Supporting Information for: Bayesian generalized method of moments applied to pseudo-observations in survival analysis

Orsini, L., Brard, C., Lesaffre, E., Yin, G., Dejardin, D., Le Teuff, G.

n	Methods	Bias	ASE^1	\mathbf{RMSE}^2	$Cov.^3$			
50	Frequentist							
	Cox	-0.0141	0.325	0.329	94.8			
	GEE	-0.0058	0.353	0.382	92.2			
	GMM	-0.0058	0.365	0.382	93.4			
	Bayesian	L						
	PEM	-0.0288	0.331	0.362	92.6			
	GMM	-0.0927	0.350	0.388	91.1			
100	Frequent	ist						
	Cox	0.0084	0.227	0.242	93.3			
	GEE	0.0134	0.252	0.269	93.5			
	GMM	0.0134	0.256	0.269	93.9			
	Bayesian	L						
	PEM	-0.0002	0.232	0.261	91.2			
	GMM	-0.0380	0.251	0.271	92.2			
200	Frequent	ist						
	Cox	0.0004	0.159	0.159	94.0			
	GEE	0.0013	0.179	0.189	93.3			
	GMM	0.0013	0.180	0.189	93.7			
	Bayesian	L						
	PEM	-0.0073	0.163	0.171	92.7			
	GMM	-0.0064	0.187	0.196	92.8			
500	Frequent	ist						
	Cox	0.0029	0.100	0.100	94.1			
	GEE	0.0041	0.114	0.112	94.9			
	GMM	0.0041	0.114	0.112	95.0			
	Bayesian	L						
	PEM	-0.0006	0.101	0.103	94.0			
	GMM	0.0012	0.116	0.113	94.9			
1000	Frequent	ist						
	Cox	0.0028	0.071	0.072	95.0			
	GEE	0.0014	0.080	0.080	95.5			
	GMM	0.0014	0.080	0.080	95.5			
	Bayesian	L						
	PEM	0.0011	0.071	0.073	94.4			
	GMM	0.0000	0.081	0.081	95.3			

Table S1a: Performances of the GMM models compared to Cox, GEE, and piecewise exponential (PEM) models with different sample sizes. The true log hazard ratio is fixed at -0.1 (HR=0.9) and the censoring rate at 20%.

 $^{1} ASE = Average Standard Error$ $^{2} RMSE = Root Mean Square Error$ $^{3} Cov. = Coverage$

n	Methods	Bias	ASE^1	\mathbf{RMSE}^2	$Cov.^3$			
50	Frequentist							
	Cox	-0.0240	0.330	0.339	95.5			
	GEE	-0.0200	0.359	0.396	92.4			
	GMM	-0.0200	0.372	0.396	93.8			
	Bayesian	L						
	PEM	-0.0802	0.335	0.376	92.0			
	GMM	-0.0763	0.357	0.387	91.2			
100	Frequent	ist						
	Cox	0.0026	0.230	0.250	93.7			
	GEE	0.0076	0.256	0.276	94.2			
	GMM	0.0076	0.260	0.276	94.4			
	Bayesian	L						
	PEM	-0.0327	0.234	0.268	91.6			
	GMM	-0.0295	0.256	0.275	92.5			
200	Frequent	ist						
	Cox	-0.0017	0.161	0.162	94.4			
	GEE	0.0002	0.182	0.190	92.9			
	GMM	0.0002	0.183	0.190	93.1			
	Bayesian	L						
	PEM	-0.0329	0.164	0.176	93.0			
	GMM	-0.0239	0.192	0.199	93.0			
500	Frequent	ist						
	Cox	0.0034	0.102	0.101	94.8			
	GEE	0.0020	0.115	0.112	95.0			
	GMM	0.0020	0.115	0.112	95.1			
	Bayesian	L						
	PEM	-0.0107	0.102	0.104	94.1			
	GMM	-0.0071	0.118	0.114	95.6			
1000	Frequent	ist						
	Cox	0.0034	0.072	0.072	95.2			
	GEE	0.0014	0.081	0.082	94.9			
	GMM	0.0014	0.082	0.082	94.9			
	Bayesian	L						
	PEM	-0.0039	0.072	0.074	94.9			
	GMM	-0.0030	0.082	0.083	95.0			

Table S1b: Performances of the GMM models compared to Cox, GEE, and piecewise exponential (PEM) models with different sample sizes. The true log hazard ratio is fixed at -0.5 (HR=0.6) and the censoring rate at 20%.

¹ ASE = Average Standard Error ² RMSE = Root Mean Square Error

³ Cov. = Coverage

$C.R.^1$	Methods	Bias	ASE^2	\mathbf{RMSE}^3	Cov. ⁴		
5%	Frequentist						
	Cox	0.0023	0.092	0.093	94.3		
	GEE	0.0029	0.106	0.105	95.5		
	GMM	0.0029	0.107	0.105	95.5		
	Bayesian	L					
	PEM	-0.0012	0.093	0.097	93.9		
	GMM	0.0000	0.108	0.107	95.7		
10%	Frequent	ist					
	Cox	0.0015	0.095	0.094	94.8		
	GEE	0.0020	0.108	0.105	95.4		
	GMM	0.0020	0.109	0.105	95.4		
	Bayesian	L					
	PEM	-0.0022	0.096	0.098	93.8		
	GMM	-0.0076	0.108	0.106	95.2		
20%	Frequent	ist					
	Cox	0.0029	0.100	0.100	94.1		
	GEE	0.0041	0.114	0.112	94.9		
	GMM	0.0041	0.114	0.112	95.0		
	Bayesian	L					
	PEM	-0.0006	0.101	0.103	94.0		
	GMM	0.0012	0.116	0.113	94.9		
30%	Frequent	ist					
	Cox	0.0050	0.107	0.107	95.4		
	GEE	0.0052	0.120	0.117	95.5		
	GMM	0.0052	0.121	0.117	95.7		
	Bayesian	L					
	PEM	0.0014	0.108	0.110	94.7		
	GMM	0.0023	0.123	0.119	95.4		
70%	Frequent	ist					
	Cox	0.0035	0.164	0.163	95.1		
	GEE	0.0018	0.183	0.184	94.9		
	GMM	0.0018	0.184	0.184	94.9		
	Bayesian	L					
	PEM	0.0008	0.165	0.169	94.2		
	GMM	-0.0066	0.193	0.186	95.1		

Table S2a: Performances of the GMM models compared to Cox, GEE, and piecewise exponential (PEM) models with different censoring rates. The true log hazard ratio is fixed at -0.1 (HR=0.9) and the sample size at 500.

 1 C.R. = Censoring Rate 2 ASE = Average Standard Error 3 RMSE = Root Mean Square Error

⁴ Cov. = Coverage

$C.B^{-1}$	Methods	Bias	ASE^2	RMSE ³	Cov ⁴	
0.10	1.10011040	Diab				
5%	Frequentist					
	Cox	0.0015	0.094	0.096	94.2	
	GEE	0.0041	0.108	0.108	95.2	
	GMM	0.0041	0.108	0.108	95.4	
	Bayesian					
	PEM	-0.0127	0.095	0.099	94.1	
	GMM	-0.0062	0.111	0.110	94.9	
10%	Frequent	ist				
- , .	Cox	0.0015	0.096	0.097	94.4	
	GEE	0.0035	0.110	0.108	95.2	
	GMM	0.0035	0.110	0.108	95.2	
	Bavesian					
	PEM	-0.0121	0.097	0.100	94.7	
	GMM	-0.0064	0.113	0.111	95.0	
20%	Frequent	ist				
2070	Cox	0.0034	0.102	0.101	94.8	
	GEE	0.0020	0.115	0.112	95.0	
	GMM	0.0020	0.115	0.112	95.1	
	Bayosian			-		
	PEM	-0.0107	0 102	0 104	94-1	
	GMM	-0.0101	0.102	0.104	95.6	
2014	-	•	0.110	0.111		
30%	Frequent		0.100	0 100	04.0	
	Cox	0.0047	0.108	0.109	94.9	
	GEE	0.0016	0.122	0.121	94.9	
	GMM	0.0010	0.123	0.121	94.9	
	Bayesian	Ļ				
	PEM	-0.0091	0.109	0.112	94.2	
	GMM	-0.0075	0.125	0.123	94.9	
70%	Frequent	ist				
	Cox	0.0020	0.167	0.165	94.5	
	GEE	-0.0019	0.187	0.188	93.9	
	GMM	-0.0019	0.188	0.188	94.1	
	Bayesian					
	PEM	-0.0111	0.168	0.170	93.9	
	GMM	-0.0185	0.198	0.191	94.6	

Table S2b: Performances of the GMM models compared to Cox, GEE, and piecewise exponential (PEM) models with different censoring rates. The true log hazard ratio is fixed at -0.5 (HR=0.6) and the sample size at 500.

 1 C.R. = Censoring Rate 2 ASE = Average Standard Error 3 RMSE = Root Mean Square Error

⁴ Cov. = Coverage

Table S3: Comparison of the performances of GEE and GMM models with different time points. The true log hazard ratio is fixed at -0.3 (HR=0.74), the censoring rate at 20%, and the sample size at 500.

Methods	Κ	Bias	ASE^1	RMSE^2	Coverage		
Frequentist							
GEE	5	0.0032	0.114	0.112	95.4		
	7	0.0024	0.112	0.110	95.3		
	10	0.0029	0.111	0.109	95.3		
GMM	5	0.0032	0.114	0.112	95.5		
	7	0.0024	0.113	0.110	95.3		
	10	0.0029	0.111	0.109	95.4		
Bayesian	Bayesian						
GMM	5	-0.0028	0.116	0.113	95.4		
	7	-0.0051	0.114	0.112	95.3		
	10	-0.0063	0.113	0.112	95.0		

1 AVE = Average Standard Error

 2 RMSE = Root Mean Square Error

Table S4a: Comparison of the performances of GEE and GMM models with different correlation matrices: independence (IND), exchangeable (EXCH), and first-order auto-regressive (AR-1). The true log hazard ratio is fixed at -0.1 (HR=0.9), the censoring rate at 20%, and the sample size at 500.

Methods	WCM^1	Bias	ASE^2	RMSE^3	Coverage	
Frequentist						
GEE	IND	0.0041	0.114	0.112	94.9	
GEE	EXCH	0.0033	0.113	0.112	95.1	
GEE	AR-1	0.0036	0.111	0.110	94.7	
GMM	IND	0.0041	0.114	0.112	95.0	
GMM	EXCH	0.0028	0.111	0.110	95.7	
GMM	AR-1	0.0020	0.110	0.110	95.4	
Bayesian	L					
GMM	IND	0.0012	0.116	0.113	94.9	
GMM	EXCH	-0.0002	0.112	0.111	95.2	
GMM	AR-1	-0.0009	0.113	0.112	94.6	

 1 WCM = Working Correlation Matrix

 2 ASE = Average Standard Error

³ RMSE = Root Mean Square Error

Table S4b: Comparison of the performances of GEE and GMM models with different correlation matrices: independence (IND), exchangeable (EXCH), and first-order auto-regressive (AR-1). The true log hazard ratio is fixed at -0.5 (HR=0.6), the censoring rate at 20%, and the sample size at 500.

Methods	$\rm WCM^1$	Bias	ASE^2	RMSE^3	Coverage		
Frequent	Frequentist						
GEE	IND	0.0020	0.115	0.112	95.0		
GEE	EXCH	0.0009	0.114	0.112	95.5		
GEE	AR-1	0.0013	0.112	0.110	95.5		
GMM	IND	0.0020	0.115	0.112	95.1		
GMM	EXCH	-0.0021	0.112	0.111	95.2		
GMM	AR-1	-0.0051	0.112	0.111	95.2		
Bayesian	L						
GMM	IND	-0.0071	0.118	0.114	95.6		
GMM	EXCH	-0.0105	0.114	0.113	95.2		
GMM	AR-1	-0.0138	0.114	0.114	94.8		
1 11101 1	TT7 1.	<u>a</u> 1	3.5				

1 WCM = Working Correlation Matrix

 2 ASE = Average Standard Error

 3 RMSE = Root Mean Square Error

Table S5a: Log hazard ratio and standard error of the treatment effect estimated by GEE and GMM with different correlation matrices: independence (IND), exchangeable (EXCH), and first-order auto-regressive (AR-1) in $R2_{loc}$ trial for event-free survival and overall survival

Methods	WCM^1	$\log(\mathrm{HR})$	SE^2				
Event-free survival							
Frequent	\mathbf{ist}						
GEE	IND	-0.5073	0.226				
GEE	EXCH	-0.5383	0.220				
GEE	AR-1	-0.4903	0.219				
GMM	IND	-0.5073	0.227				
GMM	EXCH	-0.5457	0.223				
GMM	AR-1	-0.4549	0.228				
Bayesian	L						
GMM	IND	-0.5389	0.248				
GMM	EXCH	-0.5143	0.241				
GMM	AR-1	-0.5025	0.281				
Overall su	Overall survival						
Frequent	\mathbf{ist}						
GEE	IND	-0.3995	0.240				
GEE	EXCH	-0.4529	0.236				
GEE	AR-1	-0.4246	0.235				
GMM	IND	-0.3995	0.242				
GMM	EXCH	-0.4736	0.241				
GMM	AR-1	-0.4755	0.247				
Bayesian	L						
GMM	IND	-0.4507	0.270				
GMM	EXCH	-0.5132	0.264				
GMM	AR-1	-0.5430	0.311				

¹ WCM = Working Correlation Matrix

 2 SE = Standard Error

Table S5b: Log hazard ratio and standard errors of the treatment effect estimated by GEE and GMM with different correlation matrices: independence (IND), exchangeable (EXCH), and first-order auto-regressive (AR-1) in $R2_{pulm}$ trial for event-free survival and overall survival

Methods	WCM^1	$\log(\mathrm{HR})$	SE^2				
Event-free survival							
Frequent	Frequentist						
GEE	IND	-0.1641	0.190				
GEE	EXCH	-0.2086	0.186				
GEE	AR-1	-0.1756	0.184				
GMM	IND	-0.1641	0.191				
GMM	EXCH	-0.2100	0.188				
GMM	AR-1	-0.1791	0.184				
Bayesian	L						
ĞMM	IND	-0.1798	0.196				
GMM	EXCH	-0.1956	0.197				
GMM	AR-1	-0.1985	0.199				
Overall su	irvival						
Frequent	ist						
GEE	IND	0.0676	0.208				
GEE	EXCH	0.0095	0.204				
GEE	AR-1	0.0469	0.203				
GMM	IND	0.0676	0.209				
GMM	EXCH	0.0029	0.208				
GMM	AR-1	0.0240	0.203				
Bayesian	L						
GMM	IND	0.0424	0.221				
GMM	EXCH	0.0000	0.227				
GMM	AR-1	0.0030	0.226				

1 WCM = Working Correlation Matrix

 2 SE = Standard Error

Figure S1: Kaplan-Meier curves of the event-free survival and corresponding pseudo-observations individual profiles for the EWING trials.

Figure S2a: Post warm-up MCMCs, using the Bayesian GMM to estimate HR based on the event-free survival in EWING (R1) trial. β_0 is the intercept, β_1 is the parameter of the treatment factor and $(\beta_2, ..., \beta_5)$ are for the K-1 dummy time points variables.

Figure S2b: Post warm-up MCMCs, using the Bayesian GMM to estimate HR based on the overall survival in EWING (R1) trial. β_0 is the intercept, β_1 is the parameter of the treatment factor and $(\beta_2, ..., \beta_5)$ are for the K-1 dummy time points variables.

Figure S2c: Post warm-up MCMCs, using the Bayesian GMM to estimate HR based on the event-free survival in EWING ($R2_{loc}$) trial. β_0 is the intercept, β_1 is the parameter of the treatment factor and ($\beta_2, ..., \beta_5$) are for the K-1 dummy time points variables.

Figure S2d: Post warm-up MCMCs, using the Bayesian GMM to estimate HR based on the overall survival in EWING $(R2_{loc})$ trial. β_0 is the intercept, β_1 is the parameter of the treatment factor and $(\beta_2, ..., \beta_5)$ are for the K-1 dummy time points variables.

Figure S2e: Post warm-up MCMCs, using the Bayesian GMM to estimate HR based on the event-free survival in EWING $(R2_{pulm})$ trial. β_0 is the intercept, β_1 is the parameter of the treatment factor and $(\beta_2, ..., \beta_5)$ are for the K-1 dummy time points variables.

Figure S2f: Post warm-up MCMCs, using the Bayesian GMM to estimate HR based on the overall survival in EWING $(R2_{pulm})$ trial. β_0 is the intercept, β_1 is the parameter of the treatment factor and $(\beta_2, ..., \beta_5)$ are for the K-1 dummy time points variables.

Figure S3: Hazard ratio estimates (and 95% confidence intervals) from the Cox proportional hazard, GEE, frequentist (Freq) GMM, piecewise exponential and Bayesian (Bayes) GMM models in the three EWING trials $(R1, R2_{loc}, \text{ or } R2_{pulm})$ for event-free survival (left part) and overall survival (right part). These analyses were adjusted on the age variable: binary variable (< 25, \geq 25) years in the R1 trial and categorical variable (< 12, 12 - 18, 18 - 25, > 25) years in the $R2_{loc}$, and $R2_{pulm}$ trials. The independent working correlation matrix is used for GEE and GMM approaches. The vertical dashed line represents the null effect.

Figure S4: Posterior distribution of the log hazard ratios estimated with the piecewise exponential model (PEM) and the Bayesian generalized method of moments (GMM) in the three EWING trials (R1, $R2_{loc}$, or $R2_{pulm}$) for event-free survival. These analyses were adjusted on the age variable: binary variable ($< 25, \ge 25$) years in the R1 trial and categorical variable (< 12, 12 - 18, 18 - 25, > 25) years in the $R2_{loc}$, and $R2_{pulm}$ trials. The independent working correlation matrix is used for GEE and GMM approaches. The vertical dashed line represents the null effect.