fano
orbifold quotient (Y,D)// ⟨vξ0⟩ with a log Fano variety (X,DX), where DX takes
into account the ramified divisor. If (Y,D) is G × C∗-equivariant, then (X,DX) is
G-equivariant. Translating the above equation in terms of η0, ξ0, we obtain

g(η0)(dη0)
n−1 ∧ η0 = dVY ,

which is a g-soliton equation on the quotient (Y,D)// ⟨vξ0⟩ = (X,DX) (cf. Equation
(104) [Li21]). In particular, (Y,D, ξ) admits a weak log Calabi-Yau cone metric if
and only if any quasi-regular quotient admits a g-soliton.

Let ζ := ξ0 + t∂t, where t∂t is the holomorphic vector field generating the C∗-
action. The quotient (Y,D)/ ⟨vζ⟩ = (X ,DX ,−(KX + DX )) is a test configuration
of (X,DX ,−(KX + DX)). Here, the Cartier divisor −(KX + DX ) is the multiple
of the polarizing orbifold line bundle L (viewed as a Q-Cartier divisor) such that
L∗\X ≃ Y\ {0} .

Conversely, any test configuration of (X,DX) induces a test configuration of (Y,D)
(by taking the fiberwise cones over X with respect to the polarization −(KX +
DX)). Moreover, the correspondence sends special test configurations to special
test configurations, and G-equivariant test configurations of Y to G-equivariant test
configurations of X (if the action of ξ0 is compatible with G).

Next, can show that the Ding invariant of Y is exactly the weighted Ding invariant
of any quotient test configuration (X ,D,L). The work of Han-Li [HL23] establishes
that (X,DX) admits a g-soliton if and only if it is g-weighted Ding stable. It follows
that (Y,D, ξ) is Ding-stable iff (Y,D, ξ) admits a weak log Calabi-Yau cone metric,
iff any quasi-regular quotient is g-weighted Ding-stable.

Finally, since it is enough to check g-weighted Ding stability of a quasi-regular
quotient over G-equivariant special test configurations [HL23, Theorem 7.3], [Li21,
Theorem 1.15], the polarized cone (Y,D, ξ) is Ding-stable iff it is Ding-stable over
all G-equivariant special test configurations for a given G. Finally for a special test
configuration, the Ding invariant of the polarized cone (Y,D, ξ) coincides with the
Futaki invariant, and the theorem follows. □

Theorem 3.2. Recall that Σ := (−V)∨. A polarized spherical log cone (Y,D, ξ) with
angles γ is K-stable if and only if

barDH(∆ξ)−ϖγ ∈ RelInt(Σ).

Proof. This follows from Theorems 2.17, 3.1, and our computation of a horospherical
cone’s Futaki invariant. For simplicity, we work with a Q-Gorenstein G-spherical
cone Y . Given any G-equivariant special test configuration (Y, ξ; ν), ν ∈ (−V) of
(Y, ξ) with central fiber Y0, we can construct another test configuration of Y0 with
horospherical central fiber Y ′

0 . The Futaki invariant of (Y ′
0 , ξ) is the same as (Y0, ξ)

by Lemma 2.24, hence the K-semistability condition is equivalent to

⟨ϖ, ξ⟩
n

⟨barDH(∆ξ), ν⟩ ≥ ⟨ϖ, ν⟩ , ∀ν ∈ (−V).
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ν

π(F )linVW

F

Figure 1. Degeneration of (W, ξ) along a valuation ν in the Futaki
vanishing locus F on VW .

The fact that a Ricci-flat Kähler cone (Y, ξ) satisfies ⟨ϖ, ξ⟩ = n (cf. Proposition
2.19) simplifies further this condition to

Futξ(Y ′
0 , ν) = ⟨barDH(∆ξ)−ϖ, ν⟩ ≥ 0, ∀ν ∈ (−V).

Recall following fact:

RelInt(Σ) = {σ, ⟨σ, ν⟩ > 0,∀ν ∈ (−V)\lin(−V)} .

The combinatorial condition in the statement

barDH(∆ξ)−ϖ ∈ RelInt(Σ)

holds if and only if Futξ(Y, ν) > 0,∀ν ∈ (−V)\lin(−V). Under this condition, (Y, ξ)
is clearly K-semistable, and the vanishing of Futξ(Y, ν) implies that ν ∈ lin(V), hence
the test configuration defined by ν is a trivial test configuration by Theorem 2.17.
Conversely, suppose that (Y, ξ) is K-stable and barDH(∆ξ) −ϖ /∈ RelInt(Σ). Then
there is ν /∈ linV such that Futξ(Y, ν) = 0, i.e. there is a non-trivial test configuration
with vanishing Futaki invariant, a contradiction. The theorem is then proved. By
replacing ϖ with ϖγ , one obtains directly the K-stability criterion for a log pair. □

3.2. Proof of Theorem B.

Proposition 3.3. Let (W, ξ) be any strictly K-semistable G-spherical cone. Then
there is a G-equivariant special degeneration of (W, ξ) with K-stable central fiber.
Any other such degeneration has G-isomorphic central fiber. The analogue holds for
a strictly K-semistable G-spherical log pair (W,D, ξ).

Proof. Let F be the vanishing locus of Futξ on VW , which is a face of VW containing
the linear part linVW . We degenerate (W, ξ) along a valuation ν ∈ RelInt(F ) (cf.
Figure 1). The resulting central fiber (W ′, ξ) then remains K-semistable (cf. Lemma
2.24) with vanishing locus of Futξ contained in linVW ′ , hence K-stable.

Indeed, VW ′ can be identified with

VW ′ := Rν ⊕ π(VW ),

where π is the quotient map NW,R = NW ′,R → (NW /Zν)R (cf. Remark 2.18). Since
ν ∈ RelInt(F ), π(F ) is a vector space in (NW /Zν)R, and the new Futaki vanishing
locus Rν ⊕ π(F ) is contained in linVW ′ .

Uniqueness of the K-stable degeneration follows from [LWX21]: two K-stable cen-
tral fibers are isomorphic as affine varieties, hence if any one of them is G-invariant,
the other can be endowed with the G-action through the isomorphism. □
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3.3. Examples.

3.3.1. Horosymmetric cones of rank one. Let G/H be a semisimple horosymmetric
space, i.e. an equivariant fibration G/H → G/P over a flag manifold with semisimple
symmetric fiber L/L ∩H (cf. [Del20b] for more details). Supopse that G/H admits
a Q-Fano embedding. For simplicity, we suppose that rank(G/H) = 1, but our
arguments extend easily to any rank.

Let Φ be the root system of G and ΦL be the root system of L with involution
σ. Let α, 2α be the simple restricted roots with multiplicites n1, n2 induced by
(ΦL, σ) (where n2 = 0 if 2α is not a restricted root). Denote by Φ+

s := Φ+
L\Φσ and

ΦQu := Φ+\ΦL.
Choosing the horosymmetric subgroup H such that L ∩H = NG(H), we have

M(G/H) = Zα, N (G/H) = Z(α∨/2).

Let κ be the Killing form such that ⟨α, β∨⟩ = 2κ(α,β)
κ(β,β) .

Let X be the Q-Fano compactification of G/H (with all the colors) associated
to the Q-reflexive polytope QX [GH15a]. Let m > 0 be the minimal integer such
that mKX is Cartier. Take Y as the Fano cone over X, obtained by contracting the
canonical line bundle mKX along X.

By construction, Y is a G × C∗-spherical cone with open orbit isomorphic to
G/H × C∗. Here the C∗-action on Y comes from the natural C∗-action on mKX .
For simplicity, we can suppose that m = 1 (so that KX is Cartier).

We endow M(G/H × C∗) with the basis (α, η), where η is the weight of the
C∗-action on KX . Let N (G/H × C∗) be the dual lattice. The valuation cone of
G/H × C∗ can be identified with the half-space

V := {(x, y) ∈ N (G/H × C∗)R, x ≤ 0} .

and the cone of spherical roots with

Σ = (−V)∨ = R≥0(α
∨/2).

Let ϖ be the weight of the canonical section of −KX , which writes

ϖ :=
∑

α̂∈Φ+
s ∪ΦQu

α̂.

The divisor −KX =
∑

ν∈VX
Dν +

∑
d∈DX

add defines a polytope in M(G/H)R

Q∗
X := {χ ∈ M(G/H)R, ⟨χ, ν⟩+ 1 ≥ 0, ⟨χ, ρ(d)⟩ ≥ −ad} ,

which is the dual polytope of QX [GH15a]. The moment polytope ∆X of −KX is
then ∆X = Q∗

X +ϖ [GH15a] and we can identify the colored cone of Y with

CY = Cone(QX × {1}) = Cone(Q∗
X × {1})∨, DY =

{
d× C∗, d ∈ DX

}
.

(cf. Figure 2 for an example). Note that ρ(d × C∗) = (ρ(d), ad), where ad is the
coefficient of d in −KX . The linear function (0, 1) then defines a linear function on
CY making KY a Gorenstein divisor.

Since the equivariant automorphism group of G/H is discrete, as V(G/H) is only a
half-line and dimAutG(G/H) = dim linV, the Reeb cone CR of Y is one-dimensional
and can be identified with the positive half-line R≥0η. Thus the K-stable Reeb vector
of Y , if exists, is unique, so the unique polarization of Y is given by the polytope
QX .
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α∨

2

η

ρ(dα) = α∨

Figure 2. Colored cone (CY ,DY ) of a symmetric rank one conical
embedding of G/H × C∗ where G = SL2, H = NSL2(T ). Here the
lattice of G/H is generated by the unique restricted root α (= 2α̂,
α̂ being the unique root of SL2). There is a unique color dα of G/H
with ρ(dα) = α∨. The polytope QX is then {tα∨2, |t| ≤ 1}, and
C∨
Y is the cone over QX in Z(α, η)R. Note also that ϖ = α and

∆X = {tα, 0 ≤ t ≤ 2}.

Setting 2χ :=
∑

β∈ΦQu
(β + σ(β)), the Duistermaat-Heckmann polynomial of Y is

defined by
PDH(p) := pn1+n2

∏
β∈ΦQu

κ(β, 2χ− pα).

Proposition 3.4. The cone Y is K-stable if and only if〈
barDH(Q∗

X), α∨/2
〉
=

〈
barDH(∆X)−ϖ,α∨/2

〉
> 0,

i.e. iff X is K-stable as a Q-Fano variety.

Note that if Y is K-stable then any Fano cone over X obtained by taking a root (or
power) of mKX and contracting along X is also K-stable. Repeating the arguments
for any rank, we recover in particular the K-stability criterion for Q-Fano semisimple
horosymmetric varieties.

Example 3.5. Consider the rank one symmetric space G = SL2, H = NSL2(T ) and
the Fano embedding X with QX = {tα∨/2, |t| ≤ 1}. Then PDH(p) = p and〈

barDH(Q∗
X), α∨/2

〉
=

∫ 1
−1 p

2dp∫ 1
−1 pdp

=
1

3
> 0.

3.3.2. Horosymmetric cones over boundary divisors of canonical compactifications.
Let us recover state the K-stability result in [BD19] in terms of cone. Consider a
rank two semisimple symmetric space O of rank two, with restricted root system R
generated by long and short simple roots α1, α2 of multiplicities m1,m2,m3 with m3

being the multiplicity of 2α2 which is 0 if 2α2 /∈ R+. Let P (p) :=
∏

α∈R+ κ(α, p).
Let D be a reduced prime divisor in the boundary of the canonical compactification

of a rank two semisimple symmetric space O. The divisor D is in fact always a rank
one horosymmetric variety (but not Fano) [Del20b]. Consider the Fano blowdown
D∨ of D along its unique closed orbit with moment polytope ∆, and take α, 2α be
the unique restricted positive roots with multiplicities n1, n2.

Proposition 3.6. Let C(D∨) be a Fano cone over D∨. Then C(D∨) has a conical
Calabi-Yau metric iff κ(barP (∆)−ϖ,α) > 0 iff D∨ is K-stable.

Proof. The blowdown D → D∨ can be seen as the decoloration map, and the colored
cone of D∨ is obtained by adding to the colored cone of D all the remaining colors.
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From description of the data of D and Q-Fano spherical variety [GH15a] [GH15b],
the blowdown D∨ is then a Fano horosymmetric variety of rank one.

The combinatorial data of D∨ can then be deduced from the combinatorial data
of the rank two symmetric space O following [BD19, Section 3.2]. With the same
notation as above, we can take α to be the restricted root, say, α1, and the weight
lattice of G/H × C∗ can be identified with Z(α1, η = ω + λ1α1) (cf. (2)), while the
valuation cone of G/H is a half-line, so the Reeb cone of C(D∨) is one-dimensional,
hence K-stability of D∨ is equivalent to that of C(D∨).

The multiplicities of α, 2α in G/H corresponds to their multiplicities as restricted
roots in O, namely n1 = m1, n2 = 0 (n1 = m2, n2 = m3 if taking α = α2).

The anticanonical weight ϖ of D∨ then restricts to a as

2ϖ =
∑
α∈R+

mαα.

Moreover, 2ϖ = (n1 + 2n2)α1 + 2χ and

PDH(p) = P (2ϖ − (n1 + 2n2 + p)α1).

The polytope ∆ is the segment χ + [0, λ]α1 where λ := λ2 − λ1 and λ1,2 are the
intersections of the line ϖ + tα1 with the walls of the Weyl chamber

(2) λ1 := − κ(ϖ,α2)

κ(α1, α2)
, λ2 := − κ(ϖ,α1)

κ(α1, α1)
.

Remark that κ(α1, χ) = 0, hence χ is a multiple of the generator of the Weyl
chamber. The K-stability criterion of C(D∨) can finally be translated in terms of
combinatorial data of O as

κ(barP (∆)−ϖ,α1) = κ(barDH([0, λ])− (n1/2 + n2)α1, α1)

=

∫ λ
0 pPDH(p)dp∫ λ
0 PDH(p)dp

− (n1/2 + n2) > 0.

□

As a corollary, we have

Proposition 3.7. [BD19, Section 3.3.3] Let α1, α2 be the long and short root of a
rank two symmetric space with restricted root system G2 and D1, D2 the divisors in
the canonical compactification with restricted root system generated by α1, α2 respec-
tively. The Fano cones C(D∨

1 ), C(D∨
2 ) are respectively K-unstable and K-stable.

In fact the choices in Section 3.3 of [BD19] should read “α2 = α, α2 = β” with
α, β being their long and short roots.

4. Valuations and asymptotic cones of Calabi-Yau manifolds

4.1. Donaldson-Sun theory. Let (M,ω) be a ∂∂-exact complete Calabi-Yau mani-
fold of complex dimension n with maximal growth and asymptotic cone (C, ξ), with ξ
being the K-stable Reeb vector generating a compact torus action Tc. By [DS17, Ap-
pendix], we also have the Bando-Mabuchi-Matsushima theorem for cones.

Proposition 4.1. [DS17, Propositions 4.8, 4.9] Let Gξ := Autξ(C) be the group of
holomorphic transformations of C that preserves ξ. If there exists a Ricci-flat Kähler
cone metric on C with Reeb vector ξ, then Gξ is reductive, i.e. there is a maximal
compact subgroup Kξ such that

Gξ = KC
ξ ,

and the metric is unique up to the action of the identity component of Gξ.
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Following [DS17], the ring of holomorphic functions with polynomial growth R(C)
(with respect to ωC) on C can be identified with its coordinate ring, and decomposes
under the T := TC

c -action as
R(C) =

⊕
α∈Γ

Rα,

where α are the T -action weights. In order to embed C into CN as an affine subva-
riety, one can use the local holomorphic embedding F∞ at the unique fixed point O,
and extend it globally to C using homogeneity under the T -action.

Proposition 4.2. [DS17] If x1, . . . , xN are local holomorphic functions such that
F∞ = (x1, . . . , xN ) is the local embedding near O, then the affine cone C agrees
globally with the affine variety generated by x1, . . . , xN , i.e. there is a finitely gen-
erated ideal IC defined by algebraic relations between x1, . . . , xN such that C =
C[x1, . . . , xN ]/IC . Under such embedding, the Reeb vector has an extension to CN

of the form ξ = ℜ(i
∑N

a=1waza∂za), where wa > 0 for all a.

For each α ∈ Γ, the map sending α to ⟨α, ξ⟩ is injective, so we can in fact rede-
compose R(C) as

R(C) =
⊕
k

Rdk , Rdk := {fαk
, ⟨αk, ξ⟩ = dk} .

Definition 4.3. The set {0 = d0 < d1 < d2 < . . . } is called the holomorphic spec-
trum of C, denoted by S.

Proposition 4.4. [DS17, Theorem 3.3] The set S ⊂ R≥0 consists of algebraic
numbers and is independent of the converging subsequence of (Mi, ωi). In particular,
S is a finitely generated semigroup.

Proof. The result in [DS17] is stated in the context of local tangent cone at a point,
but the proof can be adapted almost verbatim for tangent cone at infinity. Fix λ > 1
and let (Mi, ωi) be the rescaling of (M,ω) be a factor λ−i. Denote by C∞ the set of
all sequential Gromov-Hausdorff limits of (Mi, ωi) as i → +∞. The main ingredients
of the proof are the following facts.

(1) C∞ is compact connected, cf. [DS17, Lemma 3.2] for a proof which relies
on the fact that K(n, κ) is compact Hausdorff (this is still true for ∂∂-exact
Calabi-Yau metrics).

(2) From [DS17, Lemma 3.5], there is a dense subset I of R+ such that if D ∈ I,
then ND := dim⊕0<d<DRd is independent of C ∈ C∞.

(3) For any C ∈ C∞, we may arrange S ∩ (0, D) with multiplicities in the in-
creasing order as d1 ≤ · · · ≤ dND

, and the map

ιD : C∞ → (R+)ND

sending C to the vector (d1, . . . , dND
) is in fact continuous.

Since C∞ is connected, the image of ιD must be a single point for all D ∈ I, hence
S is independent of C ∈ C∞. □

Given a point p ∈ M , λ > 0, Bi := B(p, λ2i), let f be a holomorphic function
on M , and ∥f∥i be the L2-norm of f |Bi with respect to the normalized metric
ωi := λ−2iω restricted to Bi. The growth rate of f on M with respect to ω is defined
by

dω(f) := lim
i→+∞

(log λ)−1 log ∥f∥i+1

log ∥f∥i
.
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Proposition 4.5. [DS17, Corollary 3.8] For every holomorphic function f on M ,
the rate dω(f) is either +∞ or belongs to S, and does not depend on the choice of p.

This is stated in the context of local tangent cones, but can be specialized to the
case of infinity tangent cones. We also have the following equivalent characterization:

dω(f) = lim
r→∞

supB(p,r) log |f |
log r

.

Hence dω(f) can be seen as the vanishing order at infinity of f , measured with respect
to the Calabi-Yau metric ω. Let R(M) be the ring of holomorphic functions f with
polynomial growth on M , i.e. dω(f) < +∞.

Proposition 4.6. [DS17] [Liu21] The ring R(M) is finitely generated, and

M̃ := Spec(R(M))

has the structure of an affine variety with isolated singularities. Moreover, there is a
map πM : M → M̃ which is a crepant resolution of singularities.

One can easily check that
νω := −dω

extends to a nonpositive (hence never centered) valuation on the quotient field K(M)
of R(M), namely

• νω(C∗) = 0, νω(0) = +∞,
• νω(fg) = νω(f) + νω(g),
• νω(f + g) ≥ min {νω(f), νω(g)} .

Proposition 4.7. [DS17] The possible finite growth rates 0 = d0 < d1 < . . . on
M coincide with S and νω is a nonpositive valuation on K(M) whose value group
ν(K(M)∗) is S ∪ (−S) ∪ {0}.

The degree function dω induces a filtration

0 = I0 ⊂ I1 ⊂ · · · ⊂ R(M)

on M , where Ik = {f ∈ R(M), dω(f) ≤ dk}. Moreover, we have dim Ik = dim
⊕

j≤k Rdj .
Algebraically, C can be constructed by a 2-step degeneration as follows. The

graded ring
R(W ) :=

⊕
Ik+1/Ik

is finitely generated, and can be seen as the central fiber of the filtration induced by
the valuation νω. The affine variety W = Spec(R(W )) is the central fiber of a test
configuration induced by νω with generic fiber isomorphic to M̃ . The cone W is in
fact a weighted tangent cone at infinity of M̃ .

Proposition 4.8. [DS17] [SZ22] Let B = B(O, 1) the unit ball of C at the fixed
point O, embedded in CN using F∞, and Bi = B(p, 2i) ⊂ (M,ω) the unit ball on
(Mi, ωi). Let Λ : CN → CN be linear transformation on CN defined by

Λ(z1, . . . , zN ) = ((1/
√
2)iz1, . . . , (1/

√
2)izN ),

which induces an action on Fi by

(Λ.Fi) = Λ(xi1, . . . , x
i
N ).

Then there are holomorphic embeddings Fi : M̃ → CN and Gi := Λ + τi ∈ Gξ for
linear maps τi → 0, such that

• Fi+1 = Gi ◦ Fi
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• For any subsequence i → +∞, passing to a further subsequence we have
Fi(πM (Bi)) → h.F∞(B) in the Hausdorff sense in CN for some h ∈ Kξ.

Moreover, if Mi := Fi(M̃) and Wi is the weighted tangent cone at infinity of Mi,
then Mi ≃ Mj and Wi ≃ Wj for all i, j in the sequence. The elements (Mi)i∈N are
generic fibers in the special test configuration with central fiber W .

We often identify (M̃,W ) with (F1(M̃),W1). Geometrically, W can be realized
by firstly embedding M̃ as an affine variety into CN using holomorphic functions
F1 = (x1, . . . , xN ), while diagonally linearizing the Tc-action on CN with weight
w = (w1, . . . , wN ) ∈ (R>0)

N . Define the weight of a monomial xa11 . . . xaNN in CN as
a1w1+. . . aNwN . Let I be the polynomial ideal in CN generating M̃ , which is of finite
type. For each generator f of I (in the Gröbner basis of I with respect to the ordering
induced by w for example), keep only the term fw, which consists of monomials with
highest weight. The ideal Iw generated by all the fw then corresponds to W and
R = C[x1, . . . , xN ]/Iw. Then R admits a natural gradation by w as

R =
⊕

Fdk/Fdk+1
,

where Fdk = {f ∈ R, w(f) ≤ dk}.

Proposition 4.9. [DS17] The natural map R → R(W ) is an isomorphism and
valuation-preserving, namely every element in Fdk+1

/Fdk is sent to an element in
Ik+1/Ik.

Remark 4.10. We often identify the weighted valuation w on R with the valuation
νξ on R(W ).

By [DS17, Prop 3.26], R(W ) has the same grading as R(C), hence admits an
action of Tc with the same Hilbert function as C.

Proposition 4.11. [DS17] There is a special test configuration with generic fiber
isomorphic to W and central fiber C. The varieties Wi are in fact generic fibers in
the test configuration.

Moreover, since (C, ξ) is K-stable, (W, ξ) is K-semistable by [LLX20, Proposition
5.5] and the K-semistable valuation νξ coincides with the valuation induced by νω on
R(W ).

5. Proof of Theorem C

Before stating key propositions in this section, we make a brief digression to sym-
plectic aspects of spherical varieties. Let (X,ω) be a Kähler manifold with K acting
by holomorphic isometries. A vector field X on X is said to be locally hamiltonian
if LXω = 0. The set Hamloc(X) of locally hamiltonian vector fields on X is then
naturally a Lie algebra. Every smooth function H on X defines a locally hamiltonian
vector field XH by dH = iXH

ω, and there is also a Lie algebra structure on C∞(X),
called the Poisson structure. The morphism ν : C∞(X) → Hamloc(X), H → XH is
in fact a Lie algebra morphism.

The action of K is said to be Poisson if there is a Lie algebra morphism λ : k →
C∞(X), called a lifting, such that the morphism ν ◦ λ is exactly the natural Lie
algebra morphism k → Hamloc(X). Such a lifting exists iff K acts trivially on the
Albanese variety of X [HW90, Proposition 1]. In particular, on a G = KC-projective
manifold, Alb(X) is trivial (since b1(X) = 0), hence the holomorphic-isometric action
of K is always Poisson.

A compact connected Kähler manifold (X,ω) with a Poisson K-action is said to
be a spherical K-space if the Lie subalgebra C∞(X)K is an abelian Lie algebra.
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Theorem 5.1. [HW90, Equivalence Theorem] A compact connected Kähler manifold
(X,ω) with a Poisson K-action is a K-spherical space iff it is a projective G = KC-
spherical manifold. The result is moreover independent of the Kähler structure.

The following lemma will be useful to us.

Lemma 5.2. [HW90, Restriction Lemma] Let X be a compact Kähler manifold
with a Poisson action of a connected compact group K. If X is a spherical K-space,
then every closed K-invariant subvariety of X is also a spherical K-space.

Let us now make a brief recall of valuation theory. The reader may consult [ZS75]
or the short notes of Stevensson [Ste17] for more information. Let K/C be a finitely
generated field extension (e.g. K is the function field of a complex variety). A
complex variety X is said to be a model of K if C(X) = K.

Recall the following basic notions.

Definition 5.3. Let ν be a valuation on K/C.
(1) The valuation ring Rν of ν is defined as Rν := {f ∈ K, ν(f) ≥ 0}. This is a

local ring with maximal ideal mν = {f ∈ K, ν(f) > 0}.
(2) The field κν := Rν/mν is said to be the residue field of ν.
(3) The abelian subgroup Γν := ν(K∗) ⊂ R is called the value group of ν.
(4) The transcendence degree of ν is tr.deg(ν) := tr.deg(κν/C).
(5) The rational rank of ν is rt.rk(ν) := dimQ(Γν ⊗Q).

Theorem 5.4 (Zariski-Abhyankar). If ν is a valuation on K/C, then

tr.deg(ν) + rt.rk(ν) ≤ tr.deg(K/C).

Definition 5.5. A valuation ν on K/C is said to be Abhyankar if tr.deg(ν) +
rt.rk(ν) = tr.deg(K/C).

Definition 5.6. Let X be a model of K/C. If there is a (generally non-closed) point
x ∈ X and a local inclusion OX,x ⊂ Rν of local rings, then the valuation ν is said to
be centered on X, and x is called the center of ν on X, denoted by cX(ν).

By the valuative criterion for separatedness, if the center of ν on a model exists
then it is unique, and the valuative criterion of properness guarantees the existence
of a center on a proper model. We often identify the center cX(ν) of a valuation
with its closure cX(ν) inside of the model X on which the center exists.

Definition 5.7. A valuation ν on K/C is said to be quasimonomial if there exist
(1) a smooth model X of K/C,
(2) a (generally non-closed) point x ∈ X,
(3) a regular system of parameters y = (y1, . . . , yd) of the local ring OX,x at x,

such that ν1, . . . , νd generate ν(K∗) ∪ {0} = Γν as an abelian group.

One can in fact take x to be the center of the valuation ν on some proper model.

Theorem 5.8. [ELS03, Proposition 2.8] The valuation ν is quasimonomial if and
only if it is Abhyankar, i.e.

tr.deg(ν) + rt.rk(ν) = tr.deg(K/C).

Proposition 5.9. The valuation νω induced by the a ∂∂-exact complete Calabi-Yau
metric ω on a quasiprojective manifold M is quasimonomial.

If M admits a G-spherical action, then νω is moreover G-invariant and identifies
with νξ in the Cartan subspace of M .
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Proof. By assumption dimR(M) = dimR(W ), hence the quasimonomiality of νω
follows from a theorem due to Olivier Piltant (cf. [Tei03, Proposition 3.1] for an
accessible reference).

Next, remark that νω is K-invariant. Indeed, since the metric ω is K-invariant,
every k ∈ K defines an isometry between B(p, r) and B(kp, r) for any base point
p ∈ M , hence for any meromorphic function f on M ,

dω(k.f) = lim
r→+∞

supB(p,r) log
∣∣f(k−1)

∣∣
log r

= lim
r→+∞

supB(kp,r) log |f |
log r

,

which is exactly dω(f) as the growth rate at infinity does not depend on the given
fixed point. It follows that νω is a K-invariant valuation.

Let us now show that νω is G-invariant. The arguments again use K-spherical
space theory. Let Z be the center of νω in a G-equivariant smooth projective com-
pactification M . In particular, M is a spherical K-space by Equivalence Theorem
5.1. Since νω is K-invariant, Z is also a K-invariant closed subvariety of M , hence
a K-spherical space by Restriction Lemma 5.2, which is also G-spherical again by
Equivalence Theorem.

Let ν ′ be any quasimonomial valuation with center Z. The latter means that
there is a G-equivariant proper birational modification Y → M with normal crossing
divisors E1, . . . , Em such that ∩r≤m

i=1 Ei contains the generic point oZ of Z and ν ′ is
a monomial valuation on Y with center Z.

Let y1, . . . , yr ∈ OY,oZ be a system of local parameters such that Ei = {yi = 0} , 1 ≤
i ≤ r (by a well-known fact, such yj can always be chosen since E1, . . . , Em inter-
sect transversally). By definition, there is a r-uple (α1, . . . , αr) ∈ (R+

≥0)
r satisfying

ν ′ =
∑r

i=1 αiordEi . Since Ei is G-invariant, ordEi is also G-invariant, hence ν ′ is G-
invariant. Thus every quasimonomial valuation with center Z is G-invariant, hence
νω is G-invariant.

The fact that the valuation νω corresponds to the valuation nuξ induced by the
Reeb vector ξ of the K-stable cone (C, ξ) can be seen as follows. Since the K-
semistable Reeb vector of W is the same as the K-stable Reeb vector of C, it is
enough to show that νω corresponds to the K-stable valuation νξ of (W, ξ).

Let G/H and G/H0 be the open G-orbits in M and W . Since R(M) and R(W )
are isomorphic as G-modules by construction, their weight lattices are the same, i.e.
M(G/H) = M(G/H0) =: M. Let R(W )(α) be the set of B-eigenvectors of weight
α ∈ M. Let f∞ ∈ I

(α)
k+1/I

(α)
k = R(W )(α) be any nonzero element and f ∈ I

(α)
k+1 a lift.

Since dω induces νξ, we have
dω(f) = νξ(f∞).

The equality is moreover independent of the choice of f . Finally, from Remark 2.8
it follows that

−⟨α, νω⟩ = dω(f) = νξ(f∞) = ⟨αH , νξ⟩ = −⟨α, νξ⟩ .

This terminates our proof. □

Proposition 5.10. The semistable cone W in the two-steps degeneration is a G-
spherical cone. In particular, the asymptotic cone of the K-invariant Calabi-Yau
metric (M,ω) is a K-stable G-spherical affine cone (C, ξ), which is unique up to a
G-equivariant isomorphism preserving ξ.

Proof. Since M is a G-spherical manifold and that νω is a G-invariant valuation, it
is immediate that W is a G-spherical variety. Finally, by Proposition 3.3, there is a
unique G-equivariant degeneration of (W, ξ) to (C, ξ), hence C is G-spherical. □
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Remark 5.11. It may be worth mentioning that to prove the uniqueness of the as-
ymptotic cone, one can alternatively use the construction of the G-equivariant Hilbert
scheme in [AB04] and then readopt the strategy of [DS17]. We explain briefly the
main steps.

(1) First, since Wi and C have the same positive Hilbert function, the action
of the torus T on W induces a T -action on C, and by [AB04] there is a
projective G × T -invariant Hilbert scheme H parametrizing polarized affine
varieties in CN such that for i large enough, Wi and C define points [Wi] and
[C] in H. After extracting a subsequence, one can show that [Wi] converges
to [C] up to a Kξ action.

(2) There is a small enough neighborhood U of C in C∞ such that any C ′ ∈ U
defines an element in H. The argument uses compactness of H.

(3) The stabilizer of [C] in H is in fact Aut(C), which is reductive by a Mat-
sushima theorem for cones, i.e. there is a maximal compact subgroup such
that Aut(C) = KC.

(4) We can apply the equivariant slice theorem for ([C],KC), and show that [C]
and [C ′] are in the same Gξ orbit, hence isomorphic as Ricci-flat Kähler
cones. We conclude by connectedness of C∞.

Remark 5.12. A K-invariant good Calabi-Yau metric on any affine G-manifold
induces in fact a G-invariant valuation. The arguments can run as follows. Let
Gν ⊂ G be the subgroup stabilizing the induced valuation ν. Then using the definition
of ν, one can show that Gν is in fact closed in G and contains K, hence coincides
with G as a whole.

Finally, using the Alexeev-Brion Hilbert scheme, one can build a G-equivariant
degeneration of the K-semistable G-cone W to the K-stable G-cone C and show that
it is unique.

6. Examples

6.1. Smooth affine spherical varieties. As mentionned in the introduction, any
smooth affine G-spherical variety M is isomorphic to G×H V where H is a reductive
subgroup of G such that G/H is (affine) spherical and V is a H-module.

Our examples will deal with two extreme cases. The first is the case V = 0,
i.e. M is homogeneous, the second is when H = G, or M is a spherical G-module.
For simplicity, we only consider varieties of rank two. The description of K-stable
valuations is as follows.

Proposition 6.1. Let (M,ω) be a complete K-invariant Calabi-Yau smooth affine
G-spherical manifold. Then the valuation νω induced by ω corresponds to either

• the quasi-regular K-semistable Reeb valuation of a non-horospherical asymp-
totic cones if νω ∈ ∂V;

• the K-stable Reeb valuation of the unique horospherical asymptotic cone of
M if νω ∈ int(V).

Proof. By spherical theory and previous discussions, if νω ∈ int(V), then there is a
test configuration defined by νω that degenerates M to a K-semistable horospherical
cone (W, νω), hence K-stable. By uniqueness of G-equivariant K-stable degeneration,
W and C are G-equivariantly isomorphic.

If νω ∈ ∂V, then the cone (W, νω) is K-semistable, and necessarily quasi-regular
since its Reeb cone is a half-line. □
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6.2. K-stable valuations on indecomposable spherical spaces. The following
lemma allows us to simplify the problem of classifying K-stable valuations on affine
homogeneous spaces by supposing that the open orbit is indecomposable.

Lemma 6.2. Let (M,ω) be the affine spherical homogeneous space G1/H1 × · · · ×
Gk/Hk, endowed with complete K1× · · ·×Kk-invariant ∂∂-exact Calabi-Yau metric
ω, such that each factor Gi/Hi is affine indecomposable and admits a complete Ki-
invariant ∂∂-exact Calabi-Yau metric ωi.

The K-stable valuation νω induced by ω is then a product of K-stable valuations νωi

on the factors. In particular, the asymptotic cone of (M,ω) is the product asymptotic
cone.

Proof. Let Γ be the weight monoid of M and C the asymptotic cone. Since C is a
G-equivariant degeneration of M , it has the same weight monoid as M , hence the
Reeb cone of C is the interior of (R≥Γ)

∨. But Γ is the product of the Γis, hence the
Reeb cone of C is the product of the Reeb cones of all factors’ asymptotic cones.

The Duistermaat-Heckman volume functional volDH then writes as the prod-
uct of the volume functionals on each factor, and −νω can be identified with the
unique minimizing Reeb vector, which is clearly the product of the minimizing Reeb
vectorsξi = −νωi . □

Proposition 6.3. [BD19, Table 2] [Ngh24, Theorem 4.2] Let V be the negative
restricted Weyl chamber of a rank two symmetric space with respect to a canonical
choice of the Borel subgroup, and ν1,2 the primitive generators.

• The unique K-stable valuation on decomposable symmetric spaces of rank two
is the product of K-stable valuations on each rank one factor.

• On indecomposable symmetric spaces of rank two, there are 3 K-stable valua-
tions on symmetric spaces of restricted root system A2, BC2/B2 which corre-
spond to some rational multiple of ν1,2 and the unique K-stable horospherical
valuation.

The unique K-stable valuation on symmetric spaces of restricted root sys-
tem G2 is the valuation corresponding to a unique generator of the Weyl
chamber.

Proof. The construction and K-stability of horosymmetric cones was already done
in [BD19] (see also part 3.3.1 for translation in the cone language). For the reader’s
convenience, we recall here the construction of the horospherical G2-asymptotic cones
and the computation of the K-stable Reeb vector in [Ngh23] [Ngh24].

Construction of the asymptotic cone.
Let Ŝ be the set of simple roots with respect to a choice of a Borel. The involution

θ on the symmetric space induces an involution θ̂ on Ŝ. Without loss of generality,
we work on symmetric spaces G/Gθ, so that M is the lattices generated by the
restricted fundamental weights.

Let α1, α2 be the short and long restricted roots and α̂1, α̂2 be the lifts on Ŝ of
α1, α2 in the same connected component of the Dynkin diagram.

Let I := Ŝ\
{
α̂1, θ̂(α̂1), α̂2, θ̂(α̂2)

}
. The open (G2×C∗)-orbit (G2/H0)×C∗ of the

cone is uniquely determined by MI = M (=weight lattice of the symmetric space)
and I (cf. Proposition 2.11 and Remark 2.18). Moreover, G/H0 is a fibration over
G/PI where PI = P (ϖα̂1

) ∩ P (ϖ
θ̂(α̂1)

) ∩ P (ϖα̂2
) ∩ P (ϖ

θ̂(α̂2)
).

The colors D of G2/H0×C∗ are in bijection with Ŝ\I, and two colors of two roots
in the same cycle of θ̂ have the same image in MI . Let α̂∨

i , α
∨
i be the coroots and

restricted coroots, i = 1, 2.
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α1

α2

Figure 3. Restricted root system of G2 symmetric spaces.

When m = 1 (e.g. G2/ SO4), since there is no simple root of G2 fixed by θ (i.e.
all nodes in the Satake diagram are white), we have θ(α̂) = −α̂, so α̂∨

i |M = 2α∨
i .

When m = 2 (for example G2 ×G2/G2), θ(α̂i) = −θ̂(α̂i), hence θ(α̂i)(α̂i) = 0, so
α̂∨
i |M = α∨

i .
It follows that

ρ(D) =
{
α̂∨
1 |M, α̂∨

2 |M
}
=

{
{2α∨

1 , 2α
∨
2 } ,m = 1

{α∨
1 , α

∨
2 } ,m = 2.

In both cases, the colored cone of C is (R≥0ρ(D),D).
Reeb vector computation.
Recall that κ(α1, α1) = 1, κ(α2, α2) = 3, and both roots have the same multiplicity

m ∈ {1, 2}. The positive roots of G2 are

α1, α2, α1 + α2, α2 + 2α1, 2α2 + 3α1, α2 + 3α1

The half sum of the positive restricted roots (in the Cartan space) is just ϖ =
10mα1 + 6mα2. Recall the setup in [Ngh23] to compute the Reeb vector ξ. Set
δ = α2 − tα1, t ∈ R to be the vector orthogonal to ξ under κ. Identify the valuation
cone V of the symmetric space with the negative restricted Weyl chamber and the
Reeb cone with the positive restricted Weyl chamber −V.

Let νω be the valuation induced by the K-invariant Calabi-Yau metric on a G2-
symmetric space, then νω ∈ V. By our main Theorem C, this is only possible if
ξ ∈ −V, i.e. iff t > 0.

The moment polytope ∆ξ can be identified with

∆ξ := {ϖ + pδ, λ− ≤ p ≤ λ+} , λ− = − 2m

t+ 2
, λ+ =

2m

2t+ 3
.

Moreover, the Duistermaat-Heckman polynomial restricted to the Cartan space can
be written as

P (p) =(2m− (2t+ 3)p)m(6m+ (3t+ 6)p)m(8m+ (t+ 3)p)m

(10m− tp)m(12m− (3t+ 3)p)m(18 + 3p)m.

Then the Reeb vector is a K-stable polarization iff t is a solution of∫ λ+

λ−

pP (p)dp = 0.

For m = 1 and m = 2, ξ ∈ −V iff t is the positive solution of the following respective
polynomial equations

2376 + 9225t+ 13407t2 + 9357t3 + 3179t4 + 424t5 = 0,

and
20558772 + 134444448t+ 374274594t2 + 590688162t3 + 587394519t4+

383740299t5 + 165293858t6 + 45384306t7 + 7221048t8 + 507988t9 = 0.

Since all the coefficients are positive, there can be no positive solution. □
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Type Representative R Multiplicities Satake diagram Hermitian
G G2/SO4 G2 1 no

G2 G2 ×G2/G2 − 2 no

Table 1. Indecomposable symmetric spaces of restricted root system
G2. The involution θ̂ relate two roots connected by the two-sided
arrows in the Satake diagram.

As mentionned in the introduction, one can then wonder if there is a Calabi-Yau
smoothing of the horospherical G2-asymptotic cone, which would be obtained as the
generic fiber of a G2-equivariant deformation of the cone. If this is the case, one
can further ask whether a geometric transition phenomenon can occur, that is to
prove a crepant resolution of the cone is also Calabi-Yau. The metric would then
form a mirror pair with the hypothetical Calabi-Yau smoothing of the cone. This
happens for the conifold

{
(X,Y, Z,W ) ∈ C4, XZ − YW = 0

}
[Gro01] which is the

unique Gorenstein toric cone of dimension 3 with an isolated terminal singularity.
In our case, even if we don’t know whether a Calabi-Yau smoothing exists, we

can at least affirmatively answer that there can be no G2-equivariant geometric
transition.

Lemma 6.4. There is no equivariant crepant resolution of the horospherical asymp-
totic cone of G2-symmetric spaces.

Proof. We use the same notation as in Proposition 6.3. From [Bri97a] and [GH15b,
Remark 4.3], the anticanonical line bundle of C can be represented as

−KC =
∑

α∈Ŝ\I

aαDα, aα =
〈
ϖ,α∨〉

Suppose that π : X → C is a crepant resolution, then there is a G2-equivariant
divisor D ⊂ X (corresponding to the primitive vector d in M) such that

−KX =
∑

α∈Ŝ\I

aαDα +D = π∗(−KC0) =
∑

α∈Ŝ\I

aαDα +
2κ(ϖ, d)

κ(d, d)
D,

hence 2κ(ϖ, d) = κ(d, d). Let d = xα1 + yα2, with x, y being positive rationals.
Then 2κ(ϖ, d) = κ(d, d) iff

2m(x− 3y) = x(x− 3y) + 3y2 ⇐⇒ x2 − x(2m+ 3y) + 6my + 3y2 = 0.

It is easy to check by computing the discriminant that for every positive rational y,
the equation in x does not have any solution. □

6.3. K-stable valuations on spherical modules. Let (ρ, V ) be a regular repre-
sentation of a connected linear reductive group G with the induced representation
(ρ̂,C[V ]). Then (ρ, V ) is said to be multiplicity-free if the decomposition of C[V ]
into simple G-modules contains at most one copy of each simple G-module. A rep-
resentation (ρ, V ) is multiplicity-free iff V is a (smooth affine) G-spherical variety.

The irreducible multiplicity-free representations were classified by Kac [Kac80]
(see also [BR96, Theorem 1] [Lea98, Theorem 1.4]).

Theorem 6.5. [Kac80] The list of multiplicity-free irreducible linear actions of
connected reductive linear groups G is
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α∨

2

χ∗

−χ∗

ρ(Dα) = α∨

ξ = (α
∨

2 ,−χ∗)

νω

Figure 4. Colored cone (C,D) of the symmetric manifold C3 with
open orbit SO3 /SO2×C∗. The K-stable valuations of Yang Li’s met-
ric ω and the standard metric correspond to the vectors of coordinates
(−1, 1) and (0, 1) in the lattice generated by (α∨/2, χ∗).

1) SLn, Sp2n, Λ2 SLn (n odd), SLm⊗SLn (n ̸= m ≥ 2), SLn⊗Sp4 (n > 4),
Spin10 when G is semisimple.

2) G⊗ C∗ with G being

SLn, Sp2n(n ≥ 2), SOn(n ≥ 3), Spin7, Spin9, Spin10, G2, E6,

and

S2 SLn(n ≥ 2), Λ2 SLn(n ≥ 4), SLm⊗SLn(m,n ≥ 2),

SL2,3⊗Sp2n(n ≥ 2), SLn⊗Sp4(n ≥ 4).

Here:
• The index under each group is the dimension of the module.
• The representation of G corresponds to V (ω1) where ω1 is the first funda-

mental weight of G.
• G⊗G′ (resp. S2G, Λ2G) denote the action of G×G′ on the tensor product
V (ω1)⊗ V (ω′

1) (resp. of G on S2V (ω1), Λ2V (ω1) ).

The result is extended to the reducible case independently by Benson-Ratcliff
[BR96] and A. Leahy [Lea98]. This is done via classification of indecomposable spher-
ical modules, namely G-representations (ρ, V ) that are not equivalent to (ρ1, V1) ⊕
ρ2, V2), where (ρi, Vi) are multiplicity-free representations of Gi with G = G1 ×G2.

Lemma 6.6. The only non-horospherical multiplicity-free G-action on a module V
with underlying vector space C3 is given by G = SO3⊗C∗, where SO3 acts on C3 in
the standard way.

Proof. The classification in [BR96, Theorem 2], [Lea98, Theorem 2.5] shows that
any indecomposable module must either have one factor (hence belongs to Kac’s
classification in Theorem 6.5), or two factors Vi each of dimension at least 2. It follows
that any spherical module V with underlying vector space C3 is indecomposable with
only one factor.

From the list in Theorem 6.5, the possible multiplicity-free representations (ρ, V )
with underlying vector space C3 are

(SL3, V (λ)), (SL3⊗C∗, V (λ)), (SO3⊗C∗, V (2ω)), (S2 SL2⊗C∗, S2V (ω)),

where λ, ω are the fundamental weights of SL3, SL2. The first two are horospherical
(cf. Proposition 2.12), while the last two are isomorphic via

(S2 SL2, S
2V (ω)) ≃ (PSL2, V (2ω) ≃ (SO3, V (2ω)),
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since Z(SL2) = {±1} fixes S2V (ω) ≃ V (2ω) and PSL2 ≃ SO3. □

Proposition 6.7. The K-stable valuations of SO3(R) × S1-invariant Calabi-Yau
metrics on C3 are

• the trivial valuation on the linear part of V,
• the product of the K-stable valuations on the factors SO3 / SO2×C∗.

The former induces a trivial equivariant degeneration, while the latter lies in the
interior of V and induces a degeneration of C3 to the horospherical cone A1 × C∗

where A1 is the Stenzel asymptotic cone of SO3 / SO2 (cf. Example 2.13).

Proof. Since asymptotic cones are central fibers of equivariant degenerations, one can
identify the weight lattice of the cone with the open orbit SO3 /SO3×C∗ of C3 (cf.
Remark 2.18), which is generated by {α∨/2, χ} where α is the positive (restricted)
root of SO3 and χ the weight of the C∗-action on C (cf. Figure 4). Let χ∗ be the
dual element of χ. The valuation cone is then

V = R≤α
∨ × Rχ∗.

From Proposition 6.1, the K-stable valuations of C3 are either in the linear part
(with trivial central fiber) or uniquely in IntV (with horospherical cone as central
fiber). Since the horospherical central fiber does not depend on the choice of ν ∈ IntV,
it must be SO3×C∗-isomorphic to the cone A1 × C. Indeed, an explicit equivariant
test configuration can be given by

f = z21 + z22 + z23 : C4
z0,z1,z2,z3 → C,

with central fiber A1×C = f−1(0). Here we view C4 as the spherical module C3×C
with an action of (SO3×C∗)× C∗, where SO3 acts in the standard way.

Let ω be Li’s metric on C3 with corresponding K-stable valuation νω, asymptotic
to A1×C (endowed with the horospherical product conical Calabi-Yau metric). From
explicit computation in [Ngh24], the metric on A1 has Reeb vector ξ = α∨/2, while
the Reeb vector of the metric on C is −χ∗.

The K-stable valuation of the metric on A1 × C is then νξ = (−α∨/2, χ∗), hence
νω corresponds to the vector (−α∨/2, χ∗) by Theorem C. □

If we consider any spherical module V with open orbit of the form R1 ×C∗ where
R1 = G/H is any rank one symmetric space, then reasoning as above and using
Székelyhidi’s uniqueness theorem, one can show that the only Calabi-Yau metrics
with the G × C∗-symmetry on V are the standard Calabi-Yau metric and the Li-
Conlon-Rochon-Székelyhidi metrics.

In general, there may exist more of non-horospherical multiplicity-free symmetries
of linear reductive groups on V , and one can get a complete list of such actions using
[BR96] [Lea98]. However, to get a full classification of metrics with corresponding
symmetry, the difficulty lies in proving a uniqueness theorem with asymptotic cones
not of the type C × C with C having an isolated singularity.
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