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Plug-and-Play Split Gibbs Sampler: embedding
deep generative priors in Bayesian inference

Florentin Coeurdoux, Nicolas Dobigeon, Senior Member, IEEE and Pierre Chainais, Senior Member, IEEE

Abstract—This paper introduces a stochastic plug-and-play
(PnP) sampling algorithm that leverages variable splitting to
efficiently sample from a posterior distribution. The algorithm
based on split Gibbs sampling (SGS) draws inspiration from
the half quadratic splitting method (HQS) and the alternating
direction method of multipliers (ADMM). It divides the chal-
lenging task of posterior sampling into two simpler sampling
problems. The first problem depends on the likelihood function,
while the second is interpreted as a Bayesian denoising problem
that can be readily carried out by a deep generative model.
Specifically, for an illustrative purpose, the proposed method
is implemented in this paper using state-of-the-art diffusion-
based generative models. Akin to its deterministic PnP-based
counterparts, the proposed method exhibits the great advantage
of not requiring an explicit choice of the prior distribution,
which is rather encoded into a pre-trained generative model.
However, unlike optimization methods (e.g., PnP-ADMM and
PnP-HQS) which generally provide only point estimates, the
proposed approach allows conventional Bayesian estimators to be
accompanied by confidence intervals at a reasonable additional
computational cost. Experiments on commonly studied image
processing problems illustrate the efficiency of the proposed
sampling strategy. Its performance is compared to recent state-
of-the-art optimization and sampling methods.

Index Terms—Bayesian inference, plug-and-play prior, deep
generative model, diffusion-based model, Markov chain Monte
Carlo, inverse problem.

I. INTRODUCTION

MANY scientific problems raise the challenge of infer-
ring an unknown object of interest x ∈ RN from partial

and noisy measurements y ∈ RM . These inverse problems
frequently encountered in image processing are typically for-
mulated as the minimisation task

min
x

f(x,y) + g(x) (1)

where f(·,y) denotes the data-fitting term. Due to the ill-
posed or ill-conditioned nature of the inverse problem, it is
often not possible to uniquely and stably recover x from the
sole observations y. Therefore, additional information about
the unknown object x is incorporated in the form of the
regularization g(·) to obtain a well-posed estimation problem,
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leading to meaningful solutions [1]. Due to the increasing
volume, dimensionality, and variety of available data, solving
such inference problems can be computationally demanding
and may rely on methods such as variational optimization or
stochastic sampling.

Until recently, most of the optimization methods have relied
on priors designed as explicit model-based regularizations such
as the total variation, promoting piecewise constant behaviors,
or the ℓ1 norm, promoting sparsity. In this context, convex
optimization algorithms have played an important role and
their convergence properties have been well-established [2]–
[5]. However, for an always larger family of problems related
to image processing, methods based on explicit convex priors
are now significantly outperformed by deep learning based
approaches. There exist a number of deep neural network
architectures that can directly learn a description of the solu-
tion space [6]–[10]. Such so-called end-to-end approaches that
bypass the problem of explicitly defining the prior knowledge
do not even need the knowledge of the forward operator
itself. Instead, they are implicitly learnt from a large data
set of degraded images (i.e., network input) along with their
original versions (i.e., network output) when training the
network. However, such end-to-end methods suffer from the
lack of interpretability and generality of black-box deep neural
networks (DNN). Moreover, they do not take advantage of the
generally well-established expertise of the end-users about the
acquisition or damaging protocols, which makes the training
process particularly energy and data intensive.

To overcome these limitations, more and more deep learn-
ing based methods propose to combine DNN with conven-
tional optimization algorithms within the so-called plug-and-
play (PnP) framework [11]. The main ingredient of PnP
approaches is a variable splitting strategy as implemented
by half-quadratic splitting (HQS) [12] or alternating direction
method of multipliers (ADMM) [13]. The main idea of this
splitting consists in introducing an auxiliary variable z such
that the problem (1) rewrites

min
x,z

f(x,y) + g(z) subject to x = z. (2)

The equality constraint ensures that solving (2) is equivalent
to solving the initial problem (1). Adopting an alternate mini-
mization strategy, this tricks permits to separately deal with the
data-fitting term and the regularization [14]. In particular, the
subproblem with respect to z is solved by using the proximal
operator of the regularization term, which can be interpreted
as a denoising task. Recent PnP methods replace this proximal
mapping by a DNN-based denoiser that implicitly encodes the
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regularization. They now stand as a reference that yield state-
of-the-art performance in a variety of applications [15], [16].

However, PnP-based optimization algorithms generally pro-
duce point estimates only. More generally, except in special
cases [17], optimization methods do not give any information
about the posterior distribution

π(x) ≜ p(x|y) ∝ exp[−f(x,y)− g(x)] (3)

associated with (1) and do not quantify uncertainties. Con-
versely, Bayesian approaches and Markov chain Monte Carlo
(MCMC) methods have the great advantage of providing a
comprehensive description of (3) in very general settings.
In particular, this knowledge permits to derive credibility
intervals on the parameter x of interest. This uncertainty
quantification is often of crucial importance, for instance when
only very few observations are available [18], when one is
interested in extreme events [19] or when no ground truth
is available, like in astrophysics. There is still a price to
pay: sampling methods and MCMC in particular suffer from
their high computational cost which can be prohibitive in
high-dimensional problems. Optimization-driven Monte Carlo
methods [20]–[22] tentatively overcome this limitation.

More recently, the split Gibbs sampler (SGS) [23] pro-
poses to sample from an augmented distribution defined as
an asymptotically exact data augmentation model [24]. By
introducing an auxiliary variable as in (2), it yields a divide-
to-conquer strategy by splitting the initial sampling problem
into individual simpler sampling tasks. Sampling according to
the augmented distribution with Gibbs steps permits to deal
separately with the distinct components of the problem, i.e.,
the likelihood on the one hand and the prior on the other
hand. Per se, SGS can be seen as a stochastic counterpart
of HQS or ADMM algorithms. It both makes the sampling
more scalable to high dimensions and significantly improves
the mixing properties of the Markov chain.

The main contribution of the work reported in this paper
is to provide a straightforward and systematic instantiation
of the PnP paradigm within a Monte Carlo sampling frame-
work. This is made possible thanks to the splitting strategy
implemented by the SGS scheme. Moreover the timeliness
of devising such an approach can be easily justified by the
recent advances in the design of powerful deep generative
models. The proposed approach coined as PnP-SGS is based
on three main rationales. First, as any PnP-based methods,
PnP-SGS allows Bayesian inference problems to be solved
without explicitly defining a prior distribution, which is rather
implicitly encoded into a DNN trained beforehand. Second,
we show that diffusion-based or score-based models [25]–[27]
initially derived for generative purposes can be diverted to be
employed as universal stochastic denoisers. Third, PnP-SGS
generate samples that can be used to build confidence intervals,
which is not possible with its determinisc counterparts, i.e.,
PnP-HQS and PnP-ADMM, that only provide point estimates
[15], [16]. High dimensional image processing experiments
will illustrate the strong potential of the proposed approach
when using a diffusion model [28]–[34] as a denoiser. These
extensive experiments include various inverse problems such

as inpainting, super-resolution, and deblurring. The experi-
mental results show that the proposed PnP-SGS is a general
approach to solve ill-posed inverse problems in high dimension
with superior quality and uncertainty quantification.

Section II recalls necessary notions about the split Gibbs
sampler (SGS) and Denoising Diffusion Probabilistic Models
(DDPMs) that will be used as PnP-denoisers in the sequel.
Section III describes how the proposed PnP-SGS adapts to
several usual inverse problems frequently encountered in im-
age processing. Section IV describes numerical experiments
and reports the performances in comparison with state-of-the-
art methods. Section V finally enlightens the contributions.

II. SGS AND GENERATIVE MODELS FOR PNP

A. Split Gibbs sampling (SGS)

Starting from the target posterior distribution (3), the intro-
duction of a splitting variable z ∈ RN leads to the augmented
distribution

πρ(x, z) ≜ p
(
x, z|y; ρ2

)
(4)

∝ exp

[
−f(x,y)− g(z)− 1

2ρ2
∥x− z∥22

]
where ρ is a positive parameter that controls the coupling
between x and z. As shown in [24], for a large variety of
coupling kernels including the quadratic one, the marginal
distribution of x under πρ in (4) coincides with the target
distribution π in (3) when ρ2 tends to zero, i.e.,

∥π − πρ∥TV →
ρ2→0

0 (5)

where ∥π∥TV ≜
∫
RM |π(x)|dx. This defines an asymptotically

exact data augmentation scheme [24]. In other words, the
original target distribution π(x) in (3) is recovered from the
marginal distribution πρ(x) derived from (4) in the limiting
case ρ → 0. Instead of sampling directly according to
π(x), SGS proposes to sample according to the augmented
distribution πρ(x, z) using Gibbs steps. More specifically, the
associated conditional distributions to sample from πρ(x, z)
are given by

p
(
x | z,y; ρ2

)
∝ exp

[
−f(x,y)− 1

2ρ2
∥x− z∥22

]
(6)

p
(
z | x; ρ2

)
∝ exp

[
−g(z)− 1

2ρ2
∥z− x∥22

]
(7)

It is now clear that sampling alternatively from (6) and (7)
dissociates the potential functions f(·,y) and g(·) associated
with the likelihood and the prior distribution, respectively.
As a consequence, SGS inherits from well-known advantages
already exhibited by its deterministic counterparts (i.e., HQS
and ADMM), e.g., easier implementations, faster convergences
and possibly distributed computations. In particular, sampling
according to (6) can be interpreted as solving the initial
problem defined by the same potential function f(·,y) but
now granted with a Gaussian prior distribution of mean z
and diagonal covariance matrix ρ2I. It is thus expected to
be significantly simpler than sampling according to the initial
posterior distribution π(x) defined by (3).
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Moreover, it is worth noting that the conditional distribution
(7) can be interpreted as the posterior distribution associated
with a Bayesian denoising problem. Its goal is to recover
an object z from a noisy observations x contaminated by
an additive white Gaussian noise with variance ρ2. Instead
of sampling directly from (7), we propose to resort to deep
generative models used as stochastic denoisers. Generative
adversarial network (GAN), variational autoencoders (VAE)
or more recently denoising diffusion probabilistic models
(DDPM) are powerful candidates to tackle this task [25]–[27].
Due to the high interest they have received recently, this work
instantiates the PnP-SGS framework and reports experimental
results based on DDPM-based denoisers. Note however that
any pre-trained probabilistic denoising generative model can
be plugged into the proposed approach.

B. Denoising diffusion probabilistic models (DDPM)

Denoising diffusion models [28]–[31] and score based
models [32]–[34] are trendy classes of generative models.
They have recently drawn significant attention from the
community due to their state-of-the-art performances.
Although nourished by different inspirations, they share very
similar aspects and can be presented as variants of each other
[30], [34], [35]. They are often referred to under the generic
name diffusion models.

1) DDPM as generative models: A denoising diffusion
probabilistic model [28] makes use of two Markov chains:
a forward chain that perturbs data to pure noise, and a
backward chain that converts noise back to data. The former
is typically model-based designed with the goal to transform
any data distribution into a simple prior distribution, i.e., a
standard Gaussian. Conversely the latter Markov chain aims
at reversing the noising process by learning transition kernels
parameterized by a DNN. Once the DNN has beeen trained,
new data points can be generated by first drawing from the
prior distribution, and then sampling through the backward
Markov chain.

Formally, given a data distribution u0 ∼ p (u0), the forward
Markov process generates a sequence of random variables
ut ∈ RN , t ∈ {0, . . . , T} according to the transition kernel
p (ut | ut−1). Using the probability chain rule and the Marko-
vian property, the joint distribution p (u1, . . . ,uT | u0) can be
factorized as

p (u1, . . . ,uT | u0) =

T∏
t=1

p (ut | ut−1) . (8)

In DDPMs, the transition kernel p (ut | ut−1) is arbitrarily
chosen to incrementally transform the data distribution p (u0)
into a tractable prior distribution p(uT ) ≈ N (uT ;0, I). One
typical design for the transition kernel exploits a Gaussian
perturbation and the most common choice for the transition
kernel is

p (ut | ut−1) = N
(
ut;

√
1− β(t)ut−1, β(t)I

)
(9)

where β(t) ∈ (0, 1) is a predefined function which plays a key
role. It directly adjusts the amount of noise along the process

such that larger values lead to noisier samples. Conventionally,
it is chosen as a linearly increasing function [29]. More recent
techniques have proposed to use cosine-based functions [36].
Intuitively speaking, this forward process slowly injects noise
into data until all structures are lost and only noise prevails.

For generating new data samples, DDPMs start by first
drawing a sample uT from an instrumental prior distribution
q (uT ) = N (uT ;0, I). Then DDPMs gradually remove noise
by running a Markov chain in the reverse time direction. This
Markov chain is defined thanks to a kernel modeled by DNNs.
The learnable transition kernel qθ (ut−1|ut) takes the form of

qθ (ut−1 | ut) = N (ut−1;µθ (ut, t) ,Σθ (ut, t)) (10)

where the mean µθ (ut, t) and the covariance matrix
Σθ (ut, t) are DNNs parametrized by θ and t with ut as an
input.

2) DDPM as stochastic denoisers: According to the above
discussion, it is clear that the forward diffusion process (9)
progressively adds noise to a noise-free image u0. Following
a discretization scheme generally adopted by these deep gener-
ative models, each ut corresponds to a scaled version of ut−1

corrupted by a Gaussian noise with covariance matrix β(t)I.
Thanks to the factorization induced by the direct Markov chain
and the Gaussian nature of the transition kernel, the transition
from the original image u0 to any intermediate noisy image
ut can be written as

p (ut | u0) = N
(
ut;

√
ᾱ(t)u0, α(t)I

)
(11)

where α(t) =

t∏
j=1

(1− β(j)) (12)

and ᾱ(t) = 1 − α(t). In other words, at any arbitrary time
instant t∗ < T , the image ut∗ resulting from t∗ steps of
the forward process is a noisy version of the input image u0

corrupted by a Gaussian noise of variance α(t∗).
Therefore, it appears that a trained DDPM can be used as

a stochastic Gaussian denoiser. Contrary to the normal use of
a DDPM as a generator (see above), the key idea is rather to
start the backward diffusion process from a noisy image ut∗

for some t∗ and not as usual from a realization of noise uT .
The noise-free image u0 can be recovered by applying the
backward process defined by (10) from time instant t∗.

C. Proposed DDPM-based PnP-SGS algorithm
In a nutshell, the proposed PnP-SGS alternatively samples

according to the conditional posterior distributions (6) and (7).
Along this iterative process, SGS generates a set of NMC

samples
{
x(n), z(n)

}NMC

n=1
asymptotically distributed according

to the augmented posterior πρ(x, z). From this set of samples,
various Bayesian quantities can be approximated, such as
Bayesian estimators and credibility intervals. In particular, the
samples

{
x(n)

}NMC

n=1
are marginally distributed according to

πρ(x). Thus the minimum mean square estimator (MMSE or
posterior mean) x̂MMSE = E[x|y] associated with πρ can be
easily approximated by the empirical average

x̂MMSE ≈
1

NMC −Nbi

NMC∑
n=Nbi+1

x(n) (13)
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where Nbi is the number of burn-in iterations.
Regarding the first step of SGS, sampling according to (6)

is problem dependent and should be suitably adapted to the
targeted task. For illustration purpose, it will be explicitly spec-
ified for various imaging problems in Section III. As expected
and already pointed out in Section II-A, it will be shown that
sampling according to (6) is significantly simpler than directly
sampling according to the target posterior distribution π(x)
defined by (3).

Regarding the second step of SGS, at the nth iteration of
the algorithm, sampling according to (7) is interpreted as a
stochastic denoising of the current value x(n). This sampling
according to (7) is performed in a PnP manner thanks to
a previously trained DDPM, following the strategy detailed
in Section II-B2. With the notations adopted in the previous
paragraph, it assigns the current sample x(n) to the variable
ut∗ for some t∗ at iteration n and then iterates the backward
diffusion (10). After t∗ steps, the produced denoised image
u0 is allocated to the new sample z(n) according to (7) of the
current SGS iteration. Note that DDPMs used as generators
are known to be generally computationally demanding due
to the number T of overall steps involved in the backward
process. The proposed approach obviates this impediment by
initiating the process from a generally weakly noisy image,
which significantly reduces the necessary number t∗ ≪ T
of denoising steps to be applied [37]. Next section provides
some insights into this number t∗ and proposes a systematic
and reliable strategy to adjust it.

Remark. One alternative of the proposed DDPM embed-
ding would have been to directly train a novel surrogate
probabilistic model qθ(z|x) for instance parametrized by its
two first moments (mean and covariance). However, it is
worth raising the following shortcomings: i) restricting the
description of a distribution to its two first moments boils
down to assuming a Gaussian distribution, which may lack
of expressiveness in high dimensional problems such as those
addressed in this manuscript, ii) such denoisers are known
to be significantly outperformed by diffusion-based models,
which replace the probabilistic model qθ(z|x) by successive
incremental denoising steps and iii) such a strategy would
require to design and train a new network while the proposed
approach can reuse any pre-trained probabilistic denoising
generative model.

D. Some insights into the number t∗ of backward steps

This section discusses the role and the tuning of the time
instant t∗ which defines the number of denoising steps to be
applied at a given iteration of the SGS sampler. As already
stated, Eq. (11) shows that the variance of the noise corrupting
u0 after t∗ transitions of the forward Markov chain is α(t∗).
This variance is defined by the product (12) of continuous
strictly monotone functions β(·), thus it is also continuous
and strictly monotone. This has two consequences: i) a level of
noise α(t∗) is associated to a unique instant t∗ of the forward
diffusion process (i.e., the noise scheduling function t 7→ α(t)
is invertible) and ii) the larger t∗, the noisier the image ut∗ .
Reciprocally, when applying the backward diffusion to a noisy

image, the larger t∗, the higher the impact of the denoising,
that is of the regularization. Note that the DDPM, that is
used for regularization here, has no explicit hyperparameter.
An important consequence is that, within the framework of
PnP-SGS, the number t∗ of denoising steps can be interpreted
as the hyperparameter that adjusts the amount of imposed
regularization, the coupling parameter ρ being kept fixed.

The proposed approach capitalizes on the explicit and
unequivocal mapping between the hyperparameter t∗ and the
variance α(t∗) of the noise contained in ut∗ . This relationship
permits a simple and efficient strategy to set the number t∗

of required denoising steps (10) when sampling according
to (7). Given a current sample x(n) generated by SGS, the
identification of the appropriate instant t∗ to generate z(n)

according to (7) boils down to estimating the level α(t∗) of
the noise corrupting the sample x(n). This is possible using any
good conventional estimator σ̂ = Φ(x(n)) of the noise level
in x(n) [38]–[40], see Appendix A for implementation details.
Since the noise scheduling function t 7→ α(t) is invertible, one
can finally set t̂∗ = α−1(σ̂2) to start the backward diffusion
(10). Appendix B discusses technical details of the inversion
of the noise scheduling function α(·).

In practice, during the experiments reported in Section IV,
the number t̂∗ of achieved steps has been shown to stabilize at
a fixed value after the burn-in period of PnP-SGS. Therefore
the transition kernel associated with the denoising procedure
becomes invariant, which ensures that SGS converges towards
a stationary distribution πρ; recall that ρ is fixed, typically
of order 1, see Appendix C. The resulting distribution πρ

is eventually similar to (4) where the role of the explicit
regularizing potential g(·) has been implicitly replaced by the
DDPM.

Algorithm 1 describes the final sampling PnP-SGS algo-
rithm using a DDPM for the denoising step, with the proposed
strategy to set the hyperparameter t∗.

Algorithm 1: PnP-SGS using DDPM

Input : Parameter ρ2, total number of iterations
NMC, number of burn-in iterations Nbi,
pre-trainted DDPM sθ(·, ·), noise scheduling
function α(·), initialization z(0)

1 for n← 1 to NMC do
2 # Sampling the variable of interest x(n)

3 Draw x(n) ∼ p(x | z,y; ρ2) according to (6)
4 # Estimating noise level in x(n)

5 Set σ̂ = Φ(x(n)) using [38]
6 # Setting the number of diffusion steps to denoise x(n)

7 Set t̂∗ = α−1(σ̂2)

8 # Sampling the splitting variable z(n) according to (7)
9 Set ut̂∗ = x(n)

10 for j ← t̂∗ downto 1 do
11 Draw uj−1 ∼ qθ(uj−1 | uj) according to (10)
12 end for
13 Set z(n) = u0

14 end for
Output: Collection of samples

{
x(n), z(n)

}NMC

t=Nbi+1

asymptotically distributed according to (4).
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III. APPLICATION TO BAYESIAN INVERSE PROBLEMS

The proposed PnP-SGS method is now instanciated for three
different imaging problems, namely deblurring, inpainting and
superresolution, following the protocols already considered in
[23]. The considered linear Gaussian inverse problems define
an archetypal class of problems that can efficiently tackled by
the proposed method. More specifically, a degraded image y
is observed and one wants to infer a restored image x under
the linear model

y = Hx+ n (14)

where H is a forward operator and n accounts for noise or
error modeling. Assuming that n is a Gaussian random vector
with covariance matrix Ω−1, the likelihood function associated
with the observation y writes

p(y | x) ∝ exp

[
−1

2
(Hx− y)TΩ(Hx− y)

]
.

In most applicative contexts, inferring the unknown parameter
vector x from the observation vector y under the linear model
(14) is known to be an ill-posed or ill-conditioned inverse
problem. A common approach to tackle such problems consists
in using some regularization defined through the choice of a
prior distributon p(x) ∝ exp [−g(x)], leading to the posterior
distribution (3). Instead of explicitly specifying the potential
function g(·) in (3), the proposed PnP-SGS algorithm targets
an augmented posterior similar to (4) to capitalize on a pre-
trained denoising diffusion model presented in Section II-B.

The three considered tasks mainly differ by the nature of
the linear operator H. Following the SGS algorithmic scheme,
a special care should be taken to ensure an efficient sampling
according to the conditional posterior (6) which involves H,
see Algo. 1, line 3. Since the sampling according to (7) does
not depend on the forward operator, it is achieved in a unique
manner from a DDPM. Thus the sequel of this section is
only devoted to the technical derivations associated with (6).
Experimental results obtained by the proposed PnP-SGS will
be reported in Section IV.

A. Image deblurring

In this setup, the operator H is assumed to be an N × N
circulant convolution matrix hereafter denoted B associated to
a spatially invariant blurring kernel. The noise covariance ma-
trix is assumed to be diagonal, i.e., Ω−1 = diag

[
σ2
1 , . . . , σ

2
N

]
where distinct diagonal elements mimic a spatially-variant
noise level. The proposed PnP-SGS algorithm yields the
conditional distribution (6) defined here as

p(x | z,y; ρ2) = N
(
x;µx,Q

−1
x

)
(15)

with {
Qx = BTΩB+ 1

ρ2 IN

µx = Q−1
x

(
BTΩy + 1

ρ2 z
)
.

(16)

Thanks to the splitting trick inherent to the proposed PnP-
SGS algorithm, this step does not depend on g(·) and boils
down to a high-dimensional Gaussian sampling task [41].
Direct sampling according to this distribution may remain a
challenging task, mainly due to the presence of the precision

matrix Ω which prevents a direct computation in the Fourier
domain. It can be efficiently achieved by introducing an
auxiliary variable and sampling according to the augmented
distribution, as detailed in [42]. Finally, sampling from (7) is
straightforward using the pre-trained network as discussed in
Section II-B.

B. Image inpainting
Image inpainting problems aim at recovering an original im-

age x ∈ RN from the noisy and partial measurements y ∈ RM

under the linear model (14). The operator H ∈ {0, 1}M×N

now stands for a binary matrix associated with a irregular
subsampling with M ≪ N . The noise is assumed to be white
and Gaussian such that Ω−1 = σ2IM . As for the deblurring
task, the conditional distribution (6) is (15) with{

Qx = 1
σ2H

TH+ 1
ρ2 IN

µx = Q−1
x

(
1
σ2H

Ty + 1
ρ2 z

)
.

(17)

It is worth noting that the direct operator H is an M × N
binary matrix that can be obtained by extracting a subset of
M rows of the N×N identity matrix. Thus, the matrix product
HTH is a diagonal matrix with M non-zero values equal to
1. As a consequence the precision matrix Qx is diagonal and
the conditional distribution is easy to sample from.

C. Image super-resolution
Image super-resolution is characterized by a forward model

composed of a blurring kernel followed by a subsampling step.
The forward operator writes

H = SB (18)

where B is a N×N circulant convolution matrix, as in Section
III-A, and S ∈ {0, 1}M×N is associated with a binary mask,
as in Section III-B. The noise n is assumed to be white and
Gaussian. To fully benefit from the advantages of the SGS,
two auxiliary variables z1 and z2 are introduced to define the
augmented posterior distribution

p(x, z1, z2|y; ρ21, ρ22) ∝ exp

[
− 1

2σ2
∥y − Sz1∥2

− 1

2ρ21
∥z1 −Bx∥2 − g(z2)−

1

2ρ22
∥z2 − x∥2

]
(19)

This double splitting leads to a SGS algorithm which samples
alternatively according to the conditional distributions

p(z1 | x,y) ∝ exp

[
− 1

2σ2
∥y − Sz1∥2 −

1

2ρ21
∥z1 −Bx∥2

]
(20)

p(x | z1, z2) ∝ exp

[
− 1

2ρ21
∥z1 −Bx∥2 − 1

2ρ22
∥z2 − x∥2

]
(21)

p(z2 | x) ∝ exp

[
−g(z2)−

1

2ρ22
∥z2 − x∥2

]
. (22)

The two distributions (20) and (21) correspond to the pre-
viously discussed tasks of inpainting and deblurring, respec-
tively. Sampling according to the last one (22) is achieved
thanks to a DDPM used as a stochastic PnP denoiser.
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TABLE I
FFHQ 256× 256 DATA SET: IMAGE RECONSTRUCTION (PSNR, SSIM) OBTAINED BY THE COMPARED METHODS. BOLD: BEST, UNDERLINE: SECOND.

PnP-SGS SPA TV-ADMM PnP-ADMM DPIR Score-SDE DDRM MCG DPS

In
pa

in
tin

g PSNR ↑ 32.59 24.09 22.03 8.41 24.41 13.52 9.19 21.57 25.23
SSIM ↑ 0.913 0.524 0.784 0.325 0.809 0.437 0.319 0.751 0.851
FID ↓ 37.36 71.12 181.56 123.61 52.73 76.54 69.71 29.26 38.82

LPIPS ↓ 0.144 0.785 0.463 0.692 0.398 0.612 0.587 0.286 0.262

D
eb

lu
rr

in
g

(G
au

ss
ia

n) PSNR ↑ 27.96 23.17 22.37 24.93 26.09 7.12 23.36 6.72 24.25
SSIM ↑ 0.837 0.499 0.801 0.812 0.820 0.109 0.767 0.051 0.811
FID ↓ 59.667 78.67 186.74 90.42 80.18 109.07 74.92 101.2 62.72

LPIPS ↓ 0.331 0.452 0.507 0.441 0.392 0.403 0.332 0.340 0.444

D
eb

lu
rr

in
g

(m
ot

io
n) PSNR ↑ 28.46 17.73 21.36 24.65 27.33 6.58 N/A 6.72 20.92

SSIM ↑ 0.828 0.211 0.751 0.825 0.814 0.102 N/A 0.055 0.808
FID ↓ 60.01 103.87 152.39 89.08 78.95 292.28 N/A 310.5 56.08

LPIPS ↓ 0.294 0.446 0.508 0.405 0.386 0.657 N/A 0.702 0.389

Su
pe

rr
es

.
(×

4
)

PSNR ↑ 25.99 N/A 23.86 25.55 26.14 17.62 25.36 19.97 25.67
SSIM ↑ 0.862 N/A 0.803 0.865 0.889 0.617 0.835 0.703 0.852
FID ↓ 58.82 N/A 110.64 66.52 63.98 96.72 62.15 87.64 52.82

LPIPS ↓ 0.279 N/A 0.428 0.353 0.319 0.563 0.294 0.520 0.337

IV. EXPERIMENTS

A. Experimental setup

Experiments have been conducted on two data sets each
composed of 1000 RGB images of size 256×256 with various
characteristics, namely FFHQ 256 × 256 [43], and Imagenet
256×256 [44]. Pre-trained diffusion models have been directly
taken from [28], [45] and used without any additional fine-
tuning. The test images have never been seen by the model
while training to avoid any bias due to potentially over-fitted
pre-trained models. All images are normalized to the range
(0, 1). For the inversion tasks described in Section III, the
forward measurement operators have been designed as follows:

• deblurring: two blurring kernels are considered, namely a
Gaussian blur with a kernel size of 61×61 with standard
deviation of 3.0, and a randomly generated motion blur1

with size 61× 61 and intensity value 0.5,
• inpainting: 80% of the total pixels have been randomly

masked accross all RGB channels,
• superresolution: the operator S corresponds to a down-

sampling factor d = 4 in both directions and the operator
B stands for a Gaussian blur with a kernel size of 9× 9
and a standard deviation of 1.5.

For the inpainting and superresolution tasks, the images have
been corrupted with a Gaussian noise whose variance is
adjusted to reach a signal-to-noise ratio of SNR = 40dB.
For the deblurring task, to mimic a spatially-variant noise,
the diagonal elements σ2

i of noise precision matrix Ω−1 have
been independently randomly drawn such that σi = 40 with
probability 0.35 and σi = 13 with probability 0.65.

B. Compared methods & figures-of-merit

The proposed method has been compared to state-of-the-art
methods related to the rationales motivating PnP-SGS:

• SPA [23]: split-and-augmented Gibbs sampler is an ex-
tension of SGS; in our experiments, it is used with a usual

1Following the code available online ar
https://github.com/LeviBorodenko/motionblur.

Tikhonov regularizer for deblurring and superresolution
and with total-variation (TV) for inpainting;

• TV-ADMM: ADMM with a TV regularization;
• PnP-ADMM [46]: ADMM with a PnP regularization

chosen as DnCNN [7];
• DPIR [15]: HQS with PnP regularization chosen as

DRUNet; this can be interpreted as the deterministic
counterpart of PnP-SGS;

• Score-SDE [34]: implemented using the same DDPM as
the one used by PnP-SGS;

• DDRM [47]: the denoising diffusion restoration model is
implemented using the same DDPM as PnP-SGS;

• MCG [48]: manifold constrained gradients;
• DPS [49]: the diffusion posterior sampling is imple-

mented using the same DDPM as the one used by PnP-
SGS.

PnP-ADMM, TV-ADMM, DPIR, DDRM and Score-SDE
yield point estimates only. In contrast, PnP-SGS provides
a comprehensive description of the targeted posterior distri-
bution so that it permits to quantify uncertainties. It yields
variances and credibility intervals and multiple statistics of the
posterior in addition to the point estimate. Unless otherwise
specified, the results associated with the proposed PnP-SGS
method correspond to the MMSE estimate x̂MMSE approxi-
mated by the empirical average (13). Implementation details
are reported in Appendix C.

Remark. The proposed PnP-SGS and its deterministic coun-
terparts PnP-ADMM and DPIR do not leverage pre-trained
models with the same architectures, namely the UNet archi-
tecture of [29] for PnP-SGS, DnCNN for PnP-ADMM [7]
and DRUNet for DPIR [15]. This can be justified by the
very different nature of the two approaches. PnP-SGS requires
to sample from the conditional posterior (7) and embeds
a stochastic denoiser. Using a deterministic denoiser would
only provide a point estimate associated to this conditional
posterior, i.e., its mean in case of a MMSE denoiser or its mode
in case of a MAP denoiser. As a consequence, the use of such
conventional deterministic denoisers (such as DnCNN and

https://github.com/LeviBorodenko/motionblur
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TABLE II
IMAGENET 256× 256 DATA SET: IMAGE RECONSTRUCTION (PSNR, SSIM) OBTAINED BY THE COMPARED METHODS. BOLD: BEST, UNDERLINE:

SECOND.

PnP-SGS SPA TV-ADMM PnP-ADMM DPIR Score-SDE DDRM MCG DPS

In
pa

in
tin

g PSNR ↑ 25.22 23.14 20.96 8.39 22.08 18.62 14.29 19.03 18.90
SSIM ↑ 0.870 0.802 0.676 0.300 0.762 0.517 0.403 0.546 0.794
FID ↓ 34.28 41.33 189.3 114.7 37.47 127.1 114.9 39.19 35.87

LPIPS ↓ 0.297 0.323 0.510 0.677 0.448 0.659 0.665 0.414 0.303

D
eb

lu
rr

in
g

(G
au

ss
ia

n) PSNR ↑ 21.76 21.08 19.99 21.81 21.81 15.97 22.73 16.32 24.25
SSIM ↑ 0.701 0.577 0.634 0.669 0.612 0.436 0.705 0.441 0.811
FID ↓ 64.12 98.78 155.7 100.6 98.1 120.3 63.02 95.04 64.72

LPIPS ↓ 0.399 0.537 0.588 0.519 0.499 0.667 0.427 0.550 0.444

D
eb

lu
rr

in
g

(m
ot

io
n) PSNR ↑ 21.47 20.49 20.79 21.98 22.49 7.21 N/A 5.89 24.92

SSIM ↑ 0.695 0.681 0.677 0.702 0.731 0.120 N/A 0.037 0.859
FID ↓ 47.57 91.51 138.8 89.76 76.11 98.25 N/A 186.9 56.08

LPIPS ↓ 0.372 0.538 0.525 0.483 0.448 0.591 N/A 0.758 0.389

Su
pe

rr
es

.
(×

4
)

PSNR ↑ 24.33 N/A 22.17 23.75 24.30 12.25 24.96 13.39 25.67
SSIM ↑ 0.772 N/A 0.679 0.761 0.769 0.256 0.790 0.227 0.752
FID ↓ 59.09 N/A 130.9 97.27 88.85 170.7 59.57 144.5 50.66

LPIPS ↓ 0.418 N/A 0.523 0.433 0.424 0.701 0.339 0.637 0.337

DRUNet) is incompatible with the SGS scheme. Conversely,
PnP-ADMM and DPIR require to compute the MAP estimate
associated with the conditional distribution (7). Thus, at each
iteration of PnP-ADMM and DPIR, using one sample or
averaging several samples drawn from the DDPM to perform
the denoising step makes the convergence of the resulting PnP-
ADMM and DPIR algorithms to be hardly ensured. Moreover,
this strategy has been shown to provide poor results (not
reproduced in this manuscript for brevity).

The results are first qualitatively evaluated through visual
inspection. Quantitative comparisons are also conducted based
on four widely-used metrics. The first two criteria are standard
image reconstruction metrics, namely peak signal-to-noise-
ratio (PSNR) and structural similarity index (SSIM). The two
other criteria are perceptual metrics: Fréchet Inception Dis-
tance (FID), and Learned Perceptual Image Patch Similarity
(LPIPS) distance. Results are averaged over 1000 test images.

C. Experimental results

Tables I and II report the quantitative results in terms of im-
age reconstruction and perceptual metrics for the two data sets
FFHQ and Imagenet, respectively. Results appearing as N/A
correspond to tasks which have not been implemented by the
original authors. The proposed method compares favourably
with all the other methods in terms of SNR as well as
visual perception metrics. When considering the deblurring
or superresolution tasks, DPS and DPIR provide comparable
results. However these methods fail to recover good restored
images when considering the inpainting task. Some methods
perform poorly for some tasks on some data sets, e.g., Score-
SDE and MCG for deblurring or PnP-ADMM and DDRM
for inpainting on FFHQ images. Such unreliable behaviors
have been consistently encountered during the experiments
conducted for this work but this seems to be in agreement with
the results previously reported in the literature [49]. Note again
that DDRM, Score-SDE and DPS rely on a DDPM where the

pre-trained generative model is exactly the same as the one
implemented in PnP-SGS.

Fig. 1 permits to assess the performances by visual in-
spection when inpainting 4 test images taken from the FFHQ
and Imagenet data sets. In particular, PnP-SGS is compared
to state-of-the-art methods which are known to be robust to
measurement noise. PnP-SGS is able to provide high-quality
reconstructions that are crisp and realistic. In particular it is
able to recover more granular details.

As already stated, the proposed PnP-SGS generate samples
asymptotically distributed according to the posterior distri-
bution. These samples can be used to approximate various
Bayesian estimators but also to derive credibility intervals.
Fig. 2 illustrates this advantage by depicting various restored
images (in term of MMSE estimates) as well as 90% cred-
ibility intervals for different tasks. This added value cannot
be provided by optimization-based methods, e.g., TV-ADMM,
PnP-ADMM and DPIR, which provide point estimates only.
Besides, stochastic samplers such as DDRM, MCG, Score-
SDE and DPS are not able to provide this information either.
Indeed, they do not generate multiple samples drawn from a
stationary posterior. Several runs of these methods produce
outputs that may be individually relevant but that are not
consistent between them in their details, in particular because
they originate from different noise realizations. This is also
why averaging multiple outputs of these methods does not
yield reliable MMSE estimators but rather tends to recover
blurred images, as illustrated in Fig. 3 (6th right panel for
MCG).

When targeting (4), PnP-SGS generates two sets of samples{
x(n)

}
n

and
{
z(n)

}
n

that are marginally distributed according
to the marginals of πρ(x, z). It follows a splitting strategy
where the variables x and z are coupled thanks to a quadratic
kernel that is controlled by the parameter ρ. Thus the posterior
means x̂MMSE = E[x|y] and ẑMMSE = E[z|y] should be
very similar up to some variations adjusted by the coupling
parameter ρ. Fig. 3 depicts the two estimates as well as pixel-
wise 90% credibility intervals. As expected, slight differences
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Fig. 1. Inpainting task on the FFHQ (two top rows) and Imagenet data sets (two bottom rows), from left to right: measurement, true image, PnP-SGS, SPA
[23], DDRM [47], MCG [48].

Fig. 2. From left to right: measurement, true image, MMSE estimate, pixel-
wise 90% credibility intervals. From top to bottom: Gaussian blur, motion
blur, superresolution. The first three and the last images are from the FFHQ
and Imagenet data sets, respectively.

TABLE III
INPAINTING: COMPUTATIONAL TIMES (S.) OF THE COMPARED METHODS.

PnP-SGS SPA PnP-ADMM DPIR Score-SDE DDRM MCG DPS
13.81 218.90 3.63 4.18 36.71 29.03 80.10 43.89

are observed. In particular, the point estimate x̂MMSE seems to
be characterized by sharper details (better viewed by zooming
on screen). Recall that this estimate is closer to the observa-
tion, while ẑMMSE is closer to the prior, therefore smoother.
Fig. 4 (top) depicts the estimate x̂MMSE as a function of the
number n of Gibbs iterations. This evolution can be compared
in Fig. 4 (bottom) to that of the estimate of the denoised
image û0 ≜ E[u0|x(n)], which is approximated by averaging
DDPM outputs. The two trajectories are shown to evolve
synchronously along time.

Table III reports the execution times for the task of in-
painting of the various methods implemented on a single
GTX 2080Ti GPU. Noticeably, the computational time of
PnP-SGS is similar to its competitors. In particular, this
stochastic MCMC method (13.81s) is more than twice faster
than Score-SDE (36.71s). It remains within a factor less than
4 with respect to PnP-ADMM (3.63s) and DPIR (4.18s), its
deterministic counterparts. These results may appear surprising
since the pre-trained DnCNN and DRUNet models are used
only once per iteration of PnP-ADMM and DPIR (for about
ten iterations) while the denoising model is used several
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Fig. 3. Image inpainting, from left to right: measurement, true image, MMSE estimate x̂MMSE, MMSE estimate ẑMMSE, pixel-wise 90% credibility intervals,
averaged samples generated by MCG [48]

x̂
M

M
S
E

n = 1 n = 10 n = 20 n = 30 n = 40 n = 50

û
0

Fig. 4. Top: estimate x̂MMSE as a function of the number n of Gibbs iteration. Bottom: estimate of the denoised image û0 ≜ E[u0|x(n)] produced by the
DDPM (approximated by Monte Carlo integration).

dozen times per iteration of PnP-SGS (for about a hundred
iterations). This finding should be mitigated by the fact that
the efforts dedicated by different research groups to optimize
their respective models are not comparable. Yet, the price to
pay to get quantified uncertainties sounds very reasonable.
It is worth noting that using a DDPM-based PnP with SGS
significantly reduces the number of iterations required by the
sampler to reach the steady regime, which explains the reduced
computational cost with respect to SPA.

V. CONCLUSION

This work proposes the plug-and-play split Gibbs sampler
(PnP-SGS) as a stochastic counterpart of the well-known PnP-
ADMM. Thanks to the SGS divide-to-conquer strategy, the
PnP-SGS algorithm permits to target a posterior distribution
that involves an implicit PnP prior where the regularization is
ensured by some efficient stochastic denoiser. The proposed
methodology can make use of any well-suited PnP prior,
depending on the final application. For instance, it can be
based on a denoising diffusion probabilistic model (DDPM),
as proposed here, since it appears that a DDPM can be turned
into a Bayesian sampler of a denoising problem. With the
same versatility as PnP-ADMM, sampling from the posterior
distribution noticeably permits to build credibility intervals on
top of point estimates. Extensive numerical experiments show
that the proposed approach competes favourably with existing
state-of-the-art models on typical imaging problems, namely

deblurring, inpainting and superresolution. The quantitative
performances are at least comparable when not better, while
the computational times remain very moderate as well. PnP-
SGS appears as a scalable MCMC sampling method that
can benefit from the most recent progress in machine (deep)
learning at the price of a reasonable computational cost.
One open question deals with the theoretical finding which
may justify the replacement of the sampling according to the
conditional posterior (7) by the backward diffusion (10). This
requires to identify the sufficient conditions to guarantee that
the transition kernel qθ(u0|ut) properly defines a posterior
distribution associated to a denoising task. In the framework
of PnP-ADMM, this question is equivalent to discussing the
conditions required by the denoiser to be a proximal operator.

APPENDIX A
ESTIMATING THE NOISE LEVEL

The stochastic denoising task corresponding to the con-
ditional distribution (7) requires to adjust the number t⋆

of backward steps to be performed (see Algo. 1, line 10).
As discussed in Section II-D, this number is related to the
level σ̂ of the Gaussian noise assumed to affect the current
state x(n) through the noise scheduling function α(·), i.e.,
σ̂2 = α(t∗). As already stated, the conditional posterior (7)
can be interpreted as a Bayesian formulation of a denoising
task, i.e., recovering a noise-free image z from the a version
corrupted by an additive white Gaussian noise with variance
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ρ2. Thus, one natural choice would consist in prescribing ρ2

as the amount of noise, i.e., σ̂2 = ρ2. However, in practice,
this strategy is empirically shown to be less efficient than
an adaptive tuning of this noise level. More precisely, the
noise level is estimated directly from the current state x(n) at
each iteration of the Gibbs sampler, i.e., σ̂ = Φ(x(n)) where
Φ(·) is a noise level estimator. The problem of estimating
the level of the noise corrupting natural images has motivated
plenty of research works, see [38]–[40]. In our implemen-
tations, this estimation has been carried out following the
strategy proposed in [38]. This robust wavelet-based estimator
is already implemented in the library scikit-image (aka
skimage) as the function estimate_sigma(). When
handling RGB natural images, this function has been used
with the parameter average_sigmas=True to average the
noise level estimates over the three channels. It is worth noting
that the estimated level of noise tends to stabilize beyond the
burn-in period. This leads to a simultaneous stabilization of
the estimated number t⋆ of backward steps, as discussed in
Appendix C-A (see also Fig. 5).

APPENDIX B
INVERTING THE NOISE SCHEDULING FUNCTION α(·)

Given the current estimate of the noise level σ̂, sampling
according to (7) is achieved by performing the backward
diffusion with kernel (10) from a time instant t̂∗ such that
σ̂2 = α(t̂∗) where α(t) is defined by (12). This noise
scheduling function is controlled by the function b(·) that
adjusts the variance of the forward transition kernel (9) from
t− 1 to t. Various choices of b(·) exist in the literature.

The pre-trained DDPM used during the experiments con-
ducted on FFHQ is governed by the linearly increasing func-
tion

b(t) = b(0) + rt (23)

where b(0) = 10−4 and the slope r has been adjusted such
that b(T ) = 2.0× 10−2 [29].

Conversely, when handling the ImageNet data set, the
DDPM used in the experiments was trained using a cosine-
based variance schedule [36]

α(t) = 1− γ(t)

γ(0)
(24)

with γ(t) = cos
(

π
2
t/T+s
1+s

)2

where s is a small offset prevent-
ing α(t) to be too small when t→ 0. In both cases, an explicit
inverse scheduling function α−1(·) can be derived, which
yields t̂∗ = α−1(σ̂2). For more complex noise scheduling
functions, an alternative is to use a tabbing strategy, which
saves computation cost as well. Given a pre-computed list of
T + 1 values α = {α(0), . . . , α(T )}, the diffusion start time
is set to

t̂∗ = argmin
t∈{0,...,T}

|α(t)− σ̂2|.

For our experiments, the scheduling functions were sampled
on T = 1000 regularly spaced time instants.

APPENDIX C
EXPERIMENTAL DETAILS

A. Proposed PnP-SGS

1) Pre-trained models: For the experiments on the FFHQ
data set, the pre-trained DDPM has been taken from [45] also
available online2. For the Imagenet data set, we have used the
pre-trained DDPM of [28] and available online3. As detailed
in Appendix B, these two pre-trained modelds differ by their
respective noise scheduling functions α(·).

2) Coupling parameter: The coupling parameter ρ defining
the augmented distribution (4) controls the trade-off between
the speed of the sampling algorithm and the quality of the
approximation used. It is a sensitive hyperparameter whose im-
pact on the asymptotic and pre-asymptotic convergences of the
SGS has been deeply studied in [50]. Some recommendations
are also provided in [50] to fix this parameter for a posterior
distribution defined by a potential U(x) = −f(x,y) − g(x).
In this work, since the potential g(x) associated to the prior is
not explicitly known, such recommendations can be hardly
followed. Moreover, using a naive sequence of decreasing
values of the parameter, i.e., ρk

k→∞−−−−→ 0 in a fashion similar
to the strategy adopted by HQS [15], does not ensure the
invariance of the Gibbs kernels, thus breaking the convergence
of the Monte Carlo algorithm. Also, this strategy is empirically
shown to perform poorly in practice. Thus, this hyperparameter
has been adjusted following a grid-search procedure to reach
the best results, namely ρ = 0.7 for FFHQ and ρ = 1.625 for
ImageNet.

3) Number of iterations: For all experiments, the number
of iterations of the PnP-SGS has been fixed as NMC = 100
including Nbi = 20 burn-in iterations.

4) Number of denoising steps : In Section IV, the estimated
number t̂∗ of denoising steps is automatically adjusted by the
procedure described in Section II-D. At the first iteration of the
PnP-SGS, t̂∗ is usually a fraction of T . Along the iterations of
the PnP-SGS, this number reduces and then stabilizes around
a small fraction of T , as illustrated in Fig. 5 where the
initial value of t̂∗ is around 0.07T for the inpainting task.
Moreover, during the burn-in period, instead of applying the
kernel (10) for t = t̂∗, . . . , 1, we suspend the process in the
middle of the diffusion, i.e., t = t̂∗, . . . , t̂∗

2 . Stopping the
reverse diffusion at time t = t̂∗/2 (instead of t = 1), and
thus defining z(n) as the noisy image ut̂∗/2 (instead of the
fully denoised image u0), leads to best results. Intuitively, at
the beginning of the sampling procedure, this strategy avoids
the potential hallucination behavior of the DDPM. It prevents
the DDPM to sample a new image from an uninformative
x(n) (as long as the samples drawn from the first kernel (6)
are not sufficiently informative). This early-stopping trick not
only provides empirically better results but also allows the
computational burden to be lightened by reducing the number
of DNN evaluations.

2https://github.com/jychoi118/ilvr adm
3https://github.com/openai/guided-diffusion

https://github.com/jychoi118/ilvr_adm
https://github.com/openai/guided-diffusion
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Fig. 5. Inpainting: evolution of t̂∗ along the PnP-SGS iterations (T = 1000).
Results have been averaged over 100 runs conducted on the same image.
Shaded areas stand for the corresponding standard deviation.

B. Compared methods

The methods DDRM, MCG and Score-SDE are imple-
mented using the same pre-trained model as PnP-SGS (see
above). Additional details are listed below:

• TV-ADMM uses the isotropic regularization. The reg-
ularization parameter λ and some penalty parameter
ρ linked to the splitting have been adjusted by grid
search to reach the best performance. Final values are
(λ, ρ) = (2.7× 10−2, 1.4× 101) for deblurring, (λ, ρ) =
(2.7×10−2, 1.0×10−2) for inpainting and (λ, ρ1, ρ2) =
(2.7 × 10−2, 1.0 × 10−2) for superresolution which re-
quires a double splitting.

• PnP-ADMM: the implementation is from the SCICO4

library. The parameters are set to ρ = 0.2 (ADMM
penalty parameter) and maxiter = 12. The proximal
mappings use the pre-trained DnCNN denoiser [7].

• DPIR: the implementation is from the official repository5.
The number of iterations is set to maxiter = 15
and the coupling parameter is fixed to λ = 0.23 for
each experiment. The proximal mappings employ the pre-
trained DRUNet denoiser, which is accessible through the
DeepInverse library6

• DDRM: all experiments have been performed with the
default setting ηB = 1.0 and η = 0.85. For the Gaussian
deblurring task, the forward model was implemented by
separable 1D convolutions for efficient SVD.

• MCG: the noise scheduling function α(·) has been
chosen as the one used by PnP-SGS. At each step,
complementary data consistency steps are applied as
Euclidean projections onto the measurement set C =
{xi | Hxi = yi,yi ∼ p (yi | y0)}

• Score-SDE solves the inverse problems by iteratively
applying a denoising step followed by data consistency
projections onto the measurement set C, as in MCG.

• DPS blends a diffusion step with manifold constrained
gradient without a strict measurement consistency pro-
jection step.

4https://scico.readthedocs.io
5https://github.com/cszn/DPIR/tree/master
6https://deepinv.github.io/deepinv/deepinv.denoisers.html
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