A multispectral UAV imaging for optimizing cover crop management
in viticulture : application of a multivariate multi-block modelling
approach
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Context - Managing service crops to avoid dysservices

 The management of service crops in viticulture appears to be a key leverto reach trade-offs between
ecosystem services and disservices (Garcia etal. 2018, Winter et al. 2018, Giffard et al. 2022)

- Soil biodiversity and biological activity

-Yield - Microclimate regulation
F - Berry quality - Fungal disease regulation To minimize disservices and achieve the
- Fodder production - Weed control

targeted services :
- Biodiversity conversation 'ChOiCQ Of SpeCieS

- Aestheticlandscapes

o R -Seeding density, period

84y - H.0 and nutrient competition -Service Crop duration
{ - VYieldlosses .
- Hosts and pests 'DeStrU Ctlon tOO|
- Soil fertility .
- Erosion control -Residue management

- Water pollution control
- Carbon sequestration
- Climate change mitigation

A greater adaptability in decision-making is required to manage services crops .2



Context - Contribution of sensing technologies

» High-resolution spatio-temporal data are increasingly available in viticulture

* These data enable the study of agroecosystems at scales difficult to achieve through conventional
experimentation, and facilitate on-farm experimentation
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When and what types of agricultural data are needed to optimize service crops
management in viticulture ?

P.3



Strategy & Objectives

Strategy: data fusion analysis using multi-block methods to extract more relevant information
from UAV data sources (Surowiec etal. 2019)

Objectives:

« Explore the applicability of a multi-block modelling approach (SO-PLS) to a multivariate data
structure (spatio-temporal) to predict two variables of interest: Yield and Pruning weight

* Identify relevant, data types and timings for predicting these two variables
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Experimental set up

L@ MAS
* Oneyear: 2022 NnumeaRique

* Site: Domaine du Chapitre (Villeneuve-les-Maguelone)

3 plots - 6 treatments

Plot Treatment

1 Plot] 1 Early_Tillage (E_T)

1 Plot2 2 Early_Mowing (E_M) c e .
1 Plot3 3 Early_Roller (E_R) Two termination periods :

4 Budburst_Tillage (B_T)
5 Budburst_Mowing (B_M) Early Late : Budburst
6 Budburst_Roller (B_R)

podCen

Harvest Flowering

Aerial photos of Syrah block (1 ha)

(Garcia et al. 2024, poster 192) Three termination methods :

Tillage Mowing Roller oo



Data collection
Crop data

For each treatment, two types of data were collected on 10 individual vines per
treatment and block (total 180): —

* Yield (kg/vine stock)

* Pruning weight (kg/vine stock)

p.6




Data CO"QCtiO" Phantom 4

- Multispectral + ProV2

. . . -5 bands (475,
Spectral & geometric data of vines canopy and service crops | 2rersetis

+ RGBimages
2027 04 Data o Me"asr‘afl’ﬁ}'/ JJ Spatial resolution: ~2 cm
= 10 dates acquisition S — UAV data -Flight height: 35-40 m
07/12/2021
\ 4 A 4 A\ 4
Multispectral . Digital Surface
' [ Orthomosaics ] [ 30 Point Cloud ] [ Model (DSM) J
03/06/2022 SVM classifier v
Soil, Vines canopy & Service [ Digital Elevation Model J
crops Segmentation (DEM)
< DSM-DEM
Data. Y Vines canopy & Service crops
ST Processing Discrimination After Height
[ Vines canopy Spectral ] [ Service crops Spectral ] ! |
Information Information Vines canopy 3D Services crops 3D
Point Cloud Point Cloud

Point cloud slicing (0.10 m)

[ Width and height estimation J [ Width and height estimation

(for each slice) (for each slice)
Volume estimation using voxels

P Feature Vines canopy Indices { J I (for each slice) |

Extraction (NDVIv, GNDVIv) Vines Canopy ] [ Service Crops } p.7
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Theory - Multi-bloc method

Sequential and Orthogonalized Partial Least Squares: SO-PLS (Naes et al. 2013)

How it works: example with 2 predictor blocks

*Yis the response variable

* U and V are the predictor blocks
*aand b are the regression coefficients
* Eis the residual matrix.

Advantage: blocks of different sizes to be combined

15t Y is fitted to U by Ty
PLS regression
20d: Vs
orthogonalized to
R the scores Ty

V.

34 Residuals are fitted with the V |
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Application - Multi-bloc analysis

2022 - 1 model per treatment (aggregation of data from 3 blocks) - combination of 8 predictor blocks

(2 Vines Canopy indices +

Crops volume)

Model :
Early_Tillage (E_T)

Model :
Late_Roller (B_R)

+ 1 Vine Canopy volume + 1 Service

N = individual vines & K = Dates

4 NDVl,  GNDVl, NDVI.  GNDVle VOV SCV )

Yield K=10 K=10 k=10 K=10 K=10 K=10
= ‘I = 8 3 S S 3 =
it i
- /
(o NV, GNDVI
Pruning weight v v NDVl.  GNDVIg, VCV SCV
S k=10 K=10 k=10 K=10 K=10 K=10
I I s I = I 3 S 3 3
= I Il I Il I Il

= = = = = I = I

- /

calibration data set (N = 20) - validation data set (N = 10)
» 12 models constructed
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Results - Data visualisation: Variables of interest

Distributions of response variables in 2022
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| Letters represent significantly
o = different classes obtained by
ANOVA and a Bonferroni test with ¢
risk of o = 0.05.
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- The destruction tool and the presence of cover crops do not seem to be prejudicial to yields
-Yields can be ordered by destruction tool: Tilled > Rolled > Mowed

- Great variability in measurements according to vine stock (0.68 kg/vine stock to 5.9 kg/vine stock)

Pruning weight :
- The destruction tool has a significant effect on pruning weights, with Tilled modalities > Mowed and Rolled modalities
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Results - Cross-validation results

Independently select the number of latent variables for each block
Latent variables per block

N =20

reatment Variable NRMSEe R NDVIv  GNDVIv _ NDVisc _ GNDVIsc VCV SCV
ET Yield 6.9 0.77 2 1 1 1 1T 0
~ Pruning weight 8.7 0.69 L L 0 L 2 1
Y Yield 9.6 0.74 2 1 0 1 1T 1
~ Pruning weight 11.1 0.67 L 2 0 L 1 1
£ R Yield 7.1 0.71 2 0 1 1 1T 1
- Pruning weight 9.4 0.68 L 2 L 0 1 0
8 T Yield 5.8 0.73 2 1 0 2 1T 0
~ Pruning weight 12.2 0.64 1 2 0 1 2 0
B M Yield 7.8 0.75 2 1 1 0 1T
~ Pruning weight 9.1 0.6 1 2 0 1 1
3 R Yield 5.9 0.72 2 1 0 1 1T
~ Pruning weight 10.1 0.65 1 2 0 1 1

 Regardless of the treatment, the quality and robustness of the models remain satisfactory
 Depending on the response variable considered, the contribution of the 6 predictor blocks is not the same

« Geometry indices (VCV & SCV) appears to provide additional information to spectral data
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Results - Validation results

Performance evaluation of multivariate prediction models for each response variables

Treatment Variable nRMSEp R?;.4
Yield 10.9 0.78

e Pruning weight ~ 13.0 0.69
. Yield 9.1 0.75
- Pruning weight ~ 13.5 0.67
Yield 9.8 0.76

FR Pruning weight ~ 12.3 0.69
Yield 10.1 0.74

81 Pruning weight ~ 14.2 0.65
Yield 11.1 0.76

B_M Pruning weight 134 0.66
Yield 10.2 0.77

5K Pruning weight ~ 13.1 0.69

10

* The performance of the prediction models was satisfactory for each treatments tested, despite the

significant variability seen in productivity and vigor
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Results - Interpretation tool: Regression coefficient of models
indicating optimal detection dates

Example: Regression coefficients derived from the E_T yield prediction model with the NDVIv predictor block

Lo Temporal Variation of Regression Coefficients

0.81
0.6
0.4r

0.21

0.0
-0.21
—-0.41
—-0.61
-0.81
-1.0 < 5 . - . . \/' .

Date

« |dentify the canopy detection dates that are relevant for predicting harvest & vigor variables, in order
to provide clear information to winegrowers

Regression Coefficients
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Take Home Message

 Experimental validation:

Field experiments showed that destruction tools and residue management appear to influence vine yield and pruning
weight (see Garcia et al. 2024, poster 192)

* Application of SO-PLS modeling:
SO-PLS approach, which combines spectral & geometric blocks of data obtained on vine canopy and service crops :
- Can create synergies to improve the prediction performance of these 2 key variables

- Can improve information on the optimal timing of detection, and supports more informed and adaptive strategic
decision-making for vineyard management

* Next steps
- Assess robustness in other years and vineyards

- Refine predictive models by including additional variables (from other data sources) to improve the accuracy and
robustness of predictions

‘ UAV imagery could be used as a decision-support tool for the management of service crops

p. 14
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