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ABSTRACT

Context. Rapid and accurate evaluation of the nonlinear matter power spectrum, P(k), as a function of cosmological parameters and
redshift is of fundamental importance in cosmology. Analytic approximations provide an interpretable solution, yet current approxi-
mations are neither fast nor accurate relative to numerical emulators.
Aims. We aim to accelerate symbolic approximations to P(k) by removing the requirement to perform integrals, instead using short
symbolic expressions to compute all variables of interest. We also wish to make such expressions more accurate by re-optimising the
parameters of these models (using a larger number of cosmologies and focussing on cosmological parameters of more interest for
present-day studies) and providing correction terms.
Methods. We use symbolic regression to obtain simple analytic approximations to the nonlinear scale, kσ, the effective spectral index,
neff , and the curvature, C, which are required for the halofit model. We then re-optimise the coefficients of halofit to fit a wide
range of cosmologies and redshifts. We then again exploit symbolic regression to explore the space of analytic expressions to fit the
residuals between P(k) and the optimised predictions of halofit. Our results are designed to match the predictions of euclidemu-
lator2, but we validate our methods against N-body simulations.
Results. We find symbolic expressions for kσ, neff and C which have root mean squared fractional errors of 0.8%, 0.2% and 0.3%, re-
spectively, for redshifts below 3 and a wide range of cosmologies. We provide re-optimised halofit parameters, which reduce the root
mean squared fractional error (compared to euclidemulator2) from 3% to below 2% for wavenumbers k = 9×10−3−9 h Mpc−1. We
introduce syren-halofit (symbolic-regression-enhanced halofit), an extension to halofit containing a short symbolic correc-
tion which improves this error to 1%. Our method is 2350 and 3170 times faster than current halofit and hmcode implementations,
respectively, and 2680 and 64 times faster than euclidemulator2 (which requires running class) and the bacco emulator. We
obtain comparable accuracy to euclidemulator2 and the bacco emulator when tested on N-body simulations.
Conclusions. Our work greatly increases the speed and accuracy of symbolic approximations to P(k), making them significantly
faster than their numerical counterparts without loss of accuracy.

Key words. methods: numerical – cosmological parameters – cosmology: theory – large-scale structure of Universe

1. Introduction

Under the current cosmological paradigm, the large-scale struc-
ture of the Universe evolved under gravity and cosmic expansion
from highly Gaussian density fluctuations in the distant past to
the present-day cosmic web. Despite the remarkable simplicity
of the standard model (ΛCDM), which contains just six param-
eters, the nonlinear equations of motion necessitate the compu-
tationally non-trivial task of simulating this evolution, which is
typically done through expensive N-body simulations. The non-
linear evolution has a dramatic effect on the matter power spec-
trum, P(k), greatly enhancing the small-scale power compared
to linear theory, and thus these effects cannot be neglected. Even
linear theory – which is valid on large scales – requires solving
a hierarchy of coupled, linear differential equations (Lewis et al.
2000; Blas et al. 2011; Hahn et al. 2023), demonstrating the dif-
ficulty in obtaining accurate predictions for P(k).

Given the importance of the power spectrum in cos-
mological analyses, much effort has been put into by-
passing these expensive simulations and directly predicting

the matter power spectrum as a function of time and cos-
mological parameters. Speed and differentiability of surro-
gate models are particularly attractive features. For exam-
ple, the first high-precision emulator for the linear outputs
of Boltzmann codes, pico (Fendt & Wandelt 2007a,b) enabled
the first use of Hamiltonian Monte Carlo methods for cos-
mological parameter inference (Hajian 2007) due to these
properties.

Approximations to the linear matter power spectrum are
well-established, notably those of Eisenstein & Hu (1998,
1999), which are accurate to a few percent, and the earlier
work of Bardeen et al. (1986), which provided a less accu-
rate approximation. More recently, simple expressions which
obtain a similar accuracy to Eisenstein & Hu were obtained by
Orjuela-Quintana et al. (2023, 2024), although these do not have
the same physical motivation as the earlier works. However,
these symbolic expressions are insufficiently accurate for mod-
ern uses. This led Bartlett et al. (2024) to propose a simple exten-
sion to the Eisenstein & Hu (1998) expressions which gives a
root mean squared fractional error of just 0.2% across a wide
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range of cosmologies, which is more than sufficient for current
analyses (Taylor et al. 2018).

On small scales, however, we must go beyond the linear
predictions, and thus fitting formulae for the nonlinear mat-
ter power spectrum have proven essential. The scaling ansatz
of Hamilton et al. (1991), which assumed that nonlinear struc-
tures decouple and form isolated systems, led to the development
of the approximation of Peacock & Dodds (1996). More recent
approximations generically fall into one of three categories.

The first approach to predicting the nonlinear matter power
spectrum is to use emulation techniques such as Neural Net-
works or Gaussian Processes, which are trained on N-body
simulations to directly predict P(k) given a set of cosmologi-
cal parameters (Heitmann et al. 2009, 2010, 2014; Casarini et al.
2016; Winther et al. 2019; Angulo et al. 2021; Aricò et al.
2021; Euclid Collaboration 2021; Spurio Mancini et al. 2022;
Mootoovaloo et al. 2022; Zennaro et al. 2023). The remaining
two approaches are based on the halo model (Ma & Fry 2000;
Seljak 2000; Cooray & Sheth 2002), which assumes that the
matter content of the Universe is bound in dark matter halos.
Under the approach adopted by hmcode (Mead et al. 2015,
2016, 2021), one can predict P(k) by performing integrals of
important quantities in the halo model, such as the density pro-
file of halos and the halo mass function, which are assigned sim-
ple symbolic expressions. In the halofit model (Smith et al.
2003; Bird et al. 2012; Takahashi et al. 2012), one assumes there
are two distinct contributions to the matter power spectrum; on
large scales, P(k) is dominated by the two-halo term, which
describes correlations between the spatial positions of different
halos, whereas on small scales, the one-halo regime, P(k) is gov-
erned by the distribution of dark matter within individual halos.
These two terms are approximated by analytic functions of the
linear matter power spectrum and quantities derived from this
(see Sect. 2.1 for more detail).

The advantage of halo-model based approaches is that,
involving only analytic expressions, they are much easier to
interpret than numerical emulators and have clearer extrap-
olation behaviour. Moreover, given the limited flexibility of
their simple analytic expressions, the emulated predictions typ-
ically vary smoothly with input variables, so that the out-
put is less noisy compared to a purely numerical approach
(Fendt & Wandelt 2007a). This is particularly desirable when
utilising gradient-based optimisation or inference techniques
since the derivatives of the analytic expressions will be smoother
than their numerical counterparts. Additionally, analytic expres-
sions are highly portable since they can be easily implemented in
the user’s preferred programming language and do not become
unusable when the codes underlying numerical approaches
become deprecated.

However, in their current forms, there are two main disad-
vantages of the symbolic approaches compared to the emulators.
Firstly, both symbolic approaches require one to perform inte-
grals, which can be computationally slow. This is a major prob-
lem for current analysis pipelines. Second, they do not have the
same level of accuracy as the numerical emulators. The aim of
this work is to solve both of these problems, in three steps:
1. We produce simple analytic expressions (Eqs. (25)–(27))

for all variables appearing in the halofit model so that,
when coupled with the linear matter power spectrum approx-
imation of Bartlett et al. (2024), halofit can be evaluated
without performing any integrals, dramatically increasing its
speed by a factor of 2350.

2. We update the parameters of halofit (Eqs. (29)–(38)) to
optimise them for cosmologies relevant to present-day appli-

cations (see Table 1) This reduces the maximum error from
∼10% for k . 10 h Mpc−1 to ∼5%, when compared against
the parameters of Takahashi et al. (2012) across a wide range
of cosmologies and redshifts.

3. We provide a simple analytic correction (Eqs. (39) and (40))
which can multiply the standard halofit prediction to pro-
duce sub-percent level accurate power spectra. We note that
(like all halofit implementations but unlike the numerical
emulators) a small residual remains due to imperfect mod-
elling of the baryonic acoustic oscillations, but these are
at approximately the percent level. This appears to be an
inherent limitation of the halofit formalism and should be
addressed in future work.
These significant improvements are enabled through the use

of symbolic regression (SR) to rapidly and automatically search
through the space of candidate fitting functions to yield high
accuracy approximations of the various quantities of interest.
SR has gained popularity in recent years within the field of
physics to re-discover laws of physics from data (Lemos et al.
2023), propose candidate new ones (Bartlett et al. 2023a,b;
Desmond et al. 2023; Sousa et al. 2024; Kamerkar et al. 2023;
Koksbang 2023b; Lodha et al. 2024; Alestas et al. 2022), pro-
vide simple expressions to explain the output of complex simu-
lations (Delgado et al. 2022; Miniati & Gregori 2022; Koksbang
2023a,c; Wadekar et al. 2023), and obtain fitting functions
for observed properties of astrophysical systems (Russeil et al.
2022, 2024).

We note that in this paper we focus our attention on ΛCDM
models only, whereas emulators such as euclidemulator2 and
the bacco emulator can handle non-zero neutrino mass and an
evolving equation of state for dark energy. We leave such exten-
sions to future work.

In Sect. 2 we provide theoretical background by present-
ing the halofit model and describe the SR method we use to
produce analytic approximations. We obtain and present expres-
sions for the variables required for halofit in Sect. 3, and we
optimise the parameters of this model in Sect. 4. In Sect. 5
we provide an extension to the traditional halofit model –
which we call syren-halofit (symbolic-regression-enhanced
halofit) – yielding percent level accurate predictions for P(k).
Our expressions are validated against an independent set of sim-
ulations in Sect. 6, where we also compare to existing emula-
tors in both accuracy and speed. We conclude and discuss future
work in Sect. 7. Throughout this paper “log” denotes the natural
logarithm, and base-10 logarithms are denoted by “log10”.

2. Theoretical background

2.1. Nonlinear matter power spectrum

We wish to find an analytic approximation to the nonlinear mat-
ter power spectrum, P(k; a, θ), for a ΛCDM cosmology as a func-
tion of cosmological parameters, θ, scale factor, a = 1/(1 + z),
and wavenumber, k. In this paper we focus on the standard
ΛCDM model, so θ comprises of the (redshift zero) density
parameter for baryons, Ωb, and for all matter, Ωm; the Hubble
constant, H0 = 100 h km s−1 Mpc−1; the scalar spectral index,
ns; the curvature fluctuation amplitude, As; and the reionisation
optical depth, τ. Throughout this paper we use σ8 instead of As,
which is defined as

σ2
R =

∫
dk

k2

2π2 P(k; a = 1, θ) |W(k,R)|2 , (1)
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for

W(k,R) =
3

(kR)3 (sin(kR) − kR cos(kR)) , (2)

where σ8 is evaluated at R = 8 h−1 Mpc. Since τ has a very small
effect on the power spectrum, we ignore this parameter through-
out. We also set the neutrino mass to zero in all calculations.

In our previous work (Bartlett et al. 2024), we found an ana-
lytic emulator for the z = 0 linear matter power spectrum. Given
the zero-baryon Eisenstein & Hu fit (Eisenstein & Hu 1998,
1999), PEH(k; θ), we defined

PL(k; a = 1, θ) ≡ PEH(k; a = 1, θ)F(k; θ), (3)

and found an expression for F which was able to produce a sub-
percent level approximation to PL(k; a, θ) for a range of cos-
mologies. Throughout this paper, when referring to this fitting
formula, we mean the ‘fiducial’ model given in Bartlett et al.
(2024) as opposed to the more accurate yet less interpretable
model given in the appendix of that paper.

Extending this to the nonlinear case requires addressing three
differences compared to the linear theory prediction:
1. P(k; a, θ) depends on the scale factor, a, in a non-trivial man-

ner.
2. Nonlinear physics smears the baryonic acoustic oscillation

(BAO) peaks.
3. Nonlinear physics boosts power on small scales (large k).

To deal with these problems, we first note that it is trivial to scale
the z = 0 linear matter power spectrum to a different redshift:

PEH(k; a, θ) = D(a, θ)2PEH(k; a = 1, θ), (4)

PL(k; a, θ) = D(a, θ)2PL(k; a = 1, θ), (5)

where the linear growth factor is (ignoring radiation)

D(a, θ) ∝2 F1

(
1
3
, 1,

11
6
,
Ωm − 1

Ωm
a3

)
a, (6)

where 2F1 is the Gauss hypergeometric function.
To address the remaining two problems, we base our

approach on halofit (Smith et al. 2003; Takahashi et al. 2012),
a commonly used tool to model the nonlinear matter power spec-
trum. To do this, one defines a few variables based on the linear
matter power spectrum. kσ is defined to be the wavenumber at
which

σ2
G(k−1

σ ) ≡ 1, σ2
G(R) ≡

∫
∆2

L(k) exp
(
−k2R2

)
d log k, (7)

for

∆2
L(k) ≡ PL(k)

k3

2π2 , (8)

and PL(k) is the linear matter power spectrum, where for brevity
we suppress the dependence on a and θ for the remainder of this
section.

Once we have kσ, we also define

neff + 3 ≡ −
d logσ2

G(R)
d log R

∣∣∣∣∣∣
σG=1

, (9)

C ≡ −
d2 logσ2

G(R)
d log R2

∣∣∣∣∣∣
σG=1

. (10)

Before continuing to describe the details of halofit, it
is worth emphasising how computationally demanding this is.

First, one must run a Boltzmann solver to obtain the linear mat-
ter power spectrum. Then, one must run a root-finding algorithm
to solve Eq. (7) for kσ, where each iteration involves performing
an integral over k. Once one has identified kσ, σ2

G(R) must then
be computed for many values of R such that its first and second
derivative at kσ can be calculated, either by finite differences or
by fitting a spline. This is a large number of steps given that this
is meant to be a fast method for approximating P(k).

These variables are then combined to give the predic-
tion for the matter power spectrum. Using the notation of
Takahashi et al. (2012), we write

∆2(k) ≡ ∆2
Q(k) + ∆2

H(k), (11)

where ∆2
Q(k) is the two-halo term and ∆2

H(k) is the one halo term.
Smith et al. (2003) and Takahashi et al. (2012) model the

two-halo term as

∆2
Q(k) = ∆2

L(k)


(
1 + ∆2

L(k)
)βn

1 + αn∆2
L(k)

 e− f (y), (12)

where y ≡ k/kσ, f (y) ≡ y/4 + y2/8, and the parameters αn and
βn are given by (fit from Takahashi et al. 2012)

αn =
∣∣∣6.0835 + 1.3373neff − 0.1959n2

eff − 5.5274C
∣∣∣ , (13)

βn = 2.0379 − 0.7354neff + 0.3157n2
eff

+ 1.2490n3
eff + 0.3980n4

eff − 0.1682C. (14)

They then model the one halo term as

∆2
H(k) =

∆′H
2(k)

1 + µny−1 + νny−2 , (15)

∆′H
2(k) =

any3 f1(Ωm)

1 + bny f2(Ωm) +
[
cn f3(Ωm)y

]3−γn
. (16)

The parameters an, bn, cn, γn and νn are, noting that w = −1 for
our case,

log10 an = 1.5222 + 2.8553neff + 2.3706n2
eff

+ 0.9903n3
eff + 0.2250n4

eff − 0.6038C, (17)

log10 bn = −0.5642 + 0.5864neff + 0.5716n2
eff − 1.5474C, (18)

log10 cn = 0.3698 + 2.0404neff + 0.8161n2
eff + 0.5869C, (19)

log10 γn = 0.1971 − 0.0843neff + 0.8460C, (20)
log10 νn = 5.2105 + 3.6902neff , (21)

and the functions fi are given by

f1(Ωm) = Ωm(z)−0.0307, (22)

f2(Ωm) = Ωm(z)−0.0585, (23)

f3(Ωm) = Ωm(z)0.0743, (24)

where Ωm(z) is the total matter density parameter at redshift z.

2.2. Symbolic regression

To provide corrections to halofit, we utilise the supervised
machine learning technique of symbolic regression (SR) as
implemented in the operon package1 (Burlacu et al. 2020).
operon uses genetic programming (Turing 1950; Goldberg

1 https://github.com/heal-research/operon
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1989; Affenzeller et al. 2009) to evolve a population of candi-
date mathematical expressions which attempt to fit a dataset
given some inputs. Leveraging operations inspired by natural
selection such as mutation and crossover (breeding), over sev-
eral iterations the population evolves, with new members arising
and poorly performing members being discarded. The expecta-
tion is that the population evolves to become fitter, and thus more
accurate analytic expressions appear as the algorithm progresses.
operon implements this procedure in a fast and memory effi-
cient manner and has been shown to perform well in benchmark
studies (La Cava et al. 2021; Burlacu 2023).

All free parameters in expressions considered by operon
are optimised (Kommenda et al. 2020) using the Levenberg–
Marquardt algorithm (Levenberg 1944; Marquardt 1963). This
includes additional scaling parameters, which appear at each
terminal node in the expression tree, namely if x is an input
variable, then this will always appear as ci × x for a parame-
ter ci, with a different value of ci for each occurrence of x. We
define the model length to be the number of nodes appearing in
an expression tree, excluding these scaling terms. For example,
the function cos(c0 × x) would have a model length of 2 and
exp(c0 × x) + c1 × x has a model length of 4.

During non-dominated sorting, the objective values (root
mean squared error and model length) of the equations are com-
pared using the concept of ε-dominance (Laumanns et al. 2002).
There, a hyper-parameter ε is supplied to operon such that two
objective values within a distance ε of each other are considered
equal, and is chosen to promote convergence of the algorithm.
Different values of ε are used throughout this paper, which are
chosen through experimentation with the aim of obtaining accu-
rate yet compact expressions.

SR is a Pareto-optimisation problem due to the competing
objectives of accuracy and simplicity: one can make an equation
arbitrarily accurate by making it sufficiently complex, but mak-
ing it too simple will give inaccurate predictions. However, one
would expect that extremely complex models will have a ten-
dency to over-fit the training data, so we use a validation set in all
cases to aid this assessment. When selecting models which bal-
ance the accuracy-simplicity trade-off, we cannot rely on prin-
cipled statistical methods developed for SR (see Bartlett et al.
2023a,b) due to the lack of measurement uncertainties in the
quantities we wish to approximate. Instead, we begin by only
considering those models lying on the Pareto front – the most
accurate model of a given length – since these give the set of
expressions which maximise one objective given a fixed value
of the other. We discard all functions which do not satisfy some
predefined accuracy level and those for which the training and
validation losses differ significantly. This leaves us with a set of
models which we deem yield acceptable fits on both the train-
ing and validation datasets. We then choose the “best” model
by visually inspecting the remaining expressions and making a
subjective judgement based on their functional forms.

3. Analytic approximations to halofit variables

Rather than having to compute each of Eqs. (7), (9), and (10) on
the fly (i.e., re-evaluate the linear matter power spectrum for the
correct cosmology, perform a root-finding procedure, fit a spline
and take derivatives), it would be preferable if each of these vari-
ables could be expressed as a simple function of cosmological
parameters.

Unlike in Bartlett et al. (2024), we cannot simply compute
these quantities at redshift zero and re-scale, since all of kσ, neff

and C are dependent on redshift in a non-trivial manner. To gen-

Table 1. Range of cosmological parameters and redshift considered
when constructing our analytic emulators.

Parameter Minimum Maximum

109 As 1.7 2.5
Ωm 0.24 0.40
Ωb 0.04 0.06
h 0.61 0.73
ns 0.92 1.00
z 0 3

Notes. In all cases we generate samples in this six-dimensional space
using a Latin hypercube, assuming a uniform distribution between the
minimum and maximum values.

erate a training and validation set, we therefore sampled cos-
mologies from a Latin hypercube using the widths of parame-
ters given in Table 1, but added in an additional parameter, red-
shift. The range of the parameters are the same as those used to
construct euclidemulator2 (Euclid Collaboration 2021) and
those used in Bartlett et al. (2024). We sampled redshift uni-
formly in the range [0, 3], although we symbolically regressed
in scale factor a = 1/(1 + z). We generated 200 training and 200
validation points which we fitted to.

We computed kσ, neff and C by performing the integral in
Eq. (7) using the linear power spectrum outputted by camb
(Lewis et al. 2000). We could not use an infinite range of k
to perform this integral, but found that using a minimum k,
maximum k and logarithmic spacing of k of 10−4 h Mpc−1,
102 h Mpc−1 and 0.003 (corresponding to 2000 k values) gave
converged results, where we integrated using Simpson’s rule.

We fitted each of kσ, neff and C as a function of cosmology
using operon, optimising simultaneously the root mean squared
error (MSE) and the length of the model, using the basis opera-
tors +, −, ×, ÷,

√
·, pow and log. The Pareto fronts of solutions

found are given in Fig. 1, with the settings described in the fol-
lowing sub-sections.

3.1. Analytic approximation of kσ

Since at large redshifts the value of kσ can be large, we find that
it is more appropriate to learn log kσ rather than kσ directly. This
has the advantage that kσ will always be predicted to be positive.
We fitted this variable with operon using ε = 10−5, running
for 4 min or a maximum of 109 function evaluations. From the
resulting Pareto front, we see that there is a plateau in goodness
of fit between model lengths∼25–30. Inspecting these equations,
we observed that the expression at model length 25 seems rea-
sonable, so we chose this function. operon gave an overparam-
eterised form for this function and included an offset term which
is much smaller than the error on the fit, so can be neglected.
Redefining some parameters and rearranging, we obtain

log
(

kσ
h Mpc−1

)
≈

ψ0

σ8 (a + ψ9ns)
[
ψ1a (ψ2 − σ8)

+ (ψ3a)−ψ4a−ψ5ns
(
ψ6Ωb + (ψ7Ωm)−ψ8h

)]
, (25)

where ψ = {4.3576, 0.8358, 0.4302, 20.1077, 0.2593, 0.5732,
1.6809, 20.0433, 0.4257, 0.3908}.

The fractional residuals on the training and validation sets
are shown in the left panel of Fig. 2, where we see an approxi-
mate percent-level agreement. The root mean squared fractional
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Fig. 1. Pareto front of solutions found with operon for kσ (left; Eq. (7)), neff (centre; Eq. (9)) and C (right; Eq. (10)) over the range of cosmologies
and redshifts considered. We plot the Pareto fronts for the training and validation data separately, indicating the lengths of our preferred models
with vertical dotted lines.
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Fig. 2. Predicted values (upper) and fractional errors (lower) for kσ (left; Eq. (7)), neff (centre; Eq. (9)) and C (right; Eq. (10)) plotted against their
true values, using the results in Eqs. (25)–(27), respectively. The errors are almost always within 2% for kσ, 0.5% for neff and 1% for C.

error on kσ is 0.7% and 0.8% for the training and validation sets,
respectively.

3.2. Analytic approximation of neff

Turning our attention to neff , we again set the parameter ε = 10−5

and ran for a maximum of 2 min or 108 function evaluations. We
see that there is a definitive kink in the Pareto front at a model
length of around 17. Given that this is producing a root mean
squared error of below 10−2 (in fact it is 0.2% for both the train-
ing and validation sets) and it is not overly complicated when
visually inspected, we chose this model. We note that Fig. 1
appears to show a significant drop in MSE at a model length of
19, but given the already low error and the appearance of a term
containing aa in that expression, we chose the length-17 model.
After some simplification, and noting again that the offset term
produced by operon is much smaller than the error so can be
set to zero, this equation is

neff ≈ (χ0ns − χ1)
(
χ2Ωb − χ3h + (χ4a)−χ5Ωm−χ6σ8

)
, (26)

where χ = {1.6514, 4.8815, 0.5125, 0.1488, 15.6499, 0.2393,
0.1346}. The residuals to this fit are given in the central panel
of Fig. 2, from which we see sub-percent fractional errors at all
cosmologies and redshifts considered.

3.3. Analytic approximation of C

Moving to a fit for C, we chose ε = 10−3 (due to the smaller
absolute values of C compared to log kσ and neff) and ran for a
slightly longer time than for neff , with a maximum of 4 min or
109 function evaluations. There is a slightly less noticeable kink
in the Pareto front (Fig. 1) than for neff , although we see that after
a model length of approximately 25, there is a reasonably sharp
increase in accuracy, which then flattens up to a model length
of approximately 35. Given the low errors in this regime, this
seems a sensible place to choose a function from. Inspecting the
models of these lengths, we found that many functions contain
several nested exponential, which is undesirable. However, the
model found with a length of 30 does not have this problem, so
we chose this function. This is

C ≈ ϕ0σ8 − ϕ1
√
ϕ2ns + σ8 (ϕ3h − b6 + (Ωmϕ4)aϕ5 )

×
(
Ωbϕ7 + aϕ8 + ϕ9σ8 − (ϕ10h)Ωmbϕ11

)
− ϕ12, (27)

where ϕ = {0.3359, 1.4295, 0.1153, 0.0572, 48.0722, 0.1941,
1.176, 1.0151, 0.2354, 0.3596, 2.3898, 0.3569, 0.4431}.

The fractional residuals of this fit are shown in the right panel
of Fig. 2, where we see that we are always accurate within 2%,
but almost always within 0.5%. This is reflected in the root mean
squared fractional error on C of 0.3% for both the training and
validation sets.
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4. Optimised halofit parameters

Now we have symbolic expressions for kσ, neff and C, we can
rewrite halofit using (1) the Bartlett et al. (2024) linear P(k)
emulator and (2) the newly constructed emulators for these vari-
ables. Before adding any additional terms, we re-optimised the
parameters of halofit using the emulated values of PL, kσ,
neff and C. The commonly used parameters of Takahashi et al.
(2012) were optimised considering sixteen sets of cosmologi-
cal parameters: six cosmologies based on the results of WMAP
(Spergel et al. 2003, 2007; Komatsu et al. 2009, 2011), and ten
taken from the Coyote universe project (Heitmann et al. 2009,
2010; Lawrence et al. 2010). Since then, improved constraints
on cosmological parameters mean these may not cover the region
of parameter space which is of interest for present-day exper-
iments, with some falling outside the range given by Table 1.
Thus, we re-optimised the halofit parameters so that they pro-
vide the best possible fits across the range of parameters given
in Table 1.

To perform this optimisation, we need access to the
nonlinear matter power spectrum. To allow us to use any
redshift, we generated P(k; a, θ) using euclidemulator2
(Euclid Collaboration 2021), a fast and accurate method for pre-
dicting the ratio of the nonlinear matter power spectrum to the
linear one. We chose to do this rather than generate new N-body
realisations since such a generation is much more computation-
ally expensive. euclidemulator2 is accurate to the percent
level, so we can achieve a high degree of accuracy from fitting
the emulated spectra, and this allows more flexibility in choosing
redshift values. We validate our results against N-body simula-
tions in Sect. 6.1.

We again used 200 cosmologies drawn from a Latin hyper-
cube with the same bounds as in Sect. 3 (including the addition
of redshift). We used 100 logarithmically spaced k values in the
range 9×10−3−9 h Mpc−1. Specifically, we optimised the param-
eters of an, bn, cn, γn, νn, αn and βn and the exponents of f1, f2
and f3. As a loss function, we used the mean fractional squared
error on the halofit model compared to euclidemulator2:

L =
∑
i, j

Phalofit

(
ki; a j, θ j

)
− Peuclid

(
ki; a j, θ j

)
Peuclid

(
ki; a j, θ j

) 
2

, (28)

where i indexes the 100 values of k and each point on the Latin
hypercube is given by scale factor a j and cosmological parame-
ters θ j.

We optimised Eq. (28) using an Adam optimiser (Kingma
& Ba 2015). The initial learning rate was set to 0.01, and we
used the StepLR learning rate scheduler, with a step size of 100
and gamma = 0.9. We ran the optimiser for 2×104 iterations, but
found that it converged much before this. As an initial guess, we
use the parameters used in Takahashi et al. (2012).

After optimising the parameters and rounding to four dec-
imal places, we obtained new expressions for the halofit
parameters:

log10 an = 1.5358 + 2.8533neff + 2.3692n2
eff

+ 0.9916n3
eff + 0.2244n4

eff − 0.5862C, (29)

log10 bn = −0.5650 + 0.5871neff + 0.5757n2
eff − 1.5050C, (30)

log10 cn = 0.3913 + 2.0252neff + 0.7971n2
eff + 0.5989C, (31)

γn = 0.2216 − 0.0010neff + 1.1771C, (32)
log10 νn = 5.2082 + 3.7324neff , (33)

f1 (Ωm) = Ωm(z)−0.0158, (34)

f2 (Ωm) = Ωm(z)−0.0972, (35)

f3 (Ωm) = Ωm(z)0.1550, (36)

αn =
∣∣∣6.1043 + 1.3408neff − 0.2138n2

eff − 5.3250C
∣∣∣ , (37)

βn = 1.9967 − 0.7176neff + 0.3108n2
eff

+ 1.2477n3
eff + 0.4018n4

eff − 0.3837C. (38)

For the remainder of the paper, we refer to the halofit model
with these parameters as halofit+. We note that these param-
eters are not dramatically different to Takahashi et al. (2012), so
this represents a small refinement of their fit. We compare the
results of this choice of parameters to those of Takahashi et al.
(2012) in Fig. 3, where we see a particularly dramatic improve-
ment in the one-to-two halo regime. The root mean squared frac-
tional error for Takahashi et al. (2012) is 2.9% and 3.0% on the
training and validation sets, respectively, whereas this is reduced
to 1.8% and 1.9%, respectively, with the optimised parameters.
The maximum error for k . 10 h Mpc−1 is also reduced, from
∼10% to ∼5%.

5. Corrections to halofit

Up to this point, we have not modified the functional form of
halofit. Instead, we have made two major improvements. First,
we have increased its speed by removing the requirement to run
a root-finding algorithm on integrals of the power spectrum, and
having to compute derivatives of the result, by producing con-
cise and accurate symbolic expressions for the output of this
procedure. Second, by re-optimising the coefficients appearing
in the halofit formalism, we have improved the accuracy of
the method, with root mean squared errors of better than 2%. In
this section, we provide a correction to the functional form of
halofit that will allow us to obtain sub-percent level errors.

We parameterise this additional term as

P(k; a, θ) =
(
PQ(k; a, θ) + PH(k; a, θ)

)
(1 + A(k; a, θ)) , (39)

where we expect that A � 1 (we need to provide at most a cor-
rection at the level of a few percent) and that A→ 0 as k → 0 so
that the linear power spectrum is realised on large scales.

To find an expression for A, we again generated training
and validation data on Latin hypercubes, using different seeds
to those used in the previous sections but the same parameters.
We again chose to sample 200 cosmologies for both training and
validation and use 100 logarithmically spaced k values between
9 × 10−3 and 9 h Mpc−1. We computed the halofit+ predic-
tion using the analytic expressions for kσ, neff and C obtained
in Sect. 3, the analytic approximation to the linear matter power
spectrum of Bartlett et al. (2024), and the parameters found in
Sect. 4. We divided the output of euclidemulator2 by this
quantity and subtracted 1 to obtain the target values of A. To
make our target O(1), we chose to fit for 10A rather than A.

Again, we used operon to obtain candidate analytic expres-
sions. We found that a value of ε = 10−3 is appropriate and
ran for 24 h using a single node with 128 cores, optimising root
mean squared error and model length. Since we do not want very
complex expressions, we limited the maximum model length to
70. All candidate expressions are comprised of standard arith-
metic operations (addition, subtraction, multiplication, division),
as well as the natural logarithm, square root, cosine, power and
analytic quotient operator (aq(x, y) ≡ x/

√
1 + y2). We found that

using y = k/kσ enabled a more efficient search than using k
directly, so we attempted to find A as a function of y, kσ, neff ,
C, a and the cosmological parameters.
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Fig. 3. Comparison between the Takahashi et al. (2012) halofit parameters and the new optimised results (halofit+), with the bands giving
the 1 and 2σ errors, where we assume that the result of euclidemulator2 is the truth. For both training and validation we use 200 cosmologies
and 100 values of k. The dashed horizontal lines indicate an error of ±1%. The new parameters dramatically reduce the errors, particularly for
k & 10−1 h Mpc−1.
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Fig. 4. Pareto front of solutions found by operon to approximate the
difference between the nonlinear matter power spectrum and the pre-
diction of halofit. Each point on the red line represents the function
with the best mean squared error on the training set for a given model
length, whereas the blue curve shows the same loss for these functions
evaluated on the validation set. We choose to use the model of length
44, as indicated by the vertical dotted line.

In Fig. 4 we plot the Pareto front of solutions obtained by
operon which approximate A. We see that for model lengths
up to approximately 25, the training and validation losses are
approximately equal. Beyond this point, although both losses
continue to improve, the rate of improvement decreases for the
validation loss, until it stalls at a model length of 44, suggest-
ing a degree of overfitting beyond this point. We therefore chose
this function as our approximation to A, which, after merging
superfluous constants in the expression, is

A ≈ −
d0√

1 + (d1y)−d2C

[
y −

d3 (y − d4ns)√(
y − d5 log (d6C)

)2
+ d7

+
d8neff√(

d2
9 + σ2

8

) (
(d10y − cos (d11neff))2 + 1

)
+

(d12 + d13neff − d14C − d15y) (d16neff + d17y + cos (d18neff))√
y2 + d19

]
,

(40)

where the parameters, {di}, are tabulated in Table 2. For the
remainder of the paper, we refer to the combination of this cor-

Table 2. Best-fit parameter values for the correction to halofit given
in Eq. (40).

Parameter Value Parameter Value

d0 0.2011 d10 0.3377
d1 1.2983 d11 3.3150
d2 16.8733 d12 3.9819
d3 3.6428 d13 1.3572
d4 1.0622 d14 3.3259
d5 0.1023 d15 0.3872
d6 2.2204 d16 4.1175
d7 0.0105 d17 2.6795
d8 0.4870 d18 5.3394
d9 0.6151 d19 0.0338

Notes. All parameters are dimensionless.

rection to halofit model with parameters given by Sect. 4 as
syren-halofit, the primary product of this work.

Upon inspecting Eq. (40), one notices that, although we
allowed the expression to depend on all of the cosmological
parameters, the only parameters which appear beyond the stan-
dard halofit variables are ns and σ8. It is perhaps unsurpris-
ing that these are the two most important variables given that
they characterise the slope and normalisation of the initial power
spectrum, although it is interesting to find that no other variables
are required.

We note that operon provided an additional constant offset
for Eq. (40), but this is much smaller than the values of A pro-
duced, so we ignore it. In fact, this is justified because the leading
order term of Eq. (40) as y → 0 is O(yd2C/2) which, given that
d2 > 0 and C > 0 for all cosmologies considered, tends to 0
as y → 0. Hence Eq. (40) does not produce any correction to
halofit on large scales, which is desirable as we know linear
theory should hold for small k, and this is already the limiting
behaviour of halofit+. Keeping the constant offset would not
allow this to hold exactly. This demonstrates the advantage of
a symbolic expression for P(k) over numerical emulators: the
extrapolation behaviour beyond the range of the training data is
clear and can be controlled, so we can ensure that the model
behaves as desired.

We plot the fractional differences between the nonlinear
power spectrum produced by euclidemulator2 and that from
syren-halofit in Fig. 5. The errors are now reduced to a root
mean squared fractional error of 0.9% and 1.0% for the training
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Fig. 5. Distribution of fractional differences between euclidemulator2 and the prediction from halofit plus the correction given in Eq. (40)
(syren-halofit). For ease of comparison, the range of the y axis is the same as Fig. 3. The bands give the 1 and 2σ values, and we find that the
root mean squared fractional error is 0.9% and 1.0% for training and validation, respectively.

and validation sets, respectively, and a mean absolute fractional
error of 0.7%.

When compared to Fig. 3, we see that the correction pre-
dominantly adjusts the prediction at large k, with the two-halo
regime being almost unaffected. This can be observed in Fig. 6,
where we plot the predictions from euclidemulator2, the
bacco (Angulo et al. 2021) emulator, hmcode, and the three
versions of halofit considered in this work (the parameters
of Takahashi et al. (2012); halofit+; and syren-halofit) for
the Planck 2018 cosmology (Planck Collaboration VI 2020) at
a redshift of 1.0. From the central panel, we see that the uncor-
rected halofit implementation leaves a slowly-varying resid-
ual of a few percent with respect to euclidemulator2, which
is due to an incorrect prediction from halofit on small scales.
The correction given in Eq. (40) fits this residual, but tends to
zero for small k, as discussed above. We find that the maximum
fractional difference between syren-halofit and euclidemu-
lator2 in Fig. 6 is 1.3% which, for context, is only 0.3% greater
than the maximum absolute difference between euclidemula-
tor2 and the bacco emulator.

We note that we have chosen not to further re-optimise the
coefficients in Eqs. (29)–(38) in conjunction with the parame-
ters of Eq. (40). Small gains in accuracy are potentially possible
under this procedure, but we choose not to perform this opti-
misation to make the correction factor easier to use (one does
not need to use different halofit coefficients if one chooses to
switch on the correction factor).

6. Emulator peformance

6.1. Accuracy

When optimising the parameters of halofit in Sect. 4 and
obtaining the symbolic correction in Sect. 5, we always com-
pared to euclidemulator2, since this provided a computation-
ally convenient method for generating large numbers of power
spectra at arbitrary redshifts. However, it is important to verify
that our expressions are accurate when compared to the true out-
puts of N-body simulations, so in this section we do this for both
our expressions and other approaches from the literature.

To make this comparison, we compared our predic-
tions to those from the quijote suite of simulations
(Villaescusa-Navarro et al. 2020). These simulations were run
within a cubic box of side length L = 1 h−1 Gpc and N3 = 5123

particles using the gadget-iii code (Springel 2005). We anal-
ysed the results at the fiducial cosmology which has the Planck
2018 cosmological parameters (Planck Collaboration VI 2020):
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Fig. 6. Matter power spectrum predictions at redshift 1.0 for the Planck
2018 cosmology (Planck Collaboration VI 2020). We compare the lin-
ear theory prediction to that produced by halofit with the parameters
of Takahashi et al. (2012); hmcode as described by Mead et al. (2021);
the halofit implementation presented in this work both with (syren-
halofit) and without (halofit+) the correction given by Eq. (40);
euclidemulator2; and the bacco emulator. The top panel shows the
predicted power spectrum and the lower two panels give the residuals
with respect to the halofit version of this work without the correction
of Eq. (40) and euclidemulator2.

Ωm = 0.3175, Ωb = 0.049, h = 0.6711, ns = 0.9624,σ8 = 0.834.
We chose this suite since there exist 15 000 simulations at this
resolution and cosmology, each with different initial conditions.

A150, page 8 of 11



Bartlett, D. J., et al.: A&A, 686, A150 (2024)

3× 10−2 10−1 3× 10−1

k / hMpc−1

−0.02

0.00

0.02

0.04

F
ra

ct
io

na
l

E
rr

or

z = 0

3× 10−2 10−1 3× 10−1

k / hMpc−1

z = 1

halofit (Takahashi+ 2012; camb)

hmcode (Mead+ 2021; camb)

halofit+ (This work)

syren-halofit (This work)

euclidemulator2

bacco Emulator

Fig. 7. Fractional error on the nonlinear power spectrum as a function of wavenumber, k, for various emulators at redshifts 0 and 1. We take the
truth to be the average over all quijote simulations considered. For reference, the dashed horizontal lines indicate a ±1% error band.

Thus we can average over the large number of simulations so
that we suppress cosmic variance and extract the cosmic mean.
The matter power spectrum was extracted at 77 values of k in
the range 0.02−0.5 h−1 Mpc−1; this k range was chosen since,
for larger k, the mean from the 15 000 simulations at this reso-
lution deviates by more than few percent of that obtained from
the mean of the 100 simulations ran at higher resolutions (N3 =
10243), suggesting a lack of convergence on those scales.

In Fig. 7 we plot the fractional residuals between the various
emulators and the quijote power spectrum at redshifts 0 and 1.
As before, we find that the parameters of Takahashi et al. (2012)
results in deviations much larger than a percent for a wide range
of k. Although hmcode performs well at z = 0, we find that it
performs worse than halofit at intermediate values of k at a
redshift of 1. When using our optimised parameters, we find that
the fractional error on the halofit+ prediction is much smaller,
although the correction of Eq. (40) is needed to have a percent-
level error for larger values of k. We find that the numerical emu-
lators are of comparable accuracy to syren-halofit.

All the halofit predictions (including halofit+ and
syren-halofit) have oscillatory residuals with respect to the
truth around the BAO scale. This suggests that the halofit
model cannot sufficiently capture the changes to the BAO fea-
tures which occur when moving from the linear to the non-
linear power spectrum. Thus, future work should be dedicated
to improving the halofit formalism to better capture these
oscillations. We note that the residuals of the euclidemula-
tor2 contain much higher frequency oscillations than halofit,
suggesting that these are due to numerical noise. These are not
present in the analytic expressions, since it is difficult to produce
such high frequency oscillations at moderate model lengths with
the basis functions provided.

6.2. Speed

As argued in earlier sections, by avoiding the root-finding pro-
cedure and many integrals which need to be performed for the
standard implementation of halofit, we expect that our method
should be significantly faster, as well as more accurate. We com-
pare our approximations (with and without the correction of
Sect. 5) to the Takahashi et al. (2012) version of halofit and
hmcode, as described in Mead et al. (2021), which we compute
using camb; euclidemulator2 (Euclid Collaboration 2021);
and the bacco emulator (Angulo et al. 2021).

To assess the run time, we evaluated the nonlinear
power spectrum at redshift 1 for the Planck 2018 cosmology
(Planck Collaboration VI 2020) 103 times on an Intel Xeon
E5-4650 CPU, and report the mean execution time per eval-
uation. We used 200 logarithmically spaced values of k in
the range k = 9 × 10−3 − 4.9 h Mpc−1. We note that camb
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Fig. 8. Maximum (between z = 0 and 1) root mean squared fractional
error with respect to the quijote power spectra against run time for var-
ious nonlinear power spectrum emulators. The run time of euclidem-
ulator2 is dominated by the Boltzmann code class; the emulation
run time is comparable to that of the bacco emulator, as indicated by
the unfilled cross. Our results are orders of magnitude faster than the
other methods, with our best method – syren-halofit – achieving
even greater accuracy than the numerical emulators.

and euclidemulator2 require As, whereas the other methods
require σ8. If one had one variable and needed the other, tra-
ditional analyses would require one to run a Boltzmann solver
to obtain the linear power spectrum to convert between the two.
Although Bartlett et al. (2024) produced an analytic expression
for this conversion which can bypass this requirement, since
it is application-dependent whether one starts with As or σ8,
we assume that we have available whichever of As or σ8 is
required by the emulator in question. For the implementation of
the expressions obtained in this paper, we used the linear mat-
ter power spectrum approximation of Bartlett et al. (2024) and
considered both a python3 and a fortran90 implementation,
highlighting the simplicity of exporting symbolic expressions to
a different programming language. In our python3 implemen-
tation we used the colossus (Diemer 2018) package to evaluate
the Eisenstein & Hu (1998) transfer function, whereas this was
rewritten for the fortran90 implementation.

The results of this timing test are shown in Fig. 8, where we
plot the accuracy – computed as the maximum (between z = 0
and 1) of the root mean squared fractional errors between the
emulator and quijote for the k range used in Sect. 6.1 – against
the run time. We see that both the corrected (syren-halofit)
and uncorrected (halofit+) versions of halofit presented in
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this work require less than 1.5 ms to evaluate in python3 and
just 200 µs in fortran90, which is significantly shorter than
the other methods. The compilation of the fortran90 version,
itself rapid, only needs to be done once for all further appli-
cations of the emulator. We find that our methods, although
symbolic like the implementations of halofit and hmcode in
camb, are a factor of 2350 and 3170 times faster, respectively,
when using our fortran90 code. Given the short expressions,
our method is also faster to evaluate than the bacco emulator by
a factor of 64.

A somewhat surprising feature of Fig. 8 is the long runtime
of euclidemulator2; our methods are 2680 times faster than
this approach. This becomes less surprising when one realises
that euclidemulator2 only predicts the ratio between the non-
linear and linear matter power spectrum (boost) and it relies on
using a Boltzmann solver – in this case class (Blas et al. 2011)
– to evaluate the linear power spectrum. We find that the emula-
tion of the boost takes an average of 13 ms (as indicated by the
hollow cross in Fig. 8) which, although much smaller than the
total runtime, is still 62 times slower than the symbolic methods
we developed.

7. Conclusions

In this paper we have used symbolic regression to eliminate two
significant limitations of previous symbolic approximations of
the nonlinear matter power spectrum, namely that they were not
competitive in terms of speed or accuracy compared to numeri-
cal emulators. Our approach is to use symbolic regression with
genetic programming as implemented by operon to improve the
well-established halofit approach in three ways:
1. By providing symbolic expressions for all variables appear-

ing in halofit, we remove the need to perform integrals,
run root-finding algorithms or use a Boltzmann solver. This
results in an increase of a factor of 2350 in speed, and is
2680 and 64 times faster than euclidemulator2 and the
bacco emulator, respectively. These expressions are given
in Eqs. (25)–(27).

2. We provide updated halofit parameters to fit a wide range
of cosmologies between redshifts 0 and 3 designed to pro-
vide the best possible predictions for cosmological param-
eters of interest for present-day studies. We find that this
improves the accuracy by approximately a factor of two for
k = 9× 10−3 − 9 h Mpc−1. The updated coefficients are given
in Eqs. (29)–(38).

3. We obtain a simple analytic expression to multiply the newly
optimised halofit prediction by, which reduces the mean
squared error to 1%, providing comparable accuracy to state
of the art numerical emulators. This expression is given in
Eqs. (39) and (40).
In this work we have restricted our attention to the standard

ΛCDM model, with zero neutrino mass and a constant equation
of state for dark energy. Given that current and upgoing cos-
mological surveys such as Euclid (Laureijs et al. 2011), LSST
(LSST Science Collaboration 2009), DESI (DESI Collaboration
2016) and WFIRST (Akeson et al. 2019) will be able to probe
the nature of dark energy and the neutrino mass, in future work
we will extend our formalism for both the linear and nonlinear
matter power spectrum to include non-trivial equations of states
and a non-zero neutrino mass. We also note that in this work
we have not attempted to alter the underlying form of halofit,
except for multiplying the final prediction by a correction func-
tion to obtain syren-halofit. When inspecting these expres-
sions (Eqs. (12), (15) and (16)) and in particular the equations

for the parameters which enter them (Eqs. (29)–(38)), one may
suppose that more accurate fits could be obtained by using sym-
bolic regression to find a fundamentally more accurate param-
eterisation. In particular, by automating the search over candi-
date models, one could allow these to vary in more complicated
manners and allow a wider range of cosmological parameters to
appear in these expressions. We leave such an investigation to
future work.

Accelerating the calculation of important quantities in cos-
mology does not necessarily require the use of numerical emu-
lators such as neural networks, despite their increasing popular-
ity. We have demonstrated here and in Bartlett et al. (2024) that
the more traditional “fitting function” approach – augmented by
symbolic regression – can achieve similar (percent level) accu-
racy but with shorter evaluation times than these emulators. The
interpretability, clear extrapolation behaviour, portability, and
longevity of these analytic approximations bode well for their
future in cosmological emulation.
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