Supplementary information for

Nano-encapsulation of a far-red absorbing phthalocyanine into poly(benzylmalate) biopolymers and modulation of their photodynamic efficiency

Zeynel Şahin,^{a†} Emel Önal,^{b†} Lamiaa M. A. Ali,^{c,d†} Denis Durand,^c Atefeh Emami,^e Marie Touré^c, Umit İşci,^a Magali Gary-Bobo^{*c}, Sandrine Cammas-Marion^{*f,g} and Fabienne Dumoulin^{*e}

^a Marmara University, Faculty of Technology, Department of Metallurgical & Materials Engineering, 34722 Istanbul, Türkiye
^b Doğuş University, Faculty of Engineering, Ümraniye, 34775 Istanbul, Türkiye
^c IBMM, Univ Montpellier, CNRS, ENSCM, 34093 Montpellier, France
^d Department of Biochemistry Medical Research Institute, University of Alexandria, 21561 Alexandria, Egypt
^e Acıbadem Mehmet Ali Aydınlar University, Faculty of Engineering and Natural Sciences, Biomedical Engineering Department, Ataşehir, 34752 Istanbul, Türkiye.
^f Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)
– UMR 6226, F-35000 Rennes, France
^g INSERM, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), U 1317, F-35000 Rennes, France
[†] Equal contributions
Correspondance to : magali.gary-bobo@inserm.fr, sandrine.marion.1@ensc-rennes.fr and fabienne.dumoulin@acibadem.edu.tr

[†]Equal contributions

Contents

Characterization spectra for polymeric materials PMLABe73 and PEG42-b-PMLABe73	3
Figure S1. ¹ H NMR spectrum (400 MHz, CD ₃ COCD ₃) of PMLABe ₇₃ and PEG ₄₂ -b-	
PMLABe ₇₃	3
Figure S2. ¹ H NMR spectrum (400 MHz, CD ₃ COCD ₃) of PEG ₄₂ - <i>b</i> -PMLABe ₇₃	3
Figure S3. SEC chromatogram (THF, 40°C, polystyrene standards, RI detector) of	
PMLABe ₇₃	4
Figure S4. SEC chromatogram (THF, 40°C, polystyrene standards, RI detector) of PEG ₄₂ -	
b-PMLABe ₇₃	4
Characterization spectra for ZnPc(SO ₂ Prop)8	5
Figure S5. FT-IR spectrum of ZnPc(SO ₂ Prop)8	5
Figure S6. ¹ H NMR spectrum of ZnPc(SO ₂ Prop)8	5
Figure S7. MALDI-MS spectrum of ZnPc(SO ₂ Prop)8	
Preparation of calibration curve for E.E	7
Figure S8. A: UV-vis spectra of ZnPc(SO ₂ Prop)8 in a 9/1 THF/water mixture. B:	
Calibration curve	7
Materials and Methods for UV-visible and Fluorescence measurements	8
UV-visible spectra of nanoparticles in water	9
Figure S9. UV-vis spectra (water) of ZnPc(SO ₂ Prop)8-loaded PMLABe ₇₃ nanoparticles	
(red) and ZnPc(SO ₂ Prop)8-loaded PEG ₄₂ -b-PMLABe ₇₃ nanoparticles (blue) with	
different loading ratios: 1 wt% (dot), 5 wt% (dash) and 10 wt% (line). Phthalocyanine	
concentrations: 2-8 µM	9
Fluorescence spectra of disrupted nanoparticles	10
Figure S10. Absorbance (line), fluorescence emission (dashes) and excitation (dots)	
spectra of ZnPc(SO ₂ Prop)8-loaded PMLABe ₇₃ disrupted nanoparticles (red), of	
ZnPc(SO ₂ Prop)8-loaded PEG ₄₂ -b-PMLABe ₇₃ disrupted nanoparticles (blue) and of	
ZnPc(SO ₂ Prop)8 (black), with different loading ratios	10
Figure S11. Dark toxicity and PDT effect of empty PMLABe ₇₃ and PEG ₄₂ - <i>b</i> -PMLABe ₇₃	
nanoparticles	11
Figure S12. Dark toxicity and PDT effect of non-encapsulated ZnPc(SO ₂ Prop)8	11
References	12

Characterization spectra for polymeric materials

Figure S1. ¹H NMR spectrum (400 MHz, CD₃COCD₃) of PMLABe₇₃ and PEG₄₂-*b*-PMLABe₇₃.

Figure S2. ¹H NMR spectrum (400 MHz, CD₃COCD₃) of PEG₄₂-*b*-PMLABe₇₃.

Figure S3. SEC chromatogram (THF, 40°C, polystyrene standards, RI detector) of PMLABe₇₃.

Figure S4. SEC chromatogram (THF, 40°C, polystyrene standards, RI detector) of **PEG₄₂-***b***-PMLABe₇₃**.

Figure S5. FT-IR spectrum of ZnPc(SO₂Prop)8

Figure S6. ¹H NMR spectrum of ZnPc(SO₂Prop)8 (CDCl₃)

Figure S7. MALDI-MS spectrum of ZnPc(SO₂Prop)8

Preparation of calibration curve for E.E.

Figure S8. A: UV-vis spectra of **ZnPc(SO₂Prop)8** in a 9/1 THF/water mixture. B: Calibration curve.

Ground state electronic absorption

Absorption spectra were recorded at room temperature on a Schimadzu 2600 UV-vis spectrometer using a 1 cm path length quartz cuvette between maximum range 300 and 1100 nm in THF. Solutions were freshly prepared in spectrophotometric grade solvents. Molar extinction coefficients (ϵ) were determined by measurement of the absorption solutions of differing concentration for each compound, followed by determination of the slope.

Fluorescence

Steady-state fluorescence excitation and emission spectra in THF were recorded by using a Varian Cary Eclipse spectrofluorometer using 10 mm path length cuvettes at room temperature.

Figure S9. UV-vis spectra (water) of $ZnPc(SO_2Prop)8$ -loaded PMLABe₇₃ nanoparticles (red) and $ZnPc(SO_2Prop)8$ -loaded PEG₄₂-*b*-PMLABe₇₃ nanoparticles (blue) with different loading ratios: 1 wt% (dot), 5 wt% (dash) and 10 wt% (line). Phthalocyanine concentrations: 2-8 μ M.

Figure S10. Absorbance (line), fluorescence emission (dashes) and excitation (dots) spectra (in THF) of $ZnPc(SO_2Prop)8$ -loaded PMLABe₇₃ disrupted nanoparticles (red), of $ZnPc(SO_2Prop)8$ -loaded PEG₄₂-*b*-PMLABe₇₃ disrupted nanoparticles (blue) and of $ZnPc(SO_2Prop)8$ (black), with different loading ratios.

Figure S11. Study of PDT effect of empty **PMLABe**₇₃ and **PEG**₄₂-*b*-**PMLABe**₇₃ nanoparticles, incubated 24 h at 50 μ g.mL⁻¹ with MCF-7 cells. Cells were irradiated with continuous laser for 20 min at 650 nm. Data are presented as (mean \pm SD), n=3.

Figure S12. Study of PDT effect of non-encapsulated **ZnPc(SO₂Prop)8** on MCF-7 cells treated with 0.5 μ g/mL, 2.5 μ g/mL and 5 μ g/mL for 24 h. Cells were irradiated with continuous laser for 20 min at 650 nm. Data are presented as (mean ± SD), n=3.

References

[1] Williams, A. T. R.; Winfield, S. A.; Miller, J. N. Relative Fluorescence Quantum Yields
 Using a Computer-Controlled Luminescence Spectrometer. *Analyst*, **1983**, 108 (1290), 1067–1071.

[2] Ogunsipe, A.; Maree, D.; Nyokong, T. Solvent effects on the photochemical and fluorescence properties of zinc phthalocyanine derivatives. *Journal of Molecular Structure*. **2003**, 650, 131-140.